JP2012063319A - Atomic force microscope observation method of polymeric material at high temperature state - Google Patents

Atomic force microscope observation method of polymeric material at high temperature state Download PDF

Info

Publication number
JP2012063319A
JP2012063319A JP2010209593A JP2010209593A JP2012063319A JP 2012063319 A JP2012063319 A JP 2012063319A JP 2010209593 A JP2010209593 A JP 2010209593A JP 2010209593 A JP2010209593 A JP 2010209593A JP 2012063319 A JP2012063319 A JP 2012063319A
Authority
JP
Japan
Prior art keywords
high temperature
polymeric material
force microscope
microscope observation
atomic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010209593A
Other languages
Japanese (ja)
Inventor
Kentaro Yamawaki
健太郎 山脇
Asaaki Yanaka
雅顕 谷中
Hiromi Nabeya
広美 鍋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010209593A priority Critical patent/JP2012063319A/en
Publication of JP2012063319A publication Critical patent/JP2012063319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an atomic force microscope observation method of a polymeric material at a high temperature state by a simple method since AFM measurement under high temperature environment requires an extremely expert operation technology and know-how, especially, measurement of the polymeric material which is an organic substance is difficult since crystal variation, thermal expansion, phase variation and morphology variation such as softening at the high temperature state are large, there is also the case that stable measurement can not be performed since a low molecular weight component adheres to a probe when the polymeric material is left under the high temperature environment.SOLUTION: In the atomic force microscope observation method of the polymeric material, a polymeric material sample at an equilibrium state under the high temperature environment is rapidly frozen, and the surface shape of the sample is fixed by the atomic force microscope observation method of the polymeric material at the high temperature state. In the atomic force microscope observation method of the polymeric material at the high temperature state, as means for rapid freezing, the sample is immersed in a cryogen which is selected from liquid nitrogen, liquid ethane, and liquid propane.

Description

本発明は、従来困難であった高温環境下における高分子材料の表面形状について原子間力顕微鏡観察を使って簡便に分析を行う方法である。   The present invention is a method for simply analyzing the surface shape of a polymer material in a high-temperature environment, which has been difficult in the past, using atomic force microscopy.

走査型プローブ顕微鏡(SPM:Scanning Probe Microscope)は、先端の尖った探針(プローブ)を使って試料表面を走査し、試料表面とプローブとの間の相互作用により表面状態を観察する広義の顕微鏡であり、その中で試料表面と探針の間を流れるトンネル電流を検出するものを走査型トンネル電子顕微鏡(STM:Scanning Tunneling Microscope)、原子間力を利用するものを原子間力顕微鏡(AFM:Atomic Force Microscope)と呼ぶ。ただし、STMは導電性がある試料に限られるが、AFMは試料に導電性は必要ないため、AFMは金属、半導体、有機物など非常に幅広く多種多様な分野で活用されている。   A scanning probe microscope (SPM) is a broad-sense microscope that scans the surface of a sample using a probe with a sharp tip and observes the surface state by the interaction between the sample surface and the probe. Among them, a scanning tunneling electron microscope (STM) that detects a tunneling current flowing between a sample surface and a probe is used, and an atomic force microscope (AFM) that uses an atomic force is detected by using a scanning tunneling electron microscope (STM). (Atomic Force Microscope). However, although STM is limited to a sample having conductivity, AFM does not require conductivity in a sample. Therefore, AFM is used in a wide variety of fields such as metals, semiconductors, and organic substances.

AFMの特徴としては、プローブを取り付けたカンチレバーに働く力を測定するため、原子レベルの高い分解能による形状の他に電気、磁気、粘弾性、硬度などを同時測定することが出来る。また、AFMは大気中で測定可能であり近年の技術的進歩により液中や高温高湿の環境下でも測定できるようになった。   As a feature of the AFM, since the force acting on the cantilever to which the probe is attached is measured, it is possible to simultaneously measure electricity, magnetism, viscoelasticity, hardness, etc. in addition to the shape with high resolution at the atomic level. In addition, AFM can be measured in the atmosphere. Due to recent technological advances, it can be measured in a liquid or in a high-temperature and high-humidity environment.

特に、従来困難であった高温環境下でのAFM測定技術は、各種材料の高温状態における表面状態の観察を可能にしたため、今後、各方面での研究、開発での利用が予想される。   In particular, the AFM measurement technique in a high temperature environment, which has been difficult in the past, enables observation of the surface state of various materials at a high temperature, and is expected to be used in research and development in various fields in the future.

しかしながら、高温環境下でのAFM測定は、プローブやカンチレバーなど検出装置の熱膨張や熱収縮により試料とプローブの相対位置の変化(熱ドリフト)や静電気の影響等があるため、非常に熟練した操作技術とノウハウが必要である。特に、有機物である高分子材料は高温状態による結晶変化や熱膨張、そして相変化や軟化等のモルフォルジー変化が大きいため測定が難しく、高温環境下で放置していると低分子量成分がプローブに付着して安定した測定が出来ない場合もある。   However, AFM measurement in a high-temperature environment is subject to changes in the relative position (thermal drift) of the sample and probe due to thermal expansion and contraction of the detection device such as the probe and cantilever (thermal drift) and the influence of static electricity. Technology and know-how are required. In particular, high molecular weight organic materials are difficult to measure due to large crystal changes and thermal expansion due to high temperature conditions, and morphological changes such as phase change and softening, and low molecular weight components adhere to the probe when left in a high temperature environment. In some cases, stable measurement cannot be performed.

これまでに発案されている高温環境下でのAFM測定は、特許文献1に記載されているような装置上の工夫が主たるものである。すなわち、高温環境下における探針・探針走査・駆動系とその回路系の耐熱性を改善したり検出器具の熱膨張係数を低くするなどのAFM装置上の工夫により熱ドリフトを抑制するものであるが、依然としてプローブの位置設定に熟練した技術とノウハウが必要である。   The AFM measurement under a high-temperature environment that has been proposed so far mainly involves a device on the device as described in Patent Document 1. In other words, thermal drift is suppressed by devising the AFM device, such as improving the heat resistance of the probe, probe scanning / driving system and its circuit system in a high temperature environment, and lowering the thermal expansion coefficient of the detection instrument. Although there is still a skill and know-how required to set the position of the probe.

特開平6−123744号公報JP-A-6-123744

本発明は、上記の技術的背景を考慮してなされたものであり、簡便な方法により高温状態における高分子材料の原子間力顕微鏡観察方法を提供することを目的とする。   The present invention has been made in consideration of the above technical background, and an object thereof is to provide an atomic force microscope observation method for a polymer material in a high temperature state by a simple method.

上記課題を解決するための手段として、請求項1に記載の発明は、高分子材料の原子間力顕微鏡観察方法において、高温環境下で平衡状態の高分子材料試料を急速凍結し、該試料表面形状を固定化することを特徴とする高温状態における高分子材料の原子間力顕微鏡観察方法である。   As a means for solving the above-mentioned problem, the invention according to claim 1 is a method of observing a polymer material in an equilibrium state in a high temperature environment in an atomic force microscope observation method of the polymer material, It is an atomic force microscope observation method of a polymer material in a high temperature state characterized by fixing the shape.

また、請求項2に記載の発明は、前記急速凍結の手段として、液体窒素、液体エタン、液体プロパンから選ばれる寒剤中に試料を浸漬することを特徴とする請求項1に記載の高温状態における高分子材料の原子間力顕微鏡観察方法である。   The invention described in claim 2 is characterized in that the sample is immersed in a cryogen selected from liquid nitrogen, liquid ethane, and liquid propane as the means for quick freezing. This is an atomic force microscope observation method for a polymer material.

また、請求項3に記載の発明は、前記急速凍結後、直ちに乾燥空気雰囲気下に試料を移動することにより霜や結露の発生を抑制することを特徴とする請求項1または2のいずれかに記載の高温状態における高分子材料の原子間力顕微鏡観察方法である。   The invention according to claim 3 is characterized in that the generation of frost and dew condensation is suppressed by moving the sample immediately under the dry air atmosphere after the quick freezing. It is an atomic force microscope observation method of the polymer material in the described high temperature state.

以上のように、本発明の高温状態における高分子材料の原子間力顕微鏡観察方法によれば、高温状態の高分子材料を急速冷却させることで表面状態を固定化し大気中室温下でAFM測定できるため、高温環境下での熱ドリフトが起こらず、容易に高温状態であった高分子材料の表面形状をAFMで観察できる利点を有している。   As described above, according to the atomic force microscope observation method for a polymer material in a high temperature state of the present invention, the surface state is fixed by rapidly cooling the polymer material in a high temperature state, and AFM measurement can be performed at room temperature in the atmosphere. Therefore, there is an advantage that the surface shape of the polymer material that has been in a high temperature state can be easily observed with the AFM without causing thermal drift in a high temperature environment.

本発明の参考例におけるAFM像である。It is an AFM image in a reference example of the present invention. 本発明の実施例におけるAFM像である。It is an AFM image in the Example of this invention. 本発明の比較例におけるAFM像である。It is an AFM image in the comparative example of this invention.

以下、本発明の好ましい実施形態について詳細に説明する。
本発明に関わる高温状態の高分子材料を作製する方法としては特に限定されないが、高分子材料が均一温度に平衡状態になる装置として、市販の加熱ステージや熱風循環式オーブン等が想定される。試料面の温度は特にAFMで観察する箇所であるため、加熱装置付属の温度計以外に放射温度計等で試料面が所定の温度に到達していることを確認することが望ましい。
Hereinafter, preferred embodiments of the present invention will be described in detail.
A method for producing a high-temperature polymer material according to the present invention is not particularly limited, but a commercially available heating stage, a hot air circulation oven, or the like is assumed as an apparatus in which the polymer material is in an equilibrium state at a uniform temperature. Since the temperature of the sample surface is particularly a place to be observed by AFM, it is desirable to confirm that the sample surface has reached a predetermined temperature with a radiation thermometer or the like other than the thermometer attached to the heating device.

また、本発明において急速凍結とは、電子顕微鏡技術において一般的に知られる急速凍結を指す。急速凍結の方法としては市販の急速冷却装置を使用しても構わないが、一般的に1000K/s以上の冷却速度がないと溶融状態の高分子などは結晶成長が起こってしまう問題が起こる(日本顕微鏡学会編,電顕入門ガイドブック,学会出版センター,2004 参照)。そのため、本発明では1000K/s以上の冷却速度で急速凍結させるため、液体窒素や液体エタン、あるいは液体プロパン中に直接試料を浸漬するという簡便で好適な方法を選択することで、高分子の動きを物理的に止めた。   In the present invention, rapid freezing refers to quick freezing generally known in the electron microscope technique. A commercially available rapid cooling apparatus may be used as the rapid freezing method, but generally there is a problem that crystal growth occurs in a molten polymer or the like unless the cooling rate is 1000 K / s or more ( (Refer to the Japanese Society for Microscopy, Introductory Guide to Electron Microscope, Society Publishing Center, 2004) Therefore, in the present invention, in order to rapidly freeze at a cooling rate of 1000 K / s or more, the movement of the polymer is selected by selecting a simple and preferable method of directly immersing the sample in liquid nitrogen, liquid ethane, or liquid propane. Was physically stopped.

さらに、急速冷却した高分子材料の試料を取り出し、そのまま大気中室温下に置くと、試料面に霜や結露が発生してしまい表面状態に影響を与える懸念があるため、本発明では一旦、乾燥空気雰囲気下に移動させて室温状態になるまで静置させておく。乾燥空気雰囲気は乾燥空気の気流下、あるいは充満した容器内であれば特に制限はなく、簡易的には乾燥デシケーターが想定される。   Furthermore, if a sample of the polymer material that has been rapidly cooled is taken out and left as it is at room temperature in the atmosphere, frost and condensation may occur on the sample surface, which may affect the surface state. Move to an air atmosphere and let stand until it reaches room temperature. The dry air atmosphere is not particularly limited as long as it is in a dry air stream or in a filled container, and a dry desiccator is simply assumed.

一般的に急速冷却した場合の材料への影響としては、内部に存在する水の結晶化や応力歪みの発生などによる形状ダメージが懸念されるが、高分子材料の場合は、内部に存在する水の量は微量なので影響は殆ど無く、発生した応力歪みも前記の乾燥空気雰囲気下に移動させて室温状態になるまで静置させておくことにより緩和される。   In general, there is concern about the shape damage caused by crystallization of water existing inside or the occurrence of stress strain as an effect on the material when rapidly cooled, but in the case of polymer materials, Since the amount of is small, there is almost no effect, and the generated stress strain is mitigated by moving it to the dry air atmosphere and allowing it to stand until it reaches room temperature.

類似の観察方法としては、クライオSEM(Cryo−Scanning Electron Microscope)という方法がある。この方法は、生体組織など含水試料を本発明と同様に液体窒素などの寒剤を用いて試料を冷却し、装置に付属した低温ステージ上で凍結した状態で観察する装置である。この方法で使用される寒剤を用いた急速冷却装置は、本発明と同様な仕組みのものなので使用できる。また、クライオSEMと本発明の方法の大きな違いは、本発明ではSEMではなくAFMを使用する点と生体組織などの含水試料ではなく水分がほとんどない高分子材料を対象としている点である。   As a similar observation method, there is a method called cryo-SEM (Cryo-Scanning Electron Microscope). This method is an apparatus for observing a water-containing sample such as a biological tissue in a state where the sample is cooled using a cryogen such as liquid nitrogen as in the present invention and frozen on a low-temperature stage attached to the apparatus. The rapid cooling apparatus using the cryogen used in this method can be used because it has the same mechanism as that of the present invention. The major difference between the cryo SEM and the method of the present invention is that the present invention uses an AFM instead of an SEM and a high-molecular material with little moisture rather than a water-containing sample such as a living tissue.

SEMとAFMの違いは公知であり各々優れた点があるが、AFMの優位性という観点では、SEMは真空中で試料面にある程度導電性が必要であり2次元の形状が解析できるが、AFMは大気中で絶縁材料でも測定でき3次元の形状(高さ、段差、ラフネスなど)が解析可能で分解能もSEMと同等以上と言われている。また、本発明の対象が含水試料ではないので、急速冷却後、室温に戻しても水分の影響がない。   The difference between SEM and AFM is well-known and has excellent points. From the viewpoint of the superiority of AFM, SEM requires a certain degree of conductivity on the sample surface in a vacuum and can analyze a two-dimensional shape. It can be measured with an insulating material in the atmosphere and can analyze a three-dimensional shape (height, step, roughness, etc.), and the resolution is said to be equal to or higher than that of SEM. Moreover, since the object of the present invention is not a water-containing sample, there is no influence of moisture even when the temperature is returned to room temperature after rapid cooling.

次に、本発明を具体的な実施例を挙げて以下に説明するが、本発明はこれらに限定されるものではない。   Next, the present invention will be described below with specific examples, but the present invention is not limited thereto.

以下の実施例で表面観察を行ったAFM観察装置は、次の条件で測定した。   The AFM observation apparatus that performed surface observation in the following examples was measured under the following conditions.

<測定条件>
(AFM装置)MFP−3D−SA(アサイラムテクノロジー社製)
(測定条件) スキャンエリア:500nm×1μm
スキャンスピード:1.0Hz、測定方法:ACモード
<Measurement conditions>
(AFM device) MFP-3D-SA (manufactured by Asylum Technology)
(Measurement conditions) Scan area: 500 nm × 1 μm 2
Scan speed: 1.0 Hz, measurement method: AC mode

<参考例>
市販のPETフィルムをAFM装置付属の温度制御ステージ(品名:ポリヒーター)により200℃の高温環境下でAFM観察を行った。
<Reference example>
A commercially available PET film was observed with an AFM in a high temperature environment of 200 ° C. using a temperature control stage (product name: polyheater) attached to the AFM apparatus.

<実施例>
前記参考例で使用したPETフィルムを熱風循環式オーブン内で200℃の高温環境下に置き、試料表面温度が200℃になったことを放射温度計により確認後、液体窒素中に浸漬して約10秒後に取り出し、続いて乾燥デシケーター内に静置した。その後、乾燥デシケーター中から試料を取り出し、室温下でAFM観察を行った。
<Example>
The PET film used in the above reference example was placed in a hot air circulation oven in a high temperature environment of 200 ° C., and after confirming that the sample surface temperature was 200 ° C. with a radiation thermometer, it was immersed in liquid nitrogen and about The product was taken out after 10 seconds and then left in a dry desiccator. Thereafter, a sample was taken out from the dry desiccator, and AFM observation was performed at room temperature.

<比較例>
前記参考例でAFM観察後、温度制御ステージを室温に設定して急冷した(設定冷却速度:−50度/分)。約30分後、実測温度が設定温度(室温)になったのでAFM観察を行った。
<Comparative example>
After the AFM observation in the reference example, the temperature control stage was set to room temperature and rapidly cooled (set cooling rate: −50 degrees / minute). After about 30 minutes, the measured temperature reached the set temperature (room temperature), and AFM observation was performed.

次に、上記参考例、実施例、比較例で得られたAFM観察像(図1〜3)を解析した結果を表1に示す。   Next, Table 1 shows the results of analyzing the AFM observation images (FIGS. 1 to 3) obtained in the reference examples, examples, and comparative examples.

上記の表1の結果から、本発明に関わる実施例のAFM観察による表面形状の解析結果は、通常の高温環境下でAFM観察した参考例と同様であることが確認された。また、AFM装置付属の温度制御ステージで室温に急冷した比較例は、参考例および実施例と異なる結果が得られた。各AFM像を見ると、参考例(図1)および実施例(図2)は殆ど同様であったが、比較例はPETの球晶が大きく結晶成長していることが判った。   From the results of Table 1 above, it was confirmed that the analysis result of the surface shape by AFM observation of the example according to the present invention was the same as the reference example observed by AFM in a normal high temperature environment. Moreover, the comparative example which was rapidly cooled to room temperature by the temperature control stage attached to the AFM apparatus gave different results from the reference example and the example. When each AFM image was viewed, the reference example (FIG. 1) and the example (FIG. 2) were almost the same, but in the comparative example, it was found that PET spherulites had grown greatly.

以上から、高温状態の高分子材料を本発明方法による急速凍結等の前処理を行えば表面形状が固定され、室温下で容易にAFM観察できることを確認した。また、装置付属の温度制御ステージによる急冷では、冷却速度が遅いため球晶の成長が確認された。   From the above, it was confirmed that the surface shape was fixed when the high-temperature polymer material was subjected to pretreatment such as rapid freezing according to the method of the present invention, and could be easily observed at room temperature. Moreover, in the rapid cooling by the temperature control stage attached to the apparatus, the growth of spherulites was confirmed because the cooling rate was slow.

本発明の原子間力顕微鏡観察方法は、従来からのAFM観察の活用分野で利用できるが、特に各種産業分野で使用されている高分子材料の高温状態における表面形状を簡便な前処理により、室温下で容易にAFM観察できるようにする有効な方法である。   The atomic force microscope observation method of the present invention can be used in the field of application of conventional AFM observation, but the surface shape in a high temperature state of a polymer material used in various industrial fields in particular by simple pretreatment, This is an effective method that allows easy AFM observation below.

Claims (3)

高分子材料の原子間力顕微鏡観察方法において、高温環境下で平衡状態の高分子材料試料を急速凍結し、該試料表面形状を固定化することを特徴とする高温状態における高分子材料の原子間力顕微鏡観察方法。 In an atomic force microscope observation method for a polymer material, the polymer material sample in an equilibrium state is rapidly frozen in a high temperature environment, and the surface shape of the sample is fixed between the atoms of the polymer material in a high temperature state. Force microscope observation method. 前記急速凍結の手段として、液体窒素、液体エタン、液体プロパンから選ばれる寒剤中に試料を浸漬することを特徴とする請求項1に記載の高温状態における高分子材料の原子間力顕微鏡観察方法。 2. The atomic force microscope observation method for a polymer material in a high temperature state according to claim 1, wherein the sample is immersed in a cryogen selected from liquid nitrogen, liquid ethane, and liquid propane as the means for rapid freezing. 前記急速凍結後、直ちに乾燥空気雰囲気下に試料を移動することにより霜や結露の発生を抑制することを特徴とする請求項1または2のいずれかに記載の高温状態における高分子材料の原子間力顕微鏡観察方法。 3. The interatomic atoms of the polymer material in a high temperature state according to claim 1, wherein generation of frost or condensation is suppressed by moving the sample immediately under a dry air atmosphere after the rapid freezing. Force microscope observation method.
JP2010209593A 2010-09-17 2010-09-17 Atomic force microscope observation method of polymeric material at high temperature state Pending JP2012063319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010209593A JP2012063319A (en) 2010-09-17 2010-09-17 Atomic force microscope observation method of polymeric material at high temperature state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010209593A JP2012063319A (en) 2010-09-17 2010-09-17 Atomic force microscope observation method of polymeric material at high temperature state

Publications (1)

Publication Number Publication Date
JP2012063319A true JP2012063319A (en) 2012-03-29

Family

ID=46059166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010209593A Pending JP2012063319A (en) 2010-09-17 2010-09-17 Atomic force microscope observation method of polymeric material at high temperature state

Country Status (1)

Country Link
JP (1) JP2012063319A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347557B1 (en) 2013-02-20 2014-01-03 한국과학기술원 Method for high-resolution afm measurement for three dimensional structure of free-standing nano structure
CN103901231A (en) * 2014-04-08 2014-07-02 东南大学 Preparation method for asphalt sample suitable for atomic force microscope observation
CN106248998A (en) * 2016-07-22 2016-12-21 同济大学 A kind of asphalt Research on Mechanical Properties method based on atomic force microscopy
CN110542259A (en) * 2019-08-09 2019-12-06 河南中镜科仪科技有限公司 Quick freezing device
CN111811939A (en) * 2020-07-21 2020-10-23 上海交通大学 High-precision nano-mechanics detection system in ultralow temperature environment
CN113433160A (en) * 2021-06-25 2021-09-24 中国科学院青海盐湖研究所 Method for confirming eutectic point of eutectic hydrated salt system and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347557B1 (en) 2013-02-20 2014-01-03 한국과학기술원 Method for high-resolution afm measurement for three dimensional structure of free-standing nano structure
CN103901231A (en) * 2014-04-08 2014-07-02 东南大学 Preparation method for asphalt sample suitable for atomic force microscope observation
CN106248998A (en) * 2016-07-22 2016-12-21 同济大学 A kind of asphalt Research on Mechanical Properties method based on atomic force microscopy
CN110542259A (en) * 2019-08-09 2019-12-06 河南中镜科仪科技有限公司 Quick freezing device
CN111811939A (en) * 2020-07-21 2020-10-23 上海交通大学 High-precision nano-mechanics detection system in ultralow temperature environment
CN113433160A (en) * 2021-06-25 2021-09-24 中国科学院青海盐湖研究所 Method for confirming eutectic point of eutectic hydrated salt system and application thereof
CN113433160B (en) * 2021-06-25 2022-09-20 中国科学院青海盐湖研究所 Method for confirming eutectic point of eutectic hydrated salt system and application thereof

Similar Documents

Publication Publication Date Title
JP2012063319A (en) Atomic force microscope observation method of polymeric material at high temperature state
Hobbs et al. How atomic force microscopy has contributed to our understanding of polymer crystallization
CN103901232B (en) A kind of low-temperature scanning tunneling microscope utilizing the refrigeration of closed circuit refrigeration machine
Lam et al. Experimental validation of the modified Avrami model for non-isothermal crystallization conditions
Hackley et al. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat
Efimov et al. Analysis of native structures of soft materials by cryo scanning probe tomography
CN104122415A (en) Multi-probe scanning microscopy and transport measurement apparatus
JP6294017B2 (en) Preparation of electron microscope samples from high-pressure refrigeration materials
Eremeev et al. Progress with multi-cell Nb3Sn cavity development linked with sample materials characterization
Fang et al. Implementing and quantifying the shape‐memory effect of single polymeric micro/nanowires with an atomic force microscope
Azzam A novel method for elimination of the gold-islands formed in the self-assembled monolayers of benzeneselenol on Au (1 1 1) surface
EP3268749B1 (en) Superconducting scanning sensor for nanometer scale temperature imaging
Orlik et al. Scanning force microscopy study of the ferroelectric phase transition in triglycine sulfate
Wu et al. Application of calorimetry, sub-ambient atomic force microscopy and dynamic mechanical analysis to the study of frozen aqueous trehalose solutions
Guo et al. Developments of scanning probe microscopy with stress/strain fields
Langewisch et al. Temperature dependence of energy dissipation on NaCl (001) in non-contact atomic force microscopy
Zhang et al. Nanoscale thermal mapping of few-layer organic crystals
Boukallel et al. Characterization of cellular mechanical behavior at the microscale level by a hybrid force sensing device
Baykara et al. 3D Force Field Spectroscopy
Leis et al. Nanoscale tip positioning with a multi-tip scanning tunneling microscope using topography images
Venkatesh et al. Fabrication of Low Temperature Stage for Atomic Force Microscope
Hobbs et al. ‘Watching’processes in soft matter with SPM
US10740948B2 (en) Apparatus and method for generating three-dimensional image of polymer solute substance which exists in liquid solvent
Kikkawa et al. Scanning Probe Microscopy (SPM)
Kimura et al. High resolution molecular chain imaging of a poly (vinylidenefluoride–trifluoroethylene) crystal using force modulation microscopy