JP2012061459A - Pressure flotation separator - Google Patents

Pressure flotation separator Download PDF

Info

Publication number
JP2012061459A
JP2012061459A JP2011110352A JP2011110352A JP2012061459A JP 2012061459 A JP2012061459 A JP 2012061459A JP 2011110352 A JP2011110352 A JP 2011110352A JP 2011110352 A JP2011110352 A JP 2011110352A JP 2012061459 A JP2012061459 A JP 2012061459A
Authority
JP
Japan
Prior art keywords
oil
gas
tank
water
pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011110352A
Other languages
Japanese (ja)
Other versions
JP5831736B2 (en
Inventor
Kazuo Okamura
和夫 岡村
Masaharu Tazaki
雅晴 田崎
Mitsuhiro Sumikura
光博 隅倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2011110352A priority Critical patent/JP5831736B2/en
Publication of JP2012061459A publication Critical patent/JP2012061459A/en
Application granted granted Critical
Publication of JP5831736B2 publication Critical patent/JP5831736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pressure flotation separator in which oil-water separation can be carried out with a simple structure using a non-explosive gas, operation control is easy, and an application range can be widened.SOLUTION: A floating tank 2 is provided with a pressure pump 3 for sending waste water WO containing oil. A non-explosive gas G is supplied, and a flocculant T is added to the pressure pump 3. Water-oil separation is carried out in the floating tank 2 using the pressure flotation separator 1 which is configured so that the non-explosive gas G, the flocculant T and the waste water WO containing oil are mixed together in the pressure pump 3.

Description

本発明は、油含有排水に凝集剤を添加して浮上槽内で油水分離する加圧浮上分離装置に関する。   The present invention relates to a pressurized flotation separation apparatus that adds a flocculant to oil-containing wastewater and separates oil and water in a flotation tank.

種々の油分を含む排水には、厨房排水を代表とする食品排水処理やガソリンスタンドなどの鉱物油を含有する排水(油含有排水)が存在している。このような排水中の油分を分離する方法として、水槽内に油含有排水を一定時間滞留させ、自然に浮上する油分を除去するAPIや、水槽内に傾斜板を設置して油分の分離を促進するPPIやCPIなどのオイルセパレータを用いて処理する方法が一般的に知られている。
ところが、これらの方法は油含有排水の中に存在する比較的大きな粒子の油滴を除去するには効果的であるが、排水中にエマルジョンとして分散している油分に対してはほとんど除去効果がないのが現状となっている。
そこで、これらの排水中に分散しているエマルジョンタイプの油分を除去するために、PACなどの凝集剤を添加し、油含有排水の中の油分を凝集させた後に加圧浮上処理により処理している(例えば、特許文献1参照)。
Wastewater containing various oils includes wastewater (oil-containing wastewater) containing mineral oil such as food wastewater treatment such as kitchen wastewater and a gas station. As a method for separating the oil content in the wastewater, an oil-containing wastewater stays in the water tank for a certain period of time, an API that removes the oil that naturally floats up, and an inclined plate installed in the water tank to promote oil separation. A method of processing using an oil separator such as PPI or CPI is generally known.
However, these methods are effective for removing relatively large particles of oil droplets present in oil-containing wastewater, but have little effect on removing oil dispersed as an emulsion in wastewater. There is no current situation.
Therefore, in order to remove the emulsion type oil dispersed in the waste water, a flocculating agent such as PAC is added, and the oil in the oil-containing waste water is agglomerated and then treated by pressure flotation treatment. (For example, refer to Patent Document 1).

ここで、図2には、特許文献1に記載されるような従来の加圧浮上処理方法の一例を示している。
すなわち、図2に示す加圧浮上処理を行う装置10において、供給ポンプ11によって凝集槽12内に送られた油含有排水W0は、その凝集槽12内でPACなどの凝集剤Tが添加され、油含有排水W0の中の油分を凝集させた後の排水W4が浮上槽13内で油水分離される。そして、このときの処理水W5を加圧ポンプ15により加圧しながら加圧タンク14へ送水するとともに、加圧タンク14へ空気Eを送り込むことにより加圧水W6を作成し、この加圧水W6を浮上槽13に送っている。そして、加圧水W6が減圧されることで微細な気泡を発生し、この微細気泡に排水W4の油分を付着させて浮上分離させている。
Here, FIG. 2 shows an example of a conventional pressure levitation treatment method as described in Patent Document 1.
That is, in the apparatus 10 that performs the pressure levitation treatment shown in FIG. 2, the oil-containing wastewater W0 sent into the flocculation tank 12 by the supply pump 11 is added with a flocculant T such as PAC in the flocculation tank 12, The drainage W4 after the oil content in the oil-containing drainage W0 is aggregated is separated into oil and water in the levitation tank 13. The treated water W5 at this time is fed to the pressurized tank 14 while being pressurized by the pressurized pump 15, and the pressurized water W6 is created by sending the air E to the pressurized tank 14, and the pressurized water W6 is supplied to the floating tank 13. It is sent to. The pressurized water W6 is depressurized to generate fine bubbles, and the oil content of the waste water W4 is attached to the fine bubbles to be floated and separated.

特開平3−174292号公報JP-A-3-174292

しかしながら、図2に示すような従来の加圧浮上処理方法では、その機構が複雑であり、排水量(すなわち、浮上槽13に対する送り込み量と排水量)と加圧水との水バランスが難しいうえ、加圧水の作成も加圧した処理水W5に空気Eを混合させるといった難しい運転管理が必要となる問題があり、簡単な構造で、容易に運転できる処理装置が求められていた。
また、鉱物油には発揮性の炭化水素が含まれており、空気を使用する場合には引火、爆発の可能性があるため、危険物取り扱い施設や防爆施設内での使用が困難であり、その点で改良の余地があった。
However, in the conventional pressurized levitation treatment method as shown in FIG. 2, the mechanism is complicated, and it is difficult to balance the amount of drainage (that is, the amount fed to the levitation tank 13 and the amount of drainage) and the pressurized water. However, there is a problem that requires difficult operation management such as mixing the air E with the pressurized treated water W5, and a treatment apparatus that can be easily operated with a simple structure has been demanded.
In addition, mineral oil contains demonstrable hydrocarbons, and when air is used, there is a possibility of ignition and explosion, making it difficult to use in hazardous materials handling facilities and explosion proof facilities. There was room for improvement in that respect.

本発明は、上述する問題点に鑑みてなされたもので、非爆発性ガスを用いた簡単な構造で油水分離することができ、運転管理が容易になるとともに、適用範囲を広げることができる加圧浮上分離装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems. Oil and water can be separated with a simple structure using a non-explosive gas, operation management is facilitated, and the application range can be expanded. An object of the present invention is to provide a pressure levitation separation device.

上記目的を達成するため、本発明に係る加圧浮上分離装置では、油含有排水に凝集剤を添加して浮上槽内で油水分離するための加圧浮上分離装置であって、浮上槽に油含有排水を送水するための加圧ポンプが設けられ、加圧ポンプには非爆発性ガスが供給され、この加圧ポンプ内で非爆発性ガスと油含有排水とが混合される構成としたことを特徴としている。   In order to achieve the above object, the pressurized flotation separation apparatus according to the present invention is a pressurized flotation separation apparatus for adding a flocculant to oil-containing wastewater and separating oil and water in a flotation tank, A pressurization pump for supplying the contained wastewater is provided, non-explosive gas is supplied to the pressurization pump, and the non-explosive gas and oil-containing wastewater are mixed in this pressurization pump. It is characterized by.

本発明では、油含有排水が加圧ポンプへ送り込まれると、加圧ポンプ内で油含有排水と非爆発性ガスとが混合され、過飽和で微細に裁断された非爆発性ガスにより微細気泡が形成され、この微細気泡を混合させた混合排水が浮上槽へ送られる。このとき、油含有排水と非爆発性ガスとの混合が加圧ポンプ内で行われるので、加圧ポンプ内の混合部に空気が混ざることがなく、酸素が存在しない状態の混合排水が浮上槽へ移送される。
さらに、油含有排水に例えば前記混合部や加圧ポンプの上流側等の位置での適宜なタイミングで添加剤を添加することで、この凝集剤によりフロック化した油分スカムが浮上槽内で微細気泡に付着して浮上し、上層に蓄積される。
In the present invention, when oil-containing wastewater is fed into a pressure pump, oil-containing wastewater and non-explosive gas are mixed in the pressure pump, and fine bubbles are formed by the non-explosive gas finely cut by supersaturation. The mixed waste water mixed with the fine bubbles is sent to the levitation tank. At this time, since the mixing of the oil-containing wastewater and the non-explosive gas is performed in the pressure pump, the mixed wastewater in the state where oxygen does not exist without mixing air in the mixing portion in the pressure pump It is transferred to.
Further, by adding an additive to the oil-containing wastewater at an appropriate timing, for example, at a position such as the upstream side of the mixing unit or the pressure pump, the oil scum flocked by the flocculant is microbubbles in the floating tank. It floats on the surface and accumulates in the upper layer.

そして、上層に蓄積された油分スカムは、定期的に掻き取り機等によって回収し、浮上槽の外部へ排出することができる。さらに、油分スカムが除去された処理水は、放流或いは再利用することができる。このように、本発明では、非爆発性ガスを供給することが可能な加圧ポンプ内に油含有排水を通過させるといった簡単な構造であり、従来のような凝集処理した後の処理水に対して加圧タンク内で加圧するとともに空気を混入させて加圧水を作成し、さらにその加圧水を浮上槽に戻すといった複雑な構造ではなくなるので、運転上の管理も簡単となる。
さらに、空気を使用しない構成となるので、危険物取り扱い施設や防爆施設などでも使用することが可能となる。
The oil scum accumulated in the upper layer can be periodically collected by a scraper or the like and discharged to the outside of the levitation tank. Furthermore, the treated water from which the oil scum has been removed can be discharged or reused. As described above, in the present invention, the oil-containing wastewater is passed through a pressurized pump capable of supplying a non-explosive gas, and the treated water after the conventional coagulation treatment is performed. In addition, since it does not have a complicated structure in which pressurized water is created by adding pressure in the pressurized tank and mixing air, and then the pressurized water is returned to the levitation tank, operation management is also simplified.
Furthermore, since it does not use air, it can be used in hazardous materials handling facilities and explosion-proof facilities.

また、本発明に係る加圧浮上分離装置では、浮上槽は、密閉されていることが好ましい。本発明では、密閉された浮上槽に送られる油含有排水と非爆発性ガスとの混合排水が大気に接触することがなくなることから、設備の防爆化を確実に実現することができる。   Moreover, in the pressurized flotation separation apparatus according to the present invention, the flotation tank is preferably sealed. In the present invention, the mixed wastewater of the oil-containing wastewater and the non-explosive gas sent to the sealed levitation tank does not come into contact with the atmosphere, so that the explosion-proof equipment can be realized with certainty.

また、本発明に係る加圧浮上分離装置では、加圧ポンプ内に、凝集剤が添加されることが好ましい。
本発明では、非爆発性ガスとともに添加剤も空気に触れることのない加圧ポンプ内に添加することで、添加剤の添加時の空気の混入を防ぐことができ、これによりさらに防爆化の確実性を高めることができる。
In the pressurized flotation separation apparatus according to the present invention, it is preferable that a flocculant is added to the pressure pump.
In the present invention, by adding the additive together with the non-explosive gas into the pressurizing pump that does not come into contact with air, it is possible to prevent air from being mixed during the addition of the additive, thereby further ensuring explosion prevention. Can increase the sex.

また、本発明に係る加圧浮上分離装置では、非爆発性ガスは、気液比で2.5〜10.0%であることが好ましい。
本発明では、気液比で2.5〜10.0%の非爆発性ガスを用いることで、微細気泡を作成することができ、油分スカムが浮上槽内で微細気泡に付着して浮上し、良好な油水分離を行うことができる。
In the pressurized flotation separation apparatus according to the present invention, the non-explosive gas is preferably 2.5 to 10.0% in terms of gas-liquid ratio.
In the present invention, by using a non-explosive gas with a gas-liquid ratio of 2.5 to 10.0%, it is possible to create fine bubbles, and the oil scum adheres to the fine bubbles and floats in the levitation tank. Good oil-water separation can be performed.

本発明の加圧浮上分離装置によれば、加圧ポンプ内で油含有排水と非爆発性ガスとを混合させ、その混合排水を浮上槽へ送るといった簡単な構造によって油水分離が行えるので、運転管理が容易になり、従来のような水バランスを考慮した管理が不要となる利点がある。
また、浮上槽に送り込まれる油含有排水と非爆発性ガスとの混合排水に空気が混じることがないので、防爆化を図ることができ、これにより危険物取り扱い施設等での使用も可能となり、適用範囲を広げることができる。
According to the pressurized flotation separation apparatus of the present invention, oil-water separation can be performed with a simple structure in which oil-containing wastewater and non-explosive gas are mixed in a pressure pump and the mixed wastewater is sent to a flotation tank. Management is easy, and there is an advantage that management in consideration of water balance as in the past becomes unnecessary.
In addition, since air does not mix with the wastewater containing oil and non-explosive gas sent to the levitation tank, explosion-proofing can be achieved, which makes it possible to use in hazardous materials handling facilities, etc. The application range can be expanded.

本発明の実施の形態による加圧浮上分離装置の一例を模式的に示した図である。It is the figure which showed typically an example of the pressurization floating separation apparatus by embodiment of this invention. 従来の加圧浮上分離装置の一例を模式的に示した図である。It is the figure which showed typically an example of the conventional pressurization floating separator.

以下、本発明の実施の形態による加圧浮上分離装置について、図面に基づいて説明する。
図1に示すように、本実施の形態による加圧浮上分離装置1は、食品排水処理やガソリンスタンドなどの鉱物油を含有する排水(以下、油含有排水W0という)に凝集剤Tを添加して浮上槽2内で油水分離する際に用いられるものである。
Hereinafter, a pressure levitation separator according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the pressurized flotation separation apparatus 1 according to this embodiment adds a flocculant T to wastewater containing mineral oil such as food wastewater treatment or a gas station (hereinafter referred to as oil-containing wastewater W0). And used for oil-water separation in the levitation tank 2.

すなわち、加圧浮上分離装置1は、浮上槽2に油含有排水W0(図1では後述する混合排水W1)を送水するための加圧ポンプ3が設けられ、この加圧ポンプ3に非爆発性ガスGが供給されるとともに凝集剤Tが添加され、この加圧ポンプ3内で非爆発性ガスGと凝集剤Tとを油含有排水W0に混合させる構成となっている。   That is, the pressurized flotation separation apparatus 1 is provided with a pressurization pump 3 for feeding oil-containing wastewater W0 (mixed wastewater W1 described later in FIG. 1) to the flotation tank 2, and the pressurization pump 3 is non-explosive. The gas G is supplied and the flocculant T is added, and the non-explosive gas G and the flocculant T are mixed in the oil-containing waste water W0 in the pressure pump 3.

浮上槽2は、とくに形状、大きさに限定されるものではないが、上部に蓋部2aを有する密閉型であり、加圧ポンプ3の下流側に送水管4を介して接続され、油分スカムFを分離させた処理水W2を排出するための排水管5が所定位置に設けられている。   The levitation tank 2 is not particularly limited in shape and size, but is a sealed type having a lid portion 2a at the top, connected to the downstream side of the pressurizing pump 3 via a water supply pipe 4, and oil scum A drain pipe 5 for discharging the treated water W2 from which F has been separated is provided at a predetermined position.

加圧ポンプ3は、原水(油含有排水W0)用の原水吸入部3aと、気体(非爆発性ガスG)用の気体供給部3bと、薬剤(凝集剤T)用の薬剤供給部3cと、これら油含有排水W0と非爆発性ガスGと凝集剤Tとが混合された混合排水W1を浮上槽2へ向けて送出する送出部3dとを備えている。そして、加圧ポンプ3内には、図示しないポンプ回転翼の上流側に原水吸入部3a、気体供給部3b、および薬剤供給部3cが設けられるとともに、油含有排水W0と非爆発性ガスGと凝集剤Tとが混合する図示しない混合部が設けられている。
なお、このような加圧ポンプ3として、例えばエアターボミキサー(株式会社ニクニ社製)を採用することができる。
The pressurizing pump 3 includes a raw water suction part 3a for raw water (oil-containing wastewater W0), a gas supply part 3b for gas (non-explosive gas G), and a chemical supply part 3c for medicine (flocculating agent T). The oil-containing waste water W0, the non-explosive gas G, and the flocculant T are mixed, and a delivery unit 3d that delivers the mixed waste water W1 to the floating tank 2 is provided. In the pressurizing pump 3, a raw water suction part 3a, a gas supply part 3b, and a chemical supply part 3c are provided upstream of a pump rotor blade (not shown), and the oil-containing waste water W0 and the non-explosive gas G are provided. A mixing section (not shown) for mixing with the flocculant T is provided.
As such a pressure pump 3, for example, an air turbo mixer (manufactured by Nikuni Corporation) can be employed.

加圧ポンプ3の原水吸入部3aに接続される原水供給管6、および送出部3dに接続される送水管4には、それぞれ開閉バルブ7が設けられ、それら配管内を流通する排水W0、W1の流量を調整できるようになっている。   The raw water supply pipe 6 connected to the raw water suction part 3a of the pressurizing pump 3 and the water supply pipe 4 connected to the delivery part 3d are provided with open / close valves 7, respectively, and drainage water W0, W1 flowing through these pipes. The flow rate can be adjusted.

加圧ポンプ3に供給される非爆発性ガスGとしては、窒素ガス、ヘリウム及びアルゴンなどの非引火、非爆発性のガスを用いることができ、或いは周知のPSA装置(酸素ガス発生装置)等を使用して空気中から酸素を除去した気体を使用しても良い。
また、凝集剤Tとしては、一般的なPACを用いることができる。
As the non-explosive gas G supplied to the pressurizing pump 3, a non-flammable or non-explosive gas such as nitrogen gas, helium and argon can be used, or a well-known PSA device (oxygen gas generator) or the like. You may use the gas which removed oxygen from the air using.
As the flocculant T, general PAC can be used.

なお、運転中の非爆発性ガスGと油含有排水W0との混合条件として、加圧ポンプ3の運転圧力2〜5気圧で排水量の2.5〜10%量(気液比で2.5〜10%)の非爆発性ガスGを供給することが好ましい。   In addition, as mixing conditions of the non-explosive gas G during operation and the oil-containing wastewater W0, the amount of wastewater is 2.5 to 10% (gas-liquid ratio is 2.5) at an operating pressure of 2 to 5 atm. -10%) non-explosive gas G is preferably supplied.

次に、上述した加圧浮上分離装置1の作用と、この加圧浮上分離装置1を用いた排水処理方法について、図1に基づいて詳細に説明する。
先ず、油含有排水W0が原水供給管6から加圧ポンプ3へ送り込まれると、加圧ポンプ3内の前記混合部でその油含有排水W0と非爆発性ガスGとが混合され、その混合排水W1には過飽和で微細に裁断された非爆発性ガスGにより微細気泡が形成され、その混合排水W1が浮上槽2へ送られる。このとき、油含有排水W0と非爆発性ガスGとの混合が加圧ポンプ3内で行われるので、その混合部に空気が混ざることがなく、酸素が存在しない状態の混合排水W1が浮上槽2へ移送される。
Next, the action of the above-described pressurized floating separator 1 and the wastewater treatment method using this pressurized floating separator 1 will be described in detail with reference to FIG.
First, when the oil-containing wastewater W0 is fed from the raw water supply pipe 6 to the pressure pump 3, the oil-containing wastewater W0 and the non-explosive gas G are mixed in the mixing section in the pressure pump 3, and the mixed wastewater. In W1, fine bubbles are formed by the non-explosive gas G which is supersaturated and finely cut, and the mixed waste water W1 is sent to the floating tank 2. At this time, since mixing of the oil-containing wastewater W0 and the non-explosive gas G is performed in the pressurizing pump 3, the mixed wastewater W1 in a state where oxygen is not present without mixing air in the mixing portion is floated. 2 is transferred.

さらに、油含有排水W0には加圧ポンプ3内の混合部で非爆発性ガスGとともに添加剤Eが添加されるので、この凝集剤Tによりフロック化した油分スカムFが、浮上槽2内で微細気泡に付着して浮上し、上層に蓄積されることになる。
そして、浮上槽2に浮上して蓄積された油分スカムFは、定期的に図示しない掻き取り機等によって回収され、浮上槽2の外部へ排出される(図1に示す矢印S参照)。さらに、油分スカムFが除去された処理水W2は、排水管5より放流、或いは再利用することができる。
Further, since the additive E is added to the oil-containing waste water W0 together with the non-explosive gas G in the mixing part in the pressurizing pump 3, the oil scum F flocked by the flocculant T is generated in the floating tank 2. It floats by adhering to fine bubbles and accumulates in the upper layer.
Then, the oil scum F that has floated and accumulated in the levitation tank 2 is periodically collected by a scraper or the like (not shown) and discharged to the outside of the levitation tank 2 (see arrow S shown in FIG. 1). Further, the treated water W2 from which the oil scum F has been removed can be discharged from the drain pipe 5 or reused.

このように、加圧浮上分離装置1では、非爆発性ガスGを供給することが可能な加圧ポンプ3内に油含有排水W0を通過させるといった簡単な構造であり、従来のような凝集処理した後の処理水に対して加圧タンク内で加圧するとともに空気を混入させて加圧水を作成し、さらにその加圧水を浮上槽2に戻すといった複雑な構造ではなくなるので、運転上の管理も簡単となる。
さらに、空気を使用しない構成となるので、危険物取り扱い施設や防爆施設などでも使用することが可能となる。
As described above, the pressurized flotation separation apparatus 1 has a simple structure in which the oil-containing waste water W0 is allowed to pass through the pressure pump 3 capable of supplying the non-explosive gas G. Since the treated water is pressurized in the pressurized tank and mixed with air to create pressurized water, and the pressurized water is returned to the levitation tank 2, the operation management is easy. Become.
Furthermore, since it does not use air, it can be used in hazardous materials handling facilities and explosion-proof facilities.

なお、浮上槽2の内部に溜まる揮発性ガスは、浮上槽2に設けた適宜な排気手段により大気放出時に活性炭などにより吸着除去したり、或いは燃焼処理を行うことも可能である。   Note that the volatile gas accumulated in the levitation tank 2 can be adsorbed and removed by activated carbon or the like or can be subjected to a combustion process when released into the atmosphere by an appropriate exhaust means provided in the levitation tank 2.

また、加圧浮上分離装置1では、浮上槽2が蓋部2aにより密閉されているので、浮上槽2に送られる油含有排水W0と非爆発性ガスGとの混合排水W1が大気と接触することがなくなることから、設備の防爆化を確実に実現することができる。
さらにまた、非爆発性ガスGとともに添加剤Tも空気に触れることのない加圧ポンプ3内の図示しない混合部に添加されることから、添加剤Tの添加時の空気の混入を防ぐことができ、これによりさらに防爆化の確実性を高めることができる。
Further, in the pressurized flotation separation apparatus 1, since the flotation tank 2 is sealed by the lid portion 2a, the mixed waste water W1 of the oil-containing waste water W0 and the non-explosive gas G sent to the flotation tank 2 comes into contact with the atmosphere. Therefore, it is possible to reliably realize explosion-proof equipment.
Furthermore, since the additive T together with the non-explosive gas G is added to a mixing portion (not shown) in the pressurizing pump 3 that does not come into contact with air, it is possible to prevent air from being mixed when the additive T is added. This can further increase the certainty of explosion protection.

上述のように本実施の形態による加圧浮上分離装置では、加圧ポンプ3内で油含有排水W0と非爆発性ガスGとを混合させ、その混合排水W1を浮上槽2へ送るといった簡単な構造によって油水分離が行えるので、水バランスなどの運転管理が容易になり、従来のような水バランスを考慮した管理が不要となる利点がある。
また、浮上槽2に送り込まれる油含有排水W0と非爆発性ガスGとの混合排水に空気が混じることがないので、防爆化を図ることができ、これにより危険物取り扱い施設等での使用も可能となり、適用範囲を広げることができる。
As described above, in the pressurized flotation separation apparatus according to this embodiment, the oil-containing wastewater W0 and the non-explosive gas G are mixed in the pressurization pump 3, and the mixed wastewater W1 is sent to the flotation tank 2. Since oil / water separation can be performed depending on the structure, operation management such as water balance becomes easy, and there is an advantage that management in consideration of water balance as in the related art becomes unnecessary.
Moreover, since air does not mix with the mixed wastewater of the oil-containing wastewater W0 and the non-explosive gas G sent to the levitation tank 2, explosion-proofing can be achieved. It becomes possible and the application range can be expanded.

次に、上述した実施の形態による加圧浮上分離装置の効果を裏付けるために行った試験例について以下説明する。   Next, test examples performed to support the effect of the pressure levitation separator according to the above-described embodiment will be described below.

(実施例)
本実施例では、上述の実施の形態の加圧浮上分離装置を使用して微細気泡を発生させ、油分を付着させた浮上試験を行い、本実施の形態の有効性について確認した。
浮上槽として、水槽高さ1.5m、容積1mのものを使用した。加圧ポンプにおいて、通水量2m/hrの排水を使用し、浮上槽における滞留時間を30分とした条件で、窒素ガス(Nガス)と空気の二種を排水に混合させて微細気泡を作成した。そして、気液比(%)(ガス量/排水量×100)を変化させて気泡の発生度、気泡の上昇速度(m/hr)、油分除去率(%)を計測し、比較を行った。本試験で行った窒素ガスと空気のそれぞれの気液比は、2.5〜10%までの範囲において7点(2.5%、3%、4%、5%、6%、8%、10%)とした。
(Example)
In the present example, a flotation test in which fine bubbles were generated and an oil component was adhered using the pressurized flotation separation apparatus of the above-described embodiment was confirmed to confirm the effectiveness of the present embodiment.
A floating tank having a water tank height of 1.5 m and a volume of 1 m 3 was used. In the pressure pump, drainage with a water flow rate of 2 m 3 / hr is used, and under the condition that the residence time in the levitation tank is 30 minutes, two types of nitrogen gas (N 2 gas) and air are mixed into the wastewater to form fine bubbles. It was created. Then, by changing the gas-liquid ratio (%) (gas amount / drainage amount × 100), the generation rate of bubbles, the rising speed of bubbles (m / hr), and the oil removal rate (%) were measured and compared. The gas-liquid ratio of nitrogen gas and air conducted in this test is 7 points (2.5%, 3%, 4%, 5%, 6%, 8%, 10%).

表1には、窒素ガスの場合と空気の場合のそれぞれの試験結果を示している。
なお、気泡の発生度は、加圧ポンプで作成された微細気泡をビーカー等に取り出したものを目視によって判定した状態を示している。判定結果としては、微細な気泡で白濁と判定したものを「◎」で示し、中規模な白濁と判定したものを「○」で示し、僅かな微細気泡が発生したものを「△」で示すようにした。
Table 1 shows the test results in the case of nitrogen gas and air.
In addition, the bubble generation degree shows a state in which fine bubbles created by a pressure pump are taken out into a beaker or the like and visually determined. Judgment results are indicated by “◎” for fine bubbles determined as white turbidity, indicated by “◯” for those determined as medium-scale white turbidity, and indicated by “△” for those with slight fine bubbles generated. I did it.

Figure 2012061459
Figure 2012061459

表1に示すように、窒素ガスを用いた場合は、気液比3%以上で白濁した微細気泡が発生し、その微細気泡は3.5m/hr以上の上昇速度があり、排水中に含まれる油分等に微細気泡が付着し、これら油分等が微細気泡とともに上昇することから、油分除去率も80〜95%となって概ね良好であった。とくに、気液比が3.0〜4.0%では、油分除去率が95%でより一層良好であることを確認することができた。   As shown in Table 1, when nitrogen gas is used, fine bubbles that become cloudy are generated at a gas-liquid ratio of 3% or more, and the fine bubbles have a rising speed of 3.5 m / hr or more and are contained in the waste water. Since the fine bubbles adhere to the oil component and the like, and the oil component and the like rise together with the fine bubbles, the oil removal rate is generally good at 80 to 95%. In particular, when the gas-liquid ratio was 3.0 to 4.0%, it was confirmed that the oil removal rate was 95%, which was even better.

一方、空気を用いた場合は、気液比が3%以上で白濁した微細気泡が発生するが、微細気泡を作成するためのガス供給量は窒素ガスと同様の気液比で比較すると、空気による微細気泡の上昇速度は、窒素ガスに比べて遅く、且つより微細な気泡となっており、気泡が上昇する前に微細気泡が処理水に混入する確率が高くなっていることが確認できる。つまり、気泡が処理水側に漏洩するということは、排水中の油分等も加圧浮上することができず、処理水とともに流出してしまうため、油分除去率も30〜60%であり窒素ガスに比べて低下している結果となった。
なお、空気による微細気泡を使用するためには、加圧浮上槽の容積を大きくし、滞留時間を多くする必要がある。そのため、本実施例による試験結果では、窒素ガスを使用した微細気泡を使用した方がより装置を小型化することができる。
On the other hand, when air is used, fine bubbles that become cloudy are generated at a gas-liquid ratio of 3% or more. However, the gas supply amount for creating the fine bubbles is compared with the same gas-liquid ratio as that of nitrogen gas. The rising speed of the fine bubbles is lower than that of the nitrogen gas and becomes finer, and it can be confirmed that the probability that the fine bubbles are mixed into the treated water is increased before the bubbles are raised. In other words, the fact that bubbles leak to the treated water side means that the oil content in the drainage cannot be lifted by pressure and flows out together with the treated water, so the oil removal rate is 30-60% and nitrogen gas The result was lower than
In order to use fine air bubbles, it is necessary to increase the volume of the pressurized flotation tank and increase the residence time. Therefore, in the test results according to this example, the apparatus can be further downsized by using fine bubbles using nitrogen gas.

上述した実施例より、前記非爆発性ガスは、気液比で2.5〜10%の窒素ガスであることが好ましく、さらに気液比で3.0〜4.0%の窒素ガスであることがより好ましいことがわかった。微細気泡の発生には、気液比が3.0%以上あれば、白濁した微細気泡ができる。そして、気液比が4.0%を超えると、窒素ガスを注入しても余剰分のガスは微細気泡にならずに大きなガスの塊となって曝気状となり、そのガス塊によって浮上槽内を掻き回して整流を壊し、効果的な浮上分離が抑制されるため、油分除去率が気液比で3.0〜4.0%の場合に比べて15%程度低下することが確認された。
なお、空気を使用する場合には爆発の可能性があるため、窒素ガスを使用するのが好ましいが、油分除去性能としても窒素ガスの方が空気よりも優れていることが確認できた。
From the above-described embodiment, the non-explosive gas is preferably 2.5 to 10% nitrogen gas in a gas-liquid ratio, and more preferably 3.0 to 4.0% nitrogen gas in a gas-liquid ratio. Was found to be more preferable. For the generation of fine bubbles, if the gas-liquid ratio is 3.0% or more, white turbid fine bubbles are formed. When the gas-liquid ratio exceeds 4.0%, even if nitrogen gas is injected, the surplus gas does not become fine bubbles but becomes a large gas lump and is aerated, and the gas lump causes It was confirmed that the oil removal rate was reduced by about 15% compared to the case where the gas-liquid ratio was 3.0 to 4.0% because the rectification was broken by suppressing the rectification and effective floating separation was suppressed.
When air is used, it is preferable to use nitrogen gas because there is a possibility of explosion, but it was confirmed that nitrogen gas is superior to air in terms of oil removal performance.

以上、本発明による加圧浮上分離装置の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上述した実施の形態では、凝集剤Tを加圧ポンプ3内に添加する構成としているが、これに限定されることはない。例えば、加圧ポンプの上流側に従来から使用される凝集反応槽を設け、この凝集反応槽で凝集剤を添加した後、加圧ポンプで混合された油含有排水W0と非爆発性ガスGとの混合排水を浮上槽2へ送るようにしてもよい。また、加圧ポンプの下流側に高分子凝集剤を添加し、PACにより形成したフロックをラインミキサーの使用等によりさらに大きくして浮上を促進させることもできる。
As mentioned above, although embodiment of the pressurization floating separation apparatus by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.
For example, in the above-described embodiment, the flocculant T is added to the pressure pump 3, but the present invention is not limited to this. For example, a conventionally used agglomeration reaction tank is provided on the upstream side of the pressure pump, and after adding a flocculant in this agglomeration reaction tank, the oil-containing waste water W0 and the non-explosive gas G mixed by the pressure pump The mixed waste water may be sent to the levitation tank 2. In addition, a polymer flocculant can be added to the downstream side of the pressurizing pump, and the floc formed by PAC can be further increased by using a line mixer or the like to promote floating.

また、本実施の形態では、非爆発性ガスとして気液比で2.5〜10%の窒素ガスが好ましいとしているが、上記実施の形態で挙げたようにヘリウムやアルゴン等の非爆発性ガスを適用することも勿論可能である。   In this embodiment, nitrogen gas having a gas-liquid ratio of 2.5 to 10% is preferable as the non-explosive gas. However, as mentioned in the above embodiment, non-explosive gas such as helium and argon is used. Of course, it is also possible to apply.

1 加圧浮上分離装置
2 浮上槽
2a 蓋部
3 加圧ポンプ
F 油分スカム
G 非爆発性ガス
T 凝集剤
W0 油含有排水
W1 混合排水
W2 処理水
DESCRIPTION OF SYMBOLS 1 Pressure floating separator 2 Floating tank 2a Lid 3 Pressure pump F Oil content scum G Non-explosive gas T Coagulant W0 Oil containing waste water W1 Mixed waste water W2 Treated water

Claims (4)

油含有排水に凝集剤を添加して浮上槽内で油水分離するための加圧浮上分離装置であって、
前記浮上槽に前記油含有排水を送水するための加圧ポンプが設けられ、
該加圧ポンプには非爆発性ガスが供給され、この加圧ポンプ内で前記非爆発性ガスと前記油含有排水とが混合される構成としたことを特徴とする加圧浮上分離装置。
A pressurized flotation separation device for adding a flocculant to oil-containing wastewater and separating oil and water in a flotation tank,
A pressure pump for supplying the oil-containing wastewater to the levitation tank is provided;
A pressurized flotation separation apparatus characterized in that a non-explosive gas is supplied to the pressure pump, and the non-explosive gas and the oil-containing waste water are mixed in the pressure pump.
前記浮上槽は、密閉されていることを特徴とする請求項1に記載の加圧浮上分離装置。   The pressurized levitation separator according to claim 1, wherein the levitation tank is sealed. 前記加圧ポンプ内に、前記凝集剤が添加されることを特徴とする請求項1又は2に記載の加圧浮上分離装置。   The pressurized levitation separator according to claim 1 or 2, wherein the flocculant is added to the pressure pump. 前記非爆発性ガスは、気液比で2.5〜10.0%であることを特徴とする請求項1乃至3のいずれか1項に記載の加圧浮上分離装置。
The pressurized flotation separation apparatus according to any one of claims 1 to 3, wherein the non-explosive gas is in a gas-liquid ratio of 2.5 to 10.0%.
JP2011110352A 2010-08-19 2011-05-17 Pressure floating separator Active JP5831736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110352A JP5831736B2 (en) 2010-08-19 2011-05-17 Pressure floating separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010184113 2010-08-19
JP2010184113 2010-08-19
JP2011110352A JP5831736B2 (en) 2010-08-19 2011-05-17 Pressure floating separator

Publications (2)

Publication Number Publication Date
JP2012061459A true JP2012061459A (en) 2012-03-29
JP5831736B2 JP5831736B2 (en) 2015-12-09

Family

ID=46057751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110352A Active JP5831736B2 (en) 2010-08-19 2011-05-17 Pressure floating separator

Country Status (1)

Country Link
JP (1) JP5831736B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084128A1 (en) * 2012-11-28 2014-06-05 独立行政法人石油天然ガス・金属鉱物資源機構 Separation device and separation method
JP2017159291A (en) * 2016-03-07 2017-09-14 伯東株式会社 Treatment method for crude oil-containing waste liquid and treatment equipment for crude oil-containing waste liquid
CN107207289A (en) * 2015-02-09 2017-09-26 住友电气工业株式会社 Water treatment system and method for treating water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190691A (en) * 1987-02-02 1988-08-08 Nippon Steel Corp Pressure flotation type water treatment method and apparatus
JPH10263527A (en) * 1997-03-27 1998-10-06 Takei Hiromi Recycle system of discharge water and recycle system of car washing waste water
JP2001009446A (en) * 1999-06-29 2001-01-16 Meidensha Corp Pressure flotation method and equipment therefor
JP2006289291A (en) * 2005-04-13 2006-10-26 Hitachi Plant Technologies Ltd Oil-water separating method and oil-water separation apparatus
JP2006297239A (en) * 2005-04-18 2006-11-02 Hidetaka Okada Pressure floatation separation apparatus in waste water treatment, sludge concentration system and pressure floatation separation method
JP2010042338A (en) * 2008-08-11 2010-02-25 Aura Tec:Kk Floatation separation method of particles in liquid, and apparatus therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190691A (en) * 1987-02-02 1988-08-08 Nippon Steel Corp Pressure flotation type water treatment method and apparatus
JPH10263527A (en) * 1997-03-27 1998-10-06 Takei Hiromi Recycle system of discharge water and recycle system of car washing waste water
JP2001009446A (en) * 1999-06-29 2001-01-16 Meidensha Corp Pressure flotation method and equipment therefor
JP2006289291A (en) * 2005-04-13 2006-10-26 Hitachi Plant Technologies Ltd Oil-water separating method and oil-water separation apparatus
JP2006297239A (en) * 2005-04-18 2006-11-02 Hidetaka Okada Pressure floatation separation apparatus in waste water treatment, sludge concentration system and pressure floatation separation method
JP2010042338A (en) * 2008-08-11 2010-02-25 Aura Tec:Kk Floatation separation method of particles in liquid, and apparatus therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084128A1 (en) * 2012-11-28 2014-06-05 独立行政法人石油天然ガス・金属鉱物資源機構 Separation device and separation method
JPWO2014084128A1 (en) * 2012-11-28 2017-01-05 独立行政法人石油天然ガス・金属鉱物資源機構 Separation apparatus and separation method
EP2927195B1 (en) * 2012-11-28 2018-02-28 Japan Oil, Gas and Metals National Corporation Separation device and separation method
CN107207289A (en) * 2015-02-09 2017-09-26 住友电气工业株式会社 Water treatment system and method for treating water
US10239020B2 (en) * 2015-02-09 2019-03-26 Sumitomo Electric Industries, Ltd. Water treatment system and water treatment method
CN107207289B (en) * 2015-02-09 2020-09-01 住友电气工业株式会社 Water treatment system and water treatment method
JP2017159291A (en) * 2016-03-07 2017-09-14 伯東株式会社 Treatment method for crude oil-containing waste liquid and treatment equipment for crude oil-containing waste liquid

Also Published As

Publication number Publication date
JP5831736B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5826068B2 (en) Accompanying water treatment method and treatment apparatus
US3884803A (en) Process for separating low api gravity oil from water
NO20073874L (en) Device for separating water from oil-based drilling fluid and advanced water treatment
NL2021112B1 (en) Micro-nano bubble generator
JP2018051534A (en) Apparatus and method for treatment of effluent
JP2011000583A (en) Method and apparatus for treating waste liquid
JP5831736B2 (en) Pressure floating separator
JP5211852B2 (en) Pressurized levitating apparatus and pressurized levitating method
CN108726787A (en) The processing method of crude oil electric desalting sewage
CN208394822U (en) A kind of assembled set air flotation processing device
KR102240832B1 (en) Wastewater treatment device and wastewater treatment method
US20220403250A1 (en) Treatment of hydrocarbon-contaminated materials
CN105668858A (en) Method and corollary equipment for treating oily sewage drained by compressor
CN108658286A (en) A kind of wastewater treatment equipment of marine exhaust washing system
JP6490978B2 (en) Water treatment method
JP2010110681A (en) Apparatus for recovering volatile hydrocarbon
KR20090052946A (en) Manufacture and procedure to make clean waste water containing oil and salt
US8101071B2 (en) Oil removal reclamation clarifier system and process for use
CN210825513U (en) High-efficient prereaction pressurization dissolved air flotation machine
CN110436732A (en) A kind of oily sludge deoiling, dewatering device and method
RU2629786C1 (en) Method for purifying stagnant reservoir under conditions of continuous ingress of oil products
JP2008030009A (en) Method and apparatus for purifying polluted waste water
JP6490979B2 (en) Water treatment method
CN102408170A (en) Electric, air and filtering treatment method for oily sewage
JP2017039088A (en) Processing method and processing apparatus of oily waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151014

R150 Certificate of patent or registration of utility model

Ref document number: 5831736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150