JP2012065850A - Endoscope cooling device - Google Patents

Endoscope cooling device Download PDF

Info

Publication number
JP2012065850A
JP2012065850A JP2010213188A JP2010213188A JP2012065850A JP 2012065850 A JP2012065850 A JP 2012065850A JP 2010213188 A JP2010213188 A JP 2010213188A JP 2010213188 A JP2010213188 A JP 2010213188A JP 2012065850 A JP2012065850 A JP 2012065850A
Authority
JP
Japan
Prior art keywords
endoscope
temperature
cooling
tip member
endoscope tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010213188A
Other languages
Japanese (ja)
Inventor
Hitoshi Ohara
仁 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2010213188A priority Critical patent/JP2012065850A/en
Publication of JP2012065850A publication Critical patent/JP2012065850A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an endoscope cooling device having a cooling mechanism for an endoscope tip end which can monitor the temperature of the tip end for preventing the temperature from exceeding a predetermined temperature without an increase in the size of the endoscope tip end.SOLUTION: The endoscope cooling device includes an endoscope tip end member 8 having at least one or more electric drive mechanisms 19, and a cooling mechanism 14 for cooling the endoscope tip end member 8. The endoscope cooling device is characterized in that an endoscope tip end member temperature monitoring mechanism is provided to prevent the temperature of the endoscope tip end member 8 from exceeding the predetermined temperature by an electric wiring of the electric drive mechanisms 19.

Description

本発明は、内視鏡先端部を冷却する内視鏡冷却装置に関するものである。   The present invention relates to an endoscope cooling device that cools the distal end portion of an endoscope.

内視鏡先端部材内には多数の部品が配置されており、そのいくつかの部品は、駆動させるための電力により発熱する。各部品から発せられた熱は内視鏡先端部材に伝熱し内視鏡先端部材は温度上昇する。これら発熱部材の冷却は、この伝熱状況を利用し、内視鏡先端部材を冷却することで内視鏡先端部材内に導入されている発熱部材を間接的に冷却している。
従来、特許文献1の図7に示されるように、内視鏡先端部材の伝熱状況の把握のために、内視鏡先端の金属部材に温度センサーを埋没させる構成が提案されている。
Many parts are arranged in the endoscope distal end member, and some of the parts generate heat due to electric power for driving. The heat generated from each component is transferred to the endoscope tip member, and the temperature of the endoscope tip member rises. The heat generating members are cooled by indirectly cooling the heat generating members introduced into the endoscope front end member by using the heat transfer state and cooling the endoscope front end member.
Conventionally, as shown in FIG. 7 of Patent Document 1, a configuration in which a temperature sensor is buried in a metal member at the distal end of the endoscope has been proposed in order to grasp the heat transfer state of the endoscope distal end member.

特開2006−14925号公報JP 2006-14925 A

しかしながら、温度センサーを先端に備える従来の方法では、温度センサー導入のための加工や内視鏡先端のスペースを考えると、内視鏡のサイズアップなしには温度測定が難しいという問題が生じている。   However, in the conventional method including a temperature sensor at the tip, there is a problem that it is difficult to measure the temperature without increasing the size of the endoscope, considering the processing for introducing the temperature sensor and the space at the tip of the endoscope. .

本発明は、上記に鑑みてなされたものであって、内視鏡先端部のサイズアップなしに先端の温度が所定温度以上にならないようにモニタリングすることが可能な内視鏡先端の冷却機構を有する内視鏡冷却装置を提供することを目的とする。   The present invention has been made in view of the above, and provides a cooling mechanism for an endoscope tip that can be monitored so that the temperature of the tip does not exceed a predetermined temperature without increasing the size of the tip of the endoscope. It is an object of the present invention to provide an endoscope cooling apparatus having the same.

上述した課題を解決し、目的を達成するために、本発明は、少なくとも1つ以上の電気的駆動機構を有する内視鏡先端部材と、内視鏡先端部材を冷却する冷却機構とを備える内視鏡冷却装置において、
電気的駆動機構の持つ電気配線で構成され、内視鏡先端部材が所定の温度以上にならないようにモニタリングする内視鏡先端部材温度モニタリング機構を備え、
内視鏡先端部材の温度が所定温度以上になった時、照明駆動条件もしくは撮像素子駆動条件を変化させることを特徴とする。
In order to solve the above-described problems and achieve the object, the present invention includes an endoscope tip member having at least one electrical drive mechanism and a cooling mechanism for cooling the endoscope tip member. In the endoscope cooling device,
Consists of electrical wiring with an electrical drive mechanism, equipped with an endoscope tip member temperature monitoring mechanism for monitoring the endoscope tip member so as not to exceed a predetermined temperature,
The illumination driving condition or the imaging element driving condition is changed when the temperature of the endoscope distal end member is equal to or higher than a predetermined temperature.

また、本発明の好ましい態様によれば、内視鏡先端部材温度モニタリング機構は、抵抗値に応じて温度をモニタリングすることが望ましい。   According to a preferred aspect of the present invention, it is desirable that the endoscope tip member temperature monitoring mechanism monitors the temperature according to the resistance value.

また、本発明の好ましい態様によれば、内視鏡先端部材温度モニタリング機構は、内視鏡先端部材内に導入されている少なくとも1つ以上の電気的駆動機構の電気配線を用いることが望ましい。   Further, according to a preferred aspect of the present invention, it is desirable that the endoscope tip member temperature monitoring mechanism uses electrical wiring of at least one electric drive mechanism introduced into the endoscope tip member.

本発明の好ましい別の態様にあっては、電気的駆動機構が、LEDであることが望ましい。   In another preferable aspect of the present invention, it is desirable that the electric drive mechanism is an LED.

本発明の好ましい別の態様にあっては、電気的駆動機構が、撮像素子または撮像素子駆動ドライバまたは照明であることが望ましい。   In another preferable aspect of the present invention, it is desirable that the electric drive mechanism is an image sensor, an image sensor drive driver, or illumination.

本発明の好ましい別の態様にあっては、冷却機構が水冷機構とチューブとから構成されていることが望ましい。   In another preferable aspect of the present invention, it is desirable that the cooling mechanism includes a water cooling mechanism and a tube.

本発明にかかる内視鏡冷却装置は、内視鏡先端のサイズアップ無しに、内視鏡先端部材の温度のモニタリングおよび冷却ができるという効果を奏する。   The endoscope cooling device according to the present invention has an effect that the temperature of the endoscope tip member can be monitored and cooled without increasing the size of the endoscope tip.

内視鏡システムの構成を示す図である。It is a figure which shows the structure of an endoscope system. 内視鏡長手方向の断面図である。It is sectional drawing of an endoscope longitudinal direction. 内視鏡径方向の断面図である。It is sectional drawing of an endoscope radial direction. 内視鏡の冷却機構の構成を示す図である。It is a figure which shows the structure of the cooling mechanism of an endoscope. 電気的駆動機構の構成を示すブロック図である。It is a block diagram which shows the structure of an electric drive mechanism. 温度モニタリング機構の構成を示すブロック図である。It is a block diagram which shows the structure of a temperature monitoring mechanism. 抵抗値と温度の関係を説明する図である。It is a figure explaining the relationship between resistance value and temperature. 温度モニタリング後の内視鏡内の動作を説明するフローチャートである。It is a flowchart explaining operation | movement in the endoscope after temperature monitoring.

以下に、本発明にかかる内視鏡冷却装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of an endoscope cooling apparatus according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施例)
図1は、本発明にかかる内視鏡冷却装置を有する内視鏡システムの構成を示す図である。
図1に示すように、内視鏡システム5は、被検体の体内を観察する観察装置である。内視鏡1は被検体の体内に入り、体内画像の取得や生細胞取得、治療を行なう手段を持つ装置である。光源装置2、ビデオプロセッサ3、モニター4は内視鏡1と電気的、機械的に繋がり、各役割を果たす。光源装置2は内視鏡1の光を駆動させる装置である。ビデオプロセッサ3は内視鏡1から送られる画像の処理や各回路の同期や処理を行なう。モニター4は内視鏡1の画像を出力する。ここで、光源装置2、ビデオプロセッサ3、モニター4をまとめて内視鏡システム5と呼ぶこととする。
(Example)
FIG. 1 is a diagram showing a configuration of an endoscope system having an endoscope cooling device according to the present invention.
As shown in FIG. 1, the endoscope system 5 is an observation apparatus that observes the inside of a subject. The endoscope 1 is a device having means for entering the body of a subject and acquiring in-vivo images, living cells, and treatment. The light source device 2, the video processor 3, and the monitor 4 are electrically and mechanically connected to the endoscope 1 and play various roles. The light source device 2 is a device that drives the light of the endoscope 1. The video processor 3 performs processing of images sent from the endoscope 1 and synchronization and processing of each circuit. The monitor 4 outputs an image of the endoscope 1. Here, the light source device 2, the video processor 3, and the monitor 4 are collectively referred to as an endoscope system 5.

図2、図3、図4を用いて内視鏡先端の構成について説明する。図2は内視鏡長手方向の断面図、図3は内視鏡径方向の断面図、図4は冷却機構の構成を示す図である。
図2において、内視鏡1の先端には画像を取得するための撮像素子6が導入されており、撮像素子電力供給線7によって撮像素子駆動ドライバ16に電力が供給される。撮像素子駆動ドライバ16は撮像素子6の駆動条件を制御する機構である。撮像素子電力供給線7は図1の内視鏡システム5から撮像素子6までを結んでいる。同様にして、照明部18(LED等)が、図1の内視鏡システム5から結ばれる電気配線により、制御される。
The configuration of the endoscope tip will be described with reference to FIGS. 2, 3, and 4. 2 is a cross-sectional view in the longitudinal direction of the endoscope, FIG. 3 is a cross-sectional view in the endoscope radial direction, and FIG. 4 is a view showing the configuration of the cooling mechanism.
In FIG. 2, an image sensor 6 for acquiring an image is introduced at the distal end of the endoscope 1, and power is supplied to the image sensor drive driver 16 through the image sensor power supply line 7. The image sensor drive driver 16 is a mechanism for controlling the drive conditions of the image sensor 6. An image sensor power supply line 7 connects the endoscope system 5 to the image sensor 6 in FIG. Similarly, the illumination part 18 (LED etc.) is controlled by the electrical wiring connected from the endoscope system 5 of FIG.

撮像素子6は内視鏡先端部材8内に導入されている。内視鏡先端部材8には内視鏡1の先端に配置され、送気、送水管や照明用ファイバー、治療機器用の導入口など、多数の部品が配置されている。図3に示す鉗子孔17や照明部18がそのような役割を持つものである。鉗子孔17は治療機器が導入される孔である。また、照明部18は、例えば照明用ファイバーが接続される。   The image sensor 6 is introduced into the endoscope tip member 8. The endoscope distal end member 8 is disposed at the distal end of the endoscope 1 and includes a large number of components such as an air supply, a water supply tube, an illumination fiber, and an introduction port for a treatment device. The forceps hole 17 and the illumination unit 18 shown in FIG. 3 have such a role. The forceps hole 17 is a hole into which a treatment device is introduced. Further, the illumination unit 18 is connected to, for example, an illumination fiber.

内視鏡先端部材8の前面には観察対象を観察するための観察窓9が配置される。内視鏡先端部材8は内視鏡1内の硬性部10に配置される。硬性部10とは、湾曲コマ12よりも内視鏡1の先端側に位置する部分を指し、柔軟性を持たない部分である。湾曲コマ12よりも後方側は、湾曲コマ12により柔軟性を持つようになっており、この部分を軟性部11と呼ぶ。
内視鏡1には様々な種類があり、軟性部11を持たず硬性部10だけで構成されているものや、撮像素子6が内視鏡先端部材8内に実装されず、内視鏡1の後方に配置されるものもある。
An observation window 9 for observing an observation target is disposed on the front surface of the endoscope distal end member 8. The endoscope tip member 8 is disposed on the rigid portion 10 in the endoscope 1. The rigid portion 10 refers to a portion located on the distal end side of the endoscope 1 with respect to the bending piece 12 and is a portion having no flexibility. On the rear side of the curved piece 12, the curved piece 12 has flexibility, and this portion is called a soft portion 11.
There are various types of the endoscope 1, and the endoscope 1 includes only the rigid portion 10 without the flexible portion 11, and the imaging element 6 is not mounted in the endoscope distal end member 8. There is also a thing arranged behind.

内視鏡先端部材8の一端には冷却機構13が装着されている。図4を用いて冷却機構13について説明する。冷却機構13は、水冷機構14、チューブ15から構成される。水冷機構14は内部に流路が作成されており、内部を水などの液体が通ることで熱交換が行われる構成である。この時、水冷機構14内を流れる液体は水でなくても構わない。しかし、冷却の効率を考慮し液冷である必要があるため、空気などの流体は適さない。水冷機構14に水を循環させるためにチューブ15が接続されている。水は図示しないポンプによって移動される。
ポンプは内視鏡1の送気、送水に使用されているポンプを分岐して使用するか、小型のポンプを別途接続して用いる。このポンプは、内視鏡システム5内に導入されるため、サイズの制約はそれほど厳しくはない。
A cooling mechanism 13 is attached to one end of the endoscope distal end member 8. The cooling mechanism 13 will be described with reference to FIG. The cooling mechanism 13 includes a water cooling mechanism 14 and a tube 15. The water cooling mechanism 14 has a flow path formed therein, and heat exchange is performed by a liquid such as water passing through the inside. At this time, the liquid flowing in the water cooling mechanism 14 may not be water. However, fluid such as air is not suitable because it needs to be liquid-cooled in consideration of cooling efficiency. A tube 15 is connected to circulate water through the water cooling mechanism 14. Water is moved by a pump (not shown).
As the pump, a pump used for air supply and water supply of the endoscope 1 is branched and used, or a small pump is connected separately. Since this pump is introduced into the endoscope system 5, the size restriction is not so severe.

ポンプによって水は、内視鏡システム5→チューブ15→水冷機構14→チューブ15→内視鏡システム5、の順で循環される。水冷機構14は内視鏡先端部材8と熱的に結合されていることから、内視鏡先端部材8の持つ熱を移動することになる。水冷機構14と内視鏡先端部材8の結合は、例えば接着剤などで行われる。   Water is circulated in the order of the endoscope system 5 → the tube 15 → the water cooling mechanism 14 → the tube 15 → the endoscope system 5 by the pump. Since the water cooling mechanism 14 is thermally coupled to the endoscope tip member 8, the heat of the endoscope tip member 8 is moved. The water cooling mechanism 14 and the endoscope distal end member 8 are coupled with, for example, an adhesive.

内視鏡先端部材8内には上記したように多数の部品が配置されており、そのいくつかの部品は、駆動させるための電力により発熱する。各部品から発せられた熱は内視鏡先端部材8に伝熱し内視鏡先端部材8は温度上昇する。これら発熱部材の冷却は、この伝熱状況を利用し、間接的に行う。すなわち、内視鏡先端部材8を冷却することで、内視鏡先端部材8内の発熱部材を冷却することが可能となる。   As described above, a number of parts are arranged in the endoscope distal end member 8, and some of the parts generate heat due to electric power for driving. The heat generated from each component is transferred to the endoscope tip member 8 and the temperature of the endoscope tip member 8 rises. Cooling of these heat generating members is indirectly performed using this heat transfer state. That is, by cooling the endoscope distal end member 8, the heat generating member in the endoscope distal end member 8 can be cooled.

次に図2、図5、図6、図7、図8を用いて、実施例の内視鏡先端部材8の温度モニタリングの方法について説明する。
上記したように内視鏡先端部材8内に発熱部材はいくつか存在する。このような電気的に駆動し発熱する部材を電気的駆動機構19と呼ぶことにする。電気的駆動機構19は撮像素子6や撮像素子駆動ドライバ16だけでなく、LED18等でも構わない。
Next, a method for monitoring the temperature of the endoscope distal end member 8 according to the embodiment will be described with reference to FIGS. 2, 5, 6, 7, and 8.
As described above, there are several heat generating members in the endoscope distal end member 8. Such a member that is electrically driven and generates heat will be referred to as an electrical drive mechanism 19. The electrical drive mechanism 19 may be not only the image sensor 6 and the image sensor drive driver 16 but also an LED 18 or the like.

実施例は、内視鏡先端部材温度モニタリング機構27が電気的駆動機構19として、撮像素子駆動ドライバ16を利用した場合で説明する。なお内視鏡先端部材温度モニタリング機構27は、内視鏡先端部材8内に導入されている電気的機構であれば撮像素子6や撮像素子駆動ドライバ16だけでなく、LED18等でなくても構わない。   The embodiment will be described in the case where the endoscope tip member temperature monitoring mechanism 27 uses the image sensor drive driver 16 as the electrical drive mechanism 19. Note that the endoscope tip member temperature monitoring mechanism 27 is not limited to the LED 18 or the like as well as the image pickup device 6 and the image pickup device driver 16 as long as it is an electrical mechanism introduced into the endoscope tip member 8. Absent.

電気的駆動機構19は内視鏡先端部材8内に導入されており、電気的な駆動により発熱する部材を示し、上記した冷却機構13により間接的に冷却される部材になる。この電気的駆動機構19は温度上昇に応じて電気的な抵抗値が変化する。この温度に応じた抵抗値の上昇分は抵抗の材料によって決定される定数になる。ここではこの定数を温度特性αとする。抵抗値の温度特性αと抵抗値とが分かれば、その時の電気的駆動機構19の温度を予測することが可能となる。   The electric drive mechanism 19 is introduced into the endoscope distal end member 8, shows a member that generates heat by electric drive, and becomes a member indirectly cooled by the cooling mechanism 13 described above. The electrical drive mechanism 19 changes its electrical resistance value as the temperature rises. The increase in the resistance value according to the temperature becomes a constant determined by the material of the resistance. Here, this constant is defined as a temperature characteristic α. If the temperature characteristic α of the resistance value and the resistance value are known, the temperature of the electrical drive mechanism 19 at that time can be predicted.

実施例では、電気的駆動機構19として撮像素子駆動ドライバ16を適用した場合の抵抗値の測定について説明する。図5において、撮像素子駆動ドライバ16は撮像素子電力供給線7と電気的に結合されている。撮像素子電力供給線7は内視鏡システム5内から延在され、電力を撮像素子駆動ドライバ16に供給する。電力は電圧発生機29で発生され、電圧調整部20で撮像素子6の駆動状態にあわせて所定の電圧値に調整され、供給される。撮像素子駆動ドライバ16に供給される電流値は、電流測定機構28で測定される。撮像素子駆動ドライバ16を駆動すると、温度上昇により撮像素子駆動ドライバ16内部の電気的な抵抗値が上昇する。そのため、温度上昇による抵抗値上昇分を考慮しないと撮像素子駆動ドライバ16に供給される電力値は低下することになる。   In the embodiment, measurement of the resistance value when the image pickup device driving driver 16 is applied as the electrical driving mechanism 19 will be described. In FIG. 5, the image sensor drive driver 16 is electrically coupled to the image sensor power supply line 7. The image sensor power supply line 7 is extended from the endoscope system 5 and supplies power to the image sensor drive driver 16. The electric power is generated by the voltage generator 29, adjusted to a predetermined voltage value by the voltage adjusting unit 20 according to the driving state of the image sensor 6, and supplied. The current value supplied to the image sensor driving driver 16 is measured by the current measuring mechanism 28. When the image sensor driving driver 16 is driven, the electrical resistance value inside the image sensor driving driver 16 increases due to a temperature rise. For this reason, the power value supplied to the image sensor drive driver 16 decreases unless the resistance value increase due to the temperature increase is taken into consideration.

図6において、電圧調整部20と電流測定機構28とで電力値はモニタリングされ、所定電力で一定になるように電圧値が調整される。所定電圧は電圧メモリ26にあらかじめ格納されている。駆動開始と同時に電圧メモリ26ではV0の値を電圧調整部20に渡し、電圧発生機29で発生させる。   In FIG. 6, the power value is monitored by the voltage adjusting unit 20 and the current measuring mechanism 28, and the voltage value is adjusted to be constant at a predetermined power. The predetermined voltage is stored in the voltage memory 26 in advance. Simultaneously with the start of driving, the voltage memory 26 passes the value of V0 to the voltage adjusting unit 20 and causes the voltage generator 29 to generate it.

また、この際に電圧値と電力値とが既知であるためオームの法則より抵抗値が算出できる。電圧値を電圧調整部20から、電流値を電流測定機構28から抵抗値算出部23に送り抵抗値を算出する。算出された抵抗値は抵抗値メモリ22に送られ蓄積される。上記した抵抗値の温度特性αと抵抗値メモリ22に蓄えられる抵抗値の変化分より温度が算出される。図7は、温度算出を説明する図である。   At this time, since the voltage value and the power value are known, the resistance value can be calculated from Ohm's law. The resistance value is calculated by sending the voltage value from the voltage adjusting unit 20 and the current value from the current measuring mechanism 28 to the resistance value calculating unit 23. The calculated resistance value is sent to and stored in the resistance value memory 22. The temperature is calculated from the temperature characteristic α of the resistance value and the change in the resistance value stored in the resistance value memory 22. FIG. 7 is a diagram for explaining temperature calculation.

温度はTn=T0+(Rn−R0)/αで表され、この時T0は初期温度を表す。この場合T0は被験者の体温と同じである。
上記式で表されるように温度Tnを算出するには抵抗値RnとR0が分かっていれば良いためR1〜R(n−1)は抵抗値メモリ22から削除しても構わない。
The temperature is represented by Tn = T0 + (Rn−R0) / α, where T0 represents the initial temperature. In this case, T0 is the same as the body temperature of the subject.
Since the resistance values Rn and R0 need only be known in order to calculate the temperature Tn as expressed by the above equation, R1 to R (n−1) may be deleted from the resistance value memory 22.

温度算出部23は、上記温度算出を行う場所で、抵抗値メモリ22より抵抗値RnおよびR0の値を受け温度算出する。その後、その算出温度を温度比較部24に送る。温度比較部24ではあらかじめ蓄えられている温度メモリ25の温度値と温度算出部23より送られてくる温度値との比較を行う。   The temperature calculation unit 23 receives the resistance values Rn and R0 from the resistance value memory 22 at the place where the temperature calculation is performed, and calculates the temperature. Thereafter, the calculated temperature is sent to the temperature comparison unit 24. The temperature comparison unit 24 compares the temperature value stored in advance in the temperature memory 25 with the temperature value sent from the temperature calculation unit 23.

次に図8のフローチャートを用いて温度モニタリング後の内視鏡システム1内の動作を説明する。ステップS801において、内視鏡1を駆動させると、電圧メモリ26内でV=V0の条件にて電圧調整部20は電圧発生機29を駆動させる。その後は上記の方法で温度を算出する。   Next, the operation in the endoscope system 1 after temperature monitoring will be described using the flowchart of FIG. In step S801, when the endoscope 1 is driven, the voltage adjustment unit 20 drives the voltage generator 29 under the condition of V = V0 in the voltage memory 26. Thereafter, the temperature is calculated by the above method.

ステップS802において、温度比較部24にて、温度算出部23の出力温度と温度メモリ25の温度とを比較する。温度算出部23の出力温度が、温度メモリ25の温度より低いとき、ステップS802へもどり、電圧V0での駆動を継続し、抵抗値の格納、温度算出を続ける。   In step S <b> 802, the temperature comparison unit 24 compares the output temperature of the temperature calculation unit 23 with the temperature of the temperature memory 25. When the output temperature of the temperature calculation unit 23 is lower than the temperature of the temperature memory 25, the process returns to step S802, the drive at the voltage V0 is continued, the resistance value is stored, and the temperature calculation is continued.

ステップS803において、電圧Vと電圧V1とを比較する。
温度算出部23の出力温度が、温度メモリ25の温度より高いとき、ステップS805において、電圧メモリ26は、電圧V0よりも低電圧のV1の条件にて電圧を発生させるよう電圧調整部20に命令を出す。すなわち、撮像素子駆動ドライバ16の温度が所定の温度より高くなったとして、低い電圧V1での駆動を行い、温度上昇を抑制する。
In step S803, the voltage V and the voltage V1 are compared.
When the output temperature of the temperature calculation unit 23 is higher than the temperature of the temperature memory 25, in step S805, the voltage memory 26 instructs the voltage adjustment unit 20 to generate a voltage under the condition of V1 that is lower than the voltage V0. Put out. That is, assuming that the temperature of the image sensor driving driver 16 is higher than a predetermined temperature, driving with a low voltage V1 is performed to suppress the temperature rise.

電圧V1での駆動を継続し、抵抗値の格納、温度算出を続け、温度比較部24にて温度算出部23の出力温度と温度メモリ25の温度とを比較する。   The driving with the voltage V1 is continued, the resistance value is stored, and the temperature calculation is continued.

温度算出部23の出力温度が、温度メモリ25の温度より高いとき、ステップS804において、電圧メモリ26は、電圧V1よりも低い電圧V2の条件にて電圧を発生させるよう電圧調整部20に命令を出す。すなわち、撮像素子駆動ドライバ16の温度が所定の温度より高くなったとして、低い電圧V2での駆動を行い、温度上昇を抑制する。
このようにして、撮像素子駆動ドライバ16の抵抗値に基づいて撮像素子駆動ドライバ16の温度を算出し、供給する電力を制御することができる。内視鏡先端部材8の温度が所定温度以上にならないようにモニタリングし、所定温度以上の場合には撮像素子6の駆動条件を変更することができる。
When the output temperature of the temperature calculation unit 23 is higher than the temperature of the temperature memory 25, in step S804, the voltage memory 26 instructs the voltage adjustment unit 20 to generate a voltage under the condition of the voltage V2 lower than the voltage V1. put out. That is, assuming that the temperature of the image sensor driving driver 16 is higher than a predetermined temperature, driving with a low voltage V2 is performed to suppress the temperature rise.
In this manner, the temperature of the image sensor drive driver 16 can be calculated based on the resistance value of the image sensor drive driver 16, and the supplied power can be controlled. Monitoring is performed so that the temperature of the endoscope distal end member 8 does not exceed a predetermined temperature, and when the temperature is equal to or higher than the predetermined temperature, the driving condition of the image sensor 6 can be changed.

以上のように、実施例によれば、内視鏡先端部材8内に新たに温度センサーを備えることなく、既に内視鏡先端部材8内にある駆動系の電気配線を用いる構成で内視鏡先端部材8の温度を制御することが可能になる。したがって、内視鏡先端のサイズアップなしに先端の温度が所定温度以上にならないようにモニタリングすることが可能な内視鏡先端の冷却機構を有する内視鏡装置を提供することができる。
また、実施例では撮像素子駆動ドライバ16の電気配線を用いたが、複数の電気的駆動機構19を用いて複数の抵抗値情報を得ることもできる。例えば、CCDやLEDの複数のラインの測定を行う場合である。その場合には、より正確な温度モニタリングが可能となる。
As described above, according to the embodiment, the endoscope tip member 8 is not provided with a new temperature sensor, and the electric wiring of the driving system already in the endoscope tip member 8 is used. It becomes possible to control the temperature of the tip member 8. Therefore, it is possible to provide an endoscope apparatus having an endoscope tip cooling mechanism capable of monitoring the tip temperature so as not to exceed a predetermined temperature without increasing the size of the endoscope tip.
In the embodiment, the electrical wiring of the image sensor drive driver 16 is used, but a plurality of pieces of resistance value information can be obtained using a plurality of electrical drive mechanisms 19. For example, it is a case where a plurality of CCD or LED lines are measured. In that case, more accurate temperature monitoring becomes possible.

以上のように、本発明にかかる内視鏡冷却装置は、内視鏡先端部に電気駆動機構と冷却機構を有する内視鏡に有用であり、特に、内視鏡先端のサイズアップなしに冷却が望まれる内視鏡に適している。   As described above, the endoscope cooling device according to the present invention is useful for an endoscope having an electric drive mechanism and a cooling mechanism at the endoscope distal end portion, and in particular, cooling without increasing the size of the endoscope distal end. It is suitable for endoscopes that are desired.

1 内視鏡
2 光源装置
3 ビデオプロセッサ
4 モニター
5 内視鏡システム
6 撮像素子
7 撮像素子電力供給線
8 内視鏡先端部材
9 観察窓
10 硬性部
11 軟性部
12 湾曲コマ
13、14 水冷機構
15 チューブ
16 撮像素子駆動ドライバ
17 鉗子孔
18 照明部
19 電気的駆動機構
20 電圧調整部
21 抵抗値算出部
22 抵抗値メモリ
23 温度算出部
24 温度比較部
25 温度メモリ
26 電圧メモリ
27 内視鏡先端部材温度モニタリング機構
28 電流測定機構
29 電圧発生機
1 Endoscope
2 Light source device
3 Video processor
4 Monitor
5 Endoscope system 6 Image sensor
7 Imaging Element Power Supply Line 8 Endoscope End Member 9 Observation Window
10 Hard part 11 Soft part
12 Curved top
13, 14 Water cooling mechanism 15 Tube
16 Image sensor driver
17 Forceps hole
18 Illumination unit 19 Electric drive mechanism 20 Voltage adjustment unit
21 Resistance calculation unit
22 Resistance memory
23 Temperature calculator
24 Temperature comparison part
25 Temperature memory
26 Voltage memory
27 Endoscope member temperature monitoring mechanism
28 Current measuring mechanism 29 Voltage generator

Claims (6)

少なくとも1つ以上の電気的駆動機構を有する内視鏡先端部材と、前記内視鏡先端部材を冷却する冷却機構とを備える内視鏡冷却装置において、
前記電気的駆動機構の持つ電気配線で構成され、前記内視鏡先端部材が所定の温度以上にならないようにモニタリングする内視鏡先端部材温度モニタリング機構を備え、
前記内視鏡先端部材の温度が所定温度以上になった時、照明駆動条件もしくは撮像素子駆動条件を変化させることを特徴とする内視鏡冷却装置。
An endoscope cooling device comprising: an endoscope tip member having at least one electric drive mechanism; and a cooling mechanism for cooling the endoscope tip member.
It is composed of electrical wiring that the electrical drive mechanism has, and includes an endoscope tip member temperature monitoring mechanism that monitors the endoscope tip member so as not to exceed a predetermined temperature,
An endoscope cooling apparatus, wherein an illumination driving condition or an imaging element driving condition is changed when a temperature of the endoscope tip member becomes a predetermined temperature or more.
前記内視鏡先端部材温度モニタリング機構は、抵抗値に応じて温度をモニタリングすることを特徴とする請求項1に記載の内視鏡冷却装置。   The endoscope cooling apparatus according to claim 1, wherein the endoscope tip member temperature monitoring mechanism monitors temperature according to a resistance value. 前記内視鏡先端部材温度モニタリング機構は、前記内視鏡先端部材内に導入されている少なくとも1つ以上の電気的駆動機構の電気配線を用いることを特徴とする請求項2に記載の内視鏡冷却装置。   The endoscope according to claim 2, wherein the endoscope tip member temperature monitoring mechanism uses electrical wiring of at least one or more electric drive mechanisms introduced into the endoscope tip member. Mirror cooling device. 前記電気的駆動機構が、LEDであることを特徴とする請求項3に記載の内視鏡冷却装置。   The endoscope cooling apparatus according to claim 3, wherein the electrical drive mechanism is an LED. 前記電気的駆動機構が、撮像素子または撮像素子駆動ドライバまたは照明であることを特徴とする請求項1〜4のいずれか一項に記載の内視鏡冷却装置。   The endoscope cooling apparatus according to any one of claims 1 to 4, wherein the electrical drive mechanism is an image sensor, an image sensor drive driver, or illumination. 前記冷却機構が水冷機構とチューブとから構成されていることを特徴とする請求項1〜5のいずれか一項に記載の内視鏡冷却装置。

The endoscope cooling apparatus according to any one of claims 1 to 5, wherein the cooling mechanism includes a water cooling mechanism and a tube.

JP2010213188A 2010-09-24 2010-09-24 Endoscope cooling device Withdrawn JP2012065850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010213188A JP2012065850A (en) 2010-09-24 2010-09-24 Endoscope cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010213188A JP2012065850A (en) 2010-09-24 2010-09-24 Endoscope cooling device

Publications (1)

Publication Number Publication Date
JP2012065850A true JP2012065850A (en) 2012-04-05

Family

ID=46163841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010213188A Withdrawn JP2012065850A (en) 2010-09-24 2010-09-24 Endoscope cooling device

Country Status (1)

Country Link
JP (1) JP2012065850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119070A1 (en) * 2014-02-05 2015-08-13 オリンパス株式会社 Electronic endoscopic system, electronic endoscope, power supply device, method for operating electronic endoscopic system
WO2018193519A1 (en) * 2017-04-18 2018-10-25 オリンパス株式会社 Endoscope device and video processor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119070A1 (en) * 2014-02-05 2015-08-13 オリンパス株式会社 Electronic endoscopic system, electronic endoscope, power supply device, method for operating electronic endoscopic system
JP5881907B2 (en) * 2014-02-05 2016-03-09 オリンパス株式会社 Electronic endoscope system, electronic endoscope, power supply device, and operation method of electronic endoscope system
CN105705076A (en) * 2014-02-05 2016-06-22 奥林巴斯株式会社 Electronic endoscopic system, electronic endoscope, power supply device, method for operating electronic endoscopic system
JPWO2015119070A1 (en) * 2014-02-05 2017-03-23 オリンパス株式会社 Electronic endoscope system, electronic endoscope, power supply device, and operation method of electronic endoscope system
WO2018193519A1 (en) * 2017-04-18 2018-10-25 オリンパス株式会社 Endoscope device and video processor
US11213186B2 (en) 2017-04-18 2022-01-04 Olympus Corporation Endoscope apparatus and image processing apparatus

Similar Documents

Publication Publication Date Title
US8400500B2 (en) Endoscope with alternating irradiate light
CN110226911B (en) Endoscope system
JP2007130085A (en) Electronic endoscope
CN109475266A (en) Endoscope apparatus
CN105377105B (en) Endoscopic system
US10791919B2 (en) Endoscope system and endoscope
JP2010187903A (en) Endoscope apparatus and control method thereof
JP2001061777A (en) Electronic endoscope
JP2012065850A (en) Endoscope cooling device
JP2010057960A (en) Endoscope
US20190110663A1 (en) Endoscope apparatus
JP2016533253A (en) Endoscopic lighting system
JP6265815B2 (en) Electronic endoscope system
JP5185520B2 (en) Electronic endoscope device
US20170172401A1 (en) Antifogging device and endoscope device
JP6165356B2 (en) Endoscope system
JP5767426B1 (en) Imaging unit
JP4477167B2 (en) Electronic endoscope
US11213186B2 (en) Endoscope apparatus and image processing apparatus
JPH02278219A (en) Cooling device of video endoscope
JP4320137B2 (en) Electronic scope
KR20160106941A (en) Light source water cooling type endscope system
JP2013052156A (en) Light source device of medical instrument and endoscope
JPH02241428A (en) Endoscope
JP6833615B2 (en) Endoscope system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203