JP2012060902A - FUNCTIONAL FOOD HAVING α-GLUCOSIDASE INHIBITION ACTIVITY, METHOD FOR PRODUCING α-GLUCOSIDASE INHIBITION ACTIVE COMPONENT AND METHOD FOR PRODUCING 1-DEOXYNOJIRIMYCIN - Google Patents

FUNCTIONAL FOOD HAVING α-GLUCOSIDASE INHIBITION ACTIVITY, METHOD FOR PRODUCING α-GLUCOSIDASE INHIBITION ACTIVE COMPONENT AND METHOD FOR PRODUCING 1-DEOXYNOJIRIMYCIN Download PDF

Info

Publication number
JP2012060902A
JP2012060902A JP2010206162A JP2010206162A JP2012060902A JP 2012060902 A JP2012060902 A JP 2012060902A JP 2010206162 A JP2010206162 A JP 2010206162A JP 2010206162 A JP2010206162 A JP 2010206162A JP 2012060902 A JP2012060902 A JP 2012060902A
Authority
JP
Japan
Prior art keywords
strain
bacillus
aminoliquefaciens
deoxynojirimycin
bacillus aminoliquefaciens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010206162A
Other languages
Japanese (ja)
Other versions
JP5526416B2 (en
Inventor
Satoru Nirasawa
悟 韮澤
Takashi Mori
▲隆▼ 森
Tadashi Yoshihashi
忠 吉橋
Lite Li
里特 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan International Research Center for Agricultural Sciences JIRCAS
Original Assignee
Japan International Research Center for Agricultural Sciences JIRCAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan International Research Center for Agricultural Sciences JIRCAS filed Critical Japan International Research Center for Agricultural Sciences JIRCAS
Priority to JP2010206162A priority Critical patent/JP5526416B2/en
Publication of JP2012060902A publication Critical patent/JP2012060902A/en
Application granted granted Critical
Publication of JP5526416B2 publication Critical patent/JP5526416B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an α-glucosidase inhibition component from a culture of a microbe, and functional food containing the α-glucosidase inhibition component.SOLUTION: The functional food containing the α-glucosidase inhibition component can be obtained by performing fermentation processing of one or more crops selected from the pluses and grain containing a carbohydrate by Bacillus amyloliquefaciens. Bacillus amyloliquefaciens is a Bacillus amyloliquefaciens culture having capability to produce the α-glucosidase inhibition active component.

Description

本発明は、α−グルコシダーゼ阻害活性成分を含有する機能性食品、α−グルコシダーゼ阻害活性成分の製造方法及び1−デオキシノジリマイシンの製造方法に関する。   The present invention relates to a functional food containing an α-glucosidase inhibitory active ingredient, a method for producing an α-glucosidase inhibitory active ingredient, and a method for producing 1-deoxynojirimycin.

α−グルコシダーゼは小腸に存在する酵素であり、炭水化物を単糖類に分解する消化酵素である。したがって、α−グルコシダーゼの働きを抑えることによって、食後の血糖の急激な上昇を抑えることができる。
特許文献1及び2には、豆類又は穀類を糸状菌であるアスペルギルス属微生物やモナカス属微生物で発酵してα−グルコシダーゼ阻害剤を製造することが記載されている。
α-Glucosidase is an enzyme that exists in the small intestine and is a digestive enzyme that breaks down carbohydrates into monosaccharides. Therefore, by suppressing the action of α-glucosidase, a rapid increase in blood glucose after a meal can be suppressed.
Patent Documents 1 and 2 describe that an α-glucosidase inhibitor is produced by fermenting beans or cereals with Aspergillus microorganisms or Monacus microorganisms which are filamentous fungi.

また、α−グルコシダーゼ阻害剤に関しては、いくつかの特定成分が知られているが、天然成分として、桑葉に含まれるアルカロイドである1−デオキシノジリマイシンが知られており、桑葉から1−デオキシノジリマイシンを抽出する方法が知られている(例えば、特許文献3参照)。また、桑葉からの抽出以外にも、大豆をバチラス・サブチルスにより発酵し、発酵物から1−デオキシノジリマイシンを製造することが報告されている(特許文献4)。   As for α-glucosidase inhibitors, some specific components are known, but as a natural component, 1-deoxynojirimycin, an alkaloid contained in mulberry leaves, is known. A method for extracting deoxynojirimycin is known (see, for example, Patent Document 3). In addition to extraction from mulberry leaves, it has been reported that soybean is fermented with Bacillus subtilis to produce 1-deoxynojirimycin from the fermented product (Patent Document 4).

特開2004−166628号JP 2004-166628 A 特開2009−227587号JP 2009-227587 特開平9−140351号Japanese Patent Laid-Open No. 9-14351 特開2008−222701号JP 2008-222701 A

J Food Sci. vol. 75, 246-50 (2010)J Food Sci.vol. 75, 246-50 (2010)

桑葉から1−デオキシノジリマイシンを抽出する方法では、大量にα−グルコシダーゼ阻害成分を得ることが難しく、様々な食物と組み合わせた機能性食品を大量に製造することは難しい。   In the method of extracting 1-deoxynojirimycin from mulberry leaves, it is difficult to obtain a large amount of α-glucosidase-inhibiting components, and it is difficult to produce a large amount of functional foods combined with various foods.

本発明は、微生物の培養物からα−グルコシダーゼ阻害成分を製造する方法及びα−グルコシダーゼ阻害成分を含有する機能性食品を提供することを目的とする。   An object of the present invention is to provide a method for producing an α-glucosidase inhibitory component from a culture of microorganisms and a functional food containing the α-glucosidase inhibitory component.

本発明者らは、α−グルコシダーゼ阻害成分を含有する発酵物について研究を行っていたところ、バチラス・アミノリクエファシエンス菌を用いて得られた発酵物にα−グルコシダーゼ阻害成分が含まれていることを見出し、本発明を完成するに至った。   The present inventors have been studying a fermented product containing an α-glucosidase inhibitory component, and the fermented product obtained using Bacillus aminoliquefaciens contains an α-glucosidase inhibitory component. As a result, the present invention has been completed.

本発明の機能性食品は、炭水化物を含む作物をバチラス・アミノリクエファシエンス菌で発酵処理して得られるものである。   The functional food of the present invention is obtained by fermenting a crop containing carbohydrates with Bacillus aminoliquefaciens.

また、本発明の機能性食品は、バチラス・アミノリクエファシエンス菌が生産するα−グルコシダーゼ阻害活性成分と担体とからなることを特徴とする。   The functional food of the present invention is characterized by comprising an α-glucosidase inhibitory active ingredient produced by Bacillus aminoliquefaciens and a carrier.

本発明のα−グルコシダーゼ阻害成分を製造する方法は、バチラス・アミノリクエファシエンス菌に属し、α−グルコシダーゼ阻害活性成分を生産する能力を有する菌株を培養し、培養物からα−グルコシダーゼ阻害活性成分を抽出することを特徴とする。   The method for producing an α-glucosidase inhibitory component of the present invention comprises culturing a strain that belongs to Bacillus aminoliquefaciens and has the ability to produce an α-glucosidase inhibitory active component, and the α-glucosidase inhibitory active component from the culture. Is extracted.

本発明のα−1−デオキシノジリマイシンを製造する方法は、バチラス・アミノリクエファシエンス菌に属し、1−デオキシノジリマイシンを含むα−グルコシダーゼ阻害活性成分を生産する能力を有する菌株を培養し、培養物から1−デオキシノジリマイシンを抽出することを特徴とする。   The method for producing α-1-deoxynojirimycin of the present invention comprises culturing a strain belonging to Bacillus aminoliquefaciens and capable of producing an α-glucosidase inhibitory active ingredient containing 1-deoxynojirimycin, 1-deoxynojirimycin is extracted from the culture.

本発明の機能性食品は炭水化物を含む作物を原料としたα−グルコシダーゼ阻害活性成分を含む発酵食品であるため、炭水化物を含む食物を摂取しながら、食後の血糖の急激な上昇を抑えることができる。   Since the functional food of the present invention is a fermented food containing an α-glucosidase inhibitory active ingredient made from crops containing carbohydrates, it is possible to suppress a rapid increase in blood glucose after meals while ingesting foods containing carbohydrates. .

本発明の実施例1で得られた発酵物の上澄み液の陰イオン交換クロマトグラフィーを示すチャート図である。It is a chart figure which shows the anion exchange chromatography of the supernatant liquid of the fermented material obtained in Example 1 of this invention.

以下、本発明の実施の形態について詳細に説明する。
[実施形態1]
本実施形態の機能性食品は、炭水化物を含む作物をバチラス・アミノリクエファシエンス菌で発酵処理して得られる発酵食品である。
Hereinafter, embodiments of the present invention will be described in detail.
[Embodiment 1]
The functional food of this embodiment is a fermented food obtained by subjecting a crop containing carbohydrates to fermentation with Bacillus aminoliquefaciens.

炭水化物を含む作物とは、穀類、豆類又はイモ類から選ばれる1以上の農作物又はそれら農作物の粉加工品である。
穀類としては、あわ、えんばく、大麦、きび、小麦、米、餅米、そば、とうもろこし、ひえ、もろこし、ライ麦、鳩麦等が挙げられ、また、穀類を加工した、精白粒、オートミール、精麦、麦こがし、薄力粉、中力粉、強力粉、玄米、半つき米、七部つき米、精白米、胚芽精米、強化米、α米、上新粉、白玉粉、全層粉、コーンミル、コーングリップツ、コーンフラワー、ライ麦粉等であってもよい。
The crop containing a carbohydrate is one or more crops selected from cereals, beans, and potatoes, or a powder processed product of those crops.
Examples of cereals include: Awa, Enba, Barley, Acne, Wheat, Rice, Sticky Rice, Buckwheat, Corn, Rice, Maize, Rye, Pigeon, etc. In addition, processed grains, white grains, oatmeal, wheat, Barley, weak flour, medium flour, strong flour, brown rice, half-powdered rice, rice with seven parts, polished rice, germed rice, fortified rice, alpha rice, Kaminshin flour, white flour, corn mill, corn grips, Corn flour, rye flour or the like may be used.

豆類としては、大豆、アズキ、ササゲ、インゲン豆、落花生、ソラマメ等が挙げられ、また、豆類の粉製品であってもよい。
イモ類としては、ジャガイモ、サツマイモ、サトイモ、キクイモ等が挙げられ、イモ類の粉製品であってもよい。
Examples of the beans include soybeans, azuki bean, cowpea, kidney beans, peanuts, broad beans, and the like, and may be a powder product of beans.
Potatoes include potatoes, sweet potatoes, taros, and potatoes, and may be potato powder products.

炭水化物を含む作物の発酵は、炭水化物を含む作物に水分を加え加熱処理した後、α−グルコシダーゼ阻害活性成分を生産する能力を有する菌株を添加して、発酵処理すればよい。なお、α−グルコシダーゼ阻害活性成分を生産する能力を有する菌株は、1−デオキシノジリマイシンを生産する能力を有するバチラス・アミノリクエファシエンス菌株であることが好ましい。   Fermentation of crops containing carbohydrates may be carried out by adding water to the crops containing carbohydrates and then heat-treating them, and then adding a strain having the ability to produce an α-glucosidase inhibitory active ingredient. The strain having the ability to produce an α-glucosidase inhibitory active ingredient is preferably a Bacillus aminoliquefaciens strain having the ability to produce 1-deoxynojirimycin.

1−デオキシノジリマイシンを生産する能力を有するバチラス・アミノリクエファシエンス菌株は、バチラス・アミノリクエファシエンス3022(NBRC3022菌株)、バチラス・アミノリクエファシエンス14141(NBRC14141菌株)及びバチラス・アミノリクエファシエンス15535(NBRC15535菌株)から選ばれる菌株が好ましい。   The Bacillus aminoliquefaciens strains capable of producing 1-deoxynojirimycin are Bacillus aminoliquefaciens 3022 (NBRC3022 strain), Bacillus aminoliquefaciens 14141 (NBRC14141 strain), and Bacillus aminoliquefaciens. A strain selected from 15535 (NBRC15535 strain) is preferred.

発酵物は納豆又は米麹のように、そのまま食する機能性食品としてもよく、加工して、豆腐、シリアル、餅、パン、麺類等の機能性食品としてもよい。   The fermented product may be a functional food such as natto or rice bran that is eaten as it is, or may be processed into a functional food such as tofu, cereal, rice bran, bread or noodles.

以上述べたように、本実施形態の機能性食品に対しては、α−グルコシダーゼ阻害活性成分又は1−デオキシノジリマイシンを添加する必要が無い。また、本実施形態の機能性食品は、バチラス・サブチルスを利用した発酵食品より強いグルコシダーゼ阻害活性を示すため、炭水化物摂取時のα−グルコシダーゼの働きを効果的に抑制することができる。   As described above, it is not necessary to add an α-glucosidase inhibitory active ingredient or 1-deoxynojirimycin to the functional food of this embodiment. Moreover, since the functional food of this embodiment shows stronger glucosidase inhibitory activity than fermented food using Bacillus subtilis, it can effectively suppress the action of α-glucosidase during carbohydrate intake.

[実施形態2]
本実施形態は、α−グルコシダーゼ阻害活性成分の製造方法であって、バチラス・アミノリクエファシエンス菌に属し、α−グルコシダーゼ阻害活性成分を生産する能力を有する菌株を培養し、培養物からα−グルコシダーゼ阻害活性成分を抽出することを特徴とする。
[Embodiment 2]
The present embodiment is a method for producing an α-glucosidase-inhibiting active ingredient, which comprises culturing a strain belonging to Bacillus aminoliquefaciens and capable of producing an α-glucosidase-inhibiting active ingredient. A glucosidase inhibitory active ingredient is extracted.

バチラス・アミノリクエファシエンス菌は、実施形態1で述べた、α−グルコシダーゼ阻害活性成分を生産する能力を有するバチラス・アミノリクエファシエンス菌株であればよく、好ましくは、1−デオキシノジリマイシンを生産する能力を有するバチラス・アミノリクエファシエンス菌株である。   The Bacillus aminoliquefaciens bacterium may be any Bacillus aminoliquefaciens strain having the ability to produce an α-glucosidase inhibitory active ingredient described in Embodiment 1, and preferably produces 1-deoxynojirimycin. Bacillus aminoliquefaciens strain having the ability to

1−デオキシノジリマイシンを生産する能力を有するバチラス・アミノリクエファシエンス菌株を培養する場合には、培養物から1−デオキシノジリマイシンを得ることができる。   When cultivating a Bacillus aminoliquefaciens strain having the ability to produce 1-deoxynojirimycin, 1-deoxynojirimycin can be obtained from the culture.

α−グルコシダーゼ阻害活性成分を生産する能力又は1−デオキシノジリマイシンを生産する能力を有するバチラス・アミノリクエファシエンス菌株は、実施形態1で述べた、バチラス・アミノリクエファシエンス3022(NBRC3022菌株)、バチラス・アミノリクエファシエンス14141(NBRC14141菌株)及びバチラス・アミノリクエファシエンス15535(NBRC15535菌株)から選ばれる菌株が好ましい。   The Bacillus aminoliquefaciens strain having the ability to produce an α-glucosidase inhibitory active ingredient or the ability to produce 1-deoxynojirimycin is the Bacillus aminoliquefaciens 3022 (NBRC3022 strain) described in Embodiment 1, A strain selected from Bacillus aminoliquefaciens 14141 (NBRC14141 strain) and Bacillus aminoliquefaciens 15535 (NBRC15535 strain) is preferred.

培地は特に限定されるものではなく、バチラス・アミノリクエファシエンスが生育できる液体培地、固体培地を用いることができる。また、培地は実施形態1で述べた炭水化物を含む農作物であってもよく、培地成分として炭水化物を含む農作物を含んでいてもよい。   The medium is not particularly limited, and a liquid medium or a solid medium in which Bacillus aminoliquefaciens can grow can be used. Further, the medium may be a crop containing the carbohydrate described in the first embodiment, and may contain a crop containing a carbohydrate as a medium component.

バチラス・アミノリクエファシエンス菌が生産するα−グルコシダーゼ阻害活性成分は、バチラス・アミノリクエファシエンス菌の培養物中に含まれるα−グルコシダーゼ活性を阻害する化合物であればよい。好ましくは、1−デオキシノジリマイシンである。   The α-glucosidase inhibitory active component produced by Bacillus aminoliquefaciens may be any compound that inhibits the α-glucosidase activity contained in the culture of Bacillus aminoliquefaciens. 1-deoxynojirimycin is preferable.

バチラス・アミノリクエファシエンスの培養物は、バチラス・サブチルスの培養物に比べ、高いα−グルコシダーゼ阻害効果を示す。   The culture of Bacillus aminoliquefaciens exhibits a higher α-glucosidase inhibitory effect than the culture of Bacillus subtilis.

α−グルコシダーゼ阻害活性成分は、食用に適する担体に添加して使用する。担体は、例えば、パン、麺、アルファー米、豆腐、ハム、チーズ等の加工食品、即席麺等のインスタント食品、レトルト食品、味噌や醤油等の調味料、菓子類、飲料又はガム等である。   The α-glucosidase inhibitory active ingredient is used by adding it to an edible carrier. Examples of the carrier include processed foods such as bread, noodles, alpha rice, tofu, ham and cheese, instant foods such as instant noodles, retort foods, seasonings such as miso and soy sauce, confectionery, beverages and gums.

α−グルコシダーゼ阻害活性成分の添加量は、特に限定されるものではなく、機能性食品中に0.01以上10%の範囲で含まれていればよい。   The addition amount of the α-glucosidase-inhibiting active ingredient is not particularly limited as long as it is contained in the functional food in a range of 0.01 to 10%.

以下に、本発明に係る機能性食品及びα−グルコシダーゼ阻害活性成分の製造方法を実施例に基づき説明するが本発明は、以下の実施例に限定されるものではない。   Below, although the manufacturing method of the functional food based on this invention and the alpha-glucosidase inhibitory active ingredient is demonstrated based on an Example, this invention is not limited to a following example.

食品素材をバチラス・アミノリクエファシエンス菌株により発酵処理して得られた発酵物のα−グルコシダーゼ阻害を測定した。   The α-glucosidase inhibition of the fermented material obtained by fermenting the food material with the Bacillus aminoliquefaciens strain was measured.

食品素材には白米粒、小麦粒、トウモロコシ粒及び大豆を用い、独立行政法人製品評価技術基盤機構から入手した3種類のバチラス・アミノリクエファシエンス(Bacillus amyloliquefaciens)の菌株:NBRC3022菌株、NBRC14141菌株、NBRC15535菌株を用いた。
なお、対照として、市販の納豆より単離した菌株(市販納豆菌)及び独立行政法人製品評価技術基盤機構から入手したバチラス・スブチリス(Bacillus subtilis)(NBRC13719菌株)を用いた。
White rice grains, wheat grains, corn grains and soybeans are used as food materials. Three types of Bacillus amyloliquefaciens strains obtained from the National Institute of Technology and Evaluation, NBRC3022, NBRC14141, The NBRC15535 strain was used.
In addition, as a control, a strain isolated from commercially available natto (commercial natto) and Bacillus subtilis (NBRC13719 strain) obtained from the National Institute of Technology and Evaluation Technology, Incorporated Administrative Agency were used.

また、上記バチラス・アミノリクエファシエンス菌株をLB(Luria-Bertani)液体培地及びLB寒天培地で培養し、得られた培養物のα−グルコシダーゼ阻害を測定した。   Further, the Bacillus aminoliquefaciens strain was cultured in an LB (Luria-Bertani) liquid medium and an LB agar medium, and α-glucosidase inhibition of the obtained culture was measured.

[白米粒の発酵処理]
(1)白米に等量の水を加え、121℃、30分間オートクレイブした。これを滅菌済みのシャーレに移し、LB液体培地で30℃、一晩培養したバチラス・アミノリクエファシエンス培養液を加え混合し、30℃で1日間、つづいて4℃で一晩発酵させた。
[Fermentation of white rice grains]
(1) An equal amount of water was added to white rice and autoclaved at 121 ° C. for 30 minutes. This was transferred to a sterilized petri dish, added with Bacillus aminoliquefaciens culture medium cultured overnight in LB liquid medium at 30 ° C., and fermented at 30 ° C. for 1 day, followed by overnight fermentation at 4 ° C.

[小麦粒の発酵処理]
小麦粒を3倍量の水に一晩浸漬した。次に、浸漬した小麦粒に等量の水を加え、121℃、30分間をオートクレイブした。これを滅菌済みのシャーレに移し、LB液体培地で30℃、一晩培養したバチラス・アミノリクエファシエンス培養液を加えて混合し、30℃で1日間、つづいて4℃で一晩発酵させた。
[Fermentation of wheat grains]
The wheat grains were soaked overnight in 3 times the amount of water. Next, an equal amount of water was added to the soaked wheat grains, and autoclaved at 121 ° C. for 30 minutes. This was transferred to a sterilized petri dish, mixed with Bacillus aminoliquefaciens medium cultured overnight at 30 ° C. in LB liquid medium, and fermented at 30 ° C. for 1 day, followed by overnight at 4 ° C. .

[トウモロコシ粒の発酵処理]
トウモロコシ粒に等量の水を加え、121℃、30分間をオートクレイブした。これを滅菌済みのシャーレに移し、LB液体培地で30℃、一晩培養したバチラス・アミノリクエファシエンス培養液を加え混合し、30℃で1日間、つづいて4℃で一晩発酵させた。
[Fermentation of corn grain]
An equal amount of water was added to the corn grain and autoclaved at 121 ° C. for 30 minutes. This was transferred to a sterilized petri dish, added with Bacillus aminoliquefaciens culture medium cultured overnight in LB liquid medium at 30 ° C., and fermented at 30 ° C. for 1 day, followed by overnight fermentation at 4 ° C.

[大豆の発酵処理]
大豆を3倍量の水に一晩浸漬した。次に、浸漬した大豆に等量の水を加え、121℃、30分間をオートクレイブした。これを滅菌済みのシャーレに移し、LB液体培地で30℃、一晩培養したバチラス・アミノリクエファシエンス培養液を加えて混合し、30℃で1日間、つづいて4℃で一晩発酵させた。
[Soybean fermentation treatment]
Soybeans were soaked overnight in 3 times the amount of water. Next, an equal amount of water was added to the soaked soybeans and autoclaved at 121 ° C. for 30 minutes. This was transferred to a sterilized petri dish, mixed with Bacillus aminoliquefaciens medium cultured overnight at 30 ° C. in LB liquid medium, and fermented at 30 ° C. for 1 day, followed by overnight at 4 ° C. .

[LB液体培地での培養]
バチラス・アミノリクエファシエンスをLB液体培地で30℃、250rpmで回転させ、一晩培養した。
[LB寒天培地での培養]
バチラス・アミノリクエファシエンスをLB寒天培地で30℃、一晩培養させた。
[Culture in LB liquid medium]
Bacillus aminoliquefaciens was rotated overnight at 30 ° C. and 250 rpm in an LB liquid medium and cultured overnight.
[Culture on LB agar medium]
Bacillus aminoliquefaciens was cultured overnight at 30 ° C. on LB agar medium.

上記発酵物0.2gをそれぞれ水1mL(リットル)に懸濁し、これを15,000rpmで遠心分離したのち、上澄みを酵素活性測定用の試料溶液とした。LB液体培地培養物は15,000rpmで遠心分離したのち、上澄みを試料溶液とした。さらに、LB寒天培地培養物40mgを水0.4mLに懸濁し、これを15,000rpmで遠心分離したのち、上澄みを試料溶液とした。   Each 0.2 g of the fermented product was suspended in 1 mL (liter) of water, centrifuged at 15,000 rpm, and the supernatant was used as a sample solution for enzyme activity measurement. The LB liquid medium culture was centrifuged at 15,000 rpm, and the supernatant was used as a sample solution. Furthermore, 40 mg of the LB agar culture was suspended in 0.4 mL of water, centrifuged at 15,000 rpm, and the supernatant was used as a sample solution.

[酵素活性測定]
50mM(モル)のリン酸ナトリウム緩衝液(pH6.7)80μL、試料溶液50μL、10mMの4−ニトロフェニルα−D−グルコピラノシド水溶液20μL及び25mg/mLラット小腸アセトンパウダー(Intestinal acetone powders from rat、SIGMA−ALDRICH社製)水溶液50μLをこの順序で混合し、30℃、1時間インキュベートした。次に、1.2Mの炭酸ナトリウム水溶液100μLを加え酵素反応を停止させたのち、405nmの吸光度を測定した。
ラット小腸アセトンパウダーに含まれるα−グルコシダーゼが4−ニトロフェニルα−D−グルコピラノシドを加水分解し、4−ニトロフェノールを生じる。4−ニトロフェノールはアルカリ溶液中で黄色を呈するので、405nmの吸光度の増加を測定することによりα−グルコシダーゼ活性の強さを測定することが出来る。
[Enzyme activity measurement]
50 μM sodium phosphate buffer (pH 6.7) 80 μL, sample solution 50 μL, 10 mM 4-nitrophenyl α-D-glucopyranoside aqueous solution 20 μL, and 25 mg / mL rat small intestine acetone powders (Intestinal acetone powders from rat, SIGMA) -50 μL of an aqueous solution (manufactured by ALDRICH) was mixed in this order and incubated at 30 ° C. for 1 hour. Next, 100 μL of 1.2 M sodium carbonate aqueous solution was added to stop the enzyme reaction, and then the absorbance at 405 nm was measured.
Α-Glucosidase contained in rat small intestine acetone powder hydrolyzes 4-nitrophenyl α-D-glucopyranoside to produce 4-nitrophenol. Since 4-nitrophenol exhibits a yellow color in an alkaline solution, the intensity of α-glucosidase activity can be measured by measuring the increase in absorbance at 405 nm.

表1に、ブランクとして水を用い、ブランクの吸光度を100%としたときの、それぞれの試料の相対活性を示した。
すなわち、α−グルコシダーゼ活性が100%とは、試料溶液中にα−グルコシダーゼ阻害活性が全くないことを示す。一方、相対活性の数値が低くなるほど試料溶液中に強いα−グルコシダーゼ阻害活性があることを示す。
Table 1 shows the relative activity of each sample when water was used as a blank and the absorbance of the blank was 100%.
That is, an α-glucosidase activity of 100% indicates that there is no α-glucosidase inhibitory activity in the sample solution. On the other hand, it shows that there exists strong alpha-glucosidase inhibitory activity in a sample solution, so that the numerical value of relative activity becomes low.

Figure 2012060902
Figure 2012060902

なお、米、小麦、トウモロコシ、大豆及びLB寒天培地のα−グルコシダーゼ活性は、重量あたりの値、LB液体培地のα−グルコシダーゼ活性は体積あたりの値である。   The α-glucosidase activity of rice, wheat, corn, soybean, and LB agar medium is a value per weight, and the α-glucosidase activity of the LB liquid medium is a value per volume.

酵素活性測定の結果、バチラス・アミノリクエファシエンスを用いた発酵物及び培養物では、相対活性が2.9〜36%を示し、いずれもバチラス・サブチルスによる発酵物より強いα−グルコシダーゼ阻害活性を示した。   As a result of enzyme activity measurement, the fermented product and the culture product using Bacillus aminoliquefaciens showed a relative activity of 2.9 to 36%, both of which have stronger α-glucosidase inhibitory activity than the fermented product of Bacillus subtilis. Indicated.

高性能陰イオン交換クロマトグラフィーにより、発酵物に含まれる1−デオキシノジリマイシンを分取した。なお、高性能陰イオン交換クロマトグラフィーは、非特許文献1に記載された桑葉の1−デオキシノジリマイシンの同定に記載された方法である。   1-deoxynojirimycin contained in the fermentation product was fractionated by high performance anion exchange chromatography. High performance anion exchange chromatography is a method described in the identification of 1-deoxynojirimycin of mulberry leaves described in Non-Patent Document 1.

バチラス・アミノリクエファシエンス14141と大豆を用いて製造した発酵物1gに蒸留水1mLを加え、撹拌したのち、15,000rpmで10分間遠心分離し、上澄み液を得た。上澄み液に終点濃度が0.2Mになるように水酸化ナトリウムを加えた。これを、高性能陰イオン交換クロマトグラフィーに供し、1−デオキシノジリマイシン画分を分取した。高性能陰イオン交換クロマトグラフィーにはDionex社製のDX−300 System、長さ250mm、直径4mmのCarboPac MA−1カラム、パルスドアンペロメトリック電気化学検出器 PAD−2を使用した。カラムは0.2Mの水酸化ナトリウム水溶液で平衡化した。
なお、大豆発酵物の上澄み液に水酸化ナトリウムを添加したのち、0.2Mから1Mの水酸化ナトリウム濃度勾配により、上述の条件で1−デオキシノジリマイシンを溶出した。
1 mL of distilled water was added to 1 g of a fermented product produced using Bacillus aminoliquefaciens 14141 and soybeans, stirred, and then centrifuged at 15,000 rpm for 10 minutes to obtain a supernatant. Sodium hydroxide was added to the supernatant so that the end point concentration was 0.2M. This was subjected to high performance anion exchange chromatography to fractionate the 1-deoxynojirimycin fraction. For high performance anion exchange chromatography, DXion 300 System manufactured by Dionex, 250 mm long, 4 mm diameter CarboPac MA-1 column, pulsed amperometric electrochemical detector PAD-2 was used. The column was equilibrated with 0.2 M aqueous sodium hydroxide.
In addition, after adding sodium hydroxide to the supernatant of fermented soybeans, 1-deoxynojirimycin was eluted under the above-mentioned conditions with a sodium hydroxide concentration gradient from 0.2M to 1M.

図1に高性能陰イオン交換クロマトグラフィーのチャートを示す。図中のDNJで示すピークが1−デオキシノジリマイシンのピークである。このことから、バチラス・アミノリクエファシエンスを用いた発酵物又は培養物には1−デオキシノジリマイシンが含まれることがわかる。   FIG. 1 shows a chart of high performance anion exchange chromatography. The peak indicated by DNJ in the figure is the peak of 1-deoxynojirimycin. This shows that 1-deoxynojirimycin is contained in the fermented product or culture using Bacillus aminoliquefaciens.

Claims (15)

炭水化物を含む作物をバチラス・アミノリクエファシエンス菌で発酵処理して得られる、機能性食品。   A functional food obtained by fermenting a crop containing carbohydrates with Bacillus aminoliquefaciens. 前記炭水化物を含む作物が、穀類及び豆類から選ばれる1つ以上の作物である、請求項1に記載の機能性食品。   The functional food according to claim 1, wherein the crop containing carbohydrate is one or more crops selected from cereals and beans. 前記穀類が米、小麦及びトウモロコシから選ばれる1つ以上の穀物である、請求項2に記載の機能性食品。   The functional food according to claim 2, wherein the cereal is one or more grains selected from rice, wheat and corn. 前記バチラス・アミノリクエファシエンス菌がα−グルコシダーゼ阻害活性成分を生産する能力を有するバチラス・アミノリクエファシエンス菌株である、請求項1に記載の機能性食品。   The functional food according to claim 1, wherein the Bacillus aminoliquefaciens is a Bacillus aminoliquefaciens strain having an ability to produce an α-glucosidase inhibitory active ingredient. 前記α−グルコシダーゼ阻害活性成分を生産する能力を有するバチラス・アミノリクエファシエンス菌株が、1−デオキシノジリマイシンを生産する能力を有するバチラス・アミノリクエファシエンス菌株である、請求項4記載の機能性食品。   The functionality according to claim 4, wherein the Bacillus aminoliquefaciens strain having an ability to produce the α-glucosidase inhibitory active ingredient is a Bacillus aminoliquefaciens strain having an ability to produce 1-deoxynojirimycin. Food. 前記1−デオキシノジリマイシンを生産する能力を有するバチラス・アミノリクエファシエンス菌株が、バチラス・アミノリクエファシエンス3022(NBRC3022菌株)、バチラス・アミノリクエファシエンス14141(NBRC14141菌株)又はバチラス・アミノリクエファシエンス15535(NBRC15535菌株)である、請求項5記載の機能性食品。   The Bacillus aminoliquefaciens strain having the ability to produce the 1-deoxynojirimycin is Bacillus aminoliquefaciens 3022 (NBRC3022 strain), Bacillus aminoliquefaciens 14141 (NBRC14141 strain) or Bacillus aminoliquefaciens. The functional food according to claim 5, which is ENS 15535 (NBRC15535 strain). α−グルコシダーゼ阻害活性成分を生産する能力を有するバチラス・アミノリクエファシエンス菌株を培養し、培養物からα−グルコシダーゼ阻害活性成分を抽出する、α−グルコシダーゼ阻害活性成分の製造方法。   A method for producing an α-glucosidase inhibitory active component, comprising culturing a Bacillus aminoliquefaciens strain having an ability to produce an α-glucosidase inhibitory active component, and extracting the α-glucosidase inhibitory active component from the culture. 前記α−グルコシダーゼ阻害活性成分を生産する能力を有するバチラス・アミノリクエファシエンス菌株が、1−デオキシノジリマイシンを生産する能力を有するバチラス・アミノリクエファシエンス菌株である、請求項7記載のα−グルコシダーゼ阻害活性成分の製造方法。   The α- of claim 7, wherein the Bacillus aminoliquefaciens strain capable of producing the α-glucosidase inhibitory active ingredient is a Bacillus aminoliquefaciens strain capable of producing 1-deoxynojirimycin. A method for producing a glucosidase inhibitory active ingredient. 前記1−デオキシノジリマイシンを生産する能力を有するバチラス・アミノリクエファシエンス菌株が、バチラス・アミノリクエファシエンス3022(NBRC3022菌株)、バチラス・アミノリクエファシエンス14141(NBRC14141菌株)又はバチラス・アミノリクエファシエンス15535(NBRC15535菌株)である、請求項8記載のα−グルコシダーゼ阻害活性成分の製造方法。   The Bacillus aminoliquefaciens strain having the ability to produce the 1-deoxynojirimycin is Bacillus aminoliquefaciens 3022 (NBRC3022 strain), Bacillus aminoliquefaciens 14141 (NBRC14141 strain) or Bacillus aminoliquefaciens. The method for producing an α-glucosidase-inhibiting active ingredient according to claim 8, which is ence 15535 (NBRC15535 strain). 1−デオキシノジリマイシンを含むα−グルコシダーゼ阻害活性成分を生産する能力を有するバチラス・アミノリクエファシエンス菌株を培養し、培養物から1−デオキシノジリマイシンを抽出する、α−1−デオキシノジリマイシンの製造方法。   A culture of a Bacillus aminoliquefaciens strain capable of producing an α-glucosidase inhibitory active ingredient containing 1-deoxynojirimycin, and extracting 1-deoxynojirimycin from the culture, Production method. 前記1−デオキシノジリマイシンを生産する能力を有するバチラス・アミノリクエファシエンス菌株が、バチラス・アミノリクエファシエンス3022(NBRC3022菌株)、バチラス・アミノリクエファシエンス14141(NBRC14141菌株)又はバチラス・アミノリクエファシエンス15535(NBRC15535菌株)である、請求項10記載のα−1−デオキシノジリマイシンの製造方法。   The Bacillus aminoliquefaciens strain having the ability to produce the 1-deoxynojirimycin is Bacillus aminoliquefaciens 3022 (NBRC3022 strain), Bacillus aminoliquefaciens 14141 (NBRC14141 strain) or Bacillus aminoliquefaciens. The method for producing α-1-deoxynojirimycin according to claim 10, which is ence 15535 (NBRC15535 strain). バチラス・アミノリクエファシエンス菌が生産するα−グルコシダーゼ阻害活性成分と担体とを含有する、機能性食品。   A functional food comprising an α-glucosidase inhibitory active ingredient produced by Bacillus aminoliquefaciens and a carrier. 前記バチラス・アミノリクエファシエンス菌がα−グルコシダーゼ阻害活性成分を生産する能力を有するバチラス・アミノリクエファシエンス菌株である、請求項12記載の機能性食品。   The functional food according to claim 12, wherein the Bacillus aminoliquefaciens is a Bacillus aminoliquefaciens strain having an ability to produce an α-glucosidase inhibitory active ingredient. 前記α−グルコシダーゼ阻害活性成分が1−デオキシノジリマイシンである、請求項12記載の機能性食品。   The functional food according to claim 12, wherein the α-glucosidase inhibitory active ingredient is 1-deoxynojirimycin. 前記α−グルコシダーゼ阻害活性成分を生産する能力を有するバチラス・アミノリクエファシエンス菌株が、バチラス・アミノリクエファシエンス3022(NBRC3022菌株)、バチラス・アミノリクエファシエンス14141(NBRC14141菌株)又はバチラス・アミノリクエファシエンス15535(NBRC15535菌株)である、請求項13に記載の機能性食品。   The Bacillus aminoliquefaciens strain having the ability to produce the α-glucosidase inhibitory active ingredient is Bacillus aminoliquefaciens 3022 (NBRC3022 strain), Bacillus aminoliquefaciens 14141 (NBRC14141 strain) or Bacillus aminolique. The functional food according to claim 13, which is Facience 15535 (NBRC15535 strain).
JP2010206162A 2010-09-14 2010-09-14 Food having α-glucosidase inhibitory activity Expired - Fee Related JP5526416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010206162A JP5526416B2 (en) 2010-09-14 2010-09-14 Food having α-glucosidase inhibitory activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010206162A JP5526416B2 (en) 2010-09-14 2010-09-14 Food having α-glucosidase inhibitory activity

Publications (2)

Publication Number Publication Date
JP2012060902A true JP2012060902A (en) 2012-03-29
JP5526416B2 JP5526416B2 (en) 2014-06-18

Family

ID=46057304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010206162A Expired - Fee Related JP5526416B2 (en) 2010-09-14 2010-09-14 Food having α-glucosidase inhibitory activity

Country Status (1)

Country Link
JP (1) JP5526416B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462509B1 (en) * 2012-10-19 2014-11-19 한국식품연구원 Fermented soybean containing bacillus amyloliquefaciens subsp. plantarum f1275 enhanced functionality of anti-diabetes and method of thereof
US8901860B2 (en) 2012-03-19 2014-12-02 Sharp Kabushiki Kaisha Photovoltaic apparatus, maximum power point tracking control method and computer program in the same, and moving body including the same
KR20150116262A (en) * 2014-04-07 2015-10-15 강원대학교산학협력단 Culturing Methods for the Production of Alpha-Glucosidase Inhibitor with Reduced Fermentation Odor
US20160213733A1 (en) * 2013-07-29 2016-07-28 Phytoquest Limited Characterization of rice
JP2017046652A (en) * 2015-09-03 2017-03-09 株式会社ニューバイオエンタープライズ MICROBIAL CULTURE METHOD FOR α-GLUCOSIDASE INHIBITOR PRODUCTION
CN108070548A (en) * 2018-02-07 2018-05-25 华中农业大学 One plant height produces the bacillus amyloliquefaciens engineering bacteria and fermentation process of 1-DNJ
CN111387290A (en) * 2020-03-03 2020-07-10 宁波大学 Functional yogurt product with α -glucosidase and tyrosinase activity inhibiting effect and its preparation method
CN113637605A (en) * 2021-08-09 2021-11-12 浙江珲达生物科技有限公司 Bacillus amyloliquefaciens and application thereof in preparation of 1-deoxynojirimycin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379097A (en) * 1976-12-23 1978-07-13 Bayer Ag Production and use of control factor against glycoside decomposing enzyme
JP2008222701A (en) * 2007-03-09 2008-09-25 Kangwon National Univ Industry Cooperation Foundation Fermented product for preventing and treating obesity, fermented product for preventing diabetes, fermented food for preventing and treating obesity and food for preventing diabetes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379097A (en) * 1976-12-23 1978-07-13 Bayer Ag Production and use of control factor against glycoside decomposing enzyme
JP2008222701A (en) * 2007-03-09 2008-09-25 Kangwon National Univ Industry Cooperation Foundation Fermented product for preventing and treating obesity, fermented product for preventing diabetes, fermented food for preventing and treating obesity and food for preventing diabetes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013057839; 日本農芸化学会大会講演要旨集 Vol.2010, 20100305, p.34 *
JPN6013057841; NBRC Culture Catalogue [online] NBRC No. NBRC 15535 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8901860B2 (en) 2012-03-19 2014-12-02 Sharp Kabushiki Kaisha Photovoltaic apparatus, maximum power point tracking control method and computer program in the same, and moving body including the same
KR101462509B1 (en) * 2012-10-19 2014-11-19 한국식품연구원 Fermented soybean containing bacillus amyloliquefaciens subsp. plantarum f1275 enhanced functionality of anti-diabetes and method of thereof
US20160213733A1 (en) * 2013-07-29 2016-07-28 Phytoquest Limited Characterization of rice
KR20150116262A (en) * 2014-04-07 2015-10-15 강원대학교산학협력단 Culturing Methods for the Production of Alpha-Glucosidase Inhibitor with Reduced Fermentation Odor
KR101666268B1 (en) 2014-04-07 2016-10-13 강원대학교산학협력단 Culturing Methods for the Production of Alpha-Glucosidase Inhibitor with Reduced Fermentation Odor
JP2017046652A (en) * 2015-09-03 2017-03-09 株式会社ニューバイオエンタープライズ MICROBIAL CULTURE METHOD FOR α-GLUCOSIDASE INHIBITOR PRODUCTION
CN108070548A (en) * 2018-02-07 2018-05-25 华中农业大学 One plant height produces the bacillus amyloliquefaciens engineering bacteria and fermentation process of 1-DNJ
CN111387290A (en) * 2020-03-03 2020-07-10 宁波大学 Functional yogurt product with α -glucosidase and tyrosinase activity inhibiting effect and its preparation method
CN111387290B (en) * 2020-03-03 2023-01-31 宁波大学 Functional yogurt product with alpha-glucosidase and tyrosinase activity inhibition function and preparation method thereof
CN113637605A (en) * 2021-08-09 2021-11-12 浙江珲达生物科技有限公司 Bacillus amyloliquefaciens and application thereof in preparation of 1-deoxynojirimycin

Also Published As

Publication number Publication date
JP5526416B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5526416B2 (en) Food having α-glucosidase inhibitory activity
Kuddus Enzymes in food biotechnology
Hübner et al. Germination of cereal grains as a way to improve the nutritional value: a review
Adeyemo et al. Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals
Sabu et al. Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620
KR101408568B1 (en) Process of fermented food containing enzyme by using mixed Aspergillus oryzae and lactic acid bacteria
Song et al. The positive impacts of microbial phytase on its nutritional applications
KR101444614B1 (en) Method for producing fermented material with high GABA by mixed culture of Ceriporia lacerata and Lactobacillus
Roger et al. Nutritional properties and antinutritional factors of corn paste (Kutukutu) fermented by different strains of lactic acid bacteria
Lekshmi et al. A comprehensive review on tannase: Microbes associated production of tannase exploiting tannin rich agro-industrial wastes with special reference to its potential environmental and industrial applications
Ramos et al. Technological and nutritional aspects of indigenous Latin America fermented foods
Tharifkhan et al. Improvement of nutrient bioavailability in millets: Emphasis on the application of enzymes
KR101904164B1 (en) Saccharomyces cerevisae SRCM100936 strain for manufacturing the wine using various berries and not producing biogenic amine and uses thereof
Fadahunsi et al. Production, nutritional and microbiological evaluation of mahewu a South African traditional fermented porridge
Sadh et al. Bioaugmentation of phenolics and antioxidant activity of Oryza sativa by solid state fermentation using Aspergillus spp.
KR101561931B1 (en) functional fermentation food compositions for controlling of body weight and method of manufacturing the same
Azeke et al. Comparative effect of boiling and solid substrate fermentation using the tempeh fungus (Rhizopus oligosporus) on the flatulence potential of African yambean (Sphenostylis stenocarpa L.) seeds
Dutta et al. Effect of fungal fermentation on enhancement of nutritional value and antioxidant activity of defatted oilseed meals
Alhussaini Mycobiota of wheat flour and detection of α-amylase and L-asparaginase enzymes
KR101894423B1 (en) Method for cultivation of mushrooms containing l-carnithine using l-carnithine containing fermentation products and the cultivated functional mushrooms containing l-carnithine
Khubber et al. Application of Fermentation to Recover High‐Added Value Compounds from Food By‐Products: Antifungals and Antioxidants
KR102050318B1 (en) Fermented Rice Bran Extract and Preparing Method Thereof
Srivastava et al. Synergistic enhancement of iron, folate, and antioxidant properties in pearl millet via RSM-optimized probiotic fermentation with Lactiplantibacillus plantarum
KR101842196B1 (en) Functional makgeolli and method for preparation thereof
Ojokoh A comparative study on the effect of traditional and improved methods of fermentation in the production of Ogi food

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130705

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131112

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5526416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees