JP2013052156A - Light source device of medical instrument and endoscope - Google Patents

Light source device of medical instrument and endoscope Download PDF

Info

Publication number
JP2013052156A
JP2013052156A JP2011193337A JP2011193337A JP2013052156A JP 2013052156 A JP2013052156 A JP 2013052156A JP 2011193337 A JP2011193337 A JP 2011193337A JP 2011193337 A JP2011193337 A JP 2011193337A JP 2013052156 A JP2013052156 A JP 2013052156A
Authority
JP
Japan
Prior art keywords
light
light source
amount
emitting element
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2011193337A
Other languages
Japanese (ja)
Inventor
Akira Mizuyoshi
明 水由
Maki Saito
斎藤  牧
Takayuki Iida
孝之 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011193337A priority Critical patent/JP2013052156A/en
Priority to CN2012103079425A priority patent/CN102973239A/en
Publication of JP2013052156A publication Critical patent/JP2013052156A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light source device of a medical instrument which permits good observation images to be always obtained by precisely generating a necessary and sufficient light quantity of lighting light by a simple structure; and to provide an endoscope.SOLUTION: The light source device of a medical instrument includes: a light source section having a plurality of light-emitting elements having different rated light quantities; and a light source driving section generating a driving signal to each of the light emitting elements and driving the light emitting elements. The light source driving section is designed to drive the light emitting elements having a low rated light quantity from among the light emitting elements by a driving signal to compensate for an emitted light quantity from the light source section. When the light source section has high brightness light emitting element LEDs (L) having a first rated light quantity and low brightness light emitting element LEDs (S) having a second rated light quantity lower than the former, upon a decrease in the emitted light quantity of the high brightness emitting elements, the light source driving section obtains a light quantity decrease of the high brightness light emitting elements and makes the low brightness light emitting elements emit a light quantity compensating for the light quantity decrease.

Description

本発明は、医療用機器の光源装置、及び内視鏡装置に関する。   The present invention relates to a light source device for medical equipment and an endoscope device.

体腔内の組織を観察する内視鏡装置が広く知られている。一般的な内視鏡装置は、キセノンランプ等の白色光源から出射された白色光を、ライトガイドを通じて体腔内の被観察領域に照明光として供給し、被観察領域からの反射光の像を撮像素子により撮像する。これにより、白色光による通常観察画像が取得されるようになっている。また、近年になって、より長寿命で省電力な発光ダイオードを光源に利用した内視鏡装置が提案されている。例えば特許文献1には複数の発光ダイオードを用いた内視鏡用光源が記載されている。   2. Description of the Related Art Endoscopic devices that observe tissue in a body cavity are widely known. A general endoscope apparatus supplies white light emitted from a white light source such as a xenon lamp as illumination light to an observation area in a body cavity through a light guide, and captures an image of reflected light from the observation area. Images are taken with the element. Thereby, the normal observation image by white light is acquired. In recent years, an endoscope apparatus using a light-emitting diode having a longer life and power saving as a light source has been proposed. For example, Patent Document 1 describes an endoscope light source using a plurality of light emitting diodes.

特開2007−44249号公報JP 2007-44249 A

多数の発光ダイオードを同時に点灯させると、点灯する発光ダイオードの数に応じて発熱量が増大し、発光ダイオードが熱劣化しやすくなる。そこで、上記特許文献1の内視鏡用光源においては、発光ダイオードが配設される基板を冷却するための冷却機構が内視鏡用光源に設けている。しかしながら、一般に発光ダイオードは温度上昇によって熱劣化が生じる以外にも、発光特性が変化する。そのため、発光ダイオードに一定の駆動信号を入力しても、発光ダイオードの温度上昇に伴って発光光量が減少し、意図した観察画像が得られないことがある。また、ハロゲンランプ等と同等の光量を得るためには、多数の発光ダイオードを同時点灯させたり、定格光量の高い発光ダイオードを用いたりする必要があるが、高輝度にするほど発熱量は増大し、発光光量が変化しやすくなる。
そこで本発明は、必要十分な光量の照明光を簡単な構成で高精度に生成し、常に良好な観察画像が得られる医療用機器の光源装置、及び内視鏡装置を提供することを目的とする。
When a large number of light emitting diodes are turned on simultaneously, the amount of heat generation increases according to the number of light emitting diodes to be turned on, and the light emitting diodes are likely to be thermally deteriorated. Therefore, in the endoscope light source disclosed in Patent Document 1, a cooling mechanism for cooling the substrate on which the light emitting diode is disposed is provided in the endoscope light source. However, in general, a light emitting diode changes its light emission characteristics in addition to causing thermal degradation due to temperature rise. For this reason, even if a constant drive signal is input to the light emitting diode, the amount of emitted light decreases as the temperature of the light emitting diode rises, and an intended observation image may not be obtained. In order to obtain the same amount of light as a halogen lamp, it is necessary to turn on a large number of light emitting diodes simultaneously or use a light emitting diode with a high rated light amount. The amount of emitted light is likely to change.
Accordingly, an object of the present invention is to provide a light source device and an endoscope device for a medical device that can generate illumination light having a necessary and sufficient amount of light with a simple configuration with high accuracy and always obtain a good observation image. To do.

本発明は下記構成からなる。
(1) 医療用機器の光源装置であって、
定格光量の異なる複数の発光素子を有する光源部と、
前記複数の発光素子への駆動信号をそれぞれ生成して前記発光素子を駆動する光源駆動部とを備え、
前記光源駆動部が、前記複数の発光素子のうち前記定格光量が低い発光素子を、前記光源部からの出射光量を補償するための駆動信号で駆動する医療用機器の光源装置。
(2) (1)の医療用機器の光源装置が搭載された内視鏡装置。
The present invention has the following configuration.
(1) A light source device for medical equipment,
A light source unit having a plurality of light emitting elements with different rated light amounts;
A light source driving unit that drives the light emitting elements by generating drive signals to the plurality of light emitting elements,
A light source device for a medical device, wherein the light source driving unit drives a light emitting element having a low rated light amount among the plurality of light emitting elements with a driving signal for compensating the amount of light emitted from the light source unit.
(2) An endoscope apparatus in which the light source device for medical equipment of (1) is mounted.

本発明の医療用機器の光源装置、及び内視鏡装置によれば、発光素子に光量低下が生じても、その光量低下分を定格光量の低い発光素子により補うことで、必要十分な光量の照明光を簡単な構成で高精度に生成し、常に良好な観察画像を得ることができる。   According to the light source device and the endoscope device of the medical device of the present invention, even if the light amount is reduced in the light emitting element, the necessary amount of light is reduced by compensating the light amount reduction by the light emitting element having a low rated light amount. Illumination light can be generated with high accuracy with a simple configuration, and a good observation image can always be obtained.

本発明の実施形態を説明するための図で、内視鏡装置の構成図である。It is a figure for demonstrating embodiment of this invention, and is a block diagram of an endoscope apparatus. 内視鏡装置の具体的な構成例を示す外観図である。It is an external view which shows the specific structural example of an endoscope apparatus. LED(L)とLED(S)の出射光量の時間変化を表すグラフである。It is a graph showing the time change of the emitted light quantity of LED (L) and LED (S). (A)はLED(L)の駆動信号を示すグラフ、(B)はLED(S)の駆動信号を示すグラフである。(A) is a graph which shows the drive signal of LED (L), (B) is a graph which shows the drive signal of LED (S). 照明光の光量変化を示すグラフである。It is a graph which shows the light quantity change of illumination light. LED(L)とLED(S)の出射光強度の階調値と駆動信号の強度との関係を模式的に示すグラフである。It is a graph which shows typically the relationship between the gradation value of the emitted light intensity of LED (L) and LED (S), and the intensity | strength of a drive signal. (A)はLED(L)の駆動信号を示すグラフ、(B)はLED(S)の駆動信号を示すグラフである。(A) is a graph which shows the drive signal of LED (L), (B) is a graph which shows the drive signal of LED (S). 照明光の光量変化を示すグラフである。It is a graph which shows the light quantity change of illumination light. 光源装置19Aの要部構成図である。It is a principal part block diagram of the light source device 19A.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の実施形態を説明するための図で、医療用機器である内視鏡装置の構成図、図2は内視鏡装置の具体的な構成例を示す外観図である。
内視鏡装置100は、図1に示すように、内視鏡11と、内視鏡11が接続される制御装置13と、観察画像等を表示する表示部15と、制御装置13に情報を入力するためのキーボードやマウス等の入力部17とを備えている。制御装置13は、光源装置19と、撮像画像の信号処理を行うプロセッサ21とを有して構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining an embodiment of the present invention, and is a configuration diagram of an endoscope apparatus that is a medical device, and FIG. 2 is an external view showing a specific configuration example of the endoscope apparatus.
As shown in FIG. 1, the endoscope apparatus 100 includes an endoscope 11, a control device 13 to which the endoscope 11 is connected, a display unit 15 that displays an observation image and the like, and information to the control device 13. An input unit 17 such as a keyboard or a mouse for inputting is provided. The control device 13 includes a light source device 19 and a processor 21 that performs signal processing of a captured image.

内視鏡11は、本体操作部23と、この本体操作部23に連設され被検体(体腔)内に挿入される細長状の挿入部25とを備える。本体操作部23には、ユニバーサルコード27が接続される。このユニバーサルコード27の先端は、光源装置19にライトガイド(LG)コネクタ29Aを介して接続され、また、ビデオコネクタ29Bを介してプロセッサ21に接続されている。   The endoscope 11 includes a main body operation unit 23 and an elongated insertion unit 25 that is connected to the main body operation unit 23 and is inserted into a subject (body cavity). A universal cord 27 is connected to the main body operation unit 23. The distal end of the universal cord 27 is connected to the light source device 19 through a light guide (LG) connector 29A, and is connected to the processor 21 through a video connector 29B.

図2に示すように、内視鏡11の本体操作部23には、挿入部25の先端側で吸引、送気、送水を実施するためのボタンや、撮像時のシャッターボタン等の各種操作ボタン31が併設されると共に、一対のアングルノブ33が設けられている。   As shown in FIG. 2, the main body operation unit 23 of the endoscope 11 has various operation buttons such as buttons for performing suction, air supply, and water supply on the distal end side of the insertion unit 25, and a shutter button at the time of imaging. 31 is also provided, and a pair of angle knobs 33 are provided.

挿入部25は、基端側に配置される本体操作部23から順に、軟性部35、湾曲部37、及び先端部(内視鏡先端部)39で構成される。湾曲部37は、本体操作部23のアングルノブ33を回動することで不図示の操作ワイヤが牽引され、これにより、遠隔的に湾曲操作されて先端部39を所望の方向に向けることができる。   The insertion portion 25 is composed of a flexible portion 35, a bending portion 37, and a distal end portion (endoscope distal end portion) 39 in order from the main body operation portion 23 disposed on the proximal end side. The bending portion 37 is pulled by an operation wire (not shown) by rotating the angle knob 33 of the main body operation portion 23, so that the bending portion 37 is remotely operated to turn the distal end portion 39 in a desired direction. .

図1に示すように、内視鏡先端部39には、撮像光学系の観察窓41と、照明光学系の照明窓43が配置されている。照明窓43から出射される照明光は被検体に照射される。そして、被検体からの反射光は、撮像素子45によって観察窓41を通じて撮像される。撮像された観察画像は、プロセッサ21に接続された表示部15に表示される。   As shown in FIG. 1, an observation window 41 of an imaging optical system and an illumination window 43 of an illumination optical system are arranged at the endoscope distal end 39. Illumination light emitted from the illumination window 43 is applied to the subject. The reflected light from the subject is imaged through the observation window 41 by the image sensor 45. The captured observation image is displayed on the display unit 15 connected to the processor 21.

ここで、撮像光学系は、CCD(Charge Coupled Device)型イメージセンサや、CMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の撮像素子45と、撮像素子45に観察像を結像させるレンズ等の光学部材47とを有する。撮像素子45の受光面に結像されて取り込まれる観察像は、電気信号に変換されて信号ケーブル51を通じてプロセッサ21の撮像信号処理部53に入力され、ここで映像信号に変換される。なお、撮像素子45は、RGBの原色系カラーフィルタを備えるもの他、CMY,CMYG等の補色系カラーフィルタを備えるものであってもよい。   Here, the imaging optical system includes optical elements such as a CCD (Charge Coupled Device) type image sensor and a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, and a lens that forms an observation image on the imaging element 45. Member 47. The observation image formed and captured on the light receiving surface of the image sensor 45 is converted into an electric signal and input to the image signal processor 53 of the processor 21 through the signal cable 51, where it is converted into a video signal. The image sensor 45 may include a primary color system color filter of RGB or a complementary color system color filter such as CMY or CMYG.

プロセッサ21は、制御部63と、映像信号を生成する撮像信号処理部53と、詳細を後述する各種情報が記憶される情報記憶部55とを備える。制御部63は、撮像信号処理部53から出力される観察画像の画像データに対して適宜な画像処理を施し、表示部15に映出させる。また、光源装置19の光源制御部59に制御信号を出力して、照明窓43から所望の光量の照明光を出射させる。この制御部63は、図示しないLAN等のネットワークに接続されて、画像データを含む情報を配信する等、内視鏡装置100全体を制御する。   The processor 21 includes a control unit 63, an imaging signal processing unit 53 that generates a video signal, and an information storage unit 55 that stores various types of information that will be described in detail later. The control unit 63 performs appropriate image processing on the image data of the observation image output from the imaging signal processing unit 53 and causes the display unit 15 to display the image data. In addition, a control signal is output to the light source controller 59 of the light source device 19 so that a desired amount of illumination light is emitted from the illumination window 43. The control unit 63 is connected to a network such as a LAN (not shown) and controls the entire endoscope apparatus 100 such as distributing information including image data.

照明光学系は、光源装置19と、光源装置19にコネクタ29Aを介して接続されるファイババンドル61を有する。光源装置19は、第一の定格光量の高輝度発光素子である発光ダイオードLED(L)、及び第一の定格光量より低い第二の定格光量の低輝度発光素子である発光ダイオードLED(S)を光源部として有し、これらLED(L)及びLED(S)からの出射光を合成して照明光を生成する。   The illumination optical system includes a light source device 19 and a fiber bundle 61 connected to the light source device 19 via a connector 29A. The light source device 19 includes a light-emitting diode LED (L) that is a high-intensity light-emitting element having a first rated light amount, and a light-emitting diode LED (S) that is a low-intensity light-emitting element having a second rated light amount that is lower than the first rated light amount. As the light source unit, and the illumination light is generated by synthesizing the emitted light from the LED (L) and the LED (S).

LED(L)は、白色発光の高輝度型発光ダイオードであり、LED(S)は、白色発光の小型発光ダイオードである。LED(S)は、LED(L)より最大発光強度は低いが、点灯の応答特性はLED(L)より速い。   LED (L) is a high-intensity light-emitting diode that emits white light, and LED (S) is a small light-emitting diode that emits white light. The LED (S) has a lower maximum emission intensity than the LED (L), but the lighting response characteristic is faster than the LED (L).

LED(L),LED(S)からの各出射光は、それぞれファイババンドルに導入された後、一本のファイババンドルに統合されることで合成され、ファイババンドルの光出射端から出射される。   The outgoing lights from the LEDs (L) and LEDs (S) are respectively introduced into the fiber bundle, and then combined by being integrated into one fiber bundle, and emitted from the light outgoing end of the fiber bundle.

光源制御部59は、LED(L)及びLED(S)に対する駆動信号をそれぞれ出力して、LED(L)及びLED(S)をそれぞれ個別に駆動する。   The light source control unit 59 outputs drive signals for the LEDs (L) and LEDs (S), respectively, and drives the LEDs (L) and LEDs (S) individually.

つまり、プロセッサ21の制御部63は、LED(L),LED(S)を光量制御して、所望の光量の白色光を出力させる。この出力された白色光は、ファイババンドル61に導入され、内視鏡先端部39まで導光される。これにより、内視鏡先端部39の照明窓43から白色の照明光が出射される。   That is, the control unit 63 of the processor 21 controls the amount of light of the LEDs (L) and LED (S) and outputs white light having a desired amount of light. The output white light is introduced into the fiber bundle 61 and guided to the endoscope distal end portion 39. Thereby, white illumination light is emitted from the illumination window 43 of the endoscope front end 39.

次に、LED(L)とLED(S)の駆動制御について説明する。
制御部63は、光源制御部59に対して目標光量を指示する制御信号を出力する。光源制御部59は、入力された制御信号を受けてLED(L)とLED(S)に対する駆動信号を生成し、各駆動信号をLED(L)とLED(S)に出力する。
Next, drive control of LED (L) and LED (S) will be described.
The control unit 63 outputs a control signal instructing the target light amount to the light source control unit 59. The light source controller 59 receives the input control signal, generates a drive signal for the LED (L) and the LED (S), and outputs each drive signal to the LED (L) and the LED (S).

図3にLED(L)とLED(S)の出射光量の時間変化を表すグラフを示した。
LED(L)は、入力された駆動信号に基づいて出射光量が所定の目標光量になるように生成された駆動信号を受けて点灯開始する。LED(L)の出射光量は、時刻t0からt1にかけて漸増して、時刻t1で目標光量に達する。その後、LED(L)の出射光量は、LED(L)自体が点灯によって発熱し、発光特性が変化するために出射光量が徐々に低下する。そして、出射光量が光量Idだけ減少した状態で定常状態となる。
FIG. 3 shows a graph showing the temporal change in the amount of light emitted from the LED (L) and the LED (S).
The LED (L) starts lighting upon receiving a drive signal generated based on the input drive signal so that the amount of emitted light becomes a predetermined target light amount. The emitted light quantity of the LED (L) gradually increases from time t0 to t1, and reaches the target light quantity at time t1. Thereafter, the amount of emitted light from the LED (L) is gradually reduced because the LED (L) itself generates heat when the LED (L) is turned on and the light emission characteristics change. And it will be in a steady state in the state where the emitted light quantity decreased by the light quantity Id.

つまり、LED(L)のみで照明光を生成すると、時刻t1以降では目標光量から光量Idだけ光量不足となる。そこで、光源制御部59は、不足する光量Idを補償するためにLED(S)を点灯駆動する。つまり、時刻t1以降にLED(S)を光量Idだけ点灯して、LED(L)とLED(S)の出射光量の合計が目標光量に一致するようにLED(S)を制御する。   That is, when the illumination light is generated only by the LED (L), the light amount is insufficient from the target light amount by the light amount Id after the time t1. Therefore, the light source control unit 59 drives the LED (S) to be lit to compensate for the insufficient light amount Id. That is, after the time t1, the LED (S) is turned on by the light amount Id, and the LED (S) is controlled so that the total amount of emitted light from the LED (L) and the LED (S) matches the target light amount.

具体的な駆動信号の例を図4(A),(B)に示した。図4(A)はLED(L)の駆動信号を示すグラフ、(B)はLED(S)の駆動信号を示すグラフである。図4(A)に示すように、LED(L)への駆動信号が時刻t0でOFFからONとなる点灯パルスPaを印加する。すると、LED(L)からの出射光量は図中点線で示すように時刻t1で目標光量に達し、その後、減少する。そこで、図4(B)に示すように、LED(L)への点灯パルスPaをONとした時刻t0から所定時間Δt後の時刻t1に、駆動信号がOFFからONとなる点灯パルスPbをLED(S)へ印加する。このときの点灯パルスPbの信号強度(パルス幅と振幅との積分強度)は、光量Idが得られるように設定される。   Examples of specific drive signals are shown in FIGS. 4 (A) and 4 (B). FIG. 4A is a graph showing the drive signal of the LED (L), and FIG. 4B is a graph showing the drive signal of the LED (S). As shown in FIG. 4A, a lighting pulse Pa is applied so that the drive signal to the LED (L) turns from OFF to ON at time t0. Then, the amount of light emitted from the LED (L) reaches the target amount of light at time t1, as shown by the dotted line in the figure, and then decreases. Therefore, as shown in FIG. 4B, at time t1 after a predetermined time Δt from the time t0 when the lighting pulse Pa to the LED (L) is turned on, the lighting pulse Pb from which the drive signal is turned on is turned off. Apply to (S). The signal intensity (integrated intensity of the pulse width and amplitude) of the lighting pulse Pb at this time is set so that the light amount Id can be obtained.

時刻t1を規定する所定時間Δtは、LED(L)の点灯の応答特性により定まる。また、LED(L)からの出射光の低下光量Idは、LED(L)に含まれる蛍光体材料等の個体特性により定まる。これらのLED(L)の応答特性や個体特性の情報は、図1に示す情報記憶部55に予め記憶されており、制御部63が随時参照することで、所定時間Δt、低下光量Idを求めることができる。   The predetermined time Δt that defines the time t1 is determined by the response characteristics of the lighting of the LED (L). Further, the amount of decrease Id of the light emitted from the LED (L) is determined by the individual characteristics of the phosphor material and the like included in the LED (L). Information on the response characteristics and individual characteristics of these LEDs (L) is stored in advance in the information storage unit 55 shown in FIG. 1, and the control unit 63 refers to them as needed to obtain the predetermined time Δt and the reduced light amount Id. be able to.

このように、光源制御部59が、図4(A),(B)に示す駆動信号を生成してLED(L)、LED(S)を駆動すると、双方からの出射光が合成された照明光はいち早く所望の光量に到達する。即ち、照明光は図5に示す照明光の光量変化を表すグラフのように、時刻t1以降で所望の目標光量となる。   As described above, when the light source control unit 59 generates the drive signals shown in FIGS. 4A and 4B to drive the LEDs (L) and LED (S), the illumination light synthesized from both is combined. The light reaches the desired light quantity quickly. That is, the illumination light becomes a desired target light amount after time t1, as in the graph showing the light amount change of the illumination light shown in FIG.

ここで、LED(L)の出射光量の低下が、主に点灯時の発熱による温度上昇に起因するものであれば、その出射光低下量を解析的に求めることができる。
その場合、制御部63は、LED(L)を駆動した駆動履歴を駆動履歴情報として情報記憶部55に記憶する。この記憶された直前までの駆動履歴を制御部63が読み出し、LED(L)の点灯強度や点灯時間等の点灯履歴に応じた発熱の累積状態を求める。そして、LED(L)の現在の素子温度を推定する。
Here, if the decrease in the amount of light emitted from the LED (L) is mainly caused by a temperature increase due to heat generation during lighting, the amount of decrease in the emitted light can be analytically determined.
In that case, the control unit 63 stores the drive history of driving the LED (L) in the information storage unit 55 as drive history information. The control unit 63 reads the driving history up to immediately before being stored, and obtains a cumulative state of heat generation according to the lighting history such as the lighting intensity and lighting time of the LED (L). Then, the current element temperature of the LED (L) is estimated.

次に、制御部63は、情報記憶部55に記憶された温度依存特性情報を参照して、推定したLED(L)の現在温度に対応するLED(L)の発光効率を求め、LED(L)の実際の発光光量を推定する。この推定された実際の発光光量と目標光量の差が出射光の低下光量Idとなる。   Next, the control unit 63 refers to the temperature-dependent characteristic information stored in the information storage unit 55, obtains the luminous efficiency of the LED (L) corresponding to the estimated current temperature of the LED (L), and determines the LED (L ) Is estimated. The difference between the estimated actual light emission amount and the target light amount becomes the reduced light amount Id of the emitted light.

制御部63は、図4(B)のLED(S)の駆動信号を、低下光量Idに相当する光量となるように信号強度を設定し、光源制御部59に制御信号として出力する。   The control unit 63 sets the signal intensity of the drive signal of the LED (S) in FIG.

以上の制御によって、内視鏡装置は、所望の目標光量通りの照明光を被検体に照射することができる。これにより、光量不足にならずに常に良好な観察画像を得ることができる。   By the above control, the endoscope apparatus can irradiate the subject with illumination light according to a desired target light amount. Thereby, it is possible to always obtain a good observation image without causing a shortage of light.

上記構成の定格発光量の異なるLED(L)とLED(S)は、それぞれを同時点灯させることで、単一の発光素子で光量の階調制御を行う場合と比較して光量制御の精度を向上できる。LED(L)とLED(S)の階調制御には種々の制御パターンが考えられるが、例えば図6に示すような階調制御とすることができる。   The LEDs (L) and LEDs (S) having different rated light emission amounts having the above-described configuration are lighted simultaneously, thereby improving the light amount control accuracy compared to the case where the light amount gradation control is performed with a single light emitting element. It can be improved. Various control patterns can be considered for the gradation control of the LED (L) and the LED (S). For example, gradation control as shown in FIG. 6 can be used.

図6は、LED(L)とLED(S)の出射光強度の階調値と駆動信号の強度との関係を模式的に示すグラフである。LED(L)の階調制御は、0〜NLmaxまでの範囲で、LED(S)の階調制御は、0〜NSmaxまでの範囲である。LED(L)の最小階調制御幅をStとすると、この最小階調制御幅St内でLED(S)による階調制御を行うことにより、LED(L)とLED(S)の出射光を合成した照明光の実質的な階調制御幅はSt/NSmaxで表される。このため、定格発光量の異なるLED(L)とLED(S)を組み合わせて階調制御することにより、階調制御幅をより細かく設定でき、きめ細かな光量制御が可能となる。 FIG. 6 is a graph schematically showing the relationship between the gradation value of the emitted light intensity of the LED (L) and the LED (S) and the intensity of the drive signal. Gradation control of LED (L) is in the range of up to 0 to N Lmax, gradation control of LED (S) is in the range of up to 0 to N Smax. Assuming that the minimum gradation control width of the LED (L) is St, gradation control by the LED (S) is performed within the minimum gradation control width St, so that the emitted light of the LED (L) and the LED (S) is emitted. The substantial gradation control width of the combined illumination light is represented by St / N Smax . For this reason, by performing gradation control by combining LEDs (L) and LEDs (S) having different rated light emission amounts, the gradation control width can be set more finely and fine light intensity control becomes possible.

上記の階調制御においても、図示はしないが、LED(S)の駆動信号にLED(L)の光量低下量を補償する駆動信号を重畳することで、照明光量が低下することなく、所望の目標光量を正確に得ることができる。   Also in the above gradation control, although not shown, by superimposing a drive signal that compensates for a light amount decrease amount of the LED (L) on a drive signal of the LED (S), a desired light amount does not decrease. The target light amount can be obtained accurately.

次に、LED(L)とLED(S)の応答特性の違いによる点灯初期の照明光量不足を解消するための、LED(L)とLED(S)の駆動制御について説明する。
前述の図5に示すように、LED(L)とLED(S)の出射光量を合成した照明光の光量変化は、駆動開始した直後の時刻t0〜t1の間は過渡期間となり、瞬時に目標光量に到達せずに応答遅れが生じる。そこで、この応答遅れを解消するため、図7(A),(B)に示すように、LED(L)への点灯パルスPaの立ち上がり(時刻t0)と同時に、応答速度の速いLED(S)をt0〜t2の所定期間で点灯させる点灯パルスPcをLED(S)に印加する。
Next, drive control of the LED (L) and the LED (S) for solving the shortage of illumination light quantity at the initial lighting time due to the difference in response characteristics of the LED (L) and the LED (S) will be described.
As shown in FIG. 5 described above, the change in the amount of illumination light obtained by combining the emitted light amounts of the LED (L) and LED (S) is a transitional period between time t0 and t1 immediately after the start of driving, and is instantaneously set to the target. Response delay occurs without reaching the amount of light. Therefore, in order to eliminate this response delay, as shown in FIGS. 7A and 7B, the LED (S) having a fast response speed is simultaneously formed with the rise of the lighting pulse Pa to the LED (L) (time t0). Is applied to the LED (S) by turning on the LED (S).

点灯パルスPcによるLED(S)からの出射光は、LED(S)の応答特性が速いために時刻t0から瞬時に立ち上がる。そして、点灯パルスPcの終端である時刻t2の後は、残光により徐々に光量が低下して、時刻t1で光量0となる。時刻t1はLED(L)の出射光量が目標光量に一致するので、LED(S)からの出射光量は0でよい。   The light emitted from the LED (S) by the lighting pulse Pc rises instantaneously from the time t0 because the response characteristic of the LED (S) is fast. Then, after time t2, which is the end of the lighting pulse Pc, the light quantity gradually decreases due to the afterglow, and becomes zero at time t1. At time t1, the amount of light emitted from the LED (L) matches the target amount of light, so the amount of light emitted from the LED (S) may be zero.

時刻t1以降は、前述同様のLED(S)への点灯パルスPbにより、LED(S)からLED(L)の出射光量低下分の光を出射させて照明光の光量が目標光量に一致するように維持する。   After the time t1, the lighting pulse Pb to the LED (S) similar to the above is emitted from the LED (S) by the amount of decrease in the amount of emitted light from the LED (L) so that the amount of illumination light matches the target amount of light. To maintain.

このように、LED(S)への点灯パルスPa,Pbにより、図8に示すように、LED(L)とLED(S)の出射光を合成した照明光は、点灯パルスPaを印加した時刻t0から急峻に立ち上がり、目標光量に到達する。   In this way, as shown in FIG. 8, the illumination light obtained by combining the light emitted from the LED (L) and the LED (S) by the lighting pulses Pa and Pb to the LED (S) is the time when the lighting pulse Pa is applied. It rises steeply from t0 and reaches the target light amount.

LED(S)へのパルスPcの信号強度は、制御部63(図1参照)が情報記憶部55に記憶されたLED(L)の応答特性を参照して設定する。即ち、LED(L)の応答遅れにのため点灯直後に生じるLED(L)の出射光量不足分を、LED(S)の発光により補うようにパルスPcの信号強度を設定する。   The signal intensity of the pulse Pc to the LED (S) is set by the control unit 63 (see FIG. 1) with reference to the response characteristic of the LED (L) stored in the information storage unit 55. That is, the signal intensity of the pulse Pc is set so as to compensate for the shortage of the emitted light amount of the LED (L) that occurs immediately after lighting due to the response delay of the LED (L) by the light emission of the LED (S).

上記の点灯パルスPb,Pcを組み合わせた駆動信号を用いて光源制御部59がLED(S)を駆動することで、LED(L)への駆動信号である点灯パルスPaの点灯パターンと略一致した光量の照明光を生成できる。これにより、照明光の光量をより高速、かつ正確に変調できる。また、被検体が急峻に変化する動画撮影等を行う場合でも、被検体の撮影条件の変化に追従でき、常に良好な観察画像の取得が可能となる。   The light source control unit 59 drives the LED (S) using the driving signal that is a combination of the above-described lighting pulses Pb and Pc, so that it substantially matches the lighting pattern of the lighting pulse Pa that is a driving signal to the LED (L). A large amount of illumination light can be generated. Thereby, the light quantity of illumination light can be modulated more rapidly and accurately. Further, even when performing moving image capturing or the like in which the subject changes sharply, it is possible to follow changes in the imaging conditions of the subject and always obtain a good observation image.

ここで、LED(S)への点灯パルスPb,Pcの信号強度は、LED(L)の駆動履歴情報や、温度依存性情報に基づいて光源制御部59が設定しているが、LED(L)からの出射光強度を直接測定して設定してもよい。   Here, the signal intensity of the lighting pulses Pb and Pc to the LED (S) is set by the light source control unit 59 based on the drive history information and temperature dependency information of the LED (L). ) May be set by directly measuring the intensity of the emitted light.

その場合、図9に光源装置19Aの要部構成を示すように、LED(L)からの出射光の光路途中に、光量低下を検出するための光センサ65を配置して、この光センサ65からの出力情報を光源制御部59に入力する。なお、図示例ではLED(L)の光出射口と集光レンズ67との間に光センサ65を配置しているが、光センサ65の配置位置はこれに限らない。   In this case, as shown in FIG. 9 showing the main configuration of the light source device 19A, an optical sensor 65 for detecting a decrease in the amount of light is disposed in the optical path of the emitted light from the LED (L). Is output to the light source control unit 59. In the illustrated example, the optical sensor 65 is disposed between the light exit of the LED (L) and the condensing lens 67, but the arrangement position of the optical sensor 65 is not limited thereto.

このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
例えば、LED(L)の光量低下分IdをLED(S)で補う際に、LED(L)の光量低下を検出したら予め定めた規定の光量をLED(S)から出射させることであってもよい。その場合には、光量制御の演算負担が軽減され、装置構成を簡略化できると共に、処理速度を高めることができる。
また、LED(L),LED(S)はそれぞれ1つずつ設けているが、複数のLEDを組み合わせて構成してもよい。更に、LED(L)は、キセノンランプやハロゲンランプ等の白色光源や、半導体レーザと蛍光体とを組み合わせた白色光源で構成してもよい。また、LED(S)についても同様に他の白色光源で構成してもよい。
As described above, the present invention is not limited to the above-described embodiments, and those skilled in the art can make changes and applications based on combinations of the configurations of the embodiments, descriptions in the specification, and well-known techniques. This is also the scope of the present invention, and is included in the scope of seeking protection.
For example, when the decrease in the light amount of the LED (L) is compensated by the LED (S), if a decrease in the light amount of the LED (L) is detected, a predetermined prescribed light amount is emitted from the LED (S). Good. In that case, the calculation load of light quantity control is reduced, the apparatus configuration can be simplified, and the processing speed can be increased.
Further, one LED (L) and one LED (S) are provided, but a plurality of LEDs may be combined. Further, the LED (L) may be composed of a white light source such as a xenon lamp or a halogen lamp, or a white light source combining a semiconductor laser and a phosphor. Similarly, the LED (S) may be composed of another white light source.

以上、本明細書には次の事項が開示されている。
(1) 医療用機器の光源装置であって、
定格光量の異なる複数の発光素子を有する光源部と、
前記複数の発光素子への駆動信号をそれぞれ生成して前記発光素子を駆動する光源駆動部とを備え、
前記光源駆動部が、前記複数の発光素子のうち前記定格光量が低い発光素子を、前記光源部からの出射光量を補償するための駆動信号で駆動する医療用機器の光源装置。
この医療用機器の光源装置によれば、発光素子に光量低下が生じても、その光量低下量を定格光量の低い発光素子により補償することで、必要十分な光量の照明光を簡単な構成で高精度に生成し、常に良好な観察を行うことができる。
As described above, the following items are disclosed in this specification.
(1) A light source device for medical equipment,
A light source unit having a plurality of light emitting elements with different rated light amounts;
A light source driving unit that drives the light emitting elements by generating drive signals to the plurality of light emitting elements,
A light source device for a medical device, wherein the light source driving unit drives a light emitting element having a low rated light amount among the plurality of light emitting elements with a driving signal for compensating the amount of light emitted from the light source unit.
According to the light source device of this medical device, even if the light amount is reduced in the light emitting element, the illumination light with the necessary and sufficient amount of light can be configured with a simple configuration by compensating the light amount reduction amount with the light emitting element having a low rated light amount. It is generated with high accuracy and can always be observed well.

(2) (1)の医療用機器の光源装置であって、
前記光源部が、第一の定格光量の高輝度発光素子と、前記第一の定格光量より低い第二の定格光量の低輝度発光素子とを有する医療用機器の光源装置。
この医療用機器の光源装置によれば、定格光量の異なる高輝度発光素子と低輝度発光素子とを用いて、照明光の光量を高精度で制御できる。
(2) A light source device for a medical device according to (1),
A light source device for a medical device, wherein the light source unit includes a high-intensity light-emitting element having a first rated light amount and a low-intensity light-emitting element having a second rated light amount lower than the first rated light amount.
According to the light source device of this medical device, the amount of illumination light can be controlled with high accuracy using a high-intensity light-emitting element and a low-intensity light-emitting element with different rated light amounts.

(3) (2)の医療用機器の光源装置であって、
前記高輝度発光素子の点灯駆動履歴が記憶された駆動履歴情報と、前記高輝度発光素子の素子温度に対する発光量変化を表す温度依存特性情報を記憶する情報記憶部を備え、
前記光源駆動部が、前記駆動履歴情報を参照して前記高輝度発光素子の素子温度を推定し、該推定された素子温度に対する前記高輝度発光素子の出射光量低下量を、前記温度依存特性情報を参照して求め、前記出射光量低下量を前記低輝度発光素子で補償する医療用機器の光源装置。
この医療用機器の光源装置によれば、高輝度発光素子の駆動履歴から高輝度発光素子の素子温度を推定し、この推定温度下における出射光量低下量を解析的に求めることで、高輝度発光素子からの出射光量を実測することなく求められる。これにより、簡単な構成で照明光を所望の光量に一致させることができる。
(3) A light source device for a medical device according to (2),
An information storage unit that stores driving history information in which a lighting driving history of the high-intensity light-emitting element is stored, and temperature-dependent characteristic information that represents a change in light emission amount with respect to an element temperature of the high-intensity light-emitting element,
The light source driving unit estimates the element temperature of the high-intensity light emitting element with reference to the driving history information, and sets the amount of decrease in the amount of emitted light of the high-intensity light emitting element with respect to the estimated element temperature. And a light source device for medical equipment that compensates for the amount of decrease in the amount of emitted light with the low-luminance light emitting element.
According to the light source device of this medical device, the device temperature of the high-intensity light-emitting element is estimated from the driving history of the high-intensity light-emitting element, and the amount of decrease in the amount of emitted light at this estimated temperature is obtained analytically, so It is obtained without actually measuring the amount of light emitted from the element. Thereby, illumination light can be made to correspond with desired light quantity with a simple structure.

(4) (2)の医療用機器の光源装置であって、
前記高輝度発光素子からの出射光強度を測定する光センサを備え、
前記光源駆動部が、前記光センサにより測定される出射光強度から前記出射光量低下量を求め、該出射光量低下量を前記低輝度発光素子で補償する医療用機器の光源装置。
この医療用機器の光源装置によれば、高輝度発光素子からの出射光量を光センサにより実測することで、正確な光量低下量を求めることができる。
(4) A light source device for a medical device according to (2),
An optical sensor for measuring the intensity of light emitted from the high-luminance light-emitting element;
A light source device for a medical device, wherein the light source driving unit obtains the amount of decrease in the amount of emitted light from the intensity of emitted light measured by the optical sensor, and compensates the amount of decrease in the amount of emitted light with the low-luminance light emitting element.
According to the light source device of this medical device, an accurate light amount reduction amount can be obtained by actually measuring the amount of light emitted from the high-luminance light emitting element with the optical sensor.

(5) (2)〜(4)のいずれか一つの医療用機器の光源装置であって、
前記低輝度発光素子が、前記高輝度発光素子より速い点灯応答特性を有し、
前記光源駆動部が、前記低輝度発光素子の駆動信号に、前記高輝度発光素子の点灯直後に不足する出射光量を補うための点灯パルスを更に含ませる医療用機器の光源装置。
この医療用機器の光源装置によれば、高輝度発光素子の応答遅れに起因して点灯直後に不足する光量を、低輝度発光素子からの出射光で補うことができ、照明光を駆動信号通りに応答遅れなく生成することができる。
(5) A light source device for a medical device according to any one of (2) to (4),
The low-intensity light-emitting element has a lighting response characteristic faster than the high-intensity light-emitting element;
The light source device for a medical device, wherein the light source driving unit further includes a lighting pulse for supplementing an emitted light amount that is insufficient immediately after the high-luminance light-emitting element is turned on in the drive signal for the low-luminance light-emitting element.
According to the light source device of this medical device, the amount of light that is insufficient immediately after lighting due to the response delay of the high-intensity light-emitting element can be supplemented by the light emitted from the low-intensity light-emitting element, and the illumination light is driven according to the drive signal. Can be generated without delay in response.

(6) (5)の医療用機器の光源装置であって、
前記光源制御部が、前記点灯パルスを前記高輝度発光素子の点灯開始タイミングと同時に印加する医療用機器の光源装置。
この医療用機器の光源装置によれば、高輝度発光素子の点灯開始と共に低輝度発光素子が点灯するので、照明光の応答遅れが軽減されて、より正確なタイミングで照明光を生成できる。
(6) A light source device for a medical device according to (5),
A light source device for a medical device, wherein the light source control unit applies the lighting pulse simultaneously with a lighting start timing of the high-luminance light emitting element.
According to the light source device of this medical device, since the low-luminance light emitting element is turned on when the high-luminance light emitting element is turned on, the response delay of the illumination light is reduced, and the illumination light can be generated at a more accurate timing.

(7) (1)〜(6)のいずれか一つの医療用機器の光源装置であって、
前記複数の発光素子が発光ダイオードである医療用機器の光源装置。
この医療用機器の光源装置によれば、発光素子を発光ダイオードにより構成することで、発光素子の寿命が長くなりメンテナンス性が向上すると共に、省電力でエネルギ効率の高い照明光が得られる。
(7) A light source device for a medical device according to any one of (1) to (6),
A light source device for medical equipment, wherein the plurality of light emitting elements are light emitting diodes.
According to the light source device of the medical device, by configuring the light emitting element with the light emitting diode, the life of the light emitting element is extended, the maintainability is improved, and illumination light with high power consumption and energy efficiency can be obtained.

(8) (1)〜(7)のいずれか一つの医療用機器の光源装置が搭載された内視鏡装置。
この内視鏡装置によれば、常に安定した照明光により良好な観察画像を取得でき、内視鏡診断精度が向上する。
(8) An endoscope apparatus in which the light source device of any one of the medical devices according to (1) to (7) is mounted.
According to this endoscope apparatus, a good observation image can always be acquired with stable illumination light, and the accuracy of endoscope diagnosis is improved.

11 内視鏡
13 制御装置
19 光源装置
19A 光源装置
21 プロセッサ
45 撮像素子
55 情報記憶部
59 光源制御部
61 ファイババンドル
63 制御部
65 光センサ
100 内視鏡装置
LED(L) 発光ダイオード
LED(S) 発光ダイオード
Pa 点灯パルス
Pb 点灯パルス
Pc 点灯パルス
DESCRIPTION OF SYMBOLS 11 Endoscope 13 Control apparatus 19 Light source apparatus 19A Light source apparatus 21 Processor 45 Image pick-up element 55 Information storage part 59 Light source control part 61 Fiber bundle 63 Control part 65 Optical sensor 100 Endoscope apparatus LED (L) Light emitting diode LED (S) Light emitting diode Pa lighting pulse Pb lighting pulse Pc lighting pulse

Claims (8)

医療用機器の光源装置であって、
定格光量の異なる複数の発光素子を有する光源部と、
前記複数の発光素子への駆動信号をそれぞれ生成して前記発光素子を駆動する光源駆動部とを備え、
前記光源駆動部が、前記複数の発光素子のうち前記定格光量が低い発光素子を、前記光源部からの出射光量を補償するための駆動信号で駆動する医療用機器の光源装置。
A light source device for medical equipment,
A light source unit having a plurality of light emitting elements with different rated light amounts;
A light source driving unit that drives the light emitting elements by generating drive signals to the plurality of light emitting elements,
A light source device for a medical device, wherein the light source driving unit drives a light emitting element having a low rated light amount among the plurality of light emitting elements with a driving signal for compensating the amount of light emitted from the light source unit.
請求項1記載の医療用機器の光源装置であって、
前記光源部が、第一の定格光量の高輝度発光素子と、前記第一の定格光量より低い第二の定格光量の低輝度発光素子とを有する医療用機器の光源装置。
The light source device for medical equipment according to claim 1,
A light source device for a medical device, wherein the light source unit includes a high-intensity light-emitting element having a first rated light amount and a low-intensity light-emitting element having a second rated light amount lower than the first rated light amount.
請求項2記載の医療用機器の光源装置であって、
前記高輝度発光素子の点灯駆動履歴が記憶された駆動履歴情報と、前記高輝度発光素子の素子温度に対する発光量変化を表す温度依存特性情報を記憶する情報記憶部を備え、
前記光源駆動部が、前記駆動履歴情報を参照して前記高輝度発光素子の素子温度を推定し、該推定された素子温度に対する前記高輝度発光素子の出射光量低下量を、前記温度依存特性情報を参照して求め、前記出射光量低下量を前記低輝度発光素子で補償する医療用機器の光源装置。
A light source device for a medical device according to claim 2,
An information storage unit that stores driving history information in which a lighting driving history of the high-intensity light-emitting element is stored, and temperature-dependent characteristic information that represents a change in light emission amount with respect to an element temperature of the high-intensity light-emitting element,
The light source driving unit estimates the element temperature of the high-intensity light emitting element with reference to the driving history information, and sets the amount of decrease in the amount of emitted light of the high-intensity light emitting element with respect to the estimated element temperature. And a light source device for medical equipment that compensates for the amount of decrease in the amount of emitted light with the low-luminance light emitting element.
請求項2記載の医療用機器の光源装置であって、
前記高輝度発光素子からの出射光強度を測定する光センサを備え、
前記光源駆動部が、前記光センサにより測定される出射光強度から前記出射光量低下量を求め、該出射光量低下量を前記低輝度発光素子で補償する医療用機器の光源装置。
A light source device for a medical device according to claim 2,
An optical sensor for measuring the intensity of light emitted from the high-luminance light-emitting element;
A light source device for a medical device, wherein the light source driving unit obtains the amount of decrease in the amount of emitted light from the intensity of emitted light measured by the optical sensor, and compensates the amount of decrease in the amount of emitted light with the low-luminance light emitting element.
請求項2〜請求項4のいずれか一項記載の医療用機器の光源装置であって、
前記低輝度発光素子が、前記高輝度発光素子より速い点灯応答特性を有し、
前記光源駆動部が、前記低輝度発光素子の駆動信号に、前記高輝度発光素子の点灯直後に不足する出射光量を補うための点灯パルスを更に含ませる医療用機器の光源装置。
A medical device light source device according to any one of claims 2 to 4,
The low-intensity light-emitting element has a lighting response characteristic faster than the high-intensity light-emitting element;
The light source device for a medical device, wherein the light source driving unit further includes a lighting pulse for supplementing an emitted light amount that is insufficient immediately after the high-luminance light-emitting element is turned on in the drive signal for the low-luminance light-emitting element.
請求項5記載の医療用機器の光源装置であって、
前記光源制御部が、前記点灯パルスを前記高輝度発光素子の点灯開始タイミングと同時に印加する医療用機器の光源装置。
A light source device for medical equipment according to claim 5,
A light source device for a medical device, wherein the light source control unit applies the lighting pulse simultaneously with a lighting start timing of the high-luminance light emitting element.
請求項1〜請求項6のいずれか一項記載の医療用機器の光源装置であって、
前記複数の発光素子が発光ダイオードである医療用機器の光源装置。
A light source device for a medical device according to any one of claims 1 to 6,
A light source device for medical equipment, wherein the plurality of light emitting elements are light emitting diodes.
請求項1〜請求項7のいずれか一項記載の医療用機器の光源装置が搭載された内視鏡装置。   An endoscope apparatus on which the light source device for medical equipment according to any one of claims 1 to 7 is mounted.
JP2011193337A 2011-09-05 2011-09-05 Light source device of medical instrument and endoscope Abandoned JP2013052156A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011193337A JP2013052156A (en) 2011-09-05 2011-09-05 Light source device of medical instrument and endoscope
CN2012103079425A CN102973239A (en) 2011-09-05 2012-08-27 Light supply device and endoscope device used for medical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193337A JP2013052156A (en) 2011-09-05 2011-09-05 Light source device of medical instrument and endoscope

Publications (1)

Publication Number Publication Date
JP2013052156A true JP2013052156A (en) 2013-03-21

Family

ID=47847799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193337A Abandoned JP2013052156A (en) 2011-09-05 2011-09-05 Light source device of medical instrument and endoscope

Country Status (2)

Country Link
JP (1) JP2013052156A (en)
CN (1) CN102973239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018008079A1 (en) * 2016-07-05 2019-06-13 オリンパス株式会社 Lighting device with multiple narrow band light sources
WO2024171726A1 (en) * 2023-02-16 2024-08-22 Hoya株式会社 Electronic endoscope system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6226546B2 (en) * 2013-04-12 2017-11-08 オリンパス株式会社 Endoscope device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158413A (en) * 2009-01-08 2010-07-22 Hoya Corp Light source apparatus for endoscope

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112959A (en) * 2000-10-06 2002-04-16 Asahi Optical Co Ltd Lighting device for electronic endoscope
JP2007252685A (en) * 2006-03-24 2007-10-04 Fujinon Corp Endoscopic apparatus
JP2008048905A (en) * 2006-08-24 2008-03-06 Olympus Medical Systems Corp Endoscope apparatus
JP2009034224A (en) * 2007-07-31 2009-02-19 Olympus Medical Systems Corp Medical treatment apparatus
JP2010068859A (en) * 2008-09-16 2010-04-02 Fujifilm Corp Endoscope apparatus and dimming control method for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158413A (en) * 2009-01-08 2010-07-22 Hoya Corp Light source apparatus for endoscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018008079A1 (en) * 2016-07-05 2019-06-13 オリンパス株式会社 Lighting device with multiple narrow band light sources
WO2024171726A1 (en) * 2023-02-16 2024-08-22 Hoya株式会社 Electronic endoscope system

Also Published As

Publication number Publication date
CN102973239A (en) 2013-03-20

Similar Documents

Publication Publication Date Title
JP5431294B2 (en) Endoscope device
JP5709691B2 (en) Endoscope device
US20140371535A1 (en) Imaging device and endoscope apparatus including the same
JP5292379B2 (en) Endoscope device
JP6150944B2 (en) Imaging system
JP5558635B2 (en) Endoscope device
CN102961113A (en) Endoscopic apparatus
JP6180612B2 (en) Endoscope device
JP2012223376A (en) Control circuit and control method of light-emitting diode for lighting, and electronic endoscope apparatus using the same
JP2013052156A (en) Light source device of medical instrument and endoscope
CN109310310B (en) Endoscope system
JP7224985B2 (en) Medical light source device and medical observation system
JP5694492B2 (en) Endoscope device
JP5470224B2 (en) Endoscope device
JP6353962B2 (en) Endoscope device
JP6046854B2 (en) Endoscope device
JP2016005804A (en) Endoscope apparatus
CN113573626B (en) Light source and endoscope system
JP2012143366A (en) Endoscope apparatus
JP5816765B2 (en) Endoscope device
JP6240700B2 (en) Endoscope device
JP6630777B2 (en) Endoscope device
JP6280406B2 (en) Endoscope system
JP2013042855A (en) Endoscopic apparatus and light source control method for the same
JP5909591B2 (en) Endoscope device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130802

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130918