JP2012071036A - Structure and method for calibration for calibrating blood component measuring device - Google Patents

Structure and method for calibration for calibrating blood component measuring device Download PDF

Info

Publication number
JP2012071036A
JP2012071036A JP2010219659A JP2010219659A JP2012071036A JP 2012071036 A JP2012071036 A JP 2012071036A JP 2010219659 A JP2010219659 A JP 2010219659A JP 2010219659 A JP2010219659 A JP 2010219659A JP 2012071036 A JP2012071036 A JP 2012071036A
Authority
JP
Japan
Prior art keywords
calibration
blood component
infrared light
transmission
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010219659A
Other languages
Japanese (ja)
Inventor
Masao Takinami
雅夫 滝浪
Norihiko Takeda
典彦 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2010219659A priority Critical patent/JP2012071036A/en
Publication of JP2012071036A publication Critical patent/JP2012071036A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/278Constitution of standards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce more measurement errors of a blood component measuring device by calibrating with a structure for calibration and to improve its measurement accuracy.SOLUTION: The structure 10 for calibration includes a body part 24 having a light scatterer 22 therein and a flow cell 28 filled with a calibration liquid 26. The flow cell 28 comprises a transmitter 40 to transmit a near-infrared light irradiated from a light emission part 18 of the blood component measuring device 12 and a tube 42 to be connected to the transmitter 40. A transmission part includes a first transmission part 44 with a short optical path length of the near-infrared light and a second transmission part 46 with a long optical path length of the near-infrared light to be connected to the first transmission part 44, which switches a position of the transmitter 40 to the light emission part 18 by sliding displacement of the structure for calibration 10.

Description

本発明は、生体における血液成分を透過光によって測定するための血液成分測定装置に用いられ、該血液成分測定装置を較正するために用いられる較正用構造体及びその較正方法に関する。   The present invention relates to a calibration structure used for calibrating a blood component measuring apparatus for measuring a blood component in a living body with transmitted light, and to a calibration method thereof.

糖尿病患者は、日常的に血糖値の変動を自分自身で測定することが推奨されており、例えば、従来から患者自身が手指等を穿刺して血液を採取し、測定装置を用いて血糖値を測定することが行われていた。しかしながら、上述した測定方法は、患者に対して多大な負担を強いることとなるため、近年、近赤外光を患者に照射して血液中に含まれる血液成分を測定可能な非侵襲技術を用いた血液成分測定装置が開発されている。   It is recommended that diabetic patients routinely measure their own blood glucose fluctuations. For example, patients themselves have conventionally punctured their fingers to collect blood and use a measuring device to measure blood sugar levels. Measuring was done. However, since the measurement method described above imposes a great burden on the patient, in recent years, a non-invasive technique capable of measuring a blood component contained in blood by irradiating the patient with near infrared light has been used. An apparatus for measuring blood components has been developed.

この血液成分測定装置を用いた測定方法では、例えば、血液中に含まれるグルコースが近赤外光の一部を吸収することを利用し、患者の身体の一部(例えば、手指等)に近赤外光を照射して前記身体を透過した近赤外光を受光し、その透過率又は吸光度を測定することにより血糖値(グルコース濃度)を算出している。また、この血糖値を測定する際、測定された透過率又は吸光度が、血液中のグルコース濃度か体組織に含まれたグルコース濃度であるかを判断することが困難であるため、血管の拍動を利用して周期的に変化するグルコース量に基づいて血液のグルコース濃度を算出している(例えば、特許文献1参照)。   In this measurement method using the blood component measurement device, for example, glucose contained in blood absorbs a part of near-infrared light and is close to a part of a patient's body (for example, a finger). The blood glucose level (glucose concentration) is calculated by receiving near-infrared light transmitted through the body by irradiating infrared light and measuring the transmittance or absorbance. Further, when measuring this blood glucose level, it is difficult to determine whether the measured transmittance or absorbance is the glucose concentration in blood or the glucose concentration contained in body tissue. Is used to calculate the glucose concentration of blood based on the amount of glucose that periodically changes (see, for example, Patent Document 1).

一方、上述したような血液成分測定装置では測定精度が要求されるため、その測定誤差を小さくするために較正作業が行われる。この較正作業は、例えば、装置の工場出荷時や定期的なメンテナンス時及び血糖値の測定前に行われ、所定の較正体を用いて行われる。較正体は、近赤外光を透過し、且つ、内部に所定濃度のグルコースを含む水溶液の充填されたものである。そして、異なる濃度のグルコース水溶液が充填された複数の較正体に対して近赤外光を順に透過させ、その透過率又は吸光度に基づいて得られる信号強度から検量線を作成して血液成分測定装置においてデータベース化する。この検量線に基づいて血糖値を算出することにより、血糖値の測定において精度向上が図られる(例えば、特許文献2参照)。   On the other hand, since the blood component measuring apparatus as described above requires measurement accuracy, calibration work is performed in order to reduce the measurement error. This calibration work is performed, for example, at the time of factory shipment of the apparatus or during regular maintenance and before blood glucose level measurement, and is performed using a predetermined calibration body. The calibration body transmits near infrared light and is filled with an aqueous solution containing a predetermined concentration of glucose inside. A blood component measurement device that transmits near-infrared light sequentially to a plurality of calibration bodies filled with aqueous glucose solutions of different concentrations and creates a calibration curve from the signal intensity obtained based on the transmittance or absorbance. In the database. By calculating the blood glucose level based on this calibration curve, the accuracy is improved in measuring the blood glucose level (see, for example, Patent Document 2).

特許第3903340号公報Japanese Patent No. 3903340 特開2000−258344号公報JP 2000-258344 A

上述した方法で血液成分測定装置の較正を行う場合、最初の較正体に近赤外光を透過させた後、次の較正体と交換して前記近赤外光を透過させる作業を行うこととなる。しかしながら、容器の材質や形状、内部に充填された較正液中の血液成分の濃度、温度、不純物の含有量等のばらつきや、較正体の交換による測定装置の環境変化等が複数の較正体間にあった場合、近赤外光を透過させた際の透過率又は吸光度に基づいた信号強度に誤差が生じることが懸念される。その結果、信号強度から得られる検量線を基礎とした血液成分濃度の算出を高精度に行うことができないという問題が生じる。   When calibrating the blood component measuring apparatus by the above-described method, after transmitting near infrared light to the first calibration body, performing the work of transmitting the near infrared light by replacing with the next calibration body; Become. However, variations in the material and shape of the container, the concentration of blood components in the calibration liquid filled in the container, the temperature, the content of impurities, etc., and changes in the environment of the measuring device due to the exchange of calibration bodies, etc., exist among multiple calibration bodies. In this case, there is a concern that an error may occur in the signal intensity based on the transmittance or the absorbance when the near infrared light is transmitted. As a result, there arises a problem that the blood component concentration cannot be calculated with high accuracy based on the calibration curve obtained from the signal intensity.

本発明は、前記の課題を考慮してなされたものであり、血液成分測定装置における測定誤差をより一層低減し、測定精度の向上を図ることが可能な血液成分測定装置に用いられる較正用構造体及びその較正方法を提供することを目的とする。   The present invention has been made in consideration of the above-described problems, and is a calibration structure used in a blood component measurement device that can further reduce measurement errors in the blood component measurement device and improve measurement accuracy. An object is to provide a body and a calibration method thereof.

前記の目的を達成するために、本発明は、赤外光を身体に透過させて血液成分の測定を行う血液成分測定装置に用いられ、該血液成分測定装置の較正を行うための較正用構造体において、
内部に所定濃度の前記血液成分を含む較正液が満たされ前記赤外光が透過する透過体と、
前記赤外光を発光する発光部と前記赤外光を受光する受光部との間で、前記発光部と前記受光部の間の光路上に前記透過体を移動させる移動手段と、
を有し、
前記透過体が、前記赤外光の前記透過体における光路長が異なる少なくとも2つ以上の透過部、又は、前記光路長が連続的に変化する透過部を備えると共に、前記透過部は、前記移動方向に沿って前記光路長が異なるように形成されることを特徴とする。
In order to achieve the above-mentioned object, the present invention is used in a blood component measuring apparatus for measuring blood components by transmitting infrared light through the body, and a calibration structure for calibrating the blood component measuring apparatus. In the body,
A transmissive body that is filled with a calibration solution containing the blood component at a predetermined concentration and transmits the infrared light;
A moving means for moving the transmission body on an optical path between the light emitting unit and the light receiving unit between a light emitting unit emitting the infrared light and a light receiving unit receiving the infrared light;
Have
The transmissive body includes at least two or more transmissive portions having different optical path lengths in the transmissive body of the infrared light, or a transmissive portion in which the optical path length continuously changes, and the transmissive portion is the moving The optical path length is different along the direction.

これにより、発光部と受光部との間に、透過部を移動手段によって確実且つ容易に配置することができ、しかも、透過体は、少なくとも2つ以上の透過部が一体的に形成されているため、別体からなる複数の透過体を用いて較正作業を行う従来技術と比較し、前記透過体の材質や形状、予め含まれる血液成分の濃度及び較正体の交換等に起因した測定結果のばらつきを回避することができる。その結果、透過部によって得られた透過スペクトルに基づいて高精度な検量線を作成することが可能となり、該検量線を利用して血液成分の測定を行うことによって該血液成分の測定誤差をより一層低減し、測定精度の向上を図ることができる。   Thereby, the transmission part can be reliably and easily arranged between the light emitting part and the light receiving part by the moving means, and the transmission body is integrally formed with at least two transmission parts. Therefore, compared with the prior art in which calibration work is performed using a plurality of separate transmissive bodies, the material and shape of the transmissive body, the concentration of blood components contained in advance, the exchange of the calibrated body, etc. Variations can be avoided. As a result, it is possible to create a highly accurate calibration curve based on the transmission spectrum obtained by the transmission part, and by measuring the blood component using the calibration curve, the measurement error of the blood component can be further reduced. This can be further reduced and the measurement accuracy can be improved.

また、透過体の光路上には、赤外光の入射側及び該透過体を透過した出射側の少なくともいずれか一方に光散乱体を設けることにより、実際に身体の血液成分を測定する際に生じる血管周辺の生体組織での散乱を再現することが可能となり、より高精度な較正を行うことができる。   In addition, a light scatterer is provided on the light path of the transmission body on at least one of the incident side of infrared light and the emission side transmitted through the transmission body, so that when actually measuring blood components of the body It is possible to reproduce the scattering in the living tissue around the blood vessel, and more accurate calibration can be performed.

さらに、移動手段には、透過部を発光部に臨む位置に位置決めする位置決め機構を備えることにより、少なくとも2つ以上設けられた透過部をそれぞれ発光部に臨む位置に確実且つ簡便に配置し、血液成分測定装置の較正作業を行うことが可能となる。   Furthermore, the moving means is provided with a positioning mechanism that positions the transmitting part at a position facing the light emitting part, so that at least two or more transmitting parts are reliably and simply arranged at positions facing the light emitting part, respectively. It becomes possible to perform a calibration operation of the component measuring apparatus.

またさらに、較正液が循環する循環路及び該較正液を流動させるポンプとを備えることにより、血液の血球成分や該血球成分に模した散乱粒子を含ませた溶液を用いて、該溶液を流動させながら測定を行うことができるため、前記血液の自然な状態により近い状態で較正を行うことができる。   Furthermore, by providing a circulation path through which the calibration liquid circulates and a pump for causing the calibration liquid to flow, the solution is made to flow using a blood cell component of blood and a solution containing scattering particles imitating the blood cell component. Therefore, the calibration can be performed in a state closer to the natural state of the blood.

また、本発明は、赤外光を患部に透過させて血液成分の測定を行う血液成分測定装置に対して較正用構造体を用いて較正を行うための方法であって、
前記較正用構造体において、赤外光の光路長が異なる少なくとも2つ以上の透過部のいずれか1つを前記赤外光を発光する発光部と前記赤外光を受光する受光部との間に配置し、前記赤外光を前記透過部に対して透過させて透過スペクトルを得る工程と、
前記較正用構造体を前記血液成分測定装置に対して移動させ、光路長の異なる別の透過部を前記発光部と前記受光部との間で位置決めし、前記赤外光を前記別の透過部に対して透過させて透過スペクトルを得る工程と、
得られた少なくとも2つ以上の前記透過スペクトルから差分解析によって信号強度を算出し、該信号強度に基づいた検量線を得る工程と、
を有することを特徴とする。
Further, the present invention is a method for performing calibration using a calibration structure for a blood component measuring apparatus that measures blood components by transmitting infrared light to an affected area,
In the calibration structure, at least one of at least two transmission parts having different optical path lengths of infrared light is disposed between the light emitting part that emits the infrared light and the light receiving part that receives the infrared light. And transmitting the infrared light to the transmission part to obtain a transmission spectrum;
The calibration structure is moved with respect to the blood component measuring device, and another transmissive part having a different optical path length is positioned between the light emitting part and the light receiving part, and the infrared light is transmitted to the other transmissive part. A transmission spectrum to obtain a transmission spectrum;
Calculating a signal intensity by differential analysis from the obtained at least two or more transmission spectra, and obtaining a calibration curve based on the signal intensity;
It is characterized by having.

本発明によれば、以下の効果が得られる。   According to the present invention, the following effects can be obtained.

すなわち、透過体が、異なる光路長を有した少なくと2つ以上の透過部、又は、前記光路長が連続的に変化する透過部を備え、移動手段を介して前記透過部が赤外光を発光する発光部と前記赤外光を受光する受光部との間で移動可能とすることにより、前記透過部を移動手段によって確実且つ容易に発光部から受光部への光路上に配置することができ、しかも、透過体は、少なくとも2つ以上の透過部が一体的に形成されているため、別体からなる複数の透過体を用いて較正作業を行う従来技術と比較し、前記透過体の材質や形状、所定血液成分の濃度及び較正体の交換等に起因した測定結果のばらつきを回避することができる。その結果、透過部によって得られた透過スペクトルに基づいて高精度な検量線を作成することが可能となり、該検量線を利用して血液成分の測定を行うことによって該血液成分の測定誤差をより一層低減し、測定精度の向上を図ることができる。   That is, the transmissive body includes at least two transmissive portions having different optical path lengths, or a transmissive portion in which the optical path length continuously changes, and the transmissive portion transmits infrared light via a moving means. By enabling movement between the light emitting unit that emits light and the light receiving unit that receives the infrared light, the transmitting unit can be reliably and easily arranged on the optical path from the light emitting unit to the light receiving unit by the moving means. In addition, since at least two or more transmission parts are integrally formed in the transmission body, the transmission body can be compared with the prior art in which calibration work is performed using a plurality of transmission bodies that are separate from each other. Variations in measurement results due to the material and shape, the concentration of the predetermined blood component, the exchange of the calibration body, and the like can be avoided. As a result, it is possible to create a highly accurate calibration curve based on the transmission spectrum obtained by the transmission part, and by measuring the blood component using the calibration curve, the measurement error of the blood component can be further reduced. This can be further reduced and the measurement accuracy can be improved.

本発明の第1の実施の形態に係る較正用構造体を適用した血液成分測定装置の概略構成図である。1 is a schematic configuration diagram of a blood component measurement device to which a calibration structure according to a first embodiment of the present invention is applied. 図1の血液成分測定装置の一部断面側面図である。It is a partial cross section side view of the blood component measuring device of FIG. 較正用構造体を構成するフローセルの外観斜視図である。It is an external appearance perspective view of the flow cell which comprises the structure for a calibration. 図1に示す血液成分測定装置において、較正用構造体を基端側へと移動させた場合を示す概略構成図である。In the blood component measuring device shown in FIG. 1, it is a schematic block diagram which shows the case where the structure for a calibration is moved to the base end side. 較正用構造体を用いて得られる近赤外光の信号強度と較正液の濃度との関係に基づいた検量線を示すグラフである。It is a graph which shows the calibration curve based on the relationship between the signal intensity of the near infrared light obtained using the structure for calibration, and the density | concentration of a calibration liquid. 異なる濃度を有した複数の較正液を用いて得られた信号強度と該較正液の濃度との関係に基づいた検量線を示すグラフである。It is a graph which shows the calibration curve based on the relationship between the signal intensity | strength obtained using the several calibration liquid which has a different density | concentration, and the density | concentration of this calibration liquid. 本発明の第2の実施の形態に係る較正用構造体の外観斜視図である。It is an external appearance perspective view of the structure for a calibration which concerns on the 2nd Embodiment of this invention. 図8Aは、図7に示すフローセルの縦断面図であり、図8Bは、図8Aに示すフローセルの横断面図であり、図8Cは、変形例に係るフローセルの横断面図を示す。8A is a longitudinal sectional view of the flow cell shown in FIG. 7, FIG. 8B is a transverse sectional view of the flow cell shown in FIG. 8A, and FIG. 8C shows a transverse sectional view of the flow cell according to the modification. 本発明の第3の実施の形態に係る較正用構造体の外観斜視図である。It is an external appearance perspective view of the structure for a calibration which concerns on the 3rd Embodiment of this invention. 図9に示す較正用構造体の上面図である。FIG. 10 is a top view of the calibration structure shown in FIG. 9. 図9に示す較正用構造体を発光部及び受光部に対してガイド溝に沿って移動させた状態を示す外観斜視図である。FIG. 10 is an external perspective view showing a state in which the calibration structure shown in FIG. 9 is moved along the guide groove with respect to the light emitting unit and the light receiving unit.

本発明に係る血液成分測定装置を較正するための較正用構造体及びその較正方法について好適な実施の形態を挙げ、添付の図面を参照しながら以下詳細に説明する。   Preferred embodiments of a calibration structure and a calibration method for calibrating a blood component measurement apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.

先ず、較正用構造体10によって較正がなされる血液成分測定装置12について図1及び図2を参照しながら簡単に説明する。   First, the blood component measuring apparatus 12 that is calibrated by the calibration structure 10 will be briefly described with reference to FIGS. 1 and 2.

この血液成分測定装置12は、血液中のグルコース濃度を非侵襲で測定するものであり、図1及び図2に示されるように、ベースボディ14と、該ベースボディ14の先端側の上部に設けられ、血液成分を測定する際に、例えば、被検者の手指が挿入されるソケット16と、前記ベースボディ14の内部に設けられ前記ソケット16側に向けて発光可能な発光部18と、該発光部18から発光されて手指を透過した光が入射される受光部20とを含む。なお、血液成分測定装置12は、発光部18および受光部20を含めてコンピュータ(図示せず)によって統合的に制御されている。   This blood component measuring device 12 measures the glucose concentration in the blood non-invasively, and is provided on the base body 14 and an upper portion on the distal end side of the base body 14 as shown in FIGS. When measuring blood components, for example, a socket 16 into which a finger of a subject is inserted, a light emitting unit 18 provided inside the base body 14 and capable of emitting light toward the socket 16 side, And a light receiving unit 20 to which light emitted from the light emitting unit 18 and transmitted through the finger is incident. The blood component measuring device 12 is integrally controlled by a computer (not shown) including the light emitting unit 18 and the light receiving unit 20.

なお、図1において、ソケット16を有する血液成分測定装置12の上側を「先端」側(矢印A方向)、前記血液成分測定装置12の下側を「基端」側(矢印B方向)と呼び、他の各図についても同様とする。   In FIG. 1, the upper side of blood component measuring device 12 having socket 16 is referred to as the “tip” side (arrow A direction), and the lower side of blood component measuring device 12 is referred to as the “base end” side (arrow B direction). The same applies to the other drawings.

ベースボディ14は、その上面が平面状に形成され、例えば、手指等を前記上面に沿ってソケット16側(矢印A方向)へと移動可能に形成される。   The upper surface of the base body 14 is formed in a planar shape. For example, the base body 14 is formed so that a finger or the like can be moved along the upper surface toward the socket 16 (arrow A direction).

ソケット16は、例えば、手指の先端を挿入可能な空間を内部に有したカバー状に形成され、前記空間及びベースボディ14の上面に臨むように受光部20が設けられている。この受光部20は、例えば、フォトダイオードからなる。   For example, the socket 16 is formed in a cover shape having a space into which the tip of a finger can be inserted, and a light receiving unit 20 is provided so as to face the space and the upper surface of the base body 14. The light receiving unit 20 is made of a photodiode, for example.

発光部18は、例えば、近赤外光を取り出す分光器を備えたハロゲンランプ、若しくは、近赤外光を発光可能なLEDからなり、ベースボディ14において受光部20と対向する位置に設けられる。換言すれば、発光部18及び受光部20は、ソケット16の空間を介してベースボディ14及びソケット16において上下方向に対向配置される。すなわち、血液成分測定装置12では、下方に設けられた発光部18から鉛直上方向に向かって発光され受光部20で受光される(図2参照)。   The light emitting unit 18 includes, for example, a halogen lamp provided with a spectroscope that extracts near infrared light, or an LED capable of emitting near infrared light, and is provided at a position facing the light receiving unit 20 in the base body 14. In other words, the light emitting unit 18 and the light receiving unit 20 are disposed to face each other in the vertical direction in the base body 14 and the socket 16 through the space of the socket 16. That is, in the blood component measurement device 12, light is emitted from the light emitting unit 18 provided below in the vertical upward direction and received by the light receiving unit 20 (see FIG. 2).

そして、血液成分測定装置12では、ソケット16の内部に手指(例えば、人差し指)を挿入した後、作業者が図示しない測定ボタンを押すことにより、発光部18から発光された近赤外光が前記手指において動脈、静脈及びその他の組織を透過し、受光部20で受光される。コンピュータでは、脈拍に相当する期間において受光部20から信号を受信し、スペクトル解析、差分解析を経て血糖値を求める。   In the blood component measuring device 12, after inserting a finger (for example, an index finger) into the socket 16, the operator presses a measurement button (not shown), whereby the near infrared light emitted from the light emitting unit 18 is The light passes through the artery, vein and other tissues in the finger and is received by the light receiving unit 20. The computer receives a signal from the light receiving unit 20 during a period corresponding to a pulse, and obtains a blood glucose level through spectrum analysis and difference analysis.

次に、上述した血液成分測定装置12を較正するために用いられる第1の実施の形態に係る較正用構造体10について、図1〜図6を参照しながら説明する。   Next, the calibration structure 10 according to the first embodiment used for calibrating the blood component measuring apparatus 12 described above will be described with reference to FIGS.

この較正用構造体10は、図1〜図3に示されるように、光散乱体22が内装された本体部24と、その一部が前記本体部24の内部に設けられ較正液26の充填されたフローセル28と、前記フローセル28の端部に設けられ前記較正液26が貯えられたリザーバタンク30と、前記較正液26を前記フローセル28に沿って循環させるポンプ32とからなる。なお、較正液26としては、例えば、グルコース水溶液や散乱性粒子の含まれた粒子懸濁液が用いられる。   As shown in FIGS. 1 to 3, the calibration structure 10 includes a main body 24 in which a light scatterer 22 is housed, and a part of the main body 24 provided in the main body 24 and filled with a calibration liquid 26. The flow cell 28, a reservoir tank 30 provided at the end of the flow cell 28 in which the calibration liquid 26 is stored, and a pump 32 that circulates the calibration liquid 26 along the flow cell 28. As the calibration liquid 26, for example, a glucose aqueous solution or a particle suspension containing scattering particles is used.

本体部24は、例えば、手指を模して先端が円弧状となった断面長円状に形成され、光散乱体22である寒天等が内部に充填されている。すなわち、較正用構造体10では、光散乱体22を内部に設けることによって被検者の手指に近赤外光を透過させた際に血管周辺の生体組織で生じる散乱を再現している。   The main body 24 is formed, for example, in the shape of an ellipse having a circular arc at the tip, imitating a finger, and is filled with agar or the like that is the light scatterer 22. That is, in the calibration structure 10, by providing the light scatterer 22 inside, the scattering generated in the living tissue around the blood vessel when near infrared light is transmitted through the finger of the subject is reproduced.

また、本体部24において幅方向に沿った側面には、2組の第1及び第2凹部34、36が該本体部24の軸線方向(矢印A、B方向)に沿って互いに所定間隔離間して形成される。この第1及び第2凹部34、36は、例えば、断面三角形状に窪んで形成され、該第1凹部34が本体部24の基端側(矢印B方向)、第2凹部36が前記本体部24の先端側(矢印A方向)に設けられ、較正用構造体10がソケット16の内部に挿入された際、前記第1及び第2凹部34、36のいずれか一方に対して前記ソケット16の内壁面に形成された断面三角形状の凸部38が係合される。これにより、ソケット16に対して本体部24を含む較正用構造体10が位置決めされて固定されることとなる。   In addition, two sets of first and second recesses 34 and 36 are spaced apart from each other at a predetermined interval along the axial direction (arrow A, B direction) of the main body 24 on the side surface along the width direction of the main body 24. Formed. The first and second recesses 34 and 36 are formed, for example, so as to be recessed in a triangular cross section. The first recess 34 is the base end side (in the direction of arrow B) of the main body 24, and the second recess 36 is the main body. 24, the calibration structure 10 is inserted into the socket 16, and when the calibration structure 10 is inserted into the socket 16, the socket 16 A convex portion 38 having a triangular cross section formed on the inner wall surface is engaged. As a result, the calibration structure 10 including the main body 24 is positioned and fixed with respect to the socket 16.

すなわち、第1及び第2凹部34、36と凸部38とは、血液成分測定装置12に対する較正用構造体10の位置決めを行う位置決め機構として機能する。   That is, the first and second concave portions 34 and 36 and the convex portion 38 function as a positioning mechanism that positions the calibration structure 10 with respect to the blood component measuring device 12.

フローセル28は、例えば、近赤外光を透過可能な透明なガラス又は樹脂製材料からなり中空状に形成された透過体40と、該透過体40の両端部にそれぞれ接続されるチューブ42とからなり、前記透過体40及びチューブ42の内部がそれぞれ連通し、較正液26が充填されている。透過体40は断面長方形状に形成され、本体部24の幅方向に沿って幅広状に形成された第1透過部44と、前記第1透過部44の端部に接合され、前記本体部24の幅方向と直交した高さ方向に沿って幅広状に形成された第2透過部46とを有する(図3参照)。   The flow cell 28 includes, for example, a transparent body 40 made of a transparent glass or resin material capable of transmitting near-infrared light and formed in a hollow shape, and tubes 42 respectively connected to both ends of the transparent body 40. Thus, the inside of the transmission body 40 and the tube 42 communicate with each other, and the calibration liquid 26 is filled. The transmissive body 40 is formed in a rectangular cross section, and is joined to the first transmissive portion 44 formed in a wide shape along the width direction of the main body portion 24 and the end portion of the first transmissive portion 44, and the main body portion 24. And a second transmission portion 46 formed in a wide shape along a height direction orthogonal to the width direction (see FIG. 3).

第1及び第2透過部44、46は、図3に示されるように、中空且つ断面長方形状でほぼ同一形状に形成され、その端部同士が中央部分で互いに略直角に交差するように接合されると共に、本体部24の内部において、第1透過部44が基端側(矢印B方向)、第2透過部46が先端側(矢印A方向)となるように配置される。   As shown in FIG. 3, the first and second transmission parts 44 and 46 are hollow and have a rectangular cross section and are formed in substantially the same shape, and are joined so that their end parts intersect with each other at a substantially right angle at the central part. At the same time, the first transmission portion 44 is disposed on the proximal end side (in the direction of arrow B) and the second transmission portion 46 is disposed on the front end side (in the direction of arrow A).

換言すれば、チューブ42の軸線方向(矢印A、B方向)に沿って見た第1透過部44の水平断面の面積と第2透過部46の縦断面の面積とが同一となるように形成されている。ここで、第1及び第2透過部44、46は容積が同一となるように形成されているので、較正液26を透過体40の内部に流通させる際に、その流速が変化することがなく好適である。   In other words, the horizontal cross-sectional area of the first transmission part 44 and the vertical cross-sectional area of the second transmission part 46 as viewed along the axial direction (arrow A, B direction) of the tube 42 are formed to be the same. Has been. Here, since the first and second transmission parts 44 and 46 are formed so as to have the same volume, the flow velocity does not change when the calibration liquid 26 is circulated inside the transmission body 40. Is preferred.

そして、透過体40は、図1に示されるように、本体部24の第1凹部34が血液成分測定装置12の凸部38に係合された状態で、第1透過部44が発光部18及び受光部20に臨む位置に配置され、一方、図4に示されるように、第2凹部36が前記凸部38に係合された状態では、第2透過部46が前記発光部18及び受光部20に臨む位置に配置される。   As shown in FIG. 1, the transmissive body 40 has the first transmissive portion 44 in the state where the first concave portion 34 of the main body portion 24 is engaged with the convex portion 38 of the blood component measuring device 12. In the state where the second recess 36 is engaged with the projection 38 as shown in FIG. 4, the second transmission unit 46 and the light receiving unit 18 receive the light. It is arranged at a position facing the portion 20.

チューブ42は、透過体40における第1透過部44とリザーバタンク30との間を接続する第1管路48と、前記透過体40における第2透過部46と前記リザーバタンク30とを接続する第2管路50とを備え、前記第1管路48は、前記第1透過部44から本体部24の基端側(矢印B方向)に向かって延在し、一方、前記第2管路50は、第2透過部46から本体部24の先端側(矢印A方向)に向かって延在した後、U字状に折曲されて前記基端側(矢印B方向)に向かって延在している。   The tube 42 includes a first conduit 48 that connects between the first transmission part 44 and the reservoir tank 30 in the transmission body 40, and a second connection that connects the second transmission part 46 and the reservoir tank 30 in the transmission body 40. The first pipe 48 extends from the first transmission part 44 toward the base end side (in the direction of arrow B) of the main body part 24, while the second pipe 50 is provided. Is extended from the second transmission part 46 toward the distal end side (arrow A direction) of the main body part 24 and then bent into a U shape and extends toward the proximal end side (arrow B direction). ing.

そして、第1管路48の途中にはポンプ32が設けられ、リザーバタンク30内の較正液26を前記第1管路48を通じて透過体40へと流動させ、第2管路50を通じて再び前記リザーバタンク30へと循環させている。すなわち、フローセル28とリザーバタンク30は、較正液26の循環路を構成している。   A pump 32 is provided in the middle of the first conduit 48 to cause the calibration liquid 26 in the reservoir tank 30 to flow to the permeate 40 through the first conduit 48 and again through the second conduit 50 to the reservoir. It is circulated to the tank 30. That is, the flow cell 28 and the reservoir tank 30 constitute a circulation path for the calibration liquid 26.

なお、ポンプ32は、例えば、粒子懸濁液を較正液として用いる場合に、含有された粒子が沈降してしまわないように前記較正液を流動させるために用いられており、前記較正液26を流動させる必要がない場合には、前記ポンプ32を特に設けなくてもよい。   The pump 32 is used, for example, to flow the calibration liquid so that contained particles do not settle when the particle suspension is used as the calibration liquid. If it is not necessary to flow, the pump 32 need not be provided.

また、図1及び図4に示されるように、例えば、異なる濃度の較正液26が貯えられた別のリザーバタンク30aを設け、図示しない切換手段を介して複数のリザーバタンク30、30aとフローセル28との接続状態を選択的に切換可能としてもよい。この場合、単一の較正用構造体10において、異なる濃度の較正液26を前記フローセル28に対して供給して血液成分測定装置12の較正作業を行うことが可能となる。   Further, as shown in FIGS. 1 and 4, for example, another reservoir tank 30a in which calibration solutions 26 of different concentrations are stored is provided, and a plurality of reservoir tanks 30 and 30a and a flow cell 28 are connected via switching means (not shown). It is also possible to selectively switch the connection state. In this case, in the single calibration structure 10, it is possible to supply the calibration liquid 26 having different concentrations to the flow cell 28 and perform the calibration operation of the blood component measuring device 12.

次に、血液成分測定装置12の較正方法について説明する。なお、ここでは、較正液26として同一濃度Qのグルコース水溶液が用いられると共に、較正用構造体10を構成する透過体40及びチューブ42の内部に予め較正液26が満たされ、ポンプ32を介して常に循環している状態とする。   Next, a calibration method of the blood component measurement device 12 will be described. Here, the glucose solution having the same concentration Q is used as the calibration liquid 26, and the calibration liquid 26 is filled in advance in the permeation body 40 and the tube 42 constituting the calibration structure 10, and is supplied via the pump 32. Always keep in circulation.

先ず、この準備状態にある較正用構造体10を作業者が把持し、本体部24の先端側から血液成分測定装置12におけるソケット16の内部に挿入していく。そして、図1に示されるように、ソケット16の凸部38に対して前記本体部24の第1凹部34を係合させることにより、透過体40を構成する第1透過部44が、血液成分測定装置12の発光部18及び受光部20に対峙する位置で位置決めされて固定される。   First, the operator holds the calibration structure 10 in the preparation state, and inserts it into the socket 16 of the blood component measuring device 12 from the distal end side of the main body 24. Then, as shown in FIG. 1, by engaging the first concave portion 34 of the main body 24 with the convex portion 38 of the socket 16, the first transmission portion 44 constituting the transmission body 40 becomes a blood component. It is positioned and fixed at a position facing the light emitting unit 18 and the light receiving unit 20 of the measuring device 12.

次に、作業者が、血液成分測定装置12の計測ボタン(図示せず)を押すことにより、発光部18から照射された近赤外光が較正用構造体10における本体部24及び第1透過部44を透過して受光部20において受光される。この際、本体部24は光散乱体22を有しているため、近赤外光が散乱され、且つ、前記近赤外光が第1透過部44を透過する際に較正液26に含まれるグルコース分子によって該近赤外光の一部が吸収された後に受光部20で受光される。詳細には、固有の波長を有する近赤外光の一部が、グルコース分子によって吸収される。   Next, when the operator presses a measurement button (not shown) of the blood component measuring device 12, the near infrared light emitted from the light emitting unit 18 is transmitted through the main body 24 and the first transmission in the calibration structure 10. The light is transmitted through the unit 44 and received by the light receiving unit 20. At this time, since the main body 24 has the light scatterer 22, near-infrared light is scattered and included in the calibration liquid 26 when the near-infrared light passes through the first transmission part 44. A part of the near-infrared light is absorbed by glucose molecules and then received by the light receiving unit 20. Specifically, a portion of near infrared light having a unique wavelength is absorbed by glucose molecules.

そして、受光部20で受光した透過光の強度に基づいた出力信号が図示しないコンピュータへと出力され、該コンピュータにおいて行われるスペクトル解析を経て透過スペクトルPAが作成される。詳細には、コンピュータでは、発光部18から較正用構造体10に対して照射される光の強度と、受光部20からの出力信号に基づいた透過光の強度とから吸光度が算出され、前記吸光度に基づいて透過スペクトルPAが作成される。   Then, an output signal based on the intensity of transmitted light received by the light receiving unit 20 is output to a computer (not shown), and a transmission spectrum PA is created through spectrum analysis performed in the computer. Specifically, the computer calculates the absorbance from the intensity of the light emitted from the light emitting unit 18 to the calibration structure 10 and the intensity of the transmitted light based on the output signal from the light receiving unit 20, and the absorbance. Based on this, a transmission spectrum PA is created.

次に、作業者が、較正用構造体10を血液成分測定装置12のソケット16から離間させる方向、すなわち、血液成分測定装置12の基端側(矢印B方向)へと引っ張ることにより、第1凹部34から凸部38が離脱して第2凹部36に係合される(図4参照)。これにより、図4に示されるように、血液成分測定装置12の発光部18及び受光部20に対して較正用構造体10の第2透過部46が対峙した位置で位置決めされる。   Next, the operator pulls the calibration structure 10 away from the socket 16 of the blood component measuring device 12, that is, by pulling in the base end side (direction of arrow B) of the blood component measuring device 12. The convex portion 38 is detached from the concave portion 34 and engaged with the second concave portion 36 (see FIG. 4). As a result, as shown in FIG. 4, the second transmitting portion 46 of the calibration structure 10 is positioned at a position facing the light emitting portion 18 and the light receiving portion 20 of the blood component measuring device 12.

そして、作業者が再び計測ボタンを押すことにより、発光部18から発光された近赤外光が較正用構造体10の本体部24及び第2透過部46を透過して受光部20において受光される。この際、図3に示されるように、近赤外光の透過する第2透過部46は、該近赤外光の照射方向に沿った光路長L2(断面積)が、第1透過部44における光路長L1(断面積)に対して大きく形成されているため(L2>L1)、前記近赤外光の較正液26を透過する距離が長くなる。   When the operator presses the measurement button again, the near infrared light emitted from the light emitting unit 18 passes through the main body 24 and the second transmitting unit 46 of the calibration structure 10 and is received by the light receiving unit 20. The At this time, as shown in FIG. 3, the second transmission part 46 that transmits near-infrared light has an optical path length L2 (cross-sectional area) along the irradiation direction of the near-infrared light. Is formed larger than the optical path length L1 (cross-sectional area) (L2> L1), the distance of the near-infrared light passing through the calibration liquid 26 becomes longer.

その結果、第2透過部46では、近赤外光を第1透過部44に透過させた場合と比較し、較正液26によって吸収される光が増加し、それに伴って、受光部20において受光される近赤外光の光が減少することとなる。すなわち、近赤外光を較正用構造体10に透過させる際、第2透過部46を透過させた際の吸光度が、第1透過部44を透過させた際の吸光度に対して大きくなる。   As a result, in the second transmission unit 46, light absorbed by the calibration liquid 26 is increased as compared with the case where near infrared light is transmitted through the first transmission unit 44, and accordingly, the light reception unit 20 receives light. The near-infrared light emitted will be reduced. That is, when the near-infrared light is transmitted through the calibration structure 10, the absorbance when transmitted through the second transmission unit 46 is larger than the absorbance when transmitted through the first transmission unit 44.

すなわち、光路長L1が短い第1透過部44は、血管が拍動によって収縮して血液量が減少した場合における身体の透過スペクトルを再現するためのものであり、一方、光路長L2の長い第2透過部46は、前記血管が拍動によって拡張して前記血液量が増加した場合における前記身体の透過スペクトルを再現するために設けられている。   That is, the first transmission part 44 with a short optical path length L1 is for reproducing the transmission spectrum of the body when the blood vessel contracts due to pulsation and the blood volume is reduced, while the first transmission part 44 with a long optical path length L2 is used. The 2 transmission part 46 is provided in order to reproduce the transmission spectrum of the body when the blood vessel is expanded by pulsation and the blood volume is increased.

そして、この受光部20で受光した透過光の強度に基づいた出力信号が再び図示しないコンピュータへと出力され、該コンピュータでは、スペクトル解析を行い、吸光度に基づいて透過スペクトルPBが作成される。   Then, an output signal based on the intensity of the transmitted light received by the light receiving unit 20 is output again to a computer (not shown). The computer performs spectrum analysis and creates a transmission spectrum PB based on the absorbance.

最後に、較正用構造体10における第1及び第2透過部44、46を透過させた際に得られた透過スペクトルPA、PBに基づいて差分解析を行い、較正液26における信号強度Sを算出することにより、図5に示されるような前記信号強度Sと前記較正液26の濃度Qとの関係に基づいた直線状の検量線Kが得られる。   Finally, differential analysis is performed based on the transmission spectra PA and PB obtained when the first and second transmission parts 44 and 46 in the calibration structure 10 are transmitted, and the signal intensity S in the calibration liquid 26 is calculated. By doing so, a linear calibration curve K based on the relationship between the signal intensity S and the concentration Q of the calibration liquid 26 as shown in FIG. 5 is obtained.

そして、血液成分測定装置12では、この検量線Kをデータベースとして保存し、血糖値を測定する際に参照することで高精度な測定を行うことができる。   And in the blood component measuring device 12, this calibration curve K is preserve | saved as a database, A highly accurate measurement can be performed by referring when measuring a blood glucose level.

また、上述した説明においては、所定濃度Qを有した単一の較正液26を用いて血液成分測定装置12の較正を行う場合について説明したが、例えば、図1及び図3に示されるように複数のリザーバタンクを較正用構造体10に設け、異なる濃度Q、Q1〜Q3の較正液26を順番にフローセル28へと送り込み、各較正液26における信号強度S、S1〜S3を得るようにしてもよい。この場合、図6に示されるように、信号強度S、S1〜S3と較正液26の濃度Q、Q1〜Q3との関係からより高精度な検量線K1を作成することが可能である。その結果、血液成分測定装置12において、より高精度に作成された検量線K1を用いて血糖値の測定精度を向上させることができる。   In the above description, the case where the blood component measuring device 12 is calibrated using a single calibration solution 26 having a predetermined concentration Q has been described. For example, as shown in FIGS. A plurality of reservoir tanks are provided in the calibration structure 10, and calibration liquids 26 having different concentrations Q and Q1 to Q3 are sequentially sent to the flow cell 28 to obtain signal intensities S and S1 to S3 in the respective calibration liquids 26. Also good. In this case, as shown in FIG. 6, it is possible to create a calibration curve K1 with higher accuracy from the relationship between the signal strengths S and S1 to S3 and the concentrations Q and Q1 to Q3 of the calibration liquid 26. As a result, the blood component measurement device 12 can improve the measurement accuracy of the blood glucose level using the calibration curve K1 created with higher accuracy.

以上のように、第1の実施の形態では、血液成分測定装置12の較正を行う較正用構造体10において、内部に較正液26が充填されるフローセル28が、異なる光路長L1、L2を有した第1及び第2透過部44、46を備え、前記較正用構造体10を前記血液成分測定装置12に対して先端側又は基端側へとスライド変位させることにより、前記第1透過部44又は第2透過部46のいずれか一方を、近赤外光を照射する発光部18と、較正用構造体10を透過した前記近赤外光を受光する受光部20とに対峙する位置に確実且つ容易に配置することができる。   As described above, in the first embodiment, in the calibration structure 10 that calibrates the blood component measurement device 12, the flow cell 28 filled with the calibration liquid 26 has different optical path lengths L1 and L2. The first transmission section 44 is provided by sliding and displacing the calibration structure 10 toward the distal end side or the proximal end side with respect to the blood component measurement device 12. Alternatively, either one of the second transmission parts 46 is surely positioned at a position facing the light emitting part 18 that irradiates near infrared light and the light receiving part 20 that receives the near infrared light transmitted through the calibration structure 10. And it can arrange easily.

このように、透過体40は、その第1及び第2透過部44、46が一体的に形成され、且つ、同一の較正液26が充填されているため、前記透過体40を血液成分測定装置12に対してスライドさせて較正作業を行うことにより、前記透過体40の材質や較正液26の濃度Q、温度、不純物の含有量等のばらつきが生じることが回避され、前記第1透過部44で得られた透過スペクトルPAと、前記第2透過部46で得られた透過スペクトルPBとの間においてばらつきに起因する差異が生じることがない。   As described above, since the first and second transmission portions 44 and 46 are integrally formed and the same calibration liquid 26 is filled in the transmission body 40, the transmission body 40 is replaced with the blood component measurement device. 12 is slid to perform the calibration work, thereby avoiding variations in the material of the transmissive body 40, the concentration Q of the calibration liquid 26, the temperature, the content of impurities, and the like. There is no difference between the transmission spectrum PA obtained in step 1 and the transmission spectrum PB obtained in the second transmission section 46 due to variations.

その結果、高精度に得られた透過スペクトルPA、PBに基づいた信号強度Sから検量線K、K1を作成し、例えば、血液成分測定装置12内にデータベースとして保存し利用することにより、該血液成分測定装置12で被検者の血糖値を測定する際に高精度な測定結果を得ることが可能となる。換言すれば、血液成分測定装置12における血糖値の測定誤差をより一層低減することができる。   As a result, calibration curves K and K1 are created from the signal intensities S based on the transmission spectra PA and PB obtained with high accuracy, and are stored and used as a database in the blood component measuring device 12, for example. When the blood glucose level of the subject is measured by the component measuring device 12, a highly accurate measurement result can be obtained. In other words, the measurement error of the blood sugar level in the blood component measuring device 12 can be further reduced.

また、第1及び第2透過部44、46が一体的に形成されているため、透過体40を含む較正用構造体10を血液成分測定装置12に対してスライド変位させるという簡便な作業で、前記較正用構造体10をその都度血液成分測定装置12から着脱させることなく、光路長L1、L2の異なる第1及び第2透過部44、46を介して連続的に較正作業を行うことができる。その結果、従来の較正方法と比較し、血液成分測定装置12の較正作業を効率的に行うことが可能となる。   In addition, since the first and second transmission parts 44 and 46 are integrally formed, a simple operation of slidingly displacing the calibration structure 10 including the transmission body 40 with respect to the blood component measurement device 12, The calibration structure 10 can be continuously calibrated via the first and second transmission parts 44 and 46 having different optical path lengths L1 and L2 without detaching the calibration structure 10 from the blood component measurement device 12 each time. . As a result, it is possible to efficiently perform the calibration work of the blood component measuring device 12 as compared with the conventional calibration method.

次に、第2の実施の形態に係る較正用構造体100を図7及び図8に示す。なお、上述した第1の実施の形態に係る較正用構造体10と同一の構成要素には同一の参照符号を付して、その詳細な説明を省略する。   Next, a calibration structure 100 according to a second embodiment is shown in FIGS. The same components as those of the calibration structure 10 according to the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.

この第2の実施の形態に係る較正用構造体100は、図7及び図8に示されるように、断面略長方形状の透過体102と該透過体102の両端部に接続されるチューブ104とからなるフローセル106と、該フローセル106を変位自在に保持するホルダ108とを備える。   As shown in FIGS. 7 and 8, the calibration structure 100 according to the second embodiment includes a transmission body 102 having a substantially rectangular cross section and tubes 104 connected to both ends of the transmission body 102. And a holder 108 for holding the flow cell 106 in a displaceable manner.

透過体102は、例えば、近赤外光を透過可能な透明なガラス又は樹脂製材料からなり、幅広状の下面及び上面が、ホルダ108を介して血液成分測定装置12における発光部18及び受光部20にそれぞれ対峙するように配置される。   The transmissive body 102 is made of, for example, a transparent glass or resin material capable of transmitting near-infrared light, and has a light emitting unit 18 and a light receiving unit in the blood component measuring apparatus 12 with a wide lower surface and upper surface via a holder 108. 20 so as to face each other.

この透過体102には、一端部にチューブ104の第1管路48が接続され、他端部には前記チューブ104の第2管路50が接続されており、前記第1及び第2管路48、50が、前記透過体102の長手方向(矢印A、B方向)に沿って貫通した連通路110と連通している。   A first conduit 48 of the tube 104 is connected to one end of the transmission body 102, and a second conduit 50 of the tube 104 is connected to the other end, and the first and second conduits are connected. 48 and 50 communicate with the communication passage 110 penetrating along the longitudinal direction (arrow A, B direction) of the transmission body 102.

連通路110は、水平断面が略矩形状に形成され、血液成分測定装置12に較正用構造体100が設置された際、図8Aに示されるように、発光部18からの近赤外光の照射方向と直交した幅寸法が略一定に形成されると共に、図8Bに示されるように、前記照射方向に沿った前記連通路110の幅寸法は、フローセル106の基端側(矢印B方向)に形成された第1透過部112が最も大きく、該フローセル106の先端側(矢印A方向)に向かって順に形成された第2透過部114、第3透過部116、第4透過部118が段階的に徐々に小さくなるように設定されている。   The communication passage 110 is formed in a substantially rectangular horizontal cross section, and when the calibration structure 100 is installed in the blood component measurement device 12, as shown in FIG. 8A, the near-infrared light from the light emitting unit 18 is transmitted. While the width dimension orthogonal to the irradiation direction is formed substantially constant, as shown in FIG. 8B, the width dimension of the communication path 110 along the irradiation direction is the base end side (the direction of arrow B) of the flow cell 106. The first transmission part 112 formed in the first is the largest, and the second transmission part 114, the third transmission part 116, and the fourth transmission part 118 formed in order toward the distal end side (the direction of arrow A) of the flow cell 106 are stages. It is set so that it gradually becomes smaller.

換言すれば、連通路110は、第1管路48の接続される基端側(矢印B方向)の幅寸法が最も大きく、反対に、第2管路50の接続される先端側(矢印A方向)の幅寸法が最も小さく設定されている。   In other words, the communication passage 110 has the largest width dimension on the base end side (arrow B direction) to which the first pipe line 48 is connected, and conversely, the tip end side (arrow A) to which the second pipe line 50 is connected. Direction) is set to the smallest width dimension.

これにより、透過体102に対して発光部18から近赤外光を照射して透過させる際、第1〜第4透過部112、114、116、118においてそれぞれ光路長L3〜L6が異なることとなる。そのため、近赤外光を第1〜第4透過部112、114、116、118に透過させることによって、単一の透過体102から複数の透過スペクトルが得られる。   Thereby, when irradiating and transmitting the near infrared light from the light emitting unit 18 to the transmission body 102, the optical path lengths L3 to L6 are different in the first to fourth transmission units 112, 114, 116, and 118, respectively. Become. Therefore, a plurality of transmission spectra can be obtained from the single transmission body 102 by transmitting the near infrared light to the first to fourth transmission parts 112, 114, 116, and 118.

また、透過体102には、その側面にスケール120が設けられ、該スケール120は前記透過体102の長手方向(矢印A、B方向)に沿って等間隔で刻まれている。そして、スケール120は、フローセル106がホルダ108に装着された際、開口した窓部122に臨んで視認可能に設けられている。   Further, a scale 120 is provided on the side surface of the transmissive body 102, and the scale 120 is engraved at equal intervals along the longitudinal direction of the transmissive body 102 (directions of arrows A and B). The scale 120 is provided so as to be visible when facing the opened window 122 when the flow cell 106 is attached to the holder 108.

ホルダ108は、内部にフローセル106を挿通可能な中空状に形成され、該フローセル106の挿通される一組の開口部124を有すると共に、該開口部124の形成された側面と別の側面に窓部122が開口している。この窓部122の略中央部には、該スケール120の位置を確認する際に用いられるインジケータ126が設けられている。   The holder 108 is formed in a hollow shape into which the flow cell 106 can be inserted, has a pair of openings 124 through which the flow cell 106 is inserted, and has a window on a side surface different from the side where the opening portion 124 is formed. The part 122 is open. An indicator 126 used for confirming the position of the scale 120 is provided at a substantially central portion of the window portion 122.

そして、フローセル106が、ホルダ108の開口部124を通じて内部に挿入され、チューブ104が前記ホルダ108の外部に突出すると共に、前記ホルダ108の下面及び上面には、ホルダ108を貫通して設けられた光散乱体22を含む本体部128を介して、発光部18及び受光部20がそれぞれプローブに連結されて設けられる。すなわち、発光部18は、ホルダ108及びフローセル106の下方に配置され、受光部20は、前記ホルダ108及びフローセル106を挟んで前記発光部18の上方となる位置に設けられる。   The flow cell 106 is inserted into the inside through the opening 124 of the holder 108, and the tube 104 protrudes to the outside of the holder 108, and the holder 108 is provided on the lower surface and the upper surface of the holder 108. The light emitting unit 18 and the light receiving unit 20 are connected to the probe through the main body unit 128 including the light scatterer 22. That is, the light emitting unit 18 is disposed below the holder 108 and the flow cell 106, and the light receiving unit 20 is provided at a position above the light emitting unit 18 with the holder 108 and the flow cell 106 interposed therebetween.

なお、較正用構造体100が血液成分測定装置12に装着された際、ホルダ108の窓部122側から見てインジケータ126と発光部18及び受光部20とが一直線上となるように設けられる。   When the calibration structure 100 is mounted on the blood component measuring device 12, the indicator 126, the light emitting unit 18, and the light receiving unit 20 are provided in a straight line when viewed from the window 122 side of the holder 108.

次に、このような較正用構造体100を用いて血液成分測定装置12の較正を行う場合には、先ず、作業者がホルダ108に対してフローセル106をスライドさせ、第1透過部112を発光部18と受光部20との間となる位置へと配置する。この場合、作業者は、例えば、フローセル106の透過体102に設けられたスケール120とホルダ108のインジケータ126とを目安にしながら前記フローセル106を移動させ、第1透過部112を発光部18及び受光部20に臨む位置へと配置する。   Next, when calibrating the blood component measurement device 12 using such a calibration structure 100, first, the operator slides the flow cell 106 with respect to the holder 108 to emit light from the first transmission part 112. It arrange | positions to the position between the part 18 and the light-receiving part 20. In this case, for example, the operator moves the flow cell 106 while using the scale 120 provided on the transmission body 102 of the flow cell 106 and the indicator 126 of the holder 108 as a guideline, and moves the first transmission unit 112 to the light emitting unit 18 and the light receiving unit. It arrange | positions to the position which faces the part 20. FIG.

次に、発光部18から照射され第1透過部112を透過した近赤外光を受光部20で受光して透過スペクトルPAを作成した後、再びフローセル106をスライドさせて第2透過部114を発光部18及び受光部20に臨む位置に配置する。そして、発光部18から照射され第2透過部114を透過した近赤外光を受光部20で受光して透過スペクトルPBを作成する。このように、順番に、フローセル106における第3及び第4透過部116、118に対して発光部18から近赤外光を照射して透過させ、受光部20で受光して透過スペクトルPC、PDを作成していく。   Next, the near infrared light irradiated from the light emitting unit 18 and transmitted through the first transmitting unit 112 is received by the light receiving unit 20 to create a transmission spectrum PA, and then the flow cell 106 is slid again to move the second transmitting unit 114. It arrange | positions in the position which faces the light emission part 18 and the light-receiving part 20. FIG. Then, the near infrared light irradiated from the light emitting unit 18 and transmitted through the second transmitting unit 114 is received by the light receiving unit 20 to create a transmission spectrum PB. In this way, the third and fourth transmission units 116 and 118 in the flow cell 106 are sequentially irradiated with near-infrared light from the light emitting unit 18 and transmitted, and the light receiving unit 20 receives and transmits the transmission spectra PC and PD. Will continue to create.

この場合、第1〜第4透過部112、114、116、118は、それぞれ近赤外光が透過する際の光路長L3〜L6がそれぞれ異なるため、最大の光路長L3を有する第1透過部112を透過させた際の吸光度が最も大きく、最小の光路長L6を有する第4透過部118に向かって前記近赤外光の吸光度が段階的に小さくなる。   In this case, since the first to fourth transmission parts 112, 114, 116, and 118 have different optical path lengths L3 to L6 when near infrared light is transmitted, the first transmission part having the maximum optical path length L3. Absorbance when transmitting through 112 is the highest, and the absorbance of the near-infrared light decreases stepwise toward the fourth transmission section 118 having the minimum optical path length L6.

最後に、得られた透過スペクトルPA、PB、PC、PDから差分解析によって較正液26の信号強度をそれぞれ算出し、該信号強度に基づいた検量線Kを得ることができる。   Finally, the signal intensity of the calibration liquid 26 is calculated from the obtained transmission spectra PA, PB, PC, PD by differential analysis, and a calibration curve K based on the signal intensity can be obtained.

これにより、較正用構造体100を構成するフローセル106の透過体102をホルダ108に沿って安定的にスライド変位させることができると共に、前記透過体102のスケール120を目安に変位させることにより、光路長の異なる第1〜第4透過部112、114、116、118を発光部18及び受光部20に臨む位置へと確実に移動させて配置することが可能となる。   Thereby, the transmissive body 102 of the flow cell 106 constituting the calibration structure 100 can be stably slid along the holder 108, and the scale 120 of the transmissive body 102 is displaced as a guideline, whereby the optical path The first to fourth transmission parts 112, 114, 116, and 118 having different lengths can be reliably moved to positions facing the light emitting part 18 and the light receiving part 20.

その結果、血液成分測定装置12の較正作業を確実且つ高精度に行って血糖値の測定誤差を低減することが可能となる。   As a result, it is possible to reduce the measurement error of the blood sugar level by performing the calibration operation of the blood component measuring device 12 reliably and with high accuracy.

なお、透過体102における連通路110は、上述した第1〜第4透過部112、114、116、118のように幅寸法(光路長)が段付状に異なる場合に限定されるものではなく、例えば、図8Cに示されるフローセル138のように、透過体140の一端部から他端部側に向かって徐々に幅寸法(光路長L7)の小さくなる先細状の連通路142としてもよい。この場合には、フローセル138に設けられたスケール120及びホルダ108のインジケータ126を用いて該フローセル106を微小量ずつ変位させることによって透過体140における光路長L7を連続的に変化させることが可能となる。その結果、単一の透過体140で得られる透過スペクトルのサンプル数を飛躍的に増加させることができ、それに伴って得られる検量線Kの精度を向上させることができる。そのため、血液成分測定装置12の較正作業をより一層高精度に行って血糖値の測定誤差をさらに低減することができる。   Note that the communication path 110 in the transmission body 102 is not limited to the case where the width dimension (optical path length) differs in a stepped manner as in the first to fourth transmission parts 112, 114, 116, and 118 described above. For example, as in a flow cell 138 shown in FIG. 8C, a tapered communication path 142 that gradually decreases in width (optical path length L7) from one end to the other end of the transmission 140 may be used. In this case, it is possible to continuously change the optical path length L7 in the transmission body 140 by displacing the flow cell 106 by a minute amount using the scale 120 provided in the flow cell 138 and the indicator 126 of the holder 108. Become. As a result, it is possible to dramatically increase the number of transmission spectrum samples obtained with the single transmission body 140, and to improve the accuracy of the calibration curve K obtained accordingly. Therefore, the blood sugar level measurement error can be further reduced by performing the calibration operation of the blood component measuring device 12 with higher accuracy.

最後に、第3の実施の形態に係る較正用構造体150を図9〜図11に示す。なお、上述した第1及び第2の実施の形態に係る較正用構造体10、100と同一の構成要素には同一の参照符号を付して、その詳細な説明を省略する。   Finally, a calibration structure 150 according to a third embodiment is shown in FIGS. The same components as those in the calibration structures 10 and 100 according to the first and second embodiments described above are denoted by the same reference numerals, and detailed description thereof is omitted.

この第3の実施の形態に係る較正用構造体150では、図9〜図11に示されるように、本体部152に対して発光部18及び受光部20をスライド可能な構成とし、且つ、フローセル154が管状に形成されている点で、第1及び第2の実施の形態に係る較正用構造体10、100と相違している。   In the calibration structure 150 according to the third embodiment, as shown in FIGS. 9 to 11, the light emitting unit 18 and the light receiving unit 20 are slidable with respect to the main body 152, and the flow cell is used. It is different from the calibration structures 10 and 100 according to the first and second embodiments in that 154 is formed in a tubular shape.

本体部152は、内部に光散乱体22を有した略円柱状に形成され、その軸線方向に沿ってフローセル154が設けられている。フローセル154は、内部に較正液26が循環可能な管状であり、その一端部側となり、管路径D1の第1透過路(透過部)156と、他端部側となり該第1透過路156より大きな管路径D2の第2透過路(透過部)158とを有する(図10参照)。第1及び第2透過路156、158は、互いに所定間隔離間して略平行に配置され、本体部152の一端部側において突出して図示しないリザーバタンク30にそれぞれ接続される。また、第1及び第2透過路156、158は、本体部152の他端部から突出し、平面視で断面U字状に折曲されて連結している。この際、フローセル154の管路径は、第1透過路156から第2透過路158に向かって徐々に大きくなるように形成されている。   The main body 152 is formed in a substantially cylindrical shape having the light scatterer 22 therein, and a flow cell 154 is provided along the axial direction thereof. The flow cell 154 has a tubular shape through which the calibration liquid 26 can circulate. The flow cell 154 is on one end side of the flow cell 154 and has a first transmission path (permeation section) 156 having a pipe diameter D1 and the other end side. And a second transmission path (transmission portion) 158 having a large pipe diameter D2 (see FIG. 10). The first and second permeation paths 156 and 158 are arranged substantially parallel to each other with a predetermined distance therebetween, and project from one end of the main body 152 to be connected to a reservoir tank 30 (not shown). The first and second transmission paths 156 and 158 protrude from the other end of the main body 152 and are connected by being bent into a U-shaped cross section in plan view. At this time, the pipe diameter of the flow cell 154 is formed so as to gradually increase from the first transmission path 156 toward the second transmission path 158.

また、本体部152の外周面には、第1及び第2透過路156、158の軸線と直交し、該第1及び第2透過路156、158に臨む位置に一組のガイド溝160が形成される。ガイド溝160は、第1及び第2透過路156、158を挟むように配置され、該第1及び第2透過路156、158と直交方向に延在している。   In addition, a set of guide grooves 160 are formed on the outer peripheral surface of the main body 152 at positions that are orthogonal to the axes of the first and second transmission paths 156 and 158 and face the first and second transmission paths 156 and 158. Is done. The guide groove 160 is disposed so as to sandwich the first and second transmission paths 156 and 158, and extends in a direction orthogonal to the first and second transmission paths 156 and 158.

そして、一方のガイド溝160には、血液成分測定装置12を構成する発光部18が挿入され、他方のガイド溝160には、前記血液成分測定装置12の受光部20が挿入され、それぞれガイド溝160に沿ってスライド変位自在に保持される。この場合、発光部18及び受光部20は、互いに対向した位置を維持しつつガイド溝160に沿って変位する。   The light emitting unit 18 constituting the blood component measuring device 12 is inserted into one guide groove 160, and the light receiving unit 20 of the blood component measuring device 12 is inserted into the other guide groove 160, respectively. It is held so as to be slidable along 160. In this case, the light emitting unit 18 and the light receiving unit 20 are displaced along the guide groove 160 while maintaining positions facing each other.

このような較正用構造体150を用いて血液成分測定装置12の較正を行う場合には、作業者が発光部18及び受光部20に結合したプローブ(図示せず)を把持してガイド溝160に沿って移動させ、発光部18及び受光部20をフローセル154の第1透過路156に臨む位置に配置する。そして、第1透過路156を透過させた近赤外光を受光部20で受光して透過スペクトルPAを作成した後、再びプローブを把持してガイド溝160に沿って移動させ、発光部18及び受光部20をフローセル154の第2透過路158に臨む位置へと配置する。   When calibrating the blood component measurement device 12 using such a calibration structure 150, an operator holds a probe (not shown) coupled to the light emitting unit 18 and the light receiving unit 20 and guides the groove 160. The light emitting unit 18 and the light receiving unit 20 are arranged at positions facing the first transmission path 156 of the flow cell 154. Then, after the near infrared light transmitted through the first transmission path 156 is received by the light receiving unit 20 and the transmission spectrum PA is created, the probe is held again and moved along the guide groove 160, and the light emitting unit 18 and The light receiving unit 20 is disposed at a position facing the second transmission path 158 of the flow cell 154.

そして、第2透過路158を透過させた近赤外光を受光部20で受光して透過スペクトルPBを作成する。第2透過路158の管路径D2は、第1透過路156の管路径D1に比べて大きく設定されているため、その内部に充填された較正液26による吸光度が大きくなる。そして、透過スペクトルPA、PBから差分解析によって較正液26の信号強度を算出し、該信号強度に基づいた検量線を得ることができる。なお、本実施の形態では、本体部152に対して発光部18及び受光部20をスライドさせる構成としているが、前記本体部152をスライドさせるようにしてもよい。   And the near-infrared light which permeate | transmitted the 2nd transmission path 158 is received by the light-receiving part 20, and the transmission spectrum PB is produced. Since the pipe diameter D2 of the second permeation path 158 is set larger than the pipe diameter D1 of the first permeation path 156, the absorbance by the calibration liquid 26 filled therein is increased. Then, the signal intensity of the calibration liquid 26 is calculated from the transmission spectra PA and PB by differential analysis, and a calibration curve based on the signal intensity can be obtained. In the present embodiment, the light emitting unit 18 and the light receiving unit 20 are slid with respect to the main body 152. However, the main body 152 may be slid.

これにより、較正用構造体150の構成を簡素化して製造コストを削減できると共に、血液成分測定装置12の較正作業を確実且つ高精度に行って血糖値の測定誤差を低減することが可能となる。   Thereby, the configuration of the calibration structure 150 can be simplified to reduce the manufacturing cost, and the blood component measuring device 12 can be calibrated reliably and with high accuracy to reduce the blood sugar level measurement error. .

なお、本発明に係る血液成分測定装置を較正するための較正用構造体及びその較正方法は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。   The calibration structure and the calibration method for calibrating the blood component measurement apparatus according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention. Of course.

10、100、150…較正用構造体 12…血液成分測定装置
16…ソケット 18…発光部
20…受光部 22…光散乱体
24、128、152…本体部 26…較正液
28、106、138、154…フローセル
30、30a…リザーバタンク 32…ポンプ
40、102、140…透過体 42、104…チューブ
44、112…第1透過部 46、114…第2透過部
48…第1管路 50…第2管路
108…ホルダ 110…連通路
116…第3透過部 118…第4透過部
120…スケール 126…インジケータ
156…第1透過路 158…第2透過路
160…ガイド溝
DESCRIPTION OF SYMBOLS 10, 100, 150 ... Calibration structure 12 ... Blood component measuring device 16 ... Socket 18 ... Light-emitting part 20 ... Light-receiving part 22 ... Light-scattering body 24, 128, 152 ... Main-body part 26 ... Calibration liquid 28, 106, 138, 154 ... Flow cell 30, 30a ... Reservoir tank 32 ... Pump 40, 102, 140 ... Permeator 42, 104 ... Tube 44, 112 ... First permeation part 46, 114 ... Second permeation part 48 ... First conduit 50 ... First 2 pipes 108 ... holder 110 ... communication path 116 ... third transmission part 118 ... fourth transmission part 120 ... scale 126 ... indicator 156 ... first transmission path 158 ... second transmission path 160 ... guide groove

Claims (5)

赤外光を身体に透過させて血液成分の測定を行う血液成分測定装置に用いられ、該血液成分測定装置の較正を行うための較正用構造体において、
内部に所定濃度の前記血液成分を含む較正液が満たされ前記赤外光が透過する透過体と、
前記赤外光を発光する発光部と前記赤外光を受光する受光部との間で、前記発光部と前記受光部の間の光路上に前記透過体を移動させる移動手段と、
を有し、
前記透過体が、前記赤外光の前記透過体における光路長が異なる少なくとも2つ以上の透過部、又は、前記光路長が連続的に変化する透過部を備えると共に、前記透過部は、前記移動方向に沿って前記光路長が異なるように形成されることを特徴とする血液成分測定装置に用いられる較正用構造体。
In a structure for calibration used to calibrate the blood component measurement device, used in a blood component measurement device that measures the blood component by transmitting infrared light through the body,
A transmissive body that is filled with a calibration solution containing the blood component at a predetermined concentration and transmits the infrared light;
A moving means for moving the transmission body on an optical path between the light emitting unit and the light receiving unit between a light emitting unit emitting the infrared light and a light receiving unit receiving the infrared light;
Have
The transmissive body includes at least two or more transmissive portions having different optical path lengths in the transmissive body of the infrared light, or a transmissive portion in which the optical path length continuously changes, and the transmissive portion is the moving A calibration structure used in a blood component measurement device, wherein the optical path length is different along a direction.
請求項1記載の較正用構造体において、
前記透過体の光路上には、前記赤外光の入射側及び該透過体を透過した出射側の少なくともいずれか一方に光散乱体が設けられることを特徴とする血液成分測定装置に用いられる較正用構造体。
The calibration structure according to claim 1,
A calibration used for a blood component measuring apparatus, characterized in that a light scatterer is provided on at least one of the incident side of the infrared light and the emission side transmitted through the transmissive body on the optical path of the transmissive body. Structure.
請求項1又は2記載の較正用構造体において、
前記移動手段には、前記透過部を前記発光部に臨む位置に位置決めする位置決め機構を備えることを特徴とする血液成分測定装置に用いられる較正用構造体。
The calibration structure according to claim 1 or 2,
A calibration structure for use in a blood component measuring apparatus, wherein the moving means includes a positioning mechanism that positions the transmitting portion at a position facing the light emitting portion.
請求項1〜3のいずれか1項に記載の較正用構造体において、
前記較正液が循環する循環路と、前記較正液を流動させるポンプとを備えることを特徴とする血液成分測定装置に用いられる較正用構造体。
The calibration structure according to any one of claims 1 to 3,
A calibration structure for use in a blood component measurement apparatus, comprising: a circulation path through which the calibration liquid circulates; and a pump for flowing the calibration liquid.
赤外光を患部に透過させて血液成分の測定を行う血液成分測定装置に対して較正用構造体を用いて較正を行うための較正方法であって、
前記較正用構造体において、赤外光の光路長が異なる少なくとも2つ以上の透過部のいずれか1つを前記赤外光を発光する発光部と前記赤外光を受光する受光部との間に配置し、前記赤外光を前記透過部に対して透過させて透過スペクトルを得る工程と、
前記較正用構造体を前記血液成分測定装置に対して移動させ、光路長の異なる別の透過部を前記発光部と前記受光部との間で位置決めし、前記赤外光を前記別の透過部に対して透過させて透過スペクトルを得る工程と、
得られた少なくとも2つ以上の前記透過スペクトルから差分解析によって信号強度を算出し、該信号強度に基づいた検量線を得る工程と、
を有することを特徴とする血液成分測定装置の較正方法。
A calibration method for calibrating a blood component measuring device that transmits infrared light through an affected area and measures a blood component using a calibration structure,
In the calibration structure, at least one of at least two transmission parts having different optical path lengths of infrared light is disposed between the light emitting part that emits the infrared light and the light receiving part that receives the infrared light. And transmitting the infrared light to the transmission part to obtain a transmission spectrum;
The calibration structure is moved with respect to the blood component measuring device, and another transmissive part having a different optical path length is positioned between the light emitting part and the light receiving part, and the infrared light is transmitted to the other transmissive part. A transmission spectrum to obtain a transmission spectrum;
Calculating a signal intensity by differential analysis from the obtained at least two or more transmission spectra, and obtaining a calibration curve based on the signal intensity;
A method for calibrating a blood component measuring apparatus, comprising:
JP2010219659A 2010-09-29 2010-09-29 Structure and method for calibration for calibrating blood component measuring device Withdrawn JP2012071036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010219659A JP2012071036A (en) 2010-09-29 2010-09-29 Structure and method for calibration for calibrating blood component measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010219659A JP2012071036A (en) 2010-09-29 2010-09-29 Structure and method for calibration for calibrating blood component measuring device

Publications (1)

Publication Number Publication Date
JP2012071036A true JP2012071036A (en) 2012-04-12

Family

ID=46167512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010219659A Withdrawn JP2012071036A (en) 2010-09-29 2010-09-29 Structure and method for calibration for calibrating blood component measuring device

Country Status (1)

Country Link
JP (1) JP2012071036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509361A (en) * 2017-02-16 2020-03-26 フレセニウス・メディカル・ケア・ドイチュラント・ゲーエムベーハー Method and assembly for calibrating a device for detecting blood or blood components in a liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509361A (en) * 2017-02-16 2020-03-26 フレセニウス・メディカル・ケア・ドイチュラント・ゲーエムベーハー Method and assembly for calibrating a device for detecting blood or blood components in a liquid
JP7203739B2 (en) 2017-02-16 2023-01-13 フレセニウス・メディカル・ケア・ドイチュラント・ゲーエムベーハー Method and assembly for calibrating devices for detecting blood or blood components in liquids

Similar Documents

Publication Publication Date Title
US4622974A (en) Apparatus and method for in-vivo measurements of chemical concentrations
JP5420246B2 (en) Test element and test system for testing body fluids
EP1969997A1 (en) Sensor system
ES2558862T3 (en) Multiple wavelength reading head for use in the determination of analytes in body fluids
US4050450A (en) Reflection standard for fiber optic probe
JP5247714B2 (en) System and method for almost continuously measuring the concentration of metabolites in the mammalian body
US20060228259A1 (en) Joint-diagnostic spectroscopic and biosensor meter
ES2285200T3 (en) PROCEDURE AND DEVICE FOR MAKING BLOOD MEASUREMENTS.
JPS6329620A (en) Sensor for measuring concentration of gaseous component in fluid by absorption
JP6246793B2 (en) Fluid concentration measuring device
CA2346074A1 (en) Apparatus and method to determine blood parameters
US20160216284A1 (en) Cartridges, analyzers, and systems for analyzing samples
WO2006104451A1 (en) Device for determining of properties in a fluid and/or constituents thereof
JP2007083028A (en) Noninvasive inspecting apparatus
US10398365B2 (en) Fluorescence sensor
CN108139324B (en) Optical measuring instrument
KR20150038515A (en) Apparatus and method to determine the blood sedimentation rate and other parameters connected thereto
JP2012071036A (en) Structure and method for calibration for calibrating blood component measuring device
JP2014098645A (en) Biological fluid component analyzer and biological fluid component analysis method
JP5988983B2 (en) Calibration apparatus and calibration method
RU2727237C2 (en) Catheter for measuring blood flow in body tissue
CN105531579A (en) Method for determining the concentration of a substance in a deformable container
JP2012210324A (en) Calibration system and calibration method
RU126137U1 (en) CELL OF AN OPTICAL BULK CEVET OF A PHOTOMETRIC ANALYZER
US12111314B2 (en) Test device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203