JP2012064676A - Lighting system - Google Patents

Lighting system Download PDF

Info

Publication number
JP2012064676A
JP2012064676A JP2010206199A JP2010206199A JP2012064676A JP 2012064676 A JP2012064676 A JP 2012064676A JP 2010206199 A JP2010206199 A JP 2010206199A JP 2010206199 A JP2010206199 A JP 2010206199A JP 2012064676 A JP2012064676 A JP 2012064676A
Authority
JP
Japan
Prior art keywords
emitting element
light emitting
led light
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010206199A
Other languages
Japanese (ja)
Inventor
Takashi Ikebe
隆史 池辺
Masayuki Nishimura
雅之 西村
Kazuki Yasunaga
一樹 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Electric Manufacturing Co Ltd
Original Assignee
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Electric Manufacturing Co Ltd filed Critical Diamond Electric Manufacturing Co Ltd
Priority to JP2010206199A priority Critical patent/JP2012064676A/en
Publication of JP2012064676A publication Critical patent/JP2012064676A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lighting system which provides preferable heat radiation effect without causing conduction failure.SOLUTION: In a lighting system 100 according to an embodiment, a filler 160 functions as an insulation member. Thus, even if the filler 160 comes in contact with any of pattern wiring 122a and 122b, the contact does not cause conduction failure. Further, the filler 160 has predetermined fluidity and thus allows the displacement of the relative positions of the LED light emitting element 121 and a heat transfer part 133 in a certain range while maintaining the contact state of the LED light emitting element 121 and the heat transfer part 133. As a result, even if the LED light emitting element 121 generates heat and the temperature of the area around a junction part rises, the filler 160 does not restrict the positional relationship of the LED light emitting element 121 and the heat transfer part 133 and thus preventing the occurrence of heat stress.

Description

本発明は、LED発光素子を光源とする照明装置に関し、特に、LED発光素子で生じた熱量を放熱させる際に用いて好適のものである。   The present invention relates to an illumination device using an LED light emitting element as a light source, and is particularly suitable for use in dissipating heat generated by an LED light emitting element.

近年、LED(Light Emitting Diode)の製品開発が進み、あらゆる場面でLED発光素子を用いた装置が利用されている。また、LED発光素子は、定格電流以下で使用されると寿命が非常に長くなるため、白熱灯又は蛍光灯等の光源の代替品として置換えられつつある。   In recent years, LED (Light Emitting Diode) product development has progressed, and devices using LED light-emitting elements are used in every situation. In addition, since the LED light emitting element has a very long life when used at a rated current or lower, it is being replaced as a substitute for a light source such as an incandescent lamp or a fluorescent lamp.

しかし、LED発光素子は、入力電流を増加させると、発光効率を低下させる性質が有るため、発光エネルギー低下分について発熱量を増加させてしまう。従って、所望の光量を得るため入力電流を増加させると、LED発光素子は、発光効率を更に低下させ発熱量を一層増加させてしまうという悪循環を招く。このため、LED発光素子を用いる装置では、当該素子の実装部について適切な放熱構造が必要とされる。   However, since the LED light emitting element has a property of reducing the light emission efficiency when the input current is increased, the amount of heat generation is increased for the decrease in the light emission energy. Therefore, when the input current is increased to obtain a desired light amount, the LED light emitting element causes a vicious circle in which the light emission efficiency is further reduced and the heat generation amount is further increased. For this reason, in the apparatus using an LED light emitting element, an appropriate heat dissipation structure is required for the mounting portion of the element.

そこで、特開2003−168829号公報(特許文献1)では、LEDを実装させた回路基板について、放熱性を改善させるための基板構造が紹介されている。かかる基板構造は、図5(a)に示す如く、電気的導電性の良好な導体板と13と、導体板に積層され上面に配線層12a,12bを形成させた絶縁層12と、配線層12a,12bに実装された発光ダイオードチップ14とから構成される。   Therefore, Japanese Patent Laying-Open No. 2003-168829 (Patent Document 1) introduces a substrate structure for improving the heat dissipation of a circuit board on which an LED is mounted. As shown in FIG. 5A, the substrate structure includes a conductor plate 13 having good electrical conductivity, an insulating layer 12 laminated on the conductor plate and having wiring layers 12a and 12b formed on the upper surface, and a wiring layer. It is comprised from the light emitting diode chip 14 mounted in 12a, 12b.

また、絶縁層12は、適宜の位置に貫通孔が形成されており、当該貫通孔の近傍に発光ダイオードチップ14が配置されている。当該発光ダイオードチップ14は、アノード側の電極層及びカソード側の電極層を具備し(図5a参照)、併せて、発光面が設けられている。アノード側の電極層は、半田バンプBm2を介してアノード側の配線層12aに導通され、カソード側の配線層12bは、ハンダバンプBm1を介してカソード側の配線層12bに導通される。導体板13は、アルミ製の導電性材料から形成されるものであって、凸状の熱伝達部材13aが一体的に形成されている。図示の如く、熱伝達部材13aは、絶縁層の貫通孔へ挿入され、カソード側の電極層に接触している。   The insulating layer 12 has through holes formed at appropriate positions, and the light emitting diode chip 14 is disposed in the vicinity of the through holes. The light-emitting diode chip 14 includes an anode-side electrode layer and a cathode-side electrode layer (see FIG. 5A), and is provided with a light-emitting surface. The anode-side electrode layer is electrically connected to the anode-side wiring layer 12a via the solder bump Bm2, and the cathode-side wiring layer 12b is electrically connected to the cathode-side wiring layer 12b via the solder bump Bm1. The conductor plate 13 is formed of an aluminum conductive material, and a convex heat transfer member 13a is integrally formed. As illustrated, the heat transfer member 13a is inserted into the through hole of the insulating layer and is in contact with the electrode layer on the cathode side.

従って、かかる基板構造では、LEDが発熱すると、其の熱量が熱伝達部材13aを介して導電板13へ伝達される。このとき、熱伝達部材13a及び導電板13は、熱伝達効率の高いアルミ製とされているので、LEDの熱量を効果的に放熱させることが可能となる。   Therefore, in such a substrate structure, when the LED generates heat, the amount of heat is transmitted to the conductive plate 13 via the heat transfer member 13a. At this time, since the heat transfer member 13a and the conductive plate 13 are made of aluminum with high heat transfer efficiency, it is possible to effectively dissipate the heat quantity of the LED.

特開2003−168829号公報JP 2003-168829 A

(導通不良に係る第1の課題)
しかしながら、特許文献1の技術では、カソード側の電極層に導通された熱伝達部13aがアノード側の配線層12a及び半田バンプBm2の直近に配されるので、アノード側(熱伝達部13a)とカソード側(主に、配線層12a,半田バンプBm2)との隙間が極めて狭小となる。このため、塵等の堆積物又はリフロー後の半田バンプBm2の形状如何によっては、アノード側(熱伝達部13a)とカソード側(主に、配線層12a,半田バンプBm2)とが電気的に接触してしまい、LEDの発光不良を招いてしまうとの問題が生じる。
(First problem related to poor conduction)
However, in the technique of Patent Document 1, since the heat transfer portion 13a conducted to the electrode layer on the cathode side is arranged in the immediate vicinity of the wiring layer 12a on the anode side and the solder bump Bm2, the heat transfer portion 13a is connected to the anode side (heat transfer portion 13a). The gap with the cathode side (mainly, the wiring layer 12a and the solder bump Bm2) becomes extremely narrow. Therefore, the anode side (heat transfer portion 13a) and the cathode side (mainly the wiring layer 12a and the solder bump Bm2) are in electrical contact depending on the deposits such as dust or the shape of the solder bump Bm2 after reflow. As a result, there arises a problem that the light emission failure of the LED is caused.

(導通不良に係る第2の課題)
特許文献1の技術に係る更なる問題点を挙げると、図5(a)に示される基板構造は、LED発光素子14の電極層と基板側の配線層12a,12bとの間に好適な隙間部を与えて、半田バンプが配線層へ溶着した後のジャンクション部の電気的接続状態を保障するものである。このため、配線層表面のレベルと熱伝達部材13aの高さ寸法ついて所定の寸法公差がクリヤされていなければ、ジャンクション部での良好な導通状態が形成され得ない。尚、寸法公差に関する問題は、LED発光素子を配線層(パターン配線)へ直接的に実装させる場面でも(図5b参照)、LED発光素子14の下面と熱伝達部材13aとを接触させる際に生じる問題でもある。
(Second problem related to poor conduction)
If the further problem which concerns on the technique of patent document 1 is given, the board | substrate structure shown by Fig.5 (a) will be suitable gap between the electrode layer of LED light emitting element 14, and wiring layers 12a and 12b by the side of a board | substrate. A portion is provided to ensure the electrical connection state of the junction portion after the solder bump is welded to the wiring layer. For this reason, if the predetermined dimensional tolerance is not cleared about the level of the wiring layer surface and the height of the heat transfer member 13a, a good conduction state cannot be formed at the junction. In addition, the problem regarding the dimensional tolerance occurs when the lower surface of the LED light emitting element 14 and the heat transfer member 13a are brought into contact with each other even when the LED light emitting element is directly mounted on the wiring layer (pattern wiring) (see FIG. 5b). It is also a problem.

(導通不良に係る第3の課題)
また、LED発光素子14は、発光動作と同時に発熱が不可避的に生じてしまうため、LED発光素子の周辺で温度変化が顕著に現われる。この場面において、熱伝達部13aと絶縁層12とでは互いの熱膨張率が異なるため、LED発光素子14のジャンクション部(電極層と配線層12a,12bとの導通箇所)では、半田バンプBm1,Bm2の剥離又はクラックが生じる危険性が高まるため、当該ジャンクション部で電気的な導通不良を招くことが懸念される。尚、図5(b)の基板構造おいて、LED発光素子14の下面と熱伝達部材13aとの間に半田層を形成させることも考えられる。この場合、LED発光素子の発光動作に応じて半田層及び半田部Msに熱応力が加わるので、同図における基板構造は、半田部Msの剥離又はクラック等が生じ、ジャンクション部での導通不良を生じさせる危険が有る。
(Third problem related to poor conduction)
Further, since the LED light emitting element 14 inevitably generates heat at the same time as the light emitting operation, a temperature change appears remarkably around the LED light emitting element. In this scene, the heat transfer portion 13a and the insulating layer 12 have different coefficients of thermal expansion. Therefore, at the junction portion of the LED light emitting element 14 (conducting portion between the electrode layer and the wiring layers 12a and 12b), the solder bumps Bm1, Since the risk of peeling or cracking of Bm2 increases, there is a concern that an electrical conduction failure may be caused at the junction. In addition, in the board | substrate structure of FIG.5 (b), it is also considered to form a solder layer between the lower surface of the LED light emitting element 14, and the heat transfer member 13a. In this case, thermal stress is applied to the solder layer and the solder part Ms in accordance with the light emitting operation of the LED light emitting element. Therefore, the substrate structure in FIG. There is a danger of causing it.

(第2の課題及び第3の課題に対する回避案)
図5(c)は、上述した第2の課題及び第3の課題に対する回避案が示されている。当該回避案に係る基板構造は、熱伝達部材13aとLED発光素子14のカソード電極層との間に、電気的導電性及び熱伝導性の両性能が良好なグリス等を充填させるものである。かかる基板構造によれば、グリスが熱応力の干渉機能を果たし、ジャンクション部の周辺温度が変動しても、半田バンプBm1,Bm2の剥離又はクラック等の弊害が解消されるものとされる。
(Avoidance plan for the second and third issues)
FIG. 5C shows a workaround for the second and third problems described above. The substrate structure according to the avoidance plan is to fill the gap between the heat transfer member 13a and the cathode electrode layer of the LED light-emitting element 14 with grease or the like that has both good electrical and thermal conductivity. According to such a substrate structure, the grease performs a thermal stress interference function, and even if the ambient temperature of the junction portion fluctuates, adverse effects such as peeling or cracking of the solder bumps Bm1 and Bm2 are eliminated.

(導通不良に係る第4の課題)
しかしながら、グリス(カソード側)は、固体材質と比較して流動性が高いため、第1の課題と同様、アノードに接触してしまう危険を具備しており、LED発光素子14の動作不良を生じさせる惧れがある。また、グリスの替わりに接着剤(導電性及び熱伝導性を有する)を用いることも考えられるが、当該接着剤の塗布段階では所定の流動性を有すため、導電性を有する接着剤がアノード側に接触してしまう危険を免れない。
(Fourth problem related to poor conduction)
However, since the grease (cathode side) has higher fluidity than the solid material, it has a risk of coming into contact with the anode, as in the first problem, and causes the LED light emitting element 14 to malfunction. There is a fear. In addition, it is conceivable to use an adhesive (having conductivity and thermal conductivity) instead of grease. However, since the adhesive has a predetermined fluidity at the application stage of the adhesive, the adhesive having conductivity is an anode. The risk of touching the side is inevitable.

本発明は上記課題に鑑み、導通不良を起こすことなく好適な放熱効果を与え得る照明装置の提供を目的とする。   An object of this invention is to provide the illuminating device which can give the suitable heat dissipation effect, without raise | generating a conduction defect in view of the said subject.

上記課題を解決するため、本発明では次のような照明装置の構成とする。即ち、LED発光素子と、一方の面及び他方の面を連通させる貫通孔を有し前記貫通孔の近傍で前記LED発光素子がパターン配線に実装されている配線基板と、熱伝導性及び電気的絶縁性の両性能が優れている材質から形成されると共に前記材質で形成された積層面に前記配線基板を積層させている放熱基板と、熱伝導性及び電気的絶縁性の両性能が優れている材質から形成されると共に前記LED発光素子及び前記放熱基板の間に介在するよう前記貫通孔の内部に挿入された熱伝達部とを備えることとする。   In order to solve the above-described problems, the present invention has the following illumination device configuration. That is, an LED light emitting element, a wiring board having a through hole communicating with one surface and the other surface, the LED light emitting element being mounted on the pattern wiring in the vicinity of the through hole, and thermal conductivity and electrical It is formed from a material that has both excellent insulating properties, and a heat dissipation substrate in which the wiring board is laminated on the laminated surface formed of the material, and both the thermal conductivity and electrical insulating properties are excellent. And a heat transfer portion inserted into the through hole so as to be interposed between the LED light emitting element and the heat dissipation substrate.

好ましくは、前記放熱基板は、前記熱伝達部を形成する材質と同一材質から成り、前記積層面に前記熱伝達部が一体的に形成されていることとする。   Preferably, the heat dissipation substrate is made of the same material as that forming the heat transfer portion, and the heat transfer portion is integrally formed on the laminated surface.

好ましくは、前記放熱基板は、セラミック絶縁材から形成されることとする。   Preferably, the heat dissipation substrate is formed from a ceramic insulating material.

好ましくは、前記LED発光素子を積層方向に沿って前記積層面へ投影させた像を発光素子投影像とすると、前記熱伝達部の少なくとも一部は、前記発光素子投影像に含まれることとする。   Preferably, when an image obtained by projecting the LED light emitting element onto the stacking surface along the stacking direction is a light emitting element projected image, at least a part of the heat transfer unit is included in the light emitting element projected image. .

好ましくは、前記LED発光素子を積層方向に沿って前記積層面へ投影させた像を発光素子投影像とすると、前記熱伝達部の全部は、前記発光素子投影像に含まれることとする。   Preferably, when an image obtained by projecting the LED light emitting element onto the stacking surface along the stacking direction is a light emitting element projected image, the entire heat transfer portion is included in the light emitting element projected image.

好ましくは、前記LED発光素子と前記熱伝達部との間には間隙が形成され、当該間隙には熱伝導性及び電気的絶縁性の両性能が優れている充填材が充填されていることとする。   Preferably, a gap is formed between the LED light emitting element and the heat transfer unit, and the gap is filled with a filler having excellent performance in both thermal conductivity and electrical insulation. To do.

好ましくは、前記配線基板は、パターン配線を積層させている基板層が樹脂性材料であることとする。   Preferably, in the wiring substrate, the substrate layer on which the pattern wiring is laminated is a resinous material.

本発明に係る照明装置によると、熱伝達部をLED発光素子へ近接(直ぐ近くに配されること、及び、互いに接触することを含む)させるよう配置することにより、LED発光素子で生じた熱量を放熱基板へと効果的に伝達させる。また、当該照明装置では、かかる放熱効果と共に以下の効果を併せ持つ。   According to the lighting device according to the present invention, the amount of heat generated in the LED light emitting element by disposing the heat transfer unit close to the LED light emitting element (including being disposed in close proximity and contacting each other). Is effectively transmitted to the heat dissipation board. The lighting device has the following effects as well as the heat dissipation effect.

即ち、本発明に係る照明装置によると、熱伝達部が電気的絶縁性の材質とされることにより、配線基板上のパターン配線又は当該パターン配線上の半田に熱伝達部が近接するよう配置されても、熱伝達部の材質が絶縁性材料とされているので、アノード側へ投入される入力電流が熱伝達部13aを介してカソード側へ漏出することがなくなる。このため、LED発光素子では、アノード電極に十分な入力電流が供給されるため、発光不良といった不具合が解消される。   That is, according to the lighting device according to the present invention, the heat transfer portion is made of an electrically insulating material, so that the heat transfer portion is disposed close to the pattern wiring on the wiring board or the solder on the pattern wiring. However, since the material of the heat transfer portion is an insulating material, the input current input to the anode side does not leak to the cathode side via the heat transfer portion 13a. For this reason, in the LED light emitting element, a sufficient input current is supplied to the anode electrode, so that a problem such as defective light emission is solved.

また、LED発光素子と熱伝達部との隙間に充填材を充填させる場合、寸法公差及び熱応力に起因する課題が解消される。そして、この充填材は、電気的絶縁性を有する材料とされるので、アノード側へ投入される入力電流が充填材を介してカソード側へ漏出することがなくなる。このため、LED発光素子では、上述同様、発光不良といった不具合が解消される。   In addition, when the filler is filled in the gap between the LED light emitting element and the heat transfer portion, problems due to dimensional tolerance and thermal stress are eliminated. Since the filler is made of an electrically insulating material, the input current supplied to the anode side does not leak to the cathode side through the filler. For this reason, in the LED light emitting element, the problem such as defective light emission is solved as described above.

実施の形態に係る照明装置の構成を示す図。FIG. 6 illustrates a structure of a lighting device according to an embodiment. 実施の形態に係る照明装置の製造方法を示す図。The figure which shows the manufacturing method of the illuminating device which concerns on embodiment. 照明装置に係る他の製造方法を示す図。The figure which shows the other manufacturing method which concerns on an illuminating device. LED発光素子と熱伝達部との配置関係を示す図The figure which shows the arrangement | positioning relationship between a LED light emitting element and a heat-transfer part. 従来例に係る照明装置の構成を示す図。The figure which shows the structure of the illuminating device which concerns on a prior art example.

以下、本発明に係る実施の形態につき図面を参照して説明する。図1に示す如く、照明装置100(所謂、LED電球)は、光透過部110と配線基板120と放熱部材130と制御回路140と制御回路格納体150とから構成される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the lighting device 100 (so-called LED bulb) includes a light transmission part 110, a wiring board 120, a heat radiating member 130, a control circuit 140, and a control circuit housing 150.

光透過部110は、光透過性の樹脂製材料又はガラス材料から形成され、本実施の形態では図示の如く半球体を呈している。光透過部110は、其の材料または形状によって、光量または光の拡散方向を調整する役割を担う。また、LED発光素子(光源)を保護する役割をも担う。   The light transmitting portion 110 is formed of a light transmitting resin material or glass material, and in the present embodiment, has a hemispherical shape as illustrated. The light transmission unit 110 plays a role of adjusting the light amount or the light diffusion direction depending on the material or shape thereof. It also plays a role of protecting the LED light emitting element (light source).

配線基板120は、絶縁性材料から成る基板層126にパターン配線122が積層される。パターン配線122は、アルミ又は銅等の薄膜体によって構成され、当該パターン配線の端部には適宜な面積のランドが形成される。このうち、ランド123及びランド124は、其の下層部にスルーホールが形成され、制御回路140を介して電流の入出力が行なわれる。   The wiring substrate 120 has a pattern wiring 122 laminated on a substrate layer 126 made of an insulating material. The pattern wiring 122 is formed of a thin film body such as aluminum or copper, and a land having an appropriate area is formed at the end of the pattern wiring. Among these, the land 123 and the land 124 have through holes formed in the lower layer thereof, and currents are input / output via the control circuit 140.

かかる配線基板120は、図2(a)に示す如く(図1のA−A断面図)、基板層126の上面(一方の面)〜下面(他方の面)を貫く貫通孔125が形成されている。本実施の形態にあっては、パターン配線122a及び122bは、貫通孔125の周辺で遮断され、当該パターン配線が両脇に配置されることとなる。この各々のパターン配線122a,122bは、貫通孔125の近傍でランドLa,Lbをそれぞれ形成させている。LED発光素子121は、LED発光素子に設けられた電極121a,121bをランドLa,Lbへ配置させ、当該電極とランドとを半田Msによって導通させる(図2b参照)。即ち、LED発光素子121は、貫通孔125の近傍に配置されることとなる。   As shown in FIG. 2A (cross-sectional view taken along the line AA in FIG. 1), the wiring board 120 has a through hole 125 penetrating from the upper surface (one surface) to the lower surface (the other surface) of the substrate layer 126. ing. In the present embodiment, the pattern wirings 122a and 122b are blocked around the through hole 125, and the pattern wirings are arranged on both sides. Each of the pattern wirings 122a and 122b has lands La and Lb formed in the vicinity of the through hole 125, respectively. In the LED light emitting element 121, electrodes 121a and 121b provided on the LED light emitting element are disposed on the lands La and Lb, and the electrodes and the lands are electrically connected by solder Ms (see FIG. 2b). That is, the LED light emitting element 121 is disposed in the vicinity of the through hole 125.

従って、パターン配線122は、ランドLa,Lbに実装されたLED発光素子を伴って、図1に示す如く全体として直列回路を形成する。以下、ランドLaは、LED発光素子125のアノード側の電極が導通されるものとし、アノード側ランドLaと呼び換える。また、ランドLbは、LED発光素子125のカソード側の電極が導通されるものとし、カソード側ランドLbと呼び換える。これに応じて、各構成の呼名を、アノード側パターン配線122a、カソード側パターン配線122b、アノード側電極121a、カソード側電極121b、と呼換えを行なう。   Therefore, the pattern wiring 122 forms a series circuit as a whole as shown in FIG. 1 with the LED light emitting elements mounted on the lands La and Lb. Hereinafter, the land La is referred to as the anode-side land La, assuming that the anode-side electrode of the LED light emitting element 125 is conductive. The land Lb is referred to as the cathode-side land Lb, assuming that the cathode-side electrode of the LED light emitting element 125 is conductive. In response to this, the name of each component is changed to the anode side pattern wiring 122a, the cathode side pattern wiring 122b, the anode side electrode 121a, and the cathode side electrode 121b.

配線基板120の基板層126は樹脂性材料とされる。この樹脂性材料は、LED発光素子121の発熱量に応じて決められるものであるが、一般に、80℃〜100℃程度に耐え得る材質であれば良いとされる。従って、配線基板120には、ガラスエポキシ基板、紙エポキシ基板、紙フェノール基板等を用いると良い。これらの基板は、上述した耐熱性能を充足するものであり、安価に製造することが可能である。   The substrate layer 126 of the wiring substrate 120 is made of a resin material. This resinous material is determined according to the amount of heat generated by the LED light-emitting element 121, but is generally considered to be a material that can withstand about 80 ° C to 100 ° C. Therefore, a glass epoxy board, a paper epoxy board, a paper phenol board, or the like is preferably used for the wiring board 120. These substrates satisfy the heat resistance described above, and can be manufactured at low cost.

LED発光素子121は、LEDの半導体をパッケージに封入させ、当該パッケージにアノード側電極121a及びカソード側電極121bを配している。また、このパッケージには、LEDの発光部近傍に光透過性材又はレンズ等が設けられている。アノード側電極121aに入力電流が投入されると、LEDを構成する半導体では、伝導帯の電子と価電子帯の正孔とが再結合する際に、双方のエネルギーバンドギャップに相当する光を発生させる。このとき、LED発光素子121からは、レンズ等を介して光が放出されると共に、通常のダイオードと同様に熱量を発生させる。   In the LED light emitting element 121, an LED semiconductor is sealed in a package, and an anode side electrode 121a and a cathode side electrode 121b are arranged in the package. Further, in this package, a light transmissive material or a lens is provided in the vicinity of the light emitting portion of the LED. When an input current is input to the anode-side electrode 121a, in the semiconductor constituting the LED, light corresponding to both energy band gaps is generated when electrons in the conduction band and holes in the valence band recombine. Let At this time, light is emitted from the LED light emitting element 121 through a lens or the like, and heat is generated in the same manner as a normal diode.

放熱基板130は、図示の如く、放熱フィン131及び積層面132を形成させている。また、当該放熱基板130は、積層方向Fdの下方側に開口部を有する空間が形成され、制御回路格納体150の一部を当該空間の内部へ収容させる。放熱フィン131は、主として放熱基板130の側部に複数形成され、表面積を大きく確保する形状を呈している。積層面132は、略平坦な面とされ、接着層(図示なし)等を介して配線基板120を積層させる。   As shown in the figure, the heat dissipation substrate 130 has heat dissipation fins 131 and a laminated surface 132 formed thereon. In addition, the heat dissipation board 130 is formed with a space having an opening on the lower side in the stacking direction Fd, and accommodates a part of the control circuit housing 150 in the space. A plurality of the heat radiation fins 131 are formed mainly on the side portion of the heat radiation substrate 130 and have a shape that ensures a large surface area. The laminated surface 132 is a substantially flat surface, and the wiring substrate 120 is laminated via an adhesive layer (not shown) or the like.

熱伝達部133は、配線基板120の貫通孔125に対応してレイアウトされる。当該熱伝達部133は、図2(d)に示す如く、配線基板120が放熱基板130へ積層されると、LED発光素子121と放熱基板との間に介在するように、貫通孔125の内部に挿入されることとなる。   The heat transfer unit 133 is laid out corresponding to the through hole 125 of the wiring board 120. As shown in FIG. 2D, the heat transfer portion 133 is arranged inside the through-hole 125 so that when the wiring board 120 is stacked on the heat dissipation board 130, the heat transfer section 133 is interposed between the LED light emitting element 121 and the heat dissipation board. Will be inserted.

熱伝達部133の材質は、熱伝導性能の優れた材質であるという第1の条件と、電気的絶縁性能が優れた材質であるという第2の条件との双方の条件が満たされることを必要とする。第1の条件(熱伝導性能)は、LED発光素子141で生じた熱量を効果的に放熱基板130へ伝達させるためである。また、第2の条件(電気的絶縁性能)は、アノード側パターン配線122a(アノード側の半田を含む)が何らかの原因で熱伝達部133に接触するような場面でも、アノード側へ投入された入力電流が熱伝達部133を介してカソード側へ流れ込まないようにするためである。   The material of the heat transfer unit 133 needs to satisfy both the first condition that the material is excellent in heat conduction performance and the second condition that the material is excellent in electrical insulation performance. And The first condition (heat conduction performance) is to effectively transfer the amount of heat generated in the LED light emitting element 141 to the heat dissipation substrate 130. In addition, the second condition (electrical insulation performance) is the input input to the anode side even when the anode side pattern wiring 122a (including the anode side solder) contacts the heat transfer unit 133 for some reason. This is to prevent current from flowing into the cathode via the heat transfer unit 133.

また、放熱基板130の材質についても、熱伝導性能の優れた材質であるという第1の条件と、電気的絶縁性能が優れた材質であるという第2の条件との双方の条件が満たされることを必要としている。第1の条件(熱伝導性能)は、主に熱伝達部133を起点として放熱フィン131に至る経路の熱勾配を大きく保ち、放熱効率を高く保つためである。一方、放熱基板130の電気的性質に関しては、放熱性基板130がアルミ等の良導体であるとした場合、貫通孔125の隙間で微細な半田又は塵等が堆積し通電経路が形成されてしまうと、アルミ材(放熱基板)を介してパターン配線上の電流が漏電してしまうという問題が生じる。このため、第2の条件(電気的絶縁性能)を設け、電気的な絶縁を行なう放熱基板130によって電流の漏出を断ち、LED発光素子121における発光動作を好適な状態に維持させるのである。   In addition, the material of the heat dissipation substrate 130 must satisfy both the first condition that the material has excellent heat conduction performance and the second condition that the material has excellent electrical insulation performance. Need. The first condition (heat conduction performance) is mainly for maintaining a large thermal gradient in the path from the heat transfer portion 133 to the heat dissipating fin 131 and maintaining high heat dissipation efficiency. On the other hand, regarding the electrical properties of the heat dissipation board 130, if the heat dissipation board 130 is a good conductor such as aluminum, fine solder or dust is deposited in the gaps of the through holes 125, and an energization path is formed. There arises a problem that the current on the pattern wiring is leaked through the aluminum material (heat dissipation board). Therefore, the second condition (electrical insulation performance) is provided, current leakage is cut off by the heat dissipation board 130 that performs electrical insulation, and the light emitting operation of the LED light emitting element 121 is maintained in a suitable state.

従って、放熱基板130及び熱伝達部133は、双方とも材質に係る同一の条件が課されているところ、双方とも同一の材質・材料とされるのが好ましい。そして、放熱基板130及び133は、同一の材質・材料が選ばれるのであれば、双方を一体的に形成させることが可能となり、製造工程の簡素化、及び、製造コストの低廉化を実現できる。   Therefore, it is preferable that both the heat dissipation substrate 130 and the heat transfer unit 133 are made of the same material and material, while the same conditions relating to the material are imposed. If the same material / material is selected for the heat dissipation substrates 130 and 133, both can be integrally formed, and the manufacturing process can be simplified and the manufacturing cost can be reduced.

また、放熱基板130及び熱伝達部133は、第1の条件及び第2の条件を充足させるため、窒化アルミ,アルミナ,ジルコニア等、熱伝導率の比較的高いセラミック絶縁材から形成されるのが好ましい。   Further, the heat dissipation substrate 130 and the heat transfer part 133 are formed of a ceramic insulating material having a relatively high thermal conductivity such as aluminum nitride, alumina, zirconia, etc. in order to satisfy the first condition and the second condition. preferable.

図1に戻り、制御回路140は、パワートランジスタ又は制御用ICを基板上に実装させ、入力側では商用電力が供給され、出力側の端子ではランド123及び124に導通するよう適宜な配線が施される。当該制御回路140は、商用電力を所望の状態に変換させ、LED発光素子で必要とされる電流を出力させる。かかる制御回路140では、光量を制御するようにしても良く、LEDの色調を制御するようにしても良い。   Returning to FIG. 1, the control circuit 140 mounts a power transistor or a control IC on the substrate, and commercial power is supplied on the input side, and appropriate wiring is applied to the lands 123 and 124 on the output side terminals. Is done. The control circuit 140 converts the commercial power into a desired state and outputs a current required for the LED light emitting element. In the control circuit 140, the light amount may be controlled, or the color tone of the LED may be controlled.

制御回路格納体150は、円筒部152と土台部151と口金部153とから構成される。円筒部152及び土台部151は、樹脂材等の電気的絶縁性材料から成り、双方が一体的に形成されている。円筒部152は、一端に開口部が形成され制御回路140を収容させる。口金部153は、銅合金等の導電性材料から成り、図示されないソケットに螺着可能な形状とされる。口金部153は、内部で制御回路140と適宜に配線され、当該制御回路140に商用電力を中継させる。   The control circuit storage body 150 includes a cylindrical portion 152, a base portion 151, and a base portion 153. The cylindrical portion 152 and the base portion 151 are made of an electrically insulating material such as a resin material, and both are integrally formed. The cylindrical portion 152 is formed with an opening at one end and accommodates the control circuit 140. The base portion 153 is made of a conductive material such as a copper alloy and has a shape that can be screwed into a socket (not shown). The base part 153 is appropriately wired with the control circuit 140 inside, and relays commercial power to the control circuit 140.

かかる構成を具備する照明装置100は、積層方向Fdへ順次組立てられ、図示されないソケット部に口金部153が取付けられる。そして、ソケット部から商用電力が供給されると、LED発光素子121が発光され、このとき放出された光は、光通過部110によって光の進行方向等が調整され、光通過部周辺に明かりを提供する。   The lighting device 100 having such a configuration is sequentially assembled in the stacking direction Fd, and a base portion 153 is attached to a socket portion (not shown). When commercial power is supplied from the socket, the LED light-emitting element 121 emits light, and the light emitted at this time is adjusted in the light traveling direction by the light passage 110, and lights around the light passage. provide.

また、照明装置100によると、熱伝達部133がLED発光素子121の近傍に配置されることにより、LED発光素子121で生じた熱量を放熱基板へと効果的に伝達させる。   Moreover, according to the illuminating device 100, the heat transfer part 133 is arrange | positioned in the vicinity of the LED light emitting element 121, and the quantity of heat which generate | occur | produced in the LED light emitting element 121 is effectively transmitted to a thermal radiation board | substrate.

また、当該照明装置100によると、配線基板上のパターン配線122a,122b又は当該パターン配線上の半田Msに熱伝達部133が近接するよう配置されても、熱伝達部133の材質が電気的絶縁性材料とされているので、アノード側へ投入される入力電流が熱伝達部13aを介してカソード側へ漏出することがなくなる。このため、LED発光素子121では、アノード端子に十分な入力電流が供給されるため、発光不良といった不具合が解消される。更に、カソード側の電流についても、放熱基板側へ漏出することがなくなる。このため、カソード側の後段に接続されるLED発光素子(図示なし)についても、アノード電極へ投入される入力電流が十分に確保され、所望の光量を放射することが可能となる。   In addition, according to the lighting device 100, even if the heat transfer unit 133 is disposed close to the pattern wirings 122a and 122b on the wiring board or the solder Ms on the pattern wiring, the material of the heat transfer unit 133 is electrically insulated. Therefore, the input current supplied to the anode side does not leak to the cathode side through the heat transfer portion 13a. For this reason, in the LED light emitting element 121, a sufficient input current is supplied to the anode terminal, so that the problem of defective light emission is solved. Furthermore, the current on the cathode side does not leak to the heat dissipation substrate side. For this reason, an LED light emitting element (not shown) connected to the subsequent stage on the cathode side can also ensure a sufficient input current to be supplied to the anode electrode and radiate a desired amount of light.

即ち、本実施の形態に係る照明装置100は、配線基板120に形成された貫通孔125の周辺構造について放熱性能及び電気的絶縁性能を実現させ、損失を与えることなくLED発光素子121のアノード電極121aへ入力電流を投入させ、且つ、好適な放熱機能を確保することでLED発光素子121の発光効率を維持させるという効果を奏する。   That is, the lighting device 100 according to the present embodiment realizes heat dissipation performance and electrical insulation performance for the peripheral structure of the through-hole 125 formed in the wiring board 120, and the anode electrode of the LED light-emitting element 121 without loss. An effect of maintaining the light emission efficiency of the LED light emitting element 121 is achieved by supplying an input current to 121a and ensuring a suitable heat dissipation function.

以下、本実施の形態に係る照明装置100の製造方法について説明する。図2(a)に示す如く、照明装置の製造工程では、貫通孔125を形成させた配線基板120が用いられることとなる。かかる配線基板120は、ガラスエポキシ基板等が用いられるが、貫通孔が予め穿孔されているものを製造ラインへ投入させても良く、或いは、製造ライン上で当該基板の適所を穿孔加工させても良い。そして、配線基板120は、孔加工工程へと送り込まれ、表面に形成されたアノード側ランド122aとカソード側ランド122bとの間に貫通孔125が形成される。その後、配線基板120は、図2(b)に示す如く実装工程へ送られ、LED発光素子121の電極を各ランドへ配置させてから、半田Msによって電極とランドとを接合させる。尚、この工程は、フロー半田槽を用いた装置で行われても良く、リフロー半田装置を用いても良い。   Hereinafter, the manufacturing method of the illuminating device 100 which concerns on this Embodiment is demonstrated. As shown in FIG. 2A, in the manufacturing process of the lighting device, the wiring board 120 in which the through holes 125 are formed is used. As the wiring substrate 120, a glass epoxy substrate or the like is used. However, a substrate in which a through hole has been previously drilled may be put into a production line, or a proper place of the substrate may be drilled on the production line. good. Then, the wiring board 120 is sent to the hole processing step, and a through hole 125 is formed between the anode side land 122a and the cathode side land 122b formed on the surface. Thereafter, the wiring board 120 is sent to the mounting process as shown in FIG. 2B, and after the electrodes of the LED light emitting elements 121 are arranged on the lands, the electrodes and the lands are joined by the solder Ms. In addition, this process may be performed with the apparatus using a flow solder tank, and may use a reflow solder apparatus.

同図の場合、図2(c)の工程において、貫通孔125に適宜な量の充填材160が注入される。充填材160は、熱伝導性及び電気的絶縁性の両性能が優れている材料が用いられる。また、当該充填材160は、周囲の構造物よりも流動性のある材質である。   In the case of FIG. 2, an appropriate amount of filler 160 is injected into the through-hole 125 in the step of FIG. The filler 160 is made of a material having both excellent thermal conductivity and electrical insulation performance. The filler 160 is a material that is more fluid than the surrounding structure.

充填材160は、其の材質自体が熱伝導性及び電気的絶縁性を具備しているものであっても良く、母材にフィラーなどの含有物を含ませ熱伝導性及び電気的絶縁性等の性質を調整させているものであっても良い。例えば、充填材には、シリコン製のグリスが好ましい。かかる材質は、所定の流動性を長期間保つことが可能だからである。また、固形化後に所定の弾性変形が確保されるのであれば、接着剤等を用いることも可能である。また、上述した性質を具備しているのであれば、貫通孔125の隙間部を埋めることが可能な弾性体を用いても良い。   The filler 160 may be a material that itself has thermal conductivity and electrical insulation. The filler 160 may include a filler and other inclusions, and the thermal conductivity and electrical insulation. You may adjust the property of. For example, the filler is preferably silicon grease. This is because such a material can maintain a predetermined fluidity for a long time. Also, an adhesive or the like can be used as long as predetermined elastic deformation is ensured after solidification. Further, an elastic body capable of filling the gap portion of the through hole 125 may be used as long as it has the above-described properties.

充填材160の注入が完了すると、図2(d)に示す如く、放熱基板130の積層面132に配線基板120を積層させる。このとき、熱伝達部133は貫通孔125へ押し込まれ、これに応じて、充填材160が貫通孔内の隙間全体に行渡る。   When the injection of the filler 160 is completed, the wiring board 120 is laminated on the laminated surface 132 of the heat dissipation board 130 as shown in FIG. At this time, the heat transfer part 133 is pushed into the through hole 125, and the filler 160 spreads over the entire gap in the through hole accordingly.

このように、貫通孔の隙間部に充填材160を充填させた基板構造によると、充填材160は、絶縁材として機能するため、パターン配線122a,122bの何れに接触しても導通不良を招くことはない。また、当該充填材160は、所定の流動的性を有するところ、LED発光素子121と熱伝達部133との接触状態を維持させつつ、双方の相対位置の変位を一定の範囲で許容させている。   As described above, according to the substrate structure in which the filler 160 is filled in the gap portion of the through hole, the filler 160 functions as an insulating material. Therefore, even if it contacts any of the pattern wirings 122a and 122b, a conduction failure is caused. There is nothing. In addition, the filler 160 has a predetermined fluidity, and allows the relative displacement between the LED light emitting element 121 and the heat transfer unit 133 to be allowed within a certain range while maintaining the contact state between the LED light emitting element 121 and the heat transfer unit 133. .

この結果、パターン配線の表面レベルと熱伝達部133の高さ寸法ついて、十分な許容誤差が認められることとなる。また、LED発光素子121が発熱しジャンクション部の周辺温度が上昇したとしても、充填材160は、LED発光素子121と熱伝達部133との位置関係を拘束させないため、熱応力の発生に係る問題をも解消させる。   As a result, a sufficient tolerance is recognized for the surface level of the pattern wiring and the height dimension of the heat transfer portion 133. In addition, even if the LED light emitting element 121 generates heat and the ambient temperature of the junction portion increases, the filler 160 does not restrain the positional relationship between the LED light emitting element 121 and the heat transfer portion 133, and thus a problem related to the generation of thermal stress. Is also eliminated.

ここで、図3を参照し、他の製造方法について検討する。かかる製造方法は、配線基板120に貫通孔125を形成させた後(図3a)、配線基板120を放熱基板130へ積層・貼付させ(図3b)、貫通孔125へ充填材160を注入させた後に(図3c)、LED発光素子121をパターン配線へ実装させる(図3d)。この製造方法によれば、LED発光素子とパターン配線とが導通されているかチェックする工程(導通検査)が、配線基板120を放熱基板130へ積層・付着させた後段の工程でなければ実施され得ないことになる。このため、かかる導通検査によって不良品が発見されると、配線基板及びLED発光素子と共に、放熱基板130をも製造ラインから取り除かなければならず、場合によっては当該放熱基板130をも廃棄処分させなければならない。   Here, with reference to FIG. 3, another manufacturing method will be examined. In this manufacturing method, after the through hole 125 is formed in the wiring substrate 120 (FIG. 3A), the wiring substrate 120 is laminated and pasted on the heat dissipation substrate 130 (FIG. 3B), and the filler 160 is injected into the through hole 125. Later (FIG. 3c), the LED light emitting element 121 is mounted on the pattern wiring (FIG. 3d). According to this manufacturing method, the step of checking whether the LED light-emitting element and the pattern wiring are conductive (continuity inspection) can be performed unless the step is subsequent to the step of laminating and attaching the wiring substrate 120 to the heat dissipation substrate 130. There will be no. For this reason, if a defective product is found by the continuity test, the heat dissipation board 130 must be removed from the production line together with the wiring board and the LED light emitting element, and in some cases, the heat dissipation board 130 must also be disposed of. I must.

これに対し、図2に係る製造方法によると、放熱基板130への積層工程(図2d)の前段で、LED発光素子121を配線基板120へ実装させる工程(図2b)が完了する。このため、放熱基板130への積層工程(図2d)の前段で配線基板120の導通検査を実施できるので、導通状態の不良な配線基板が製造工程から逸早く取り除くことが可能となる。従って、この製造方法によると、図3に係る製造方法と比較して、放熱基板130の除却・廃棄量が減少し、製造コストの低減が図られる。   On the other hand, according to the manufacturing method according to FIG. 2, the step (FIG. 2 b) of mounting the LED light emitting element 121 on the wiring substrate 120 is completed before the stacking step (FIG. 2 d) on the heat dissipation substrate 130. For this reason, since the continuity inspection of the wiring board 120 can be performed before the step of stacking the heat radiating board 130 (FIG. 2d), it becomes possible to quickly remove the wiring board having a poor conduction state from the manufacturing process. Therefore, according to this manufacturing method, as compared with the manufacturing method according to FIG. 3, the amount of removal and disposal of the heat dissipation substrate 130 is reduced, and the manufacturing cost can be reduced.

次に、LED発光素子121と熱伝達部133とのレイアウト上の関係について説明する。図4(a)は、上述した基板構造のうち配線基板120を取去った状態が示されている。同図に示されるLED発光素子130は、熱伝達部133の直上に配置されており、LED発光素子130の熱量が放熱基板側へ伝達されるための好適なポジションに配置されている。同図には、投影方向が示されており、当該投影方向は、積層方向Fdに沿って積層面132へ向けられているものとする。また、放熱基板130の積層面132には投影光によってLED発光素子121の実寸大の像が投影されており、この投影された像を、発光素子投影像と呼ぶこととする。   Next, a layout relationship between the LED light emitting element 121 and the heat transfer unit 133 will be described. FIG. 4A shows a state where the wiring board 120 is removed from the above-described board structure. The LED light-emitting element 130 shown in the figure is disposed immediately above the heat transfer unit 133, and is disposed at a suitable position for transferring the amount of heat of the LED light-emitting element 130 to the heat dissipation substrate side. In the figure, the projection direction is shown, and the projection direction is assumed to be directed to the lamination surface 132 along the lamination direction Fd. In addition, an actual size image of the LED light emitting element 121 is projected onto the laminated surface 132 of the heat dissipation substrate 130 by the projection light, and this projected image is referred to as a light emitting element projected image.

図4(b)は、LED発光素子130の投影像が熱伝達部133より十分に大きい場合が示されている。図示の如く、熱伝達部133の輪郭133aは、其の全てが発光素子投影像Sydに含まれるように配置されるのが好ましい。このような位置関係の基板構造では、熱伝達部133の頭部の全てが熱量の吸収面として機能するため、優れた放熱効果が期待できる。また、当然の如く、LED発光素子121と熱伝達部133との間に先の充填材160を介挿させることで、其の放熱効果が格段に向上する。   FIG. 4B shows a case where the projected image of the LED light emitting element 130 is sufficiently larger than the heat transfer unit 133. As shown in the figure, it is preferable that the outline 133a of the heat transfer unit 133 is arranged so that all of the outline 133a is included in the light emitting element projection image Syd. In the substrate structure having such a positional relationship, since all of the heads of the heat transfer unit 133 function as heat absorption surfaces, an excellent heat dissipation effect can be expected. In addition, as a matter of course, by inserting the filler 160 between the LED light emitting element 121 and the heat transfer part 133, the heat dissipation effect is remarkably improved.

更に好ましくは、図4(c)に示す如く、熱伝達部133の頭部面積を拡大させ、熱伝達部133の熱量の吸収性能を向上させると良い。この場合、発光素子投影像Sydと熱伝達部133の頭部とが重なる領域Yで熱交換が効果的に行なわれるため、熱伝達部133は、領域Yの面積を拡大させるような輪郭133aが定められることで、優れた放熱効果を実現させる。   More preferably, as shown in FIG. 4 (c), the head area of the heat transfer unit 133 may be increased to improve the heat absorption performance of the heat transfer unit 133. In this case, since heat exchange is effectively performed in the region Y where the light emitting element projection image Syd and the head of the heat transfer unit 133 overlap, the heat transfer unit 133 has a contour 133a that enlarges the area of the region Y. By being defined, an excellent heat dissipation effect is realized.

尚、同図では、LED発光素子121と熱伝達部133とのレイアウト上の好ましい位置関係について説明したが、レイアウト上の制約が存在する場合には、発光素子投影像Sydと熱伝達部133の頭部とが重なる領域Yについて、放熱機能上の不利な形態を執っても構わない。   In addition, in the same figure, although the preferable positional relationship on the layout of the LED light emitting element 121 and the heat transfer part 133 was demonstrated, when the restrictions on a layout exist, the light emitting element projection image Syd and the heat transfer part 133 of FIG. The region Y where the head overlaps may take a disadvantageous form on the heat dissipation function.

以上、本発明に係る実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、特許請求の範囲に記された技術的思想の範囲内において、種々の改良が可能である。例えば、実施の形態で説明した照明装置は、口金を有する民生用の照明器具について説明されているが、本発明に係る照明装置は、電力投入部が非規格品とされる照明器具,電飾看板,プリンター,信号又は交通標識等、光源を必要とするあらゆる技術分野での適用が可能である。また、放熱基板の形態についても、上述した一定の大きさを有する塊体のみならず、板状体又はその他の形状とすることもできる。   The embodiment according to the present invention has been described above, but the present invention is not limited to the above embodiment, and various improvements can be made within the scope of the technical idea described in the claims. It is. For example, the lighting device described in the embodiment has been described for a consumer lighting device having a base. However, the lighting device according to the present invention is a lighting device or an electric decoration whose power input unit is a non-standard product. It can be applied in all technical fields that require a light source, such as signs, printers, signals or traffic signs. Also, the form of the heat dissipation substrate can be not only a lump having a certain size as described above, but also a plate-like body or other shapes.

また、上述した実施の形態では、図2に係る製造方法が好ましいとしているが、本発明に係る照明装置は、図3に係る製造方法によっても製造され得るものである。更に、本発明に係る照明装置は、従来例で挙げられた半田バンプを有する基板構造にも適用することが可能である。   In the embodiment described above, the manufacturing method according to FIG. 2 is preferred, but the lighting device according to the present invention can also be manufactured by the manufacturing method according to FIG. Furthermore, the lighting device according to the present invention can be applied to the substrate structure having the solder bumps mentioned in the conventional example.

100 照明装置
120 配線基板
121 LED発光素子
122 パターン配線
125 貫通孔
130 放熱基板
132 積層面
133 熱伝達部
DESCRIPTION OF SYMBOLS 100 Illuminating device 120 Wiring board 121 LED light emitting element 122 Pattern wiring 125 Through-hole 130 Heat radiation board 132 Laminated surface 133 Heat transfer part

Claims (7)

LED発光素子と、一方の面及び他方の面を連通させる貫通孔を有し前記貫通孔の近傍で前記LED発光素子がパターン配線に実装されている配線基板と、熱伝導性及び電気的絶縁性の両性能が優れている材質から形成されると共に前記材質で形成された積層面に前記配線基板を積層させている放熱基板と、熱伝導性及び電気的絶縁性の両性能が優れている材質から形成されると共に前記LED発光素子及び前記放熱基板の間に介在するよう前記貫通孔の内部に挿入された熱伝達部とを備えることを特徴とする照明装置。   An LED light-emitting element, a wiring board having a through-hole communicating with one surface and the other surface, and the LED light-emitting element mounted on the pattern wiring in the vicinity of the through-hole, and thermal conductivity and electrical insulation A material that is formed from a material that is excellent in both performances and that has the wiring board laminated on the laminated surface formed of the material, and a material that is superior in both thermal conductivity and electrical insulation properties And a heat transfer part inserted into the through hole so as to be interposed between the LED light emitting element and the heat dissipation substrate. 前記放熱基板は、前記熱伝達部を形成する材質と同一材質から成り、前記積層面に前記熱伝達部が一体的に形成されていることを特徴とする請求項1に記載の照明装置。   The lighting device according to claim 1, wherein the heat dissipation substrate is made of the same material as that forming the heat transfer portion, and the heat transfer portion is integrally formed on the laminated surface. 前記放熱基板は、セラミック絶縁材から形成されることを特徴とする請求項1又は請求項2に記載の照明装置。   The lighting device according to claim 1, wherein the heat dissipation substrate is formed of a ceramic insulating material. 前記LED発光素子を積層方向に沿って前記積層面へ投影させた像を発光素子投影像とすると、前記熱伝達部の少なくとも一部は、前記発光素子投影像に含まれることを特徴とする請求項2乃至請求項3に記載の照明装置。   When an image obtained by projecting the LED light emitting element onto the stacking surface along the stacking direction is a light emitting element projected image, at least a part of the heat transfer unit is included in the light emitting element projected image. The lighting device according to any one of claims 2 to 3. 前記LED発光素子を積層方向に沿って前記積層面へ投影させた像を発光素子投影像とすると、前記熱伝達部の全部は、前記発光素子投影像に含まれることを特徴とする請求項2乃至請求項3に記載の照明装置。   3. The light emitting element projection image includes all of the heat transfer unit when an image obtained by projecting the LED light emitting element onto the stacking surface along the stacking direction is a light emitting element projection image. The illuminating device of Claim 3 thru | or 3. 前記LED発光素子と前記熱伝達部との間には間隙が形成され、当該間隙には熱伝導性及び電気的絶縁性の両性能が優れている充填材が充填されていることを特徴とする請求項1乃至請求項5に記載の照明装置。   A gap is formed between the LED light emitting element and the heat transfer part, and the gap is filled with a filler having excellent performance of both thermal conductivity and electrical insulation. The lighting device according to claim 1. 前記配線基板は、パターン配線を積層させている基板層が樹脂性材料であることを特徴とする請求項1乃至請求項6に記載の照明装置。   The lighting device according to claim 1, wherein a substrate layer on which the pattern wiring is laminated is a resin material.
JP2010206199A 2010-09-15 2010-09-15 Lighting system Pending JP2012064676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010206199A JP2012064676A (en) 2010-09-15 2010-09-15 Lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010206199A JP2012064676A (en) 2010-09-15 2010-09-15 Lighting system

Publications (1)

Publication Number Publication Date
JP2012064676A true JP2012064676A (en) 2012-03-29

Family

ID=46060106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010206199A Pending JP2012064676A (en) 2010-09-15 2010-09-15 Lighting system

Country Status (1)

Country Link
JP (1) JP2012064676A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779490A (en) * 2012-10-24 2014-05-07 乐利士实业股份有限公司 Photoelectric semiconductor device and manufacturing method thereof
KR101918847B1 (en) * 2017-04-20 2018-11-14 전자부품연구원 Manufacturing method of integral heat sink using mold
CN109786259A (en) * 2017-11-13 2019-05-21 恩智浦美国有限公司 Microelectronics system and its manufacturing method containing embedded radiating structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779490A (en) * 2012-10-24 2014-05-07 乐利士实业股份有限公司 Photoelectric semiconductor device and manufacturing method thereof
KR101918847B1 (en) * 2017-04-20 2018-11-14 전자부품연구원 Manufacturing method of integral heat sink using mold
CN109786259A (en) * 2017-11-13 2019-05-21 恩智浦美国有限公司 Microelectronics system and its manufacturing method containing embedded radiating structure

Similar Documents

Publication Publication Date Title
JP5703523B2 (en) Light emitting diode package and light emitting diode package module
JP4122784B2 (en) Light emitting device
JP5770006B2 (en) Semiconductor light emitting device
WO2013042662A1 (en) Led module and led lamp employing same
JP5210433B2 (en) LED unit
US20090045432A1 (en) Circuit board for light emitting device package and light emitting unit using the same
JP2014036085A (en) Printed wiring board, printed circuit board and printed circuit board manufacturing method
CN110431664A (en) LED element is mounted on flat carrier
US8801238B2 (en) Light-emitting device
KR20100117451A (en) Pcb with radiation hole and led illumination device using it
CN102790161B (en) Light-emitting diode carrier
US20100213810A1 (en) Light emitting device package
KR20110084057A (en) Light emitting device package and light emitting apparatus
JP2013201256A (en) Wiring board device, light-emitting module, lighting device, and method for manufacturing wiring board device
JP2012064676A (en) Lighting system
KR20090017391A (en) Circuit board for light emitting device and light emitting unit using the same
JP2009094213A (en) Light emitting device
US10777723B2 (en) LED package structure, heat-dissipating substrate, method for manufacturing LED package structure, and method for manufacturing heat-dissipating substrate
JP2012146952A (en) Light-emitting device and formation method thereof
KR101221568B1 (en) Backlight Unit having LEDs and Method for manufacturing the same
KR101115403B1 (en) Light emitting apparatus
JP2008235493A (en) Light-emitting element storage package
JP2009088373A (en) Led lamp module
KR101237685B1 (en) Heat radiating substrate and method of manufacturing the same
JP2019516248A (en) Thermal block assembly, LED device having the same, and method of manufacturing the thermal block assembly