JP2012066198A - Water softener, and washing machine with the same - Google Patents

Water softener, and washing machine with the same Download PDF

Info

Publication number
JP2012066198A
JP2012066198A JP2010213505A JP2010213505A JP2012066198A JP 2012066198 A JP2012066198 A JP 2012066198A JP 2010213505 A JP2010213505 A JP 2010213505A JP 2010213505 A JP2010213505 A JP 2010213505A JP 2012066198 A JP2012066198 A JP 2012066198A
Authority
JP
Japan
Prior art keywords
water
washing
adsorption tank
voltage
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010213505A
Other languages
Japanese (ja)
Inventor
Katsura Nanbu
桂 南部
Kinzan Nani
金山 何
Hiroyuki Kayama
博之 香山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010213505A priority Critical patent/JP2012066198A/en
Publication of JP2012066198A publication Critical patent/JP2012066198A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To soften water by improving adsorption efficiency to reduce the hardness degree of raw water, and minimizing pressure loss.SOLUTION: The water softener includes: at least a pair of capacitor electrodes 5a, 5b having adsorption action by static electricity; an adsorption tank 4 having a flow path 4c in which the capacitor electrodes 5a, 5b are arranged; a water supply device 1 for supplying a raw water to be softened into the adsorption tank 4; a voltage application device 6 for applying a DC voltage to the capacitor electrodes 5a, 5b; a water softening material injection device 2 for injecting a particulate water softening material that develops a negative charge on the surface thereof; and a control device 8 for controlling the water supply device 1 and the voltage application device 6. The control device 8 is configured, after the water softening material is injected with raw water into the adsorption tank 4 while the voltage application device 6 applies a DC voltage, to inject raw water into the adsorption tank 4 for water softening.

Description

本発明は、原水に含有される硬度成分を除去し軟水化する軟水化装置および同装置を備えた洗濯機に関するものである。   The present invention relates to a water softening device that removes hardness components contained in raw water and softens the water, and a washing machine equipped with the same.

洗濯に利用される洗濯用水は、水道水、地下水、井戸水などが一般的であり、洗濯機を使用する場所の水質の影響を大きく受ける。特に、カルシウム、マグネシウムなどの硬水成分は、界面活性剤の洗浄力を低下させる性質があり、洗浄性能に対して負の影響を与える。また、硬水の場合、洗剤が溶解し難く、洗濯機の各部が洗剤カスで汚れやすく、カビの発生などの原因となる。   Washing water used for washing is generally tap water, groundwater, well water, etc., and is greatly affected by the water quality of the place where the washing machine is used. In particular, hard water components such as calcium and magnesium have the property of reducing the detergency of the surfactant and negatively affect the cleaning performance. Further, in the case of hard water, the detergent is difficult to dissolve, and each part of the washing machine is easily soiled with detergent residue, which causes mold and the like.

このような課題に対処するため、市販洗剤には硬水成分を吸着するゼオライトなどの軟水化剤が配合される。ゼオライトは通常数μmの一次粒径を持つ鉱物であり、カルシウムイオンやマグネシウムイオンを取り囲むように吸着するサイトを有する(例えば、特許文献1参照)。   In order to cope with such a problem, a water softening agent such as zeolite that adsorbs a hard water component is blended in a commercial detergent. Zeolite is usually a mineral having a primary particle size of several μm, and has sites that adsorb so as to surround calcium ions and magnesium ions (see, for example, Patent Document 1).

ゼオライトの軟水化容量は陽イオン交換容量として評価され、合成ゼオライトの場合、400〜600meq/100gとされる。一例として、20Lの水に対して140gの洗剤(ゼオライト含有率25%、交換容量500meq/100g)を投入する場合、洗剤中のゼオライトは175meqの軟水化容量を持つ。全ての軟水化容量が使われたとすると、硬度430ppmの水を硬度0ppmに軟水化することができる容量である。   The water softening capacity of zeolite is evaluated as a cation exchange capacity, and in the case of synthetic zeolite, it is 400 to 600 meq / 100 g. As an example, when 140 g of detergent (zeolite content 25%, exchange capacity 500 meq / 100 g) is added to 20 L of water, the zeolite in the detergent has a water softening capacity of 175 meq. If all the water softening capacities are used, the water can be softened from water having a hardness of 430 ppm to a hardness of 0 ppm.

しかしながら、バッチ式で洗剤を硬水に溶かすと、硬水成分のゼオライトへの吸着は、吸着/溶解の間で1段階の平衡状態となり、元の硬水成分の約3〜4割が吸着するに過ぎない。これはゼオライトの吸着容量の6割以上が発現されずにとどまることを示す。   However, when the detergent is dissolved in hard water in a batch manner, the adsorption of the hard water component to the zeolite becomes a one-stage equilibrium state between the adsorption / dissolution and only about 30 to 40% of the original hard water component is adsorbed. . This indicates that 60% or more of the adsorption capacity of zeolite remains unexpressed.

一般に吸着容量を最大限発揮しようとすると、吸着材をカラムに充填してその中に吸着質を透過させる方式(カラム式)が用いられる。カラム式吸着では、カラム内で擬似的に多段の吸着平衡がおこなわれて、流入した吸着質は常に飽和度のより小さな吸着剤と接触することができる。吸着平衡が1段でおこなわれるバッチ式吸着に比べて、カラム出口から流出する液の吸着質濃度はより低くなる。ゼオライトをカラム式で用いると硬度をより低減させることが可能である。また、ゼオライト吸着剤は、流路の上流から飽和されていきバッチ式より多くの吸着容量が発現される。   In general, in order to maximize the adsorption capacity, a method (column type) is used in which an adsorbent is packed into a column and the adsorbate permeates through the column. In column type adsorption, pseudo-stage adsorption equilibrium is performed in the column, and the adsorbate that has flowed in can always come into contact with an adsorbent having a lower saturation level. Compared to batch-type adsorption in which adsorption equilibrium is performed in one stage, the concentration of adsorbate in the liquid flowing out from the column outlet is lower. When zeolite is used in a column type, the hardness can be further reduced. Further, the zeolite adsorbent is saturated from the upstream of the flow path, and more adsorption capacity is expressed than the batch type.

なお、軟水化濾材として、ゼオライト等のイオン交換体が収納された軟水化処理タンク内に、原水を連続的に流入させて軟水化する軟水化装置が知られている(例えば、特許文献2参照)。また、粉末合成洗剤に含まれたゼオライトで、軟水化度を高めて洗濯物に浸透させるようにした洗濯機が考えられている(例えば、特許文献3参照)。   As a water softening filter medium, a water softening device is known that softens water by continuously flowing raw water into a water softening treatment tank containing an ion exchanger such as zeolite (see, for example, Patent Document 2). ). In addition, a washing machine has been considered in which a zeolite contained in a powdered synthetic detergent has a softening degree and is allowed to penetrate into laundry (for example, see Patent Document 3).

特開2005−46187号公報JP 2005-46187 A 特開平8−164386号公報JP-A-8-164386 特開2002−355489号公報Japanese Patent Laid-Open No. 2002-355489

しかしながら、前記従来の構成では、粒径数μmのゼオライト粒子をカラムに充填すると、図6に示すように流路の大部分を塞ぐことになり、圧損が増大して通水のために数10気圧の加圧が必要になり、実用化が難しいという課題があった。   However, in the conventional configuration, when zeolite particles having a particle size of several μm are packed in a column, most of the flow path is blocked as shown in FIG. There was a problem that it was difficult to put it to practical use because it required pressurization of atmospheric pressure.

本発明は、前記従来の課題を解決するもので、圧損を最小限とし、ゼオライト粒子により吸着効率を向上させて、原水の硬度を低減することができる軟水化装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a water softening device capable of reducing the hardness of raw water by minimizing pressure loss and improving adsorption efficiency by zeolite particles. .

前記従来の課題を解決するために、本発明の軟水化装置は、静電気による吸着作用を有する少なくとも一対のキャパシタ電極と、前記キャパシタ電極を流路内に配設した吸着槽と、前記吸着槽内に軟水化処理する原水を供給する給水手段と、前記キャパシタ電極に直流電圧を印加する電圧印加手段と、表面に負電荷を発現する微粒子状の軟水化材を投入する軟水化材投入手段と、前記給水手段および前記電圧印加手段を制御する制御手段とを備え、前記制御手段は、前記電圧印加手段により直流電圧を印加した状態で前記軟水化材を原水とともに前記吸着槽内に導入した後、原水を前記吸着槽内に導入して軟水化するようにしたものである。   In order to solve the above-described conventional problems, a water softening device according to the present invention includes at least a pair of capacitor electrodes having an adsorption action due to static electricity, an adsorption tank in which the capacitor electrodes are disposed in a flow path, and an inside of the adsorption tank. Water supply means for supplying raw water for water softening treatment, voltage application means for applying a DC voltage to the capacitor electrode, water softener introduction means for introducing a particulate water softener that expresses a negative charge on the surface, Control means for controlling the water supply means and the voltage application means, the control means, after introducing the water-softening material into the adsorption tank together with raw water in a state where a DC voltage is applied by the voltage application means, Raw water is introduced into the adsorption tank and softened.

これによって、圧損の上昇を最小限に防ぎながら、ゼオライト粒子を流路に沿って擬似的にカラム状に充填し、吸着効率を向上させて原水の硬度を低減することができる。   Thereby, while preventing an increase in pressure loss to a minimum, zeolite particles can be pseudo-packed along the flow path to improve adsorption efficiency and reduce the hardness of raw water.

本発明の軟水化装置は、圧損の上昇を最小限に防ぎながら、ゼオライト粒子を流路に沿って擬似的にカラム状に充填し、吸着効率を向上させて原水の硬度を低減することができる。   The water softening device of the present invention can reduce the hardness of raw water by improving the adsorption efficiency by filling the zeolite particles in a pseudo column shape along the flow path while minimizing the increase in pressure loss. .

本発明の実施の形態1における軟水化装置の構成図The block diagram of the water softening apparatus in Embodiment 1 of this invention 同軟水化装置の図1のA−A断面図AA sectional view of FIG. 1 of the water softening device. (a)〜(d)同軟水化装置の動作説明図(A)-(d) Operation explanatory drawing of the water softening device 本発明の実施の形態2における軟水化装置を備えた洗濯機の構成図The block diagram of the washing machine provided with the water softening apparatus in Embodiment 2 of this invention 同洗濯機の動作を示すタイムチャートTime chart showing the operation of the washing machine 従来の軟水化装置の断面図Sectional view of a conventional water softener

第1の発明は、静電気による吸着作用を有する少なくとも一対のキャパシタ電極と、前記キャパシタ電極を流路内に配設した吸着槽と、前記吸着槽内に軟水化処理する原水を供給する給水手段と、前記キャパシタ電極に直流電圧を印加する電圧印加手段と、表面に負電荷を発現する微粒子状の軟水化材を投入する軟水化材投入手段と、前記給水手段および前記電圧印加手段を制御する制御手段とを備え、前記制御手段は、前記電圧印加手段により直流電圧を印加した状態で前記軟水化材を原水とともに前記吸着槽内に導入した後、原水を前記吸着槽内に導入して軟水化するようにしたことにより、圧損の上昇を最小限に防ぎながら、ゼオライト粒子を流路に沿って擬似的にカラム状に充填し、吸着効率を向上させて原水の硬度を低減することができる。ゼオライトなどの軟水化材は、永久荷電によって水中で複数の負電荷を発現する。キャパシタ電極に直流電圧を印加した状態で軟水化材を吸着経路に導入すると、陽極表面に軟水化材が静電気力により保持され、陽極の表面は軟水化材で覆われる。このようにして流路を塞ぐことなく陽極表面に配列された状態を保つことができる。硬水成分である多価陽イオンは、ゼオライト表面の負電荷および陰極表面の負電荷に、静電気的に引き寄せられて水中から除去され、軟水化がおこなわれる。   According to a first aspect of the present invention, there is provided at least a pair of capacitor electrodes having an adsorption action due to static electricity, an adsorption tank in which the capacitor electrodes are disposed in a flow path, and water supply means for supplying raw water to be softened in the adsorption tank. A voltage applying means for applying a DC voltage to the capacitor electrode; a water softening material charging means for charging a particulate water softening material that expresses a negative charge on the surface; and a control for controlling the water supply means and the voltage applying means And the control means introduces the water-softening material into the adsorption tank together with the raw water in a state where a DC voltage is applied by the voltage application means, and then introduces the raw water into the adsorption tank to soften the water. By doing so, the zeolite particles are pseudo-packed along the flow path while minimizing the increase in pressure loss, improving the adsorption efficiency and reducing the hardness of the raw water It can be. Water softening materials such as zeolite develop multiple negative charges in water due to permanent charge. When the water softening material is introduced into the adsorption path with a DC voltage applied to the capacitor electrode, the water softening material is held on the anode surface by electrostatic force, and the surface of the anode is covered with the water softening material. In this way, the state of being arranged on the anode surface can be maintained without blocking the flow path. The polyvalent cation, which is a hard water component, is electrostatically attracted to the negative charge on the zeolite surface and the negative charge on the cathode surface to be removed from the water and softened.

第2の発明は、洗濯物を収容し水受け槽内に回転可能に設けられた洗濯槽と、前記洗濯槽を回転駆動する駆動手段と、前記水受け槽に洗濯水を給水する給水手段と、前記水受け槽内の洗濯水を排水する排水手段と、洗い、すすぎ、脱水の各工程を逐次制御する制御手段と、第1の発明の軟水化装置とを備えた洗濯機である。通常粉末洗剤の中には、重量の1〜3割のゼオライトが含まれる。洗い工程で用いる洗濯水のうち比較的少量で粉末洗剤を溶かして吸着経路にゼオライトを保持させると、比較的飽和度の低いゼオライトを擬似的なカラム状態に調製することができる。残りの洗濯水(硬水)が吸着経路に導入されると、常に比較的飽和度の低いゼオライトと接触を繰り返すことになり硬水成分の吸着除去(軟水化)が効率よくおこなわれる。結果的に、粉末洗剤に含まれる量のゼオライトで、十分な軟水化が可能となる。   A second aspect of the present invention is a washing tub that accommodates laundry and is rotatably provided in a water receiving tub, a driving means that rotationally drives the washing tub, and a water supply means that supplies washing water to the water receiving tub. A washing machine comprising: a draining means for draining the washing water in the water receiving tub; a control means for sequentially controlling each step of washing, rinsing and dewatering; and the water softening device of the first invention. Usually, the powder detergent contains 10 to 30% of zeolite by weight. When the powder detergent is dissolved in a relatively small amount of the washing water used in the washing step and the zeolite is held in the adsorption route, the zeolite having a relatively low saturation can be prepared in a pseudo column state. When the remaining washing water (hard water) is introduced into the adsorption path, the contact with the zeolite having a relatively low degree of saturation is always repeated, so that the adsorption removal (softening) of the hard water component is performed efficiently. As a result, sufficient softening can be achieved with the amount of zeolite contained in the powder detergent.

第3の発明は、特に、第2の発明の制御手段は、洗い工程の終了後に洗濯水を排水するときに、電圧印加手段の電圧印加を停止して吸着槽内の水を排水するようにしたことにより、ゼオライトは吸着経路の内表面から脱着して排水とともに捨てることができる。   In the third invention, in particular, when the washing means drains the washing water after the end of the washing process, the control means of the second invention stops the voltage application of the voltage application means and drains the water in the adsorption tank. As a result, the zeolite can be desorbed from the inner surface of the adsorption path and discarded together with the waste water.

第4の発明は、特に、第2の発明の制御手段は、洗い工程の終了後に洗濯水を排水するときに、電圧印加手段の電圧印加を所定時間逆転して吸着槽内の水を排水するようにしたことにより、比較的短時間の間、電圧を逆転することによって、ゼオライトは吸着経路の内表面から確実に脱着して排水とともに捨てることができる。   In the fourth invention, in particular, the control means of the second invention drains the water in the adsorption tank by reversing the voltage application of the voltage application means for a predetermined time when the washing water is drained after the washing process is completed. By doing so, by reversing the voltage for a relatively short time, the zeolite can be reliably desorbed from the inner surface of the adsorption path and discarded together with the waste water.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における軟水化装置の構成図、図2は、図1のA−A断面図である。図1および図2において、給水弁等で構成された給水手段1によって供給される原水(硬水)は、ゼオライト等の微粒子状の軟水化材を貯える軟水化材投入手段2に導入され、給水路3を通して吸着槽4に供給される。吸着槽4は円筒状に形成され、吸着槽4の底部4a近傍の側面で給水路3と連通し、軟水化材を懸濁した状態で給水路3の給水口3aから吸着槽4に供給される。吸着槽4の底部4aは、内方へ円錐状に上方へ盛り上がるように膨出部4bを形成している。
(Embodiment 1)
FIG. 1 is a configuration diagram of a water softening device according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG. In FIG. 1 and FIG. 2, raw water (hard water) supplied by a water supply means 1 composed of a water supply valve or the like is introduced into a water softening material input means 2 for storing fine water softening material such as zeolite. 3 is supplied to the adsorption tank 4. The adsorption tank 4 is formed in a cylindrical shape, communicates with the water supply path 3 on the side surface near the bottom 4a of the adsorption tank 4, and is supplied to the adsorption tank 4 from the water supply port 3a of the water supply path 3 in a state where the water softening material is suspended. The The bottom portion 4a of the adsorption tank 4 forms a bulging portion 4b so as to rise upward in a conical shape inward.

吸着槽4の側面から導入された軟水化材の懸濁水は、円筒状に形成された吸着槽4の内周面に沿って矢印イ方向に導入される。吸着槽4の内部には、内周面に沿って円弧状に形成した一対のキャパシタ電極5a、5bを対向させて配設している。キャパシタ電極5a、5bは、例えば、グラファイト、活性炭クロス、多孔質炭素材料、カーボンナノチューブ複合材料等の静電容量をもつ材料で作られ、白金線等を介して電圧印加手段6と接続されている。   Suspended water of the water softening material introduced from the side surface of the adsorption tank 4 is introduced in the direction of arrow A along the inner peripheral surface of the adsorption tank 4 formed in a cylindrical shape. Inside the adsorption tank 4, a pair of capacitor electrodes 5a and 5b formed in an arc shape along the inner peripheral surface are arranged to face each other. The capacitor electrodes 5a and 5b are made of a material having an electrostatic capacity such as graphite, activated carbon cloth, porous carbon material, carbon nanotube composite material, and are connected to the voltage applying means 6 through a platinum wire or the like. .

吸着槽4の流路4cを通過した水は、軟水化されて排水口7aから排水路7を通して吸着槽4の外へ排水される。排水口7aは、給水口3aから離れた位置に設けられ、吸着槽4の底部4a近傍に一端が位置し、円筒状に形成された吸着槽4内に延設したキャパシタ電極5a、5bの他端の近傍に位置している。したがって、給水口3aから吸着槽4内に流入した軟水化材の懸濁水は、キャパシタ電極5a、5bに沿って吸着槽4内の流路4cを排水口7aに向かって流れ、排水路7から排水される。   The water that has passed through the flow path 4c of the adsorption tank 4 is softened and drained out of the adsorption tank 4 through the drainage port 7a through the drainage channel 7. The drain port 7a is provided at a position away from the water supply port 3a, one end is positioned near the bottom 4a of the adsorption tank 4, and other than the capacitor electrodes 5a and 5b extending in the cylindrical adsorption tank 4 Located near the edge. Therefore, the water of softening material that has flowed into the adsorption tank 4 from the water supply port 3a flows along the capacitor electrodes 5a and 5b through the flow path 4c in the adsorption tank 4 toward the drain port 7a. Drained.

制御手段8は、給水手段1および電圧印加手段6に接続され、給水手段1による吸着槽4への原水の給水/停止と、電圧印加手段6によりキャパシタ電極5a、5bに直流電圧の印加/停止をおこなう。電圧印加手段6による直流電圧の印加/停止は、スイッチ6aのオン/オフにより制御する。   The control means 8 is connected to the water supply means 1 and the voltage application means 6, and supplies / stops the raw water to the adsorption tank 4 by the water supply means 1, and applies / stops the DC voltage to the capacitor electrodes 5a and 5b by the voltage application means 6. To do. Application / stop of the DC voltage by the voltage application means 6 is controlled by turning on / off the switch 6a.

以上のように構成された軟水化装置について、以下その動作、作用を、図3の動作説明図により説明する。図3(a)は、給水手段1による給水開始時の状態を示している。スイッチ6aをオンし、電圧印加手段6によって1〜2Vの直流電圧をキャパシタ電極5a、5bに印加すると、キャパシタ電極5aは陽極となり、表面は正電荷を帯びる。また、キャパシタ電極5bは陰極となり、表面は負電荷を帯びる。   About the water softening apparatus comprised as mentioned above, the operation | movement and an effect | action are hereafter demonstrated with the operation | movement explanatory drawing of FIG. FIG. 3A shows a state when water supply is started by the water supply means 1. When the switch 6a is turned on and a DC voltage of 1 to 2V is applied to the capacitor electrodes 5a and 5b by the voltage applying means 6, the capacitor electrode 5a becomes an anode and the surface is positively charged. The capacitor electrode 5b becomes a cathode, and the surface is negatively charged.

軟水化材であるゼオライトは表面に負電荷をもち、通常ナトリウムイオンを対イオンとしてもつ。制御手段8は、キャパシタ電極5a、5bに直流電圧を印加した状態で、給水手段1から軟水化する水の1/10〜1/3を給水し、軟水化材投入手段2によって供給されたゼオライトなどの軟水化材は、硬水に懸濁された状態で給水口3aから吸着槽4に導入される。   Zeolite, which is a water softening material, has a negative charge on the surface and usually has sodium ions as counter ions. The control means 8 supplies 1/10 to 1/3 of the water to be softened from the water supply means 1 in a state where a DC voltage is applied to the capacitor electrodes 5a and 5b, and the zeolite supplied by the water softener introduction means 2 The water softening material such as is introduced into the adsorption tank 4 from the water supply port 3a while being suspended in hard water.

ゼオライトの粒子は比重が2.7と水より重いため、遠心力により吸着槽4の内周面に沿って矢印イ方向に渦流を起こしながら排水口7aに向かって上昇する。キャパシタ電極5a、5bは、吸着槽4の内周面に沿って湾曲して配設されているため、ゼオライト粒子はキャパシタ電極5a、5bの近傍を流れる。   Since the zeolite particles have a specific gravity of 2.7 and heavier than water, the zeolite particles rise toward the drain port 7a while causing a vortex in the direction of arrow A along the inner peripheral surface of the adsorption tank 4 by centrifugal force. Since the capacitor electrodes 5a and 5b are arranged along the inner peripheral surface of the adsorption tank 4, the zeolite particles flow in the vicinity of the capacitor electrodes 5a and 5b.

ゼオライト粒子がキャパシタ電極5aに十分近づくと、静電気によって陽極となっているキャパシタ電極5aに吸着され、キャパシタ電極5aの表面を覆った状態で保持される図3(b)。吸着されたゼオライト粒子は、電圧を印加し続けている限り電極表面をあまり移動せずに配列状態を保つので、擬似的にカラムと同等の多段式の吸着槽4となる。   When the zeolite particles sufficiently approach the capacitor electrode 5a, they are adsorbed by the capacitor electrode 5a serving as the anode due to static electricity and are held in a state of covering the surface of the capacitor electrode 5a (FIG. 3B). Since the adsorbed zeolite particles are kept in an aligned state without moving much on the electrode surface as long as voltage is continuously applied, a pseudo multistage adsorption tank 4 equivalent to a column is obtained.

また、ゼオライト粒子は、キャパシタ電極5aの表面に保持されるので、流路4cの大部分を塞ぐことはない。なお、吸着槽4の底部4aは、円錐状に上方へ盛り上がるように膨出部4bを形成しているので、底部4aに沈んだ一部のゼオライト粒子も、再び渦流に乗ってキャパシタ電極5aの表面に保持される。   Further, since the zeolite particles are held on the surface of the capacitor electrode 5a, most of the flow path 4c is not blocked. In addition, since the bottom part 4a of the adsorption tank 4 forms a bulging part 4b so as to rise upward in a conical shape, some zeolite particles that have sunk in the bottom part 4a also ride on the vortex and again form the capacitor electrode 5a. Retained on the surface.

硬水(原水)が吸着槽4に追加導入されると、図3(c)のように、ゼオライトの対イオンであるナトリウムイオン(Na)は、硬水成分であるカルシウムイオンなど(Ca2+)によって置換され、硬水成分がゼオライト表面に吸着保持される。また、陰極であるキャパシタ電極5b表面にも、静電気力によって硬水成分の陽イオンが吸着保持される。図中のナトリウムイオンやカルシウムイオンは、模式的に円形の図で示しているが、実際には1〜2nm以下の大きさであり、流路を塞ぐことはない。 When hard water (raw water) is additionally introduced into the adsorption tank 4, as shown in FIG. 3 (c), sodium ions (Na + ), which are counter ions of zeolite, are caused by calcium ions (Ca 2+ ), which are hard water components. As a result, the hard water component is adsorbed and held on the zeolite surface. Also, the cation of the hard water component is adsorbed and held by the electrostatic force on the surface of the capacitor electrode 5b as the cathode. Although sodium ions and calcium ions in the figure are schematically shown in a circular diagram, they are actually 1 to 2 nm or less in size and do not block the flow path.

陰極となるキャパシタ電極5bの表面で、硬水成分の陽イオンを吸着して軟水化することが可能であるが、本発明の軟水化装置は、キャパシタ電極5a、5bの陽極と陰極の両方で硬水成分を吸着することができるので、限られた装置スペースで大きい吸着容量を実現することができる。   The surface of the capacitor electrode 5b serving as the cathode can adsorb cations of hard water components to soften the water. However, the water softening device of the present invention is capable of hard water at both the anode and the cathode of the capacitor electrodes 5a and 5b. Since the components can be adsorbed, a large adsorption capacity can be realized in a limited apparatus space.

吸着槽4内の水を排水する際はスイッチ6aをオフし、キャパシタ電極5a、5bへの電圧の印加を停止することにより、吸着していたゼオライトおよび硬水成分は図3(d)のように脱着し、排水口7aから排水路7へ排水される。このように、キャパシタ電極5a、5bの表面が再生されることにより、繰り返し軟水化作用を発揮することが可能である。   When draining the water in the adsorption tank 4, the switch 6a is turned off and the application of voltage to the capacitor electrodes 5a and 5b is stopped, so that the adsorbed zeolite and hard water components are as shown in FIG. It is desorbed and drained from the drain port 7a to the drain channel 7. Thus, by regenerating the surfaces of the capacitor electrodes 5a and 5b, it is possible to repeatedly exert a water softening action.

以上のように、静電気による吸着作用を有する少なくとも一対のキャパシタ電極5a、5bと、前記キャパシタ電極5a、5bを流路4c内に配設した吸着槽4と、前記吸着槽4内に軟水化処理する原水を供給する給水手段1と、前記キャパシタ電極5a、5bに直流電圧を印加する電圧印加手段6と、表面に負電荷を発現する微粒子状の軟水化材を投入
する軟水化材投入手段2と、前記給水手段1および前記電圧印加手段6を制御する制御手段8とを備え、前記制御手段8は、前記電圧印加手段6により直流電圧を印加した状態で前記軟水化材を原水とともに前記吸着槽4内に導入した後、原水を前記吸着槽4内に導入して軟水化することにより、流路4cを塞ぐことなく陽極表面に軟水化材を配列された状態を保つことができ、カラムのように高い軟水化性能を発揮することが可能となる。
As described above, at least a pair of capacitor electrodes 5a and 5b having an adsorption action due to static electricity, the adsorption tank 4 in which the capacitor electrodes 5a and 5b are disposed in the flow path 4c, and the water softening treatment in the adsorption tank 4 Water supply means 1 for supplying raw water to be applied, voltage application means 6 for applying a DC voltage to the capacitor electrodes 5a and 5b, and a water softener introduction means 2 for introducing a particulate water softener that expresses a negative charge on the surface. And control means 8 for controlling the water supply means 1 and the voltage application means 6, the control means 8 adsorbing the water softening material together with raw water in a state where a DC voltage is applied by the voltage application means 6. After being introduced into the tank 4, the raw water is introduced into the adsorption tank 4 and softened to keep the softened material on the anode surface without blocking the flow path 4 c, and the column of It is possible to exert a sea urchin high water softening performance.

(実施の形態2)
図4は、本発明の第2の実施の形態における軟水化装置を備えた洗濯機の構成図、図5は、同洗濯機の動作を示すタイムチャートである。図4および図5において、円筒状に形成された洗濯槽11は、洗濯する衣類等の洗濯物を収容し、水受け槽12内に回転可能に設けられている。洗濯槽11はモータなどの駆動手段13によって回転駆動される。洗濯槽11の周側面11aには多数の小孔(図示せず)が設けてあり、水受け槽12に給水された水が小孔を通して洗濯槽11内に流入する。
(Embodiment 2)
FIG. 4 is a configuration diagram of a washing machine provided with the water softening device according to the second embodiment of the present invention, and FIG. 5 is a time chart showing the operation of the washing machine. 4 and 5, a washing tub 11 formed in a cylindrical shape accommodates laundry such as clothes to be washed, and is rotatably provided in the water receiving tub 12. The washing tub 11 is rotationally driven by driving means 13 such as a motor. A large number of small holes (not shown) are provided in the peripheral side surface 11a of the washing tub 11, and water supplied to the water receiving tub 12 flows into the washing tub 11 through the small holes.

洗濯槽11の周側面11aの内側には、内方へ突出するバッフル11bが複数設けてあり、洗濯槽11を所定の回転速度で回転させることにより、洗濯槽11内の洗濯物を回転方向に上方へ持ち上げて落下させる、たたき洗いの動作によって洗濯がおこなわれる。   A plurality of inwardly projecting baffles 11b are provided on the inner side of the peripheral side surface 11a of the washing tub 11, and the laundry in the washing tub 11 is rotated in the rotation direction by rotating the washing tub 11 at a predetermined rotation speed. Laundry is performed by the action of tapping, which is lifted upward and dropped.

水受け槽12内に洗濯水を給水する給水弁等で構成された給水手段14は、水道と水受け槽12を接続した給水路15に設けている。給水手段14と水受け槽12の間の給水路15には、軟水化材投入手段としての洗剤供給手段16が設けてあり、給水手段14により供給される水道水(原水)とともに粉末洗剤が水受け槽12内に投入される。   A water supply means 14 constituted by a water supply valve or the like for supplying washing water into the water receiving tank 12 is provided in a water supply path 15 connecting the water supply and the water receiving tank 12. The water supply path 15 between the water supply means 14 and the water receiving tank 12 is provided with a detergent supply means 16 as a water softening material input means, and the powder detergent is water together with tap water (raw water) supplied by the water supply means 14. It is put into the receiving tank 12.

一端を水受け槽12の底部に連通し、他端を水受け槽12の上部に連通させた循環経路17に加圧手段としてのポンプ18を設け、このポンプ18により、水受け槽12内の洗濯水を循環経路17を通して水受け槽12の上部に供給し、循環させることができる。   A pump 18 as a pressurizing means is provided in a circulation path 17 having one end communicating with the bottom of the water receiving tank 12 and the other end communicating with the upper part of the water receiving tank 12. Washing water can be supplied to the upper part of the water receiving tank 12 through the circulation path 17 and circulated.

循環経路17には、給水手段14により供給される水道水(原水)を軟水化する軟水化装置19が設けてあり、循環経路17を通る洗濯水は、この軟水化装置19を通過して軟水化され、水受け槽12内に導入される。軟水化装置19の構成、および動作、作用は、実施の形態1のものと同じであり、同一の符号を付して、詳細な説明は実施の形態1のものを援用する。   The circulation path 17 is provided with a water softening device 19 for softening the tap water (raw water) supplied by the water supply means 14, and the wash water passing through the circulation path 17 passes through the water softening device 19 to soften the water. And introduced into the water receiving tank 12. The configuration, operation, and action of the water softening device 19 are the same as those in the first embodiment, and the same reference numerals are given, and the detailed description uses those in the first embodiment.

循環経路17に設けた流路切り替え手段としての切替弁20は、軟水化装置19の出口19aの下流側で水受け槽12との間に配設され、循環経路17と排水手段としての排水経路21に切り替える三方弁により構成し、洗濯水の循環と排水を切り替える。   A switching valve 20 as a flow path switching means provided in the circulation path 17 is disposed between the water receiving tank 12 on the downstream side of the outlet 19a of the water softening device 19, and the drainage path as the circulation path 17 and the drainage means. It consists of a three-way valve that switches to 21 and switches between washing water circulation and drainage.

制御手段22は、駆動手段13、給水手段14、ポンプ18、軟水化装置19、切替弁20等を制御し、洗い、すすぎ、脱水の各工程を逐次制御する。   The control means 22 controls the drive means 13, the water supply means 14, the pump 18, the water softening device 19, the switching valve 20, and the like, and sequentially controls each step of washing, rinsing and dehydration.

以上のように構成された洗濯機について、洗い工程の動作、作用を図5のタイムチャートにより説明する。洗濯する衣類等の洗濯物を洗濯槽11に投入し、運転を開始すると、投入された洗濯物の量を布量検知手段(図示せず)により検知し、布量に応じて最適な水量および運転時間等が設定される。   With respect to the washing machine configured as described above, the operation and action of the washing process will be described with reference to the time chart of FIG. When a laundry such as clothes to be washed is put into the washing tub 11 and the operation is started, the amount of the thrown laundry is detected by a cloth amount detecting means (not shown), and an optimum water amount and Operation time etc. are set.

まず、給水手段14は、洗濯に使用する水の1/4〜1/3を給水し、ゼオライトなどの軟水化材を含む粉末洗剤が入れられている軟水化材投入手段としての洗剤供給手段16を通して、水道水(原水)とともに粉末洗剤を水受け槽12に導入する。水受け槽12に給水された水は小孔を通して洗濯槽11内に流入する(ステップ1)。   First, the water supply means 14 supplies 1/4 to 1/3 of the water used for washing, and a detergent supply means 16 as a water softening material input means in which a powder detergent containing a water softening material such as zeolite is placed. Then, the powder detergent is introduced into the water receiving tank 12 together with the tap water (raw water). The water supplied to the water receiving tub 12 flows into the washing tub 11 through the small holes (step 1).

次に、駆動手段13によって洗濯槽11を所定時間回転駆動し、粉末洗剤を溶解する(ステップ2)。次に、洗濯槽11の回転動作を停止し、所定時間(例えは、約1分間)静置することにより、粉末洗剤に含まれているゼオライト等の軟水化材を沈降させる(ステップ3)。   Next, the washing tub 11 is rotationally driven by the driving means 13 for a predetermined time to dissolve the powder detergent (step 2). Next, the rotation operation of the washing tub 11 is stopped, and the water softening material such as zeolite contained in the powder detergent is allowed to settle by allowing it to stand for a predetermined time (for example, about 1 minute) (step 3).

次に、電圧印加手段6によりキャパシタ電極5a、5bに1〜2Vの直流電圧を印加した状態で、加圧手段としてのポンプ18を作動させ、水受け槽12内の軟水化材であるゼオライトを軟水化装置19の吸着槽4に導入する(ステップ4)。給水手段14によって残りの洗濯水を供給する(ステップ5)。このとき、切替弁20は、循環経路17側に切り替えられている。   Next, in a state where a DC voltage of 1 to 2 V is applied to the capacitor electrodes 5a and 5b by the voltage applying means 6, the pump 18 as the pressurizing means is operated, and the zeolite which is the water softening material in the water receiving tank 12 It introduce | transduces into the adsorption tank 4 of the water softening device 19 (step 4). The remaining washing water is supplied by the water supply means 14 (step 5). At this time, the switching valve 20 is switched to the circulation path 17 side.

ポンプ18によって循環経路17を通過した洗濯水は、軟水化装置19で軟水化され、水受け槽12に導入される。軟水化された所定量の洗濯水は、水受け槽12と洗濯槽11に溜められ、駆動手段13によって洗濯槽11を所定の回転速度で回転させて、洗濯槽11内の洗濯物を回転方向に上方へ持ち上げて落下させる、所謂、たたき洗いの動作によって洗濯がおこなわれる(ステップ6)。   The washing water that has passed through the circulation path 17 by the pump 18 is softened by the water softening device 19 and introduced into the water receiving tank 12. A predetermined amount of softened water is stored in the water receiving tub 12 and the washing tub 11, and the washing tub 11 is rotated at a predetermined rotation speed by the driving means 13 so that the laundry in the washing tub 11 is rotated. Washing is performed by a so-called tapping operation, in which it is lifted upward and dropped (step 6).

洗い工程の終了後、スイッチ6aをオフし、キャパシタ電極5a、5bに対する電圧印加を停止した状態で、切替弁20を排水経路21側に切り替えてポンプ18を作動させ、汚れた洗濯水を排水する(ステップ7)。   After the washing process is completed, the switch 6a is turned off, and the voltage application to the capacitor electrodes 5a and 5b is stopped, the switching valve 20 is switched to the drainage path 21 side, the pump 18 is operated, and the dirty washing water is drained. (Step 7).

ステップ4〜6の間の、軟水化装置19の動作、作用は、実施の形態1で説明した図3(a)〜(d)と同様である。洗い工程に続いて、すすぎ工程、脱水工程を実行し、運転を終了する。   The operation and action of the water softening device 19 between steps 4 to 6 are the same as those in FIGS. 3A to 3D described in the first embodiment. Following the washing process, a rinsing process and a dehydrating process are executed, and the operation is terminated.

軟水化材であるゼオライトは、直径数μmの微小な粒子であるが濃い色の衣類の表面に多量に付着して残留すると衣類の色が褪せたようにも見えることがある。本発明の洗濯機は、ゼオライトの多くの部分を衣類とあまり接触せずに排出するため、付着残留の問題を避けることができる。   Zeolite, which is a water softening material, is a fine particle having a diameter of several μm, but if it adheres in large amounts to the surface of dark clothing, it may appear that the color of the clothing has faded. Since the washing machine of the present invention discharges a large part of the zeolite without much contact with the clothes, the problem of residual adhesion can be avoided.

以上のように、本発明の洗濯機は、洗濯物を収容し水受け槽12内に回転可能に設けられた洗濯槽11と、前記洗濯槽11を回転駆動する駆動手段13と、前記水受け槽12に洗濯水を給水する給水手段14と、前記水受け槽12内の洗濯水を排水する排水手段21と、洗い、すすぎ、脱水の各工程を逐次制御する制御手段22と、第1の発明に記載の軟水化装置19を備えたものであり、吸着槽4を含む軟水化装置19は循環経路17に配設され、循環経路17は、吸着経路および流路4cの一部を構成する。また、軟水化材投入手段2は、洗濯用洗剤を供給する洗剤供給手段16によって構成されている。制御手段22は、比較的少量の水で洗濯用洗剤および軟水化材を溶解した洗濯水を、加圧手段18により軟水化装置19に導入した後、追加の洗濯水を軟水化装置19に導入して軟水化するようにしたものであり、粉末洗剤に含まれるゼオライト等の軟水化材の吸着容量を最大限に活用して、洗濯水の軟水化をおこなうことができる。   As described above, the washing machine of the present invention includes a washing tub 11 that accommodates laundry and is rotatably provided in the water receiving tub 12, the driving means 13 that rotationally drives the washing tub 11, and the water receiving A water supply means 14 for supplying washing water to the tank 12, a drain means 21 for draining the washing water in the water receiving tank 12, a control means 22 for sequentially controlling each step of washing, rinsing and dehydration, a first The water softening device 19 described in the invention is provided, and the water softening device 19 including the adsorption tank 4 is disposed in the circulation path 17, and the circulation path 17 constitutes a part of the adsorption path and the flow path 4 c. . Moreover, the water softening material input means 2 is comprised by the detergent supply means 16 which supplies the detergent for washing | cleaning. The control means 22 introduces the washing water in which the laundry detergent and water softener are dissolved with a relatively small amount of water into the water softening device 19 by the pressurizing means 18 and then introduces additional washing water into the water softening device 19. Thus, the washing water can be softened by maximizing the adsorption capacity of the water softening material such as zeolite contained in the powder detergent.

また、制御手段22は、洗い工程の終了した後で洗濯水を排水するときに、電圧印加手段6の電圧印加を停止して吸着槽4内の水を排水するようにしたことによって、ゼオライトおよび硬水成分は吸着槽4の内表面から脱着して排水とともに捨てることができ、繰り返し軟水化効果を発揮することができる。   In addition, when draining the wash water after the washing process is completed, the control means 22 stops the voltage application of the voltage application means 6 and drains the water in the adsorption tank 4, so that the zeolite and The hard water component can be desorbed from the inner surface of the adsorption tank 4 and discarded together with the waste water, and the water softening effect can be exhibited repeatedly.

また、制御手段22は、洗い工程の終了した後で洗濯水を排水するとき、すなわち、実施の形態2のステップ7において、電圧印加手段6の電圧印加を所定時間(例えば、数10秒〜数分間)逆転させることにより、吸着保持されていたゼオライトおよび硬水成分が
電極との電気的反発作用によって、確実に脱着されて繰り返し軟水化効果を発揮することができる。
In addition, when the washing means is drained after the washing process is completed, that is, in step 7 of the second embodiment, the control means 22 applies the voltage application of the voltage application means 6 for a predetermined time (for example, several tens of seconds to several tens of seconds). By reversing the rotation, the zeolite and the hard water component that have been adsorbed and retained can be reliably desorbed by the electric repulsion action with the electrode, and the water softening effect can be exhibited repeatedly.

以上のように、本発明にかかる軟水化装置および同装置を備えた洗濯機は、圧損の上昇を最小限に防ぎながら、ゼオライト粒子を流路に沿って擬似的にカラム状に充填し、吸着効率を向上させて原水の硬度を低減することができるので、軟水化装置および同装置を備えた洗濯機として有用である。   As described above, the water softening device according to the present invention and the washing machine equipped with the device softly adsorb zeolite particles along the flow path while preventing the increase in pressure loss to a minimum, Since efficiency can be improved and the hardness of raw | natural water can be reduced, it is useful as a water softening apparatus and a washing machine provided with the same apparatus.

1 給水弁(給水手段)
2 軟水化材投入手段
4 吸着槽
4c 流路
5a キャパシタ電極
5b キャパシタ電極
6 電圧印加手段
8 制御手段
1 Water supply valve (water supply means)
2 Softening material charging means 4 Adsorption tank 4c Flow path 5a Capacitor electrode 5b Capacitor electrode 6 Voltage applying means 8 Control means

Claims (4)

静電気による吸着作用を有する少なくとも一対のキャパシタ電極と、前記キャパシタ電極を流路内に配設した吸着槽と、前記吸着槽内に軟水化処理する原水を供給する給水手段と、前記キャパシタ電極に直流電圧を印加する電圧印加手段と、表面に負電荷を発現する微粒子状の軟水化材を投入する軟水化材投入手段と、前記給水手段および前記電圧印加手段を制御する制御手段とを備え、前記制御手段は、前記電圧印加手段により直流電圧を印加した状態で前記軟水化材を原水とともに前記吸着槽内に導入した後、原水を前記吸着槽内に導入して軟水化するようにした軟水化装置。 At least a pair of capacitor electrodes having an adsorption action due to static electricity, an adsorption tank in which the capacitor electrodes are arranged in a flow path, water supply means for supplying raw water to be softened in the adsorption tank, and direct current to the capacitor electrode A voltage applying means for applying a voltage; a water softening material charging means for charging a particulate water softening material that expresses a negative charge on the surface; and a control means for controlling the water supply means and the voltage applying means, The control means introduces the water softening material into the adsorption tank together with the raw water in a state where a DC voltage is applied by the voltage application means, and then softens the water by introducing the raw water into the adsorption tank. apparatus. 洗濯物を収容し水受け槽内に回転可能に設けられた洗濯槽と、前記洗濯槽を回転駆動する駆動手段と、前記水受け槽に洗濯水を給水する給水手段と、前記水受け槽内の洗濯水を排水する排水手段と、洗い、すすぎ、脱水の各工程を逐次制御する制御手段と、請求項1に記載の軟水化装置とを備えた洗濯機。 A washing tub that accommodates laundry and is rotatably provided in the water receiving tub, a driving means that rotationally drives the washing tub, a water supply means that supplies washing water to the water receiving tub, and an inside of the water receiving tub A washing machine comprising: draining means for draining the washing water; control means for sequentially controlling each of the steps of washing, rinsing, and dewatering; and the water softening device according to claim 1. 制御手段は、洗い工程の終了後に洗濯水を排水するときに、電圧印加手段の電圧印加を停止して吸着槽内の水を排水するようにした請求項2記載の洗濯機。 The washing machine according to claim 2, wherein when the washing water is drained after completion of the washing step, the control means stops the voltage application of the voltage applying means and drains the water in the adsorption tank. 制御手段は、洗い工程の終了後に洗濯水を排水するときに、電圧印加手段の電圧印加を所定時間逆転して吸着槽内の水を排水するようにした請求項2記載の洗濯機。 The washing machine according to claim 2, wherein when the washing water is drained after completion of the washing process, the control means reverses the voltage application of the voltage applying means for a predetermined time to drain the water in the adsorption tank.
JP2010213505A 2010-09-24 2010-09-24 Water softener, and washing machine with the same Pending JP2012066198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010213505A JP2012066198A (en) 2010-09-24 2010-09-24 Water softener, and washing machine with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010213505A JP2012066198A (en) 2010-09-24 2010-09-24 Water softener, and washing machine with the same

Publications (1)

Publication Number Publication Date
JP2012066198A true JP2012066198A (en) 2012-04-05

Family

ID=46164105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010213505A Pending JP2012066198A (en) 2010-09-24 2010-09-24 Water softener, and washing machine with the same

Country Status (1)

Country Link
JP (1) JP2012066198A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019210843A1 (en) * 2018-05-04 2019-11-07 青岛海尔洗衣机有限公司 Washing machine and washing machine control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019210843A1 (en) * 2018-05-04 2019-11-07 青岛海尔洗衣机有限公司 Washing machine and washing machine control method

Similar Documents

Publication Publication Date Title
KR100925107B1 (en) Water recycling method in washing machine, and washing machine
JP5900827B2 (en) Washing machine and washing method
JP2011030973A (en) Washing machine
US20150027173A1 (en) Washing machine drum baffle and washing machine therewith
JP7142213B2 (en) washing machine
JP2012066198A (en) Water softener, and washing machine with the same
JP4868006B2 (en) Washing machine
JP6349176B2 (en) Washing machine
KR100400746B1 (en) system for purifying water for home use and washing machine using it
KR20140126895A (en) Washing Machine
JPH11221397A (en) Washing machine
KR100525334B1 (en) Cation Removing Device for Washer and Washer Using the Same and Control Mehtod of Washer
JP2011172777A (en) Method for water purification and washing machine equipped with water purification device
JP2011030975A (en) Washing method and washing machine
JP2011244978A (en) Washing machine
JP3042499B2 (en) Washing machine and method of controlling washing machine
KR100296803B1 (en) Washing machine and method for recycling washing water thereof
JP2011244977A (en) Washing machine
JPH11276788A (en) Washing machine
JP3075257B2 (en) Cation removing device for washing machine and washing machine using the same
KR20000060149A (en) Washing machine
JP3075264B2 (en) Washing machine and its ion removing means
JP3042497B2 (en) Washing machine control method
JP2000037591A (en) Washing machine
JP2001046789A (en) Washer