JP2008027150A - Unit and method for predicting manufacturing load, computer program, and computer readable storage medium - Google Patents

Unit and method for predicting manufacturing load, computer program, and computer readable storage medium Download PDF

Info

Publication number
JP2008027150A
JP2008027150A JP2006198480A JP2006198480A JP2008027150A JP 2008027150 A JP2008027150 A JP 2008027150A JP 2006198480 A JP2006198480 A JP 2006198480A JP 2006198480 A JP2006198480 A JP 2006198480A JP 2008027150 A JP2008027150 A JP 2008027150A
Authority
JP
Japan
Prior art keywords
manufacturing
product
production
load prediction
products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006198480A
Other languages
Japanese (ja)
Other versions
JP4757729B2 (en
Inventor
Kuniharu Ito
邦春 伊藤
Yasushi Mizutani
泰 水谷
Kiyoshi Wajima
潔 和嶋
Junji Ise
淳治 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006198480A priority Critical patent/JP4757729B2/en
Publication of JP2008027150A publication Critical patent/JP2008027150A/en
Application granted granted Critical
Publication of JP4757729B2 publication Critical patent/JP4757729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • General Factory Administration (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prediction model for manufacture load which facilitate of production management job and operation management job simply and precisely in steel manufacturing industry having processes for producing various, small-lot products in large quantities. <P>SOLUTION: The model consists of a classification logic creation step (a step S4) for creating a logic which groups products whose product attributes, such as order information on the products and product specification information, are identical or within a fixed range as a variety group according to a logic creating determination tree; and a manufacturing load prediction model construction step (a step S6) for constructing a manufacturing load prediction model which predicts manufacturing loads for each variety group created on the basis of past manufacturing achievement data. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば鉄鋼製造業などの多種かつ小ロット製品を大量に生産するプロセスを持つ製造業の製造工程における生産管理技術に関し、特に製品属性の似ている製品同士をグループ化して複数の品種グループにまとめて定義するとともに、品種グループ毎の製造負荷を予測して、生産性の向上を図るのに用いて好適な製造負荷予測装置、製造負荷予測方法、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体に関する。   The present invention relates to a production management technique in a manufacturing process of a manufacturing industry having a process for producing a large number of small lot products such as a steel manufacturing industry, and in particular, products having similar product attributes are grouped together to produce a plurality of varieties. A production load prediction device, a production load prediction method, a computer program, and a computer-readable storage that are suitable for use in improving productivity by predicting the production load for each product type group while defining them in groups. It relates to the medium.

例えば、鉄鋼製造業における鉄鋼製品は、その材質を規定した規格や客先での用途に応じたサイズなどの製品属性が極めて多岐に渡るため、その製造仕様、例えば化学的な組成や成形方法、熱処理方法などが極めて多岐に渡るという特徴がある。さらに、顧客での製品使用予定に合わせた納期遵守と納期短縮の要求が強くなっている。   For example, steel products in the steel manufacturing industry have a wide variety of product attributes such as standards that define their materials and sizes according to customer applications, so their manufacturing specifications such as chemical composition and molding method, The heat treatment method has a wide variety of features. In addition, there is an increasing demand for compliance with delivery dates and shortened delivery times in accordance with customer's product use schedule.

一方、製造工程においては大量生産による生産性向上の観点から、同一製造仕様の注文を複数まとめてロット単位で生産することが求められている。鉄鋼製品の製造工程は、製鋼、圧延、精整、出荷など複数の製造設備からなり、それぞれの製造設備の最適なロット条件は異なる。従って、ある製造設備でのロットに関する生産性向上の追求が他の製造設備の生産性を低下させたり、上流工程でのロットまとめが下流工程での製造負荷集中につながり仕掛増や製造工期増を引き起こしたりすることがある。そのために、製造設備間でのトレードオフを考慮したロットを作成することが求められる。また適正規模のロットを作るための先作りは余分な製品在庫や、それに応じた工期増を引き起こすこととなる。なお、本願明細書では製造負荷とは各製造設備での処理量(製造量)を指すものとする。   On the other hand, in the manufacturing process, from the viewpoint of improving productivity by mass production, it is required to produce a plurality of orders with the same manufacturing specification in batch units. The manufacturing process of steel products consists of a plurality of manufacturing facilities such as steel making, rolling, refining, and shipping, and the optimum lot conditions of each manufacturing facility are different. Therefore, the pursuit of improving the productivity of lots at a certain manufacturing facility will decrease the productivity of other manufacturing facilities, or the lot summarization at the upstream process will lead to the concentration of the manufacturing load at the downstream process, which will increase the in-process and the manufacturing period. It may cause. Therefore, it is required to create a lot considering the trade-off between manufacturing facilities. In addition, pre-fabrication for producing an appropriate-sized lot causes extra product inventory and a corresponding increase in work period. In the specification of the present application, the manufacturing load refers to a processing amount (manufacturing amount) in each manufacturing facility.

これに対し鉄鋼業では以下のような生産管理を行っていることが多い。営業部門が顧客から注文の引合を受け、注文の製造仕様や要望納期などに基づいて、受注可否や必要に応じた納期交渉を行った上で、製鉄所へ注文情報の製造指示を行う。製鉄所では、営業部門から指示のあった注文情報に基づきさらに詳細な製造仕様を検討する。製造仕様に基づき、納期や製造工期、製造工程での生産性などを考慮しつつ各製造設備の製造ロットとその製造タイミングを計画し、各製造設備へ生産指示を出す。   In contrast, the steel industry often performs the following production management. The sales department receives an order inquiry from the customer and, based on the manufacturing specifications of the order and the requested delivery date, negotiates whether the order is accepted and if necessary, and then instructs the ironworks to produce the order information. Steelworks will consider more detailed manufacturing specifications based on order information instructed by the sales department. Based on the production specifications, the production lot and the production timing of each production facility are planned in consideration of the delivery date, the production period, and the productivity in the production process, and a production instruction is issued to each production facility.

このように受注段階で大まかな納期交渉を行っているものの、先に述べたような製造工程の複雑さと多品種かつ小ロット注文を大量に取り扱う規模の大きさと複雑さとが相まって、営業部門において受注段階で各製造設備でのロットのまとまり具合や製造負荷まで考慮した納期交渉を適切に行うことは難しいのが現状である。   In this way, although rough delivery date negotiations are underway at the order receiving stage, the sales department receives an order due to the complexity of the manufacturing process and the large scale and complexity of handling large quantities of various types and small lot orders as described above. At present, it is difficult to properly negotiate the delivery date considering the unity of lots at each manufacturing facility and the manufacturing load.

また、注文情報が営業部門から製鉄所に指示された後、つまり納期の目標が確定した後においては、製造着手タイミングの決定が重要な計画要素となる。例えば、製鋼設備では生産性や歩留の観点からできるだけ同一成分の注文をまとめて製造することが望まれるが、一方で製鋼以降の工程での製造負荷を平準化する必要がある。そのため、製鋼設備での大ロット化と下流工程での製造負荷平準化を両立するような、製造プロセス全体を一貫工程として最適な計画を立案することが必要である。しかしながら実際には、多品種であるがゆえに製造フローが多岐に渡るため、さらには検査設備で見つかった疵等の品質欠陥の手入れなどの精整設備(製造設備の一つ)の製造負荷は製品検査後でないと確定しないために、計画段階で製造負荷を精度良く予測して対策を打つことが難しい。そのために結果として製造後の製造負荷が増大し、仕掛増による工期増となることがあった。   In addition, after order information is instructed from the sales department to the steelworks, that is, after the delivery date target is determined, the determination of the production start timing is an important planning factor. For example, in a steelmaking facility, it is desired to produce orders of the same component as much as possible from the viewpoint of productivity and yield, but on the other hand, it is necessary to level the production load in the processes after steelmaking. Therefore, it is necessary to devise an optimal plan with the entire manufacturing process as an integrated process, which makes it possible to achieve both large-scale production at steelmaking facilities and leveling of manufacturing load in downstream processes. In reality, however, the production flow is diversified because of the variety of products, and the production load of refining equipment (one of the production equipment) such as the maintenance of defects such as defects found in inspection equipment is the product. Since it is not determined until after the inspection, it is difficult to accurately predict the manufacturing load at the planning stage and to take measures. As a result, the production load after production increases, and the work period may increase due to an increase in work in progress.

このような状況において、現状の生産現場では製造工程の管理者が、製造プロセスの特性に基づいて製品を大まかな品種グループに分類し、品種グループ毎の製造負荷の実績平均値を製造負荷予測に用いるという方法がよく用いられる。   In such a situation, at the current production site, the production process manager classifies the products into broad product groups based on the characteristics of the production process, and uses the actual average production load for each product group to predict the production load. The method of using is often used.

また、特許文献1では、多品種少量生産の組み立て加工ラインにおいて、製品の部品構成又は製造ラインに対する要求量が類似する品種群を同一品種のグループとして取り扱い、製造ラインの負荷を適切に平準化する生産指示量平準化装置が提案されている。   Further, in Patent Document 1, in an assembly processing line for high-mix low-volume production, product groups having similar requirements for the component configuration or production line of products are handled as groups of the same product, and the load on the production line is appropriately leveled. A production instruction leveling device has been proposed.

特開平10−138102号公報JP-A-10-138102 「よくわかる多変量解析の基本と仕組み」、山口和範他、秀和システム、(2004)"Basics and mechanism of multivariate analysis that is well understood", Kazunori Yamaguchi et al., Hidekazu System, (2004)

しかしながら、上記の従来の方法では、製造プロセスに関する知見から大まかな品種のグループに分類しているため、同一の品種のグループであっても製品によって製造負荷が異なるなど、製造負荷を予測する精度はかならずしも十分ではなかった。   However, in the conventional method described above, since it is classified into groups of rough varieties based on the knowledge about the manufacturing process, the accuracy of predicting the manufacturing load is different even if the group of the same varieties has different manufacturing load depending on the product. Not always enough.

また、特許文献1に開示された生産指示量平準化装置では、製品の部品構成又は製造ラインに対する要求量が類似する複数の品種を一つの品種群(品種グループ)として取り扱っているという点で品種グループ作成の条件が明確であるが、多品種かつ小ロット注文を大量に取り扱うとともに複雑な製造フローを持つ製造プロセスでは、多数の製品属性を有する製品について、製造工程全体として適切な規模の種類数の品種グループを作成する際の条件を明確にすることが困難であるという問題があった。   In addition, in the production instruction quantity leveling device disclosed in Patent Document 1, a variety is used in that a plurality of varieties having similar requirements for product component configurations or production lines are handled as one varieties group (variety group). The conditions for creating a group are clear, but in a manufacturing process that handles large quantities of small-lot orders and a complex manufacturing flow, the number of types of products that have many product attributes and that have the appropriate scale for the entire manufacturing process There was a problem that it was difficult to clarify the conditions when creating a variety group.

また、製造負荷の予測精度を向上させるための方法として、品種グループの定義を見直すことも考えられるが、多様な属性の組合せを大量に試行錯誤的に検討する必要があり、現実的ではないという問題があった。   In addition, as a method to improve the prediction accuracy of manufacturing load, it may be possible to review the definition of product group, but it is necessary to study a large number of combinations of attributes on a trial and error basis, which is not realistic. There was a problem.

また、製造負荷の予測精度を向上させるための別の方法として、品種グループ数を多くすることも考えられるが、これも前記述べた理由と同様、多様な属性の組合せを大量に試行錯誤的に検討する必要があり、現実的ではないという問題があった。   In addition, as another method for improving the prediction accuracy of the manufacturing load, it is conceivable to increase the number of product group groups. However, for the same reason as described above, a large number of combinations of various attributes can be made on a trial and error basis. There was a problem that had to be considered and was not realistic.

上記の問題に鑑みて、本発明は、多種多様な製品を複数の製造設備で複雑な製造フローの加工を経て大量に製造する製造工程において、各製造設備の能力制約等の製造上の要件を満たした生産計画を作成する際に必須となる品種グループ毎の製造負荷を、迅速かつ高精度に予測する製造負荷予測装置等を提供することを目的とする。   In view of the above problems, the present invention satisfies manufacturing requirements such as capacity constraints of each manufacturing facility in a manufacturing process in which a large variety of products are manufactured in large quantities through processing of a complicated manufacturing flow by a plurality of manufacturing facilities. It is an object of the present invention to provide a manufacturing load predicting device and the like that can quickly and accurately predict a manufacturing load for each product group that is indispensable when creating a satisfied production plan.

本発明の製造負荷予測装置は、複数の種類からなる複数の製品を小ロットで生産するための、複数の製造設備で構成された一連又は分岐構造を有する製造工程について、過去の製造実績データに基づいて、各製造設備での製品の製造負荷を予測する製造負荷予測装置であって、前記製造実績データに基づき、複数の種類の製品について製品属性が同一又は予め定めた範囲内である製品同士を同一品種グループとする複数の品種グループを作成し、製品を該品種グループに仕分ける、決定木による品種区分ロジックを作成する品種区分ロジック作成手段と、前記製造実績データに基づいて、前記品種区分ロジックを用いて前記品種グループ毎の製造負荷を予測する製造負荷予測モデルを構築する製造負荷予測モデル作成手段と、前記製造負荷予測モデルを用いて、新たな生産計画について各製造設備の製造負荷を導出する製造負荷予測手段と、を備えることを特徴とする。
また、本発明の製造負荷予測装置において、前記品種区分ロジック作成手段は、前記製造実績データに基づいて、前記決定木の説明変数として製品の注文情報及び製造仕様情報に含まれる1つ又は複数の製品属性を用い、目的変数として各製造設備の通過工程パターンの実績値を用いて品種区分ロジックを作成することを特徴とする。
本発明の製造負荷予測方法は、複数の種類からなる複数の製品を小ロットで生産するための、複数の製造設備で構成された一連又は分岐構造を有する製造工程について、過去の製造実績データに基づいて、各製造設備での製品の製造負荷を予測する製造負荷予測方法であって、前記製造実績データに基づき、複数の種類の製品について製品属性が同一又は予め定めた範囲内である製品同士を同一品種グループとする複数の品種グループを作成し、製品を該品種グループに仕分ける、決定木による品種区分ロジックを作成する品種区分ロジック作成工程と、前記製造実績データに基づいて、前記品種区分ロジックを用いて前記品種グループ毎の製造負荷を予測する製造負荷予測モデルを構築する製造負荷予測モデル作成工程と、前記製造負荷予測モデルを用いて、新たな生産計画について各製造設備の製造負荷を導出する製造負荷予測工程と、を有することを特徴とする。
また、本発明の製造負荷予測方法において、前記品種区分ロジック作成工程は、前記製造実績データに基づいて、前記決定木の説明変数として製品の注文情報及び製造仕様情報に含まれる1つ又は複数の製品属性を用い、目的変数として各製造設備の通過工程パターンの実績値を用いて品種区分ロジックを作成することを特徴とする。
また、本発明のコンピュータプログラムは、上記に記載の製造負荷予測方法の各工程をコンピュータに実行させることを特徴とする。
また、本発明のコンピュータ読み取り可能な記憶媒体は、上記に記載のコンピュータプログラムを格納したことを特徴とする。
The production load prediction device of the present invention is based on past production record data for a production process having a series or branch structure composed of a plurality of production facilities for producing a plurality of products of a plurality of types in a small lot. A production load prediction device for predicting the production load of a product at each production facility, based on the production performance data, products having the same or a predetermined range of product attributes for a plurality of types of products Creating a plurality of product groups having the same product group and sorting the products into the product group, creating product classification logic using decision trees, and based on the manufacturing performance data, the product classification logic A production load prediction model creating means for constructing a production load prediction model for predicting the production load for each of the product type groups using Using the model, characterized in that it and a manufacturing load prediction means for deriving the manufacturing load of each manufacturing facility for the new production plan.
Further, in the manufacturing load prediction device of the present invention, the type classification logic creating means includes one or a plurality of product order information and manufacturing specification information included as explanatory variables of the decision tree based on the manufacturing performance data. It is characterized in that the product category logic is created using the product attribute and the actual value of the passing process pattern of each manufacturing facility as the objective variable.
The manufacturing load prediction method of the present invention is based on past manufacturing performance data for a manufacturing process having a series or branch structure composed of a plurality of manufacturing facilities for producing a plurality of products of a plurality of types in a small lot. A manufacturing load prediction method for predicting a manufacturing load of a product at each manufacturing facility based on the manufacturing performance data, and products having the same or a predetermined range of product attributes for a plurality of types of products Creating a plurality of product groups having the same product group and sorting the products into the product group, creating a product classification logic using a decision tree, and the product classification logic based on the manufacturing result data A production load prediction model creating step for constructing a production load prediction model for predicting a production load for each product group using Using the model, and having a manufacturing load prediction step of deriving a manufacturing load of each manufacturing facility for the new production plan.
Moreover, in the manufacturing load prediction method of the present invention, the type classification logic creating step includes one or a plurality of product order information and manufacturing specification information included as an explanatory variable of the decision tree based on the manufacturing performance data. It is characterized in that the product category logic is created using the product attribute and the actual value of the passing process pattern of each manufacturing facility as the objective variable.
Moreover, the computer program of this invention makes a computer perform each process of the manufacturing load prediction method described above.
A computer-readable storage medium according to the present invention stores the computer program described above.

本発明では、個々の製品の製造仕様が同一もしくは一定の範囲内である複数の製品を複数の品種グループとして定義する際に、決定木作成ロジックを適用し、さらに決定木作成の際の目的変数として過去の実績データである通過工程の実績を用いることで、品種区分ロジック決定の際の試行錯誤を低減するとともに、精度の高い製造負荷予測モデルを構築する。そして、得られた製造負荷予測モデルを用いて製造能力にマッチした生産計画を立案することで、生産性向上、仕掛削減、工期短縮などの効果を得ることができる。   In the present invention, when defining a plurality of products whose manufacturing specifications of individual products are the same or within a certain range as a plurality of product groups, a decision tree creation logic is applied, and an objective variable at the time of decision tree creation As a result, the past process data, which is past performance data, is used to reduce trial and error in determining the product category logic and to construct a highly accurate manufacturing load prediction model. Then, by producing a production plan that matches the production capacity using the obtained production load prediction model, it is possible to obtain effects such as productivity improvement, work-in-process reduction, and work period reduction.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。本実施の形態では、複数の製造設備で構成された一連又は分岐構造を有する製造工程からなる製造プロセスとして、鉄鋼業における代表的な製品である厚板の製造プロセスを例にして説明する。厚板製造プロセスの製造設備の概略構成の一例を図11に示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, a manufacturing process of a thick plate, which is a typical product in the steel industry, will be described as an example of a manufacturing process including a manufacturing process having a series or branched structure constituted by a plurality of manufacturing facilities. An example of the schematic configuration of the manufacturing equipment for the thick plate manufacturing process is shown in FIG.

図11において、転炉P1では、高温溶融状態の溶鋼を、鉄鋼中間製品の化学的成分である出鋼成分を例えば約300[ton]単位で調整して、取鍋に出鋼する。この転炉P1での製造単位(ロット単位)をチャージと呼ぶ。   In FIG. 11, in the converter P <b> 1, molten steel in a high-temperature molten state is adjusted to a steel output component that is a chemical component of an intermediate steel product in units of, for example, about 300 [ton], and is output to a ladle. The production unit (lot unit) in the converter P1 is called charge.

連続鋳造設備P2では、転炉P1で製造されたチャージ単位の中間製品を複数チャージ連続して鋳造し、その後規定の長さで切断することで、例えば約20[ton]単位のスラブと呼ばれる板状の中間製品を製造する。この連続鋳造機での一連の製造単位をキャストと呼ぶ。製造仕様にもよるが概ね8〜12チャージを1キャストとして製造する。   In the continuous casting facility P2, for example, a plate called a slab of about 20 [ton] units is obtained by continuously casting a plurality of charge intermediate products manufactured in the converter P1 and then cutting them at a specified length. To produce intermediate products. A series of production units in this continuous casting machine is called casting. Although it depends on the manufacturing specifications, the 8 to 12 charges are manufactured as one cast.

圧延設備P3では、スラブを加熱後、所定の厚みや幅まで圧延加工して成形し、複数のプレートに剪断した後に、表面品質やサイズなどの検査を行う。   In the rolling equipment P3, after heating the slab, the slab is rolled to a predetermined thickness and width, formed, sheared into a plurality of plates, and then inspected for surface quality and size.

精整設備P4では、圧延設備で注文仕様のサイズまで剪断できなかったスラブの切断を行う。精整設備P5、P6では、品質確保のための矯正を行う。精整設備P7では、品質確保のための手入れを行う。そして、すべての処理を終えた製品は倉庫P8に配置される。   In the finishing equipment P4, the slab that could not be sheared to the size of the order specification by the rolling equipment is cut. In the finishing facilities P5 and P6, correction for quality assurance is performed. In the finishing equipment P7, care is taken to ensure quality. And the product which finished all the processes is arrange | positioned in warehouse P8.

本実施形態の製造負荷予測装置の概略構成を図1に示す。また、本発明の製造負荷予測方法の実施形態も合わせて説明するために、当該製造負荷予測装置における製造負荷予測モデルの作成フローを図2に示す。   FIG. 1 shows a schematic configuration of the production load prediction apparatus of the present embodiment. Moreover, in order to also explain embodiment of the manufacturing load prediction method of this invention, the creation flow of the manufacturing load prediction model in the said manufacturing load prediction apparatus is shown in FIG.

図1において、1は品種区分ロジック作成装置、2は設計パラメータ設定装置、3は製造負荷予測モデル作成装置、4は製造負荷予測装置、5は製造負荷表示装置、6は製造実績データ採取装置、7は製造工程をそれぞれ示す。   In FIG. 1, 1 is a type classification logic creation device, 2 is a design parameter setting device, 3 is a production load prediction model creation device, 4 is a production load prediction device, 5 is a production load display device, 6 is a production performance data collection device, Reference numeral 7 denotes a manufacturing process.

以上のように構成された製造負荷予測装置において、厚板を製造する処理で経た製造過程(各製造設備)や製造日時などの製品の製造実績情報は、製造工程7内の各製造設備から製造工程内のLAN等のネットワークを経由してI/Oボード(通信ポート)で構成するか、又はDVD等のマスストレージ=デバイスで構成した製造実績データ採取装置6を通じて集められる。(図2、ステップS1)。   In the manufacturing load predicting apparatus configured as described above, the manufacturing result information (manufacturing process (each manufacturing facility) and manufacturing date and time) in the process of manufacturing the thick plate is manufactured from each manufacturing facility in the manufacturing process 7. The data is collected through an I / O board (communication port) via a network such as a LAN in the process, or collected through a manufacturing result data collection device 6 configured by a mass storage device such as a DVD. (FIG. 2, step S1).

製造実績情報は、製品の組成、サイズ、及び製造工程などの製造仕様、並びに納期や製品量などの注文情報など様々な情報を含んでいる。そのため、製造実績データ採取装置6は、製造負荷予測に関係する情報のみを抽出するとともに異常値を除外するなどの実績データ前処理を行って、製造実績データを作成して、製造実績データベースD1に格納される(図2、ステップS2)。   The manufacturing performance information includes various information such as manufacturing specifications such as product composition, size, and manufacturing process, and order information such as delivery date and product quantity. Therefore, the manufacturing performance data collection device 6 extracts only information related to the manufacturing load prediction and performs performance data preprocessing such as excluding abnormal values, creates manufacturing performance data, and stores it in the manufacturing performance database D1. Stored (FIG. 2, step S2).

次に、キーボードやマウス等の入出力装置を用いて構成された設計パラメータ設定装置2によって、複数の製品を区分する品種グループの数など、品種区分ロジックで用いる決定木を作成するのに必要な設計パラメータを設定する(図2、ステップS3)。   Next, the design parameter setting device 2 configured by using an input / output device such as a keyboard and a mouse is necessary to create a decision tree used in the product category logic, such as the number of product groups that classify a plurality of products. Design parameters are set (FIG. 2, step S3).

ここで、品種区分ロジックを作成するのに用いる決定木について説明する。決定木とはデータの分析手法の一つであって、図7に示したようにデータを様々な条件に従って木の枝葉のように分類していく分析手法であり、製造不良要因の特定や市場情報の分類などに使われている(例えば、非特許文献1の143−168頁参照のこと)。決定木は、データの固まりである複数のノードから構成されており、データ全体を表すルートノード(根ノード)から始まり、末端のノード(リーフノード、葉ノード)に特定の属性を持つデータの割合が多くなるように、つまり偏りのあるデータが含まれるようにノードを次々と分岐させながら作成される。得られたリーフノードへの分岐条件やリーフノードに属する過去のデータ(学習用データ)を用いることで決定木を各種の予測に使うことができる。予測したい属性を「目的変数」、データの分岐条件を記述する属性を「説明変数」と呼ぶ。決定木作成にあたっては、目的変数や説明変数をどのように定義するか、決定木の大きさ(ノードの数や深さ)をどのように決定するかなどの設計パラメータの設定が、得られた決定木の予測精度や取扱いの容易さなどに深く関係するため極めて重要である。決定木作成にあたり前記したような必要な設計パラ−メータを設定する。   Here, the decision tree used to create the kind classification logic will be described. A decision tree is one of the data analysis methods, and is an analysis method that classifies the data as tree branches and leaves according to various conditions as shown in FIG. It is used for classification of information (for example, see pages 143 to 168 of Non-Patent Document 1). The decision tree is composed of multiple nodes that are a cluster of data, and starts from the root node (root node) that represents the entire data, and the proportion of data that has specific attributes at the end nodes (leaf nodes, leaf nodes) Are created while branching the nodes one after another so that there is a large amount of data, that is, biased data is included. The decision tree can be used for various predictions by using the obtained branch condition to the leaf node and past data (learning data) belonging to the leaf node. The attribute to be predicted is called “object variable”, and the attribute describing the data branch condition is called “explanatory variable”. In creating the decision tree, design parameter settings such as how to define objective variables and explanatory variables and how to determine the size of the decision tree (number of nodes and depth) were obtained. This is extremely important because it is closely related to the accuracy of decision tree prediction and ease of handling. Necessary design parameters as described above are set when creating a decision tree.

そして製造実績データベースD1から読み出した実績データ前処理済みの製造実績データと前記設計パラメータに基づいて、品種区分ロジック作成装置1を用いて、決定木で構成する品種区分ロジックを作成し、品種区分ロジックデータベースD2に格納する(図2、ステップS4)。   Then, based on the pre-processed manufacturing performance data read from the manufacturing performance database D1 and the design parameters, the product classification logic creating device 1 is used to create the product classification logic composed of the decision tree, and the product classification logic Store in the database D2 (FIG. 2, step S4).

製造負荷予測モデル作成装置3は、製造実績データベースD1から抽出した、製品毎の過去予め定めた期間分の製造実績データに含まれている製品属性と、品種区分ロジックデータベースD2に格納されている品種区分ロジックとに基づいて、製造実績データの各製品がどの品種グループに属するかを決定し、製品属性として品種グループ名を製造実績データの各製品情報に付与する(図2、ステップS5)。そして、以下のような処理を行う。   The production load prediction model creation device 3 includes the product attributes included in the production performance data for the past predetermined period for each product extracted from the production performance database D1, and the products stored in the product classification logic database D2. Based on the classification logic, it is determined to which product group each product of the manufacturing result data belongs, and a product group name is assigned to each product information of the manufacturing result data as a product attribute (step S5 in FIG. 2). Then, the following processing is performed.

(ア)品種グループ名を付与した製品毎の過去の製造実績データを品種グループ名に着目して分類し、
(イ)過去一定期間(例えば1年間など)の品種グループ毎の各製造設備での処理発生量を、当該期間における品種グループ毎の全処理量で除することで品種グループ毎・製造設備毎の発生率を算出したものを製造負荷予測モデルとし、
(ウ)当該品種グループの当該製造設備での製造負荷を表すものとして製造負荷予測モデルデータベースD3に格納する(図2、ステップS6)。
(A) Past production data for each product to which a product group name is assigned is classified by focusing on the product group name,
(A) By dividing the amount of processing generated at each manufacturing facility for each product group for a certain period in the past (for example, one year) by the total processing amount for each product group for that product period, for each product group and each manufacturing facility The production load prediction model is calculated from the occurrence rate,
(C) Stored in the production load prediction model database D3 as representing the production load of the production group in the production facility (FIG. 2, step S6).

次に、生産計画立案業務における各製造設備の製造負荷を予測するのに前記の製造負荷予測モデルを適用する方法の概略を図3を用いて説明する。図1に示した製造負荷予測装置4は、製造負荷予測モデルデータベースD3より製造負荷予測モデルを読み出す(図3、ステップS7)とともに、品種グループ毎、期間毎の生産予定量などが記された生産計画情報を生産計画データベースD4より読み出す(図3、ステップS8)。なお、生産計画情報は、注文の受注状況、設備の稼動状況、生産コスト、生産性などを考慮して生産計画立案者によって作成され、生産計画データベースD4に格納されている。なお、生産計画情報はネットワーク等のI/O装置を経由して外部装置から入力しても良い。そして、得られた生産計画情報(品種グループ毎・期間毎の生産予定量)に製造負荷予測モデルが持つ各製造設備の製造負荷を掛け合わせることにより、立案された生産計画が各製造設備にいつ、どの程度の製造負荷を与えるかを予測し(図3、ステップS9)、その結果をコンピュータ=ディスプレーで構成される製造負荷表示装置5へ送り、表示するとともに、生産計画情報を追加もしくは修正する(図3、ステップS10)。生産計画立案者はその結果を確認し(図3、ステップS11)、必要であれば生産計画の修正等のアクションをとる(図3、ステップS12)。   Next, an outline of a method of applying the manufacturing load prediction model to predict the manufacturing load of each manufacturing facility in the production planning work will be described with reference to FIG. The production load prediction device 4 shown in FIG. 1 reads out the production load prediction model from the production load prediction model database D3 (FIG. 3, step S7), and the production in which the planned production amount for each product group and each period is described. Plan information is read from the production plan database D4 (FIG. 3, step S8). The production plan information is created by a production planner in consideration of the order receipt status, equipment operation status, production cost, productivity, and the like, and is stored in the production plan database D4. The production plan information may be input from an external device via an I / O device such as a network. Then, by multiplying the obtained production plan information (scheduled production amount for each product group / period) by the production load of each production facility in the production load prediction model, the planned production plan is applied to each production facility. The amount of production load to be applied is predicted (FIG. 3, step S9), and the result is sent to and displayed on the production load display device 5 constituted by a computer = display, and production plan information is added or corrected. (FIG. 3, step S10). The production planner confirms the result (FIG. 3, step S11), and takes action such as correcting the production plan if necessary (FIG. 3, step S12).

また、前記生産計画に基づいて生産が行われた後の製造実績データをその予測値とともに製造負荷表示装置5に表示することにより、予測と実績の対比を行うことができる。この対比により予測が外れた原因を解析し、各種操業改善に繋げると共に、製造負荷予測モデルの精度を確認し、必要に応じて品種区分ロジックの再構築もしくは製造負荷予測モデルの再構築を行い、予測精度を維持することも可能である。   Further, by displaying the production result data after production based on the production plan on the production load display device 5 together with the predicted value, it is possible to compare the prediction and the result. Analyzing the cause of the prediction failure by this comparison, leading to various operational improvements, confirming the accuracy of the manufacturing load prediction model, rebuilding the product category logic or rebuilding the manufacturing load prediction model as necessary, It is also possible to maintain the prediction accuracy.

なお、本発明の目的は前述した実施の形態の機能を実現するソフトウェアのコンピュータプログラムのコードを記録した記憶媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(CPU若しくはMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても、達成されることは言うまでもない。   It is to be noted that the object of the present invention is to supply a storage medium recording a computer program code of software that realizes the functions of the above-described embodiment to a system or apparatus, and the computer (CPU or MPU) of the system or apparatus stores it. Needless to say, this can also be achieved by reading and executing the program code stored in the medium.

この場合、記憶媒体から読出されたプログラムコード自体が前述した実施の形態の機能を実現することになり、当該コンピュータプログラム、及びそのプログラムコードを記憶した記憶媒体は本発明を構成することになる。   In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the computer program and the storage medium storing the program code constitute the present invention.

プログラムコードを供給するための記憶媒体としては、例えばフレキシブルディスク,ハードディスク,光ディスク,光磁気ディスク,CD−ROM,CD−R,磁気テープ,不揮発性のメモリカード,ROMなどを用いることができる。   As a storage medium for supplying the program code, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a CD-R, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.

また、コンピュータが読出したプログラムコードを実行することにより、前述した実施の形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS(オペレーティングシステム)などが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。   Further, by executing the program code read by the computer, not only the functions of the above-described embodiments are realized, but also an OS (operating system) running on the computer based on the instruction of the program code. However, it is needless to say that a case where the function of the above-described embodiment is realized by performing part or all of the actual processing and the processing is included.

更に、記憶媒体から読出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。   Further, after the program code read from the storage medium is written into a memory provided in a function expansion board inserted into the computer or a function expansion unit connected to the computer, the function expansion is performed based on the instruction of the program code. It goes without saying that the CPU or the like provided in the board or the function expansion unit performs part or all of the actual processing, and the functions of the above-described embodiments are realized by the processing.

以下、本発明の、鉄鋼業における厚板の製造プロセスにおける実施例について説明する。品種区分ロジック作成装置1は、製造実績データベースD1に格納されている製造実績データのうち、製造負荷予測に関係する製品属性情報を製品単位で抽出する(図2、ステップS1)。抽出した情報の一部を図4に示す。製品毎に付与された製品「No.」をキーとして、各製品の厚さや幅などのサイズ、材質の規格、特定製造仕様の有無、及び各製造設備での処理実績の有無などの製造実績情報を持つ。例えば製品1は規格がA1、製造仕様1はあり、製品のサイズは厚み12[mm]、幅1,000[mm]、長さ20,000[mm]である。製品属性には図4に挙げた項目以外にも大量に存在するが製造負荷予測に関係する製品属性はすべて読み出すものとする。読み出す期間は例えば直前の半年間あるいは一年間など、予め定めた期間分過去の製造実績データを抽出する。   Hereinafter, the Example in the manufacturing process of the thick board in the steel industry of this invention is described. The product category logic creation device 1 extracts product attribute information related to the production load prediction from the production result data stored in the production result database D1 in units of products (FIG. 2, step S1). A part of the extracted information is shown in FIG. Using the product “No.” assigned to each product as a key, manufacturing performance information such as the thickness and width of each product, material standards, presence or absence of specific manufacturing specifications, and presence or absence of processing results at each manufacturing facility have. For example, the product 1 has the standard A1, the production specification 1, and the product size is 12 [mm] in thickness, 1,000 [mm] in width, and 20,000 [mm] in length. In addition to the items listed in FIG. 4, there are a large number of product attributes, but all product attributes related to manufacturing load prediction are read out. For the reading period, for example, past manufacturing performance data is extracted for a predetermined period such as the last half year or one year.

次に、読み出したデータに対する実績データ前処理を行う(図2、ステップS2)。前記読み込んだデータにはなんらかの不具合により特定の項目の情報が欠落することがあるため、その有無をチェックし、有意なデータのみを抽出する。具体的には、属性情報が空欄であるデータや、製造未着手状態のデータ及び製造着手はしているものの製造完了していないデータなどを除去する。   Next, performance data preprocessing is performed on the read data (FIG. 2, step S2). Since there is a case where information of a specific item may be lost due to some trouble in the read data, the presence or absence is checked and only significant data is extracted. Specifically, data in which the attribute information is blank, data in an unmanufactured state, data that has been started but has not been manufactured, and the like are removed.

製品の品種グループ単位の製造負荷を予測するためには、製造実績データに基づいて各製造設備における処理の発生確率(以下、発生率)を精度良く捉えることができるような品種グループを定義する必要がある。ここで発生率とは、当該品種グループに属する製品の単位量あたりの処理発生確率である。例えば「ある品種グループの精整設備(矯正1)P5の発生率が0.1である」とは、当該品種グループに属する製品を100[ton]製造した場合に精整設備P5で処理される量が10[ton]であることを表す。製造負荷の予測精度を高めるためには、当該品種グループに属する製品であればどのような製品であってもほぼ一定の発生率となるような品種グループを定義することが極めて重要である。   In order to predict the production load of each product type group, it is necessary to define a type group that can accurately capture the probability of processing (hereinafter referred to as “occurrence rate”) at each manufacturing facility based on the actual production data. There is. Here, the occurrence rate is a processing occurrence probability per unit amount of products belonging to the product type group. For example, “the occurrence rate of a certain kind group of finishing equipment (correction 1) P5 is 0.1” is processed by the finishing equipment P5 when 100 [ton] of a product belonging to the kind group is manufactured. The amount is 10 [ton]. In order to increase the prediction accuracy of the production load, it is extremely important to define a product group that has a substantially constant occurrence rate for any product belonging to the product group.

本実施例では、製造実績データベースD1から読み込んだ製造実績データにおいて付与されている製品属性を決定木の説明変数の候補とする。目的変数は、「各製造設備の発生率」とすることが自然であるが、各製造設備の発生率は品種グループを定義した上で過去の製造実績データを用いることで初めて算出できる量であるため、単純に目的変数を「各製造設備の発生率」として決定木作成ロジックを適用することはできない。   In the present embodiment, the product attribute assigned in the manufacturing result data read from the manufacturing result database D1 is set as a candidate for an explanatory variable of the decision tree. It is natural that the objective variable is “occurrence rate of each manufacturing facility”, but the occurrence rate of each manufacturing facility is an amount that can be calculated for the first time by using past manufacturing performance data after defining the product group. Therefore, the decision tree creation logic cannot simply be applied with the objective variable as “occurrence rate of each manufacturing facility”.

そこで、本実施例では、「各製造設備の通過工程パターン」を目的変数とした。具体的には精整設備である切断、矯正1、矯正2、及び手入の各製造設備の通過有無の実績値を、通過した場合に1、通過しなかった場合に0とする。全工程について各設備の通過の有、無を1、0の組み合わせの通過工程パターンで表す。その一例を図5に示す。このように各製造設備の通過有無を通過工程パターンとして記号化することにより、品種グループを予め定義することなく、製造実績データのみに基づいて目的変数を設定することができる。通過工程パターンは、本来求めたい各製造設備の発生率と相関が高いため、精度を落とすことなく、目的変数の代用が可能である。   Therefore, in this embodiment, “passing process pattern of each manufacturing facility” is set as an objective variable. Specifically, the actual value of the presence / absence of passing through each of the manufacturing equipment for cutting, straightening 1, straightening 2 and care, which are the finishing equipment, is set to 1 when passing and 0 when not passing. The presence / absence of passage of each facility for all steps is represented by a passage step pattern of a combination of 1 and 0. An example is shown in FIG. Thus, by symbolizing the passage presence / absence of each manufacturing facility as a passage process pattern, it is possible to set the objective variable based only on the production result data without defining the product type group in advance. Since the passage process pattern has a high correlation with the occurrence rate of each manufacturing facility that is originally desired, the objective variable can be substituted without reducing accuracy.

さらに、通過工程パターンを製造設備の通過有無だけではなく、通過回数とすることでさらに精度を高めることもできる。通過有無だけ、又は通過回数も考慮するかのどちらを選択するかは予測対象の製造工程の特性に合わせて選択すればよい。例えば、同一設備を複数回通ることが多い場合は通過回数をパターンに組み入れ、そうでない場合は通過の有無だけを考慮すればよい。   Furthermore, the accuracy can be further improved by setting the passing process pattern not only to pass the manufacturing facility but also to the number of passes. Whether to select only the presence / absence of passage or the number of passages may be selected in accordance with the characteristics of the manufacturing process to be predicted. For example, if the same facility is often passed multiple times, the number of passages is incorporated into the pattern, and if not, only the presence or absence of passage may be considered.

ただし、実際に生じた通過工程パターンの全種類を目的変数とすると、まれにしか発生しない通過工程パターンの場合は実績データ数が少なくなるため、発生率のデータの信頼性が乏しくなる場合がある。そのような場合には実際の通過工程パターン毎の発生量が多い、つまり主要な通過工程パターンのみを目的変数とし、その他の発生量の少ない通過工程パターンは「その他の工程」として集約した結果を目的変数とすることが好ましい。このようにすることで製造設備に負荷を与える主要な通過工程パターンについては精度よくモデル化し、その他の通過工程パターンについては、製造設備への影響が小さいことを利用し、モデルの精度を落としつつ、品種グループ数を少なくし、品種グループの管理を容易にすることができる。具体例を図6に示す。本実施例では、通過工程パターンの発生量を調査した結果、全工程での発生がない0000の通過工程パターンおよび、いずれか1工程のみを通過したパターン(1000、0100、0010、0001)が全通過工程パターンの大半を占めていたため、それらを目的変数として設定するとともに、その他の通過工程パターンは「その他(Others)」という通過工程パターンとして集約している。このようにすることでモデルの精度に与える影響を最小限にしつつ、目的変数の種類を全16パターンから6パターンまで削減することができる。   However, assuming that all types of passing process patterns that have actually occurred are objective variables, the number of actual data decreases in the case of passing process patterns that occur infrequently, so the reliability of the data on the occurrence rate may be poor. . In such a case, the actual amount of generation for each passing process pattern is large, that is, only the main passing process pattern is the target variable, and the other passing process patterns with a small amount of generation are aggregated as “other processes”. It is preferable to use the objective variable. In this way, the main passing process pattern that imposes a load on the manufacturing equipment is modeled with high accuracy, and the other passing process patterns are used with less influence on the manufacturing equipment, while reducing the accuracy of the model. Therefore, it is possible to reduce the number of variety groups and facilitate the management of the variety groups. A specific example is shown in FIG. In this example, as a result of investigating the generation amount of the passing process pattern, 0000 passing process patterns that do not occur in all processes and patterns (1000, 0100, 0010, 0001) that passed only one of the processes are all. Since most of the passing process patterns accounted for, they are set as objective variables, and other passing process patterns are aggregated as a passing process pattern of “Others”. In this way, the types of objective variables can be reduced from a total of 16 patterns to 6 patterns while minimizing the effect on the accuracy of the model.

その他の設計パラメータとしては、作成する決定木のリーフノードの数や木構造の深さなど決定木の構造に関するパラメータを設定する。本実施例では、一つのリーフノードが保有するデータ数の上限値を与えるものとする。上限値を小さくするとリーフノードの数が増える、つまり決定木が大きく、深くなることとなる。本実施例ではデータ数上限値を200とした。   As other design parameters, parameters related to the structure of the decision tree such as the number of leaf nodes of the decision tree to be created and the depth of the tree structure are set. In the present embodiment, an upper limit value of the number of data held by one leaf node is given. If the upper limit value is decreased, the number of leaf nodes increases, that is, the decision tree becomes larger and deeper. In this embodiment, the upper limit value of the number of data is 200.

次に、これまで述べた設計パラメータに基づいて、決定木を作成する(図2、ステップS4)。決定木作成にあたっては市販の決定木作成ソフトウェアを活用してもよい。得られた決定木の一例を図7に示す。最初は鋼材厚板の板厚を説明変数として、板厚が32[mm]より厚いか薄いかによって分岐し、薄い場合は板幅が800[mm]より狭いかどうかによって分岐する。このように徐々に分岐を繰り返すことにより末端のリーフノードに辿り着く。末端のリーフノードには代表的な目的変数が付与されている。   Next, a decision tree is created based on the design parameters described so far (FIG. 2, step S4). In creating the decision tree, commercially available decision tree creation software may be used. An example of the obtained decision tree is shown in FIG. At first, the thickness of the steel plate is used as an explanatory variable, and it branches depending on whether the plate thickness is thicker or thinner than 32 [mm], and when it is thin, it branches depending on whether the plate width is narrower than 800 [mm]. In this way, the terminal leaf node is reached by repeating the branching gradually. Representative objective variables are assigned to the terminal leaf nodes.

次に、作成した決定木にしたがって製品別の製造実績データにある個々の製品に品種グループ名を付与する(図2、ステップS5)。例えば、図4の製品1のサイズや規格属性を元に図7の決定木の分岐条件を辿ると品種グループ「1000」となり、製品1の属性として品種グループ名「1000」が付与される。以下同様に決定木を用いて全製品に品種グループ名を付与する。   Next, according to the created decision tree, a product group name is given to each product in the production result data for each product (FIG. 2, step S5). For example, following the decision tree branch condition of FIG. 7 based on the size and standard attributes of the product 1 in FIG. 4, the product group “1000” is obtained, and the product group name “1000” is assigned as the product 1 attribute. In the same manner, a variety group name is assigned to all products using a decision tree.

次に、製造実績データを品種グループ毎に分類し、品種グループ毎の各製造設備の通過回数の平均値を算出することで品種グループ別の製造負荷予測モデルを作成する(ステップS6)。製造負荷予測モデルの一例を図8に示す。品種グループ毎に各製造設備の発生率[%]を持つ製造負荷予測モデルとしている。作成した品種グループ別の製造負荷予測モデルは製造負荷予測モデルデータベースD3に格納する。   Next, the production performance data is classified for each product type group, and the average value of the number of times of passing through each manufacturing facility for each product type group is calculated to create a production load prediction model for each product type group (step S6). An example of the manufacturing load prediction model is shown in FIG. The production load prediction model has an incidence [%] of each production facility for each product group. The created production load prediction model for each product group is stored in the production load prediction model database D3.

次に、上記のようにして導出した製造負荷予測モデルを生産計画立案業務に用いる場合について説明する。ここでは、製鋼工程における連続鋳造設備P2での製造に関する生産計画立案業務を例にあげて説明する。   Next, the case where the production load prediction model derived as described above is used for production planning work will be described. Here, the production planning work related to the production in the continuous casting equipment P2 in the steel making process will be described as an example.

連続鋳造設備P2は、転炉P1で成分調整された溶鋼を8〜12個連続して鋳造する設備である。転炉P1での成分調整は約300[ton]単位で行われるため、需要家からの注文を納期を考慮しつつ300[ton]単位のロット(チャージ)に集約するとともに、連続鋳造設備P2での処理単位であるキャスト(8〜12チャージ)に集約することで日々の鋳造スケジュールを策定する。立案された鋳造スケジュール例を図9に示す。出鋼成分毎日毎の生産量を計画する。   The continuous casting equipment P2 is equipment for continuously casting 8 to 12 molten steels whose components are adjusted in the converter P1. Since the component adjustment in the converter P1 is performed in units of about 300 [tons], orders from customers are aggregated into lots (charges) in units of 300 [ton] while considering the delivery date, and at the continuous casting facility P2. The daily casting schedule is formulated by concentrating on the cast (8 to 12 charges), which is the processing unit. FIG. 9 shows an example of a casting schedule that has been planned. Plan the daily production of steel output components.

鋳造スケジュール立案にあたっては、連続鋳造設備P2における生産性や納期などを考慮するが、合わせて連続鋳造設備P2以降の下工程での製造負荷を考慮することが重要である。そこで、一旦立案された鋳造スケジュールに含まれる製品の品種グループ及び製造負荷予測モデルに基づいて各製造設備の製造負荷を予測し、各製造設備の能力や稼動スケジュールと対比することにより鋳造スケジュールの妥当性を評価し、問題があれば製品の鋳造タイミングを変更するなどのアクションを製造前に取ることができる。   In planning the casting schedule, the productivity and delivery date in the continuous casting facility P2 are taken into account, but it is also important to consider the manufacturing load in the subsequent processes after the continuous casting facility P2. Therefore, the production load of each production facility is predicted based on the product type group and production load prediction model included in the once-designed casting schedule, and the casting schedule is validated by comparing with the capacity and operation schedule of each production facility. Actions such as changing the casting timing of products can be taken before production if there is a problem.

なお、上述したように生産計画の妥当性を評価するために製造負荷予測モデルを用いる場合には、その精度が重要となる。本実施例で用いた製造負荷予測モデルを用いて予測した手入設備P7の製造負荷と実績値との比較を図10に示す。横軸は5日単位を1旬としたときの期間を表し、縦軸は手入設備P7での処理発生製品数の実績と予測値を表す。精度良く予測できていることが分かる。   As described above, when the production load prediction model is used to evaluate the validity of the production plan, the accuracy is important. FIG. 10 shows a comparison between the production load of the maintenance equipment P7 predicted using the production load prediction model used in this example and the actual value. The abscissa represents the period when the unit of 5 days is January, and the ordinate represents the results of the number of products generated in the treatment facility P7 and the predicted value. It can be seen that the prediction is accurate.

このように、製造負荷を精度よく予測できる製造負荷予測モデルを管理可能な品種グループ数で構築することにより、多種多様な製品を生産する鉄鋼製造業における生産管理業務や操業管理業務の品質を向上させることができる。   In this way, by constructing a production load prediction model that can accurately predict the production load with manageable product group numbers, the quality of production management operations and operation management operations in the steel manufacturing industry that produces a wide variety of products is improved. Can be made.

以上のように、本発明によれば、鉄鋼業のように多種多様な製品を複数の製造設備での加工を経て大量に製造する製造工程において、高精度の製造負荷予測モデルを容易に得られるため、生産計画立案精度の向上や操業状態の変化の検出による操業監視・予測に利用可能である。したがって、本発明は、鉄鋼業のような製造業である産業において大いに有用である。   As described above, according to the present invention, a highly accurate manufacturing load prediction model can be easily obtained in a manufacturing process in which a large variety of products are manufactured through processing at a plurality of manufacturing facilities as in the steel industry. Therefore, it can be used for operation monitoring / prediction by improving production planning accuracy and detecting changes in the operation state. Therefore, the present invention is very useful in industries that are manufacturing industries such as the steel industry.

本発明の実施の形態に係る製造負荷予測装置の概略構成を表す図である。It is a figure showing schematic structure of the manufacturing load prediction apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る製造負荷予測モデルの作成方法を示したフローチャートである。It is the flowchart which showed the production method of the manufacturing load prediction model which concerns on embodiment of this invention. 本発明の実施の形態に係る製造負荷予測モデルを生産計画立案業務に適用する方法を示したフローチャートである。It is the flowchart which showed the method of applying the manufacturing load prediction model which concerns on embodiment of this invention to production planning work. 本発明の実施例における製造実績データの一例を表す図である。It is a figure showing an example of the manufacture performance data in the Example of this invention. 本発明の実施例における通過工程パターンの記号化の一例を表す図である。It is a figure showing an example of the symbolization of the passage process pattern in the Example of this invention. 本発明の実施例における目的変数の設定の一例を表す図である。It is a figure showing an example of the setting of the objective variable in the Example of this invention. 本発明の実施例における品種区分のための決定木の一例を表す図である。It is a figure showing an example of the decision tree for the kind division in the Example of this invention. 本発明の実施例における製造負荷予測モデルの一例を表す図である。It is a figure showing an example of the manufacturing load prediction model in the Example of this invention. 本発明の実施例における鋳造設備の鋳造スケジュールの一例を表す図である。It is a figure showing an example of the casting schedule of the casting installation in the Example of this invention. 本発明の実施例における手入設備の発生予測精度を表す図である。It is a figure showing the generation | occurrence | production prediction precision of the care installation in the Example of this invention. 鉄鋼業における厚板製造工程の一例の概略図である。It is the schematic of an example of the thick board manufacturing process in the steel industry.

符号の説明Explanation of symbols

1 品種区分ロジック作成装置
2 設計パラメータ設定装置
3 製造負荷予測モデル作成装置
4 製造負荷予測装置
5 製造負荷表示装置
6 製造実績データ採取装置
7 製造工程
D1 製造実績データベース
D2 品種区分ロジックデータベース
D3 製造負荷予測モデルデータベース
D4 生産計画データベース
P1 転炉
P2 連続鋳造設備
P3 圧延設備
P4 切断設備
P5 矯正設備1
P6 矯正設備2
P7 手入設備
P8 倉庫
DESCRIPTION OF SYMBOLS 1 Type classification logic preparation apparatus 2 Design parameter setting apparatus 3 Manufacturing load prediction model preparation apparatus 4 Manufacturing load prediction apparatus 5 Manufacturing load display apparatus 6 Manufacturing performance data collection apparatus 7 Manufacturing process D1 Manufacturing performance database D2 Product classification logic database D3 Manufacturing load prediction Model database D4 Production plan database P1 Converter P2 Continuous casting equipment P3 Rolling equipment P4 Cutting equipment P5 Straightening equipment 1
P6 Correction equipment 2
P7 Care facilities P8 Warehouse

Claims (6)

複数の種類からなる複数の製品を小ロットで生産するための、複数の製造設備で構成された一連又は分岐構造を有する製造工程について、過去の製造実績データに基づいて、各製造設備での製品の製造負荷を予測する製造負荷予測装置であって、
前記製造実績データに基づき、複数の種類の製品について製品属性が同一又は予め定めた範囲内である製品同士を同一品種グループとする複数の品種グループを作成し、製品を該品種グループに仕分ける、決定木による品種区分ロジックを作成する品種区分ロジック作成手段と、
前記製造実績データに基づいて、前記品種区分ロジックを用いて前記品種グループ毎の製造負荷を予測する製造負荷予測モデルを構築する製造負荷予測モデル作成手段と、
前記製造負荷予測モデルを用いて、新たな生産計画について各製造設備の製造負荷を導出する製造負荷予測手段と、を備えることを特徴とする製造負荷予測装置。
Products in each manufacturing facility based on past manufacturing results data for manufacturing processes with a series or branch structure composed of multiple manufacturing facilities to produce multiple products of multiple types in small lots A production load prediction device for predicting the production load of
Based on the manufacturing performance data, a plurality of product groups having the same product attribute for a plurality of types of products or a product within a predetermined range are created as a plurality of product groups, and the products are classified into the product groups. Product classification logic creation means for creating product classification logic by tree;
Based on the manufacturing performance data, a manufacturing load prediction model creating means for building a manufacturing load prediction model for predicting a manufacturing load for each product group using the product classification logic;
A production load prediction device comprising: a production load prediction means for deriving a production load of each production facility for a new production plan using the production load prediction model.
前記品種区分ロジック作成手段は、前記製造実績データに基づいて、前記決定木の説明変数として製品の注文情報及び製造仕様情報に含まれる1つ又は複数の製品属性を用い、目的変数として各製造設備の通過工程パターンの実績値を用いて品種区分ロジックを作成することを特徴とする請求項1に記載の製造負荷予測装置。   The product category logic creating means uses one or more product attributes included in product order information and manufacturing specification information as explanatory variables of the decision tree based on the manufacturing performance data, and each manufacturing facility as a target variable. The production load predicting apparatus according to claim 1, wherein the type classification logic is created using the actual value of the passing process pattern. 複数の種類からなる複数の製品を小ロットで生産するための、複数の製造設備で構成された一連又は分岐構造を有する製造工程について、過去の製造実績データに基づいて、各製造設備での製品の製造負荷を予測する製造負荷予測方法であって、
前記製造実績データに基づき、複数の種類の製品について製品属性が同一又は予め定めた範囲内である製品同士を同一品種グループとする複数の品種グループを作成し、製品を該品種グループに仕分ける、決定木による品種区分ロジックを作成する品種区分ロジック作成工程と、
前記製造実績データに基づいて、前記品種区分ロジックを用いて前記品種グループ毎の製造負荷を予測する製造負荷予測モデルを構築する製造負荷予測モデル作成工程と、
前記製造負荷予測モデルを用いて、新たな生産計画について各製造設備の製造負荷を導出する製造負荷予測工程と、を有することを特徴とする製造負荷予測方法。
Products in each manufacturing facility based on past manufacturing results data for manufacturing processes with a series or branch structure composed of multiple manufacturing facilities to produce multiple products of multiple types in small lots A production load prediction method for predicting the production load of
Based on the manufacturing performance data, a plurality of product groups having the same product attribute for a plurality of types of products or a product within a predetermined range are created as a plurality of product groups, and the products are classified into the product groups. A variety classification logic creation process for creating a variety classification logic by tree,
A production load prediction model creating step for constructing a production load prediction model for predicting a production load for each of the product type groups using the product type classification logic based on the production result data;
A production load prediction method comprising: a production load prediction step of deriving a production load of each production facility for a new production plan using the production load prediction model.
前記品種区分ロジック作成工程は、前記製造実績データに基づいて、前記決定木の説明変数として製品の注文情報及び製造仕様情報に含まれる1つ又は複数の製品属性を用い、目的変数として各製造設備の通過工程パターンの実績値を用いて品種区分ロジックを作成することを特徴とする請求項3に記載の製造負荷予測方法。   The product category logic creation step uses one or more product attributes included in product order information and manufacturing specification information as explanatory variables of the decision tree based on the manufacturing performance data, and each manufacturing facility as a target variable. The production load prediction method according to claim 3, wherein the kind classification logic is created using the actual value of the passing process pattern. 請求項3又は4に記載の製造負荷予測方法の各工程をコンピュータに実行させることを特徴とするコンピュータプログラム。   A computer program causing a computer to execute each step of the manufacturing load prediction method according to claim 3. 請求項5に記載のコンピュータプログラムを格納したことを特徴とするコンピュータ読み取り可能な記憶媒体。   A computer-readable storage medium storing the computer program according to claim 5.
JP2006198480A 2006-07-20 2006-07-20 Manufacturing load prediction apparatus, manufacturing load prediction method, computer program, and computer-readable storage medium Active JP4757729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198480A JP4757729B2 (en) 2006-07-20 2006-07-20 Manufacturing load prediction apparatus, manufacturing load prediction method, computer program, and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198480A JP4757729B2 (en) 2006-07-20 2006-07-20 Manufacturing load prediction apparatus, manufacturing load prediction method, computer program, and computer-readable storage medium

Publications (2)

Publication Number Publication Date
JP2008027150A true JP2008027150A (en) 2008-02-07
JP4757729B2 JP4757729B2 (en) 2011-08-24

Family

ID=39117723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198480A Active JP4757729B2 (en) 2006-07-20 2006-07-20 Manufacturing load prediction apparatus, manufacturing load prediction method, computer program, and computer-readable storage medium

Country Status (1)

Country Link
JP (1) JP4757729B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293475A (en) * 2007-04-27 2008-12-04 Nippon Steel Corp Steel tapping frame arrangement planning device, method, and program, and computer readable storage medium
JP2010122902A (en) * 2008-11-19 2010-06-03 Nippon Steel Corp Production planning supporting device and method, program, and computer readable storage medium
JP2010128679A (en) * 2008-11-26 2010-06-10 Nippon Steel Corp Manufacturing work period model creation device, delivery time achievement rate predication device, manufacturing start target period calculation device, manufacturing work period model creation method, delivery time achievement rate prediction method, manufacturing start target period calculation method, program and computer-readable storage medium
JP2011113140A (en) * 2009-11-24 2011-06-09 Nippon Steel Corp Sales and production plan producing apparatus, sales and production plan producing method, and computer program
JP2011134283A (en) * 2009-12-25 2011-07-07 Nippon Steel Corp Device and method for predicting manufacturing load, computer program, and computer-readable storage medium
JP2015069527A (en) * 2013-09-30 2015-04-13 新日鐵住金株式会社 Manufacturing load and timing prediction apparatus, manufacturing load and timing prediction method, and computer program
CN105807741A (en) * 2016-03-09 2016-07-27 北京科技大学 Industrial production flow prediction method
CN112001439A (en) * 2020-08-19 2020-11-27 西安建筑科技大学 GBDT-based shopping mall building air conditioner cold load prediction method, storage medium and equipment
WO2023157697A1 (en) * 2022-02-18 2023-08-24 オムロン株式会社 Production management system, production management method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7040506B2 (en) * 2018-10-19 2022-03-23 Jfeスチール株式会社 Factory line load prediction model creation method, factory line load prediction model, factory line production plan creation method, factory line load prediction model creation program, factory line load prediction model creation device, and factory line production plan creation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314725A (en) * 1995-05-16 1996-11-29 Matsushita Electric Ind Co Ltd Decision tree generation device, information retrieval device and controller design device
JP2005228128A (en) * 2004-02-13 2005-08-25 Jfe Steel Kk Production scheduling method, device and computer program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314725A (en) * 1995-05-16 1996-11-29 Matsushita Electric Ind Co Ltd Decision tree generation device, information retrieval device and controller design device
JP2005228128A (en) * 2004-02-13 2005-08-25 Jfe Steel Kk Production scheduling method, device and computer program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293475A (en) * 2007-04-27 2008-12-04 Nippon Steel Corp Steel tapping frame arrangement planning device, method, and program, and computer readable storage medium
JP2010122902A (en) * 2008-11-19 2010-06-03 Nippon Steel Corp Production planning supporting device and method, program, and computer readable storage medium
JP2010128679A (en) * 2008-11-26 2010-06-10 Nippon Steel Corp Manufacturing work period model creation device, delivery time achievement rate predication device, manufacturing start target period calculation device, manufacturing work period model creation method, delivery time achievement rate prediction method, manufacturing start target period calculation method, program and computer-readable storage medium
JP2011113140A (en) * 2009-11-24 2011-06-09 Nippon Steel Corp Sales and production plan producing apparatus, sales and production plan producing method, and computer program
JP2011134283A (en) * 2009-12-25 2011-07-07 Nippon Steel Corp Device and method for predicting manufacturing load, computer program, and computer-readable storage medium
JP2015069527A (en) * 2013-09-30 2015-04-13 新日鐵住金株式会社 Manufacturing load and timing prediction apparatus, manufacturing load and timing prediction method, and computer program
CN105807741A (en) * 2016-03-09 2016-07-27 北京科技大学 Industrial production flow prediction method
CN105807741B (en) * 2016-03-09 2018-08-07 北京科技大学 A kind of industrial process stream prediction technique
CN112001439A (en) * 2020-08-19 2020-11-27 西安建筑科技大学 GBDT-based shopping mall building air conditioner cold load prediction method, storage medium and equipment
WO2023157697A1 (en) * 2022-02-18 2023-08-24 オムロン株式会社 Production management system, production management method, and program

Also Published As

Publication number Publication date
JP4757729B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4757729B2 (en) Manufacturing load prediction apparatus, manufacturing load prediction method, computer program, and computer-readable storage medium
JP5114673B2 (en) Processing time prediction apparatus, method, program, and computer-readable storage medium
Gandhi et al. Reduction of rejection of cylinder blocks in a casting unit: A six sigma DMAIC perspective
Jovanovic et al. Manufacturing cycle time analysis and scheduling to optimize its duration
JP2009282740A (en) Product quality prediction and control method
JP5309882B2 (en) Schedule creation system, schedule creation method, and schedule creation program
JP2011257803A (en) Production management system and production management method
Solanki et al. Competitive advantage through Six Sigma in sand casting industry to improve overall first-pass yield: a case study of SSE
JP4907507B2 (en) Equipment maintenance plan creation support apparatus, method, program, and computer-readable recording medium
NISHIOKA et al. Toward the integrated optimization of steel plate production process—A proposal for production control by multi-scale hierarchical modeling—
CN113570214A (en) Nuclear power project risk network diagram analysis technology implementation method
JP7261639B2 (en) Production control system and production control method
JP5402621B2 (en) Manufacturing load prediction apparatus, method, computer program, and computer-readable storage medium
Pandit WebCADAS: A New Online Education System for Casting Defect Identification, Analysis and Optimisation of Parameters
CN115169658B (en) Inventory consumption prediction method, system and storage medium based on NPL and knowledge graph
JP6318623B2 (en) Manufacturing lead time prediction device, manufacturing lead time prediction method, and computer program
JP2006350883A (en) Demand prediction value automatic determination system using knowledge database, demand prediction value automatic determination program used therefor, and storage medium storing its program
George et al. Forecast of foreign direct investment inflow (2019-2023) with reference to Indian economy
KR101122333B1 (en) Method for operating an industrial installation, system for operating an industrial installation and computer readable storage medium for operating an industrial installation
Li et al. An application on building information model to procurement strategy of copper raw material with big data analytics
Ridwan et al. Analysis of Improving Lead Time for Material Delivery from Hub Warehouse to Site Location in Heavy Equipment Company using DMAIC Method
JPH0926998A (en) Method for obtaining quality related information on metal band in manufacturing plant and device therefor
JP6167816B2 (en) Manufacturing load / timing prediction apparatus, manufacturing load / timing prediction method, and computer program
JP2012185807A (en) Production physical distribution schedule generation system and production physical distribution schedule generation method
Krześniak Production cost calculation approach based on data collected during manufacturing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R151 Written notification of patent or utility model registration

Ref document number: 4757729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350