JP2012060697A - Constant current circuit for charge, and charging apparatus - Google Patents

Constant current circuit for charge, and charging apparatus Download PDF

Info

Publication number
JP2012060697A
JP2012060697A JP2010198491A JP2010198491A JP2012060697A JP 2012060697 A JP2012060697 A JP 2012060697A JP 2010198491 A JP2010198491 A JP 2010198491A JP 2010198491 A JP2010198491 A JP 2010198491A JP 2012060697 A JP2012060697 A JP 2012060697A
Authority
JP
Japan
Prior art keywords
transistor
charging
constant current
diode
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010198491A
Other languages
Japanese (ja)
Inventor
Zenzo Nakamura
善蔵 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STRAPYA NEXT KK
Strapyanext
Tokyo Coil Engineering Co Ltd
Original Assignee
STRAPYA NEXT KK
Strapyanext
Tokyo Coil Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STRAPYA NEXT KK, Strapyanext, Tokyo Coil Engineering Co Ltd filed Critical STRAPYA NEXT KK
Priority to JP2010198491A priority Critical patent/JP2012060697A/en
Publication of JP2012060697A publication Critical patent/JP2012060697A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low cost constant current circuit for charge where temperature dependence of a charging current is small, and a charging apparatus provided with an overcharge preventing function using the constant current circuit for charge.SOLUTION: There are provided: a first transistor and second transistor having the same polarity where a base and an emitter are connected with each other, and a collector and the base are connected with each other; a diode of which one end is connected to the base of the first transistor in the forward direction; a first resistance element connected in series between the other end of the diode and the emitter of the first transistor; and a second resistance element of which one end is connected to a node between the collector of the first transistor and the base of the second transistor. A temperature change of a voltage between the base and emitter of the first transistor is canceled by a temperature change of the diode.

Description

この発明は、二次電池を充電するために用いる充電用定電流回路と、その充電用定電流回路を用いて二次電池を定電流で急速に充電する充電装置に関する。   The present invention relates to a charging constant current circuit used for charging a secondary battery, and a charging device for rapidly charging a secondary battery with a constant current using the charging constant current circuit.

リチウムイオン電池やニッケル水素電池等の二次電池を短時間に充電する方法として、被充電電池の電圧が低い時は定電流(CC:Constant Current)で、充電が進み被充電電池の電圧が規定値以上になると定電圧(CV:Constant Voltage)で充電するCC/CV方式がよく知られている。図6に、CC/CV方式の代表的な充電装置600の機能構成を示す。   As a method of charging secondary batteries such as lithium ion batteries and nickel metal hydride batteries in a short period of time, when the voltage of the battery to be charged is low, charging is progressed with a constant current (CC), and the voltage of the battery to be charged is regulated. A CC / CV system that charges at a constant voltage (CV) when the value is exceeded is well known. FIG. 6 shows the functional configuration of a typical CC / CV charging device 600.

充電装置600は、電流制御回路60、電圧制御回路61、電流制御と電圧制御を切り替える選択回路62、パストランジスタ63、逆流防止ダイオード64、電流検出用抵抗65、を備える。選択回路62は、充電初期においては電流制御回路60を機能させて被充電二次電池3を定電流で充電し、充電後期においては電圧制御回路61を機能させて被充電二次電池を定電圧で充電するように切り替える。このCC/CV方式の充電装置600は、被充電二次電池3の急速充電に極めて有用であるが、回路構成が複雑で高価である。   The charging device 600 includes a current control circuit 60, a voltage control circuit 61, a selection circuit 62 that switches between current control and voltage control, a pass transistor 63, a backflow prevention diode 64, and a current detection resistor 65. The selection circuit 62 functions the current control circuit 60 in the initial stage of charging to charge the charged secondary battery 3 with a constant current, and functions the voltage control circuit 61 in the latter stage of charging to make the charged secondary battery constant voltage. Switch to charge. The CC / CV charging device 600 is extremely useful for rapid charging of the secondary battery 3 to be charged, but has a complicated circuit configuration and is expensive.

特許文献1に、電流制御と電圧制御を1つの制御系で行うCC/CV方式の充電装置が開示されている。この充電装置は、充電装置600よりも構成が簡単であるが、極めて低価格な充電装置にはコストが高く採用が難しい。   Patent Document 1 discloses a CC / CV charging device that performs current control and voltage control in one control system. Although this charging device has a simpler configuration than the charging device 600, the charging device is expensive and difficult to adopt for an extremely low-priced charging device.

二次電池の最も簡便な充電回路としては、逆流防止ダイオードと電流制限抵抗の直列回路が用いられる。2つの素子のみで構成されるこの充電回路は最も安価である。しかし、急速充電しようとして電流制限抵抗を小さくすると充電初期に極めて大きな電流が流れ、電流制限抵抗が発熱すると共に二次電池の寿命を損ねる。一方、電流制限抵抗を大きくすると充電に長時間を要する。   As the simplest charging circuit for the secondary battery, a series circuit of a backflow prevention diode and a current limiting resistor is used. This charging circuit consisting of only two elements is the cheapest. However, if the current limiting resistor is made small for rapid charging, a very large current flows at the beginning of charging, the current limiting resistor generates heat, and the life of the secondary battery is impaired. On the other hand, if the current limiting resistance is increased, charging takes a long time.

そこで、被充電二次電池の電圧に拘らず、常に一定の電流で充電する定電流回路を単独に用いるのも有用である。図7に、従来の充電用定電流回路700を示す。   Therefore, it is also useful to use a constant current circuit that always charges with a constant current regardless of the voltage of the secondary battery to be charged. FIG. 7 shows a conventional constant current circuit 700 for charging.

充電用定電流回路700は、第1のトランジスタ71、第2のトランジスタ72、第1の抵抗素子73、第2の抵抗素子74、を備える。第1のトランジスタ71のベースと第2のトランジスタ72のエミッタ、第1のトランジスタ71のコレクタと第2のトランジスタ72のベースがそれぞれ接続され、第1の抵抗素子73は第1のトランジスタ71のベースとエミッタ間に直列に接続され、第2の抵抗素子74の一端は、第1のトランジスタ71のコレクタと第2のトランジスタ72のベースの接続点に接続される。   The charging constant current circuit 700 includes a first transistor 71, a second transistor 72, a first resistance element 73, and a second resistance element 74. The base of the first transistor 71 is connected to the emitter of the second transistor 72, the collector of the first transistor 71 is connected to the base of the second transistor 72, and the first resistance element 73 is connected to the base of the first transistor 71. And one end of the second resistance element 74 is connected to a connection point between the collector of the first transistor 71 and the base of the second transistor 72.

第1のトランジスタ71のエミッタに充電用電源4の正電圧が、第2の抵抗素子74の他端に充電用電源4の負電圧が供給され、第2のトランジスタ72のコレクタに被充電二次電池3の正電圧が、第2の抵抗素子74の他端に被充電二次電池3の負電圧が供給される。   The positive voltage of the charging power supply 4 is supplied to the emitter of the first transistor 71, the negative voltage of the charging power supply 4 is supplied to the other end of the second resistance element 74, and the secondary secondary charge is supplied to the collector of the second transistor 72. The positive voltage of the battery 3 is supplied to the other end of the second resistance element 74 and the negative voltage of the charged secondary battery 3 is supplied.

第1の抵抗素子73の端子間電圧が第1のトランジスタ71をオンにすると、第2のトランジスタ72がオフするので、充電用定電流回路700は式(1)で与えられる充電電流ICHで被充電二次電池3を充電する。式(1)から明らかなように充電電流ICHは充電用電源4の電圧に依存しない。 When the voltage between the terminals of the first resistance element 73 turns on the first transistor 71, the second transistor 72 is turned off, so that the charging constant current circuit 700 has the charging current I CH given by the equation (1). The secondary battery 3 to be charged is charged. As apparent from the equation (1), the charging current I CH does not depend on the voltage of the charging power source 4.

Figure 2012060697
Figure 2012060697

ここで、VBEは第1のトランジスタ71のベース・エミッタ間電圧、R73は第1の抵抗素子73の抵抗値である。 Here, V BE is the base-emitter voltage of the first transistor 71, and R 73 is the resistance value of the first resistance element 73.

特開2008−312426号公報JP 2008-31426 A 特開2009−131143号公報JP 2009-131143 A

従来の充電用定電流回路700は、回路構成が簡単で低コストであるが、VBEが温度によって変化するので周囲温度によって充電電流値が変わってしまう。また、充電用定電流回路700のみで充電装置を構成した場合、被充電二次電池が満充電になった後も充電電流が流れ続け、二次電池を過充電状態にしてしまう。被充電二次電池がリチウムイオン電池の場合、過充電状態で電池が破裂する恐れもある。 The conventional constant current circuit for charging 700 has a simple circuit configuration and is low in cost. However, since V BE changes depending on the temperature, the charging current value changes depending on the ambient temperature. In addition, when the charging device is configured only by the charging constant current circuit 700, the charging current continues to flow even after the charged secondary battery is fully charged, and the secondary battery is overcharged. When the secondary battery to be charged is a lithium ion battery, the battery may burst in an overcharged state.

この発明は、このような課題に鑑みてなされたものであり、充電電流の温度依存性が小さい低コストの充電用定電流回路と、その充電用定電流回路を用いた過充電防止機能を備えた充電装置を提供することを目的とする。   The present invention has been made in view of such a problem, and includes a low-cost constant current circuit for charging with low temperature dependency of the charging current, and an overcharge prevention function using the constant current circuit for charging. An object of the present invention is to provide a charging device.

この発明の充電用定電流回路は、同極性の第1のトランジスタと第2のトランジスタと、ダイオードと、第1と第2の抵抗素子を備える。第1のトランジスタのベースと第2のトランジスタのエミッタ、第1のトランジスタのコレクタと第2のトランジスタのベースが、それぞれ接続され、ダイオードと第1の抵抗素子は、第1のトランジスタのベースとエミッタ間に直列に配列され、ダイオードは第1のトランジスタのベースの素性と極性が一致する向きに接続され、第2の抵抗素子は、その一端が第1のトランジスタのコレクタと第2のトランジスタのベースとの接続点に接続される。   The constant current circuit for charging according to the present invention includes a first transistor and a second transistor having the same polarity, a diode, and first and second resistance elements. The base of the first transistor and the emitter of the second transistor, the collector of the first transistor and the base of the second transistor are respectively connected, and the diode and the first resistance element are the base and emitter of the first transistor, respectively. The diode is connected in the direction in which the polarity of the base of the first transistor coincides with the polarity of the first transistor, and the second resistance element has one end of the collector of the first transistor and the base of the second transistor. Connected to the connection point.

また、この発明の充電装置は、上記したこの発明の充電用定電流回路と、一方の入力端子を被充電二次電池に接続し、他方の入力端子を基準電圧源に接続するコンパレータを備え、そのコンパレータの出力端子が第2の抵抗素子の他端に接続される。   Further, the charging device of the present invention includes the above-described charging constant current circuit of the present invention, and a comparator that connects one input terminal to the secondary battery to be charged and connects the other input terminal to the reference voltage source, The output terminal of the comparator is connected to the other end of the second resistance element.

この発明の充電用定電流回路は、第1のトランジスタのベース・エミッタ間電圧VBEの温度変化を、ダイオードの順方向降下電圧の温度変化が打ち消す方向に働く。従って、充電電流の温度変化を小さくすることができる。また、この発明の充電装置は、その充電電流の温度変化の小さい充電用定電流回路を用いて二次電池の過充電を防止することができる。 The constant current circuit for charging according to the present invention works in the direction in which the temperature change of the forward drop voltage of the diode cancels the temperature change of the base-emitter voltage V BE of the first transistor. Therefore, the temperature change of the charging current can be reduced. Further, the charging device of the present invention can prevent the secondary battery from being overcharged by using a charging constant current circuit whose charging current has a small temperature change.

この発明の充電用定電流回路1の回路構成例を示す図。The figure which shows the circuit structural example of the constant current circuit 1 for charging of this invention. 充電用定電流回路1のトランジスタを逆極性にした充電用定電流回路1′の回路構成例を示す図。The figure which shows the circuit structural example of the constant current circuit 1 'for charging which made the transistor of the constant current circuit 1 for charging reverse polarity. この発明の充電装置100の回路構成例を示す図。The figure which shows the circuit structural example of the charging device 100 of this invention. この発明の充電装置200の回路構成例を示す図。The figure which shows the circuit structural example of the charging device 200 of this invention. 充電装置200のトランジスタを逆極性にした充電装置200′の回路構成例を示す図。The figure which shows the circuit structural example of charging device 200 'which made the transistor of the charging device 200 reverse polarity. 従来の充電装置600の回路構成を示す図。The figure which shows the circuit structure of the conventional charging device 600. FIG. 従来の充電用定電流回路700の回路構成を示す図。The figure which shows the circuit structure of the conventional constant current circuit 700 for charge.

以下、この発明の実施の形態を図面を参照して説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。   Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals are given to the same components in a plurality of drawings, and the description will not be repeated.

〔充電用定電流回路〕
図1に、この発明の充電用定電流回路1の回路構成例を示す。充電用定電流回路1は、従来の充電用定電流回路700と対比してダイオード1cを備える点のみが異なる。定電流回路として動作する点は、充電用定電流回路700と同じである。
[Constant current circuit for charging]
FIG. 1 shows a circuit configuration example of a charging constant current circuit 1 of the present invention. The charging constant current circuit 1 is different from the conventional charging constant current circuit 700 only in that a diode 1c is provided. It is the same as the charging constant current circuit 700 in that it operates as a constant current circuit.

ダイオード1cは、第1のトランジスタ1bのベースとエミッタとの間に、第1の抵抗素子1dと共に直列に接続される。ダイオード1cの向きは、第1のトランジスタ1bのベースの素性と極性が一致する向きで接続される。このベースの素性と極性が一致する向きについては後述する。   The diode 1c is connected in series with the first resistance element 1d between the base and the emitter of the first transistor 1b. The direction of the diode 1c is connected so that the polarity of the base feature of the first transistor 1b matches the polarity. The direction in which the base feature and the polarity match will be described later.

ダイオード1cが接続されることで、充電電流ICHの温度変化を小さくすることができる。充電電流ICHは式(2)で表せる。 By connecting the diode 1c, the temperature change of the charging current ICH can be reduced. The charging current I CH can be expressed by equation (2).

Figure 2012060697
Figure 2012060697

ここで、R1dは第1の抵抗素子1dの抵抗値、VBEは第1のトランジスタのベース・エミッタ間電圧、VDはダイオード1cの順方向電圧降下である。式(2)から、VBE>VDである必要がある。この条件より、ダイオード1cには順方向の電圧降下が低いショットキィダイオードが好適である。 Here, R 1d is the resistance value of the first resistance element 1d, V BE is the base-emitter voltage of the first transistor, and V D is the forward voltage drop of the diode 1c. From equation (2), it is necessary that V BE > V D. From this condition, a Schottky diode with a low forward voltage drop is suitable for the diode 1c.

充電電流ICHの温度変化は式(3)で表せる。 The temperature change of the charging current I CH can be expressed by equation (3).

Figure 2012060697
Figure 2012060697

VBEの温度係数は約−2mv/℃、ショットキィダイオードの温度係数は約−1.2mV/℃である。従って、ダイオード1cを接続することによって充電電流ICHの温度変化は、ダイオード1cが接続されない従来の充電用定電流回路の約40%に減少する。 The temperature coefficient of V BE is about −2 mV / ° C., and the temperature coefficient of the Schottky diode is about −1.2 mV / ° C. Accordingly, the temperature change of the charging current I CH by connecting the diode 1c, the diode 1c is reduced to approximately 40% of the conventional charging constant current circuit is not connected.

なお、図1の第1と第2のトランジスタは、PNPトランジスタを用いた例で示したが、この種の回路は逆極性のNPNトランジスタに置き換えることが可能である。図2に、NPNトランジスタを用いた充電用定電流回路1′の回路構成例を示す。また、第1の抵抗素子1dとダイオード1cの位置を置き換えても、充電用定電流回路1,1′の動作に変わりはない。   Although the first and second transistors in FIG. 1 are shown as examples using PNP transistors, this type of circuit can be replaced with an NPN transistor having a reverse polarity. FIG. 2 shows a circuit configuration example of a charging constant current circuit 1 ′ using an NPN transistor. Further, even if the positions of the first resistance element 1d and the diode 1c are replaced, the operation of the charging constant current circuits 1 and 1 'remains unchanged.

つまり、この発明の充電用定電流回路は、第1のトランジスタ1b,1b′のベースと第2のトランジスタ1a,1a′のエミッタ、第1のトランジスタ1b,1b′のコレクタと第2のトランジスタ1a,1a′のベースが、それぞれ接続され、ダイオード1cと第1の抵抗素子1dは、第1のトランジスタ1b,1b′のベースとエミッタ間に直列に配列され、ダイオード1cは第1のトランジスタ1b,1b′のベースの素性と極性が一致する向きに接続され、第2の抵抗素子1eは、その一端が第1のトランジスタ1b,1b′のコレクタと第2のトランジスタ1a,1a′のベースとの接続点に接続される。そして、第1のトランジスタ1b,1b′のエミッタと第2の抵抗素子1eの他端との間に充電用電源4が接続され、第2のトランジスタ1a,1a′のエミッタと第2の抵抗素子1eの他端との間に被充電二次電池3が接続される。   That is, the constant current circuit for charging according to the present invention includes the bases of the first transistors 1b and 1b ', the emitters of the second transistors 1a and 1a', the collectors of the first transistors 1b and 1b ', and the second transistor 1a. , 1a 'are connected to each other, the diode 1c and the first resistance element 1d are arranged in series between the bases and emitters of the first transistors 1b, 1b', and the diode 1c is connected to the first transistors 1b, 1b, The second resistance element 1e is connected in the direction in which the polarity of the base of 1b 'coincides with the polarity of the base, and one end of the second resistance element 1e is connected to the collectors of the first transistors 1b and 1b' Connected to the connection point. The charging power supply 4 is connected between the emitters of the first transistors 1b and 1b 'and the other end of the second resistor element 1e, and the emitters of the second transistors 1a and 1a' and the second resistor element. The charged secondary battery 3 is connected between the other end of 1e.

ここで、ダイオード1cのベースの素性と極性が一致する向きとは、第1のトランジスタ1dをPNPトランジスタで構成した場合、ダイオード1cのカソード(N)を第1のトランジスタ1dのベースに向けることである。また、第1のトランジスタ1dをNPNトランジスタで構成した場合、ダイオード1cのアノード(P)を第1のトランジスタ1dのベースに向けることである。
〔充電装置〕
図3にこの発明の充電装置100の回路構成例を示す。充電装置100は、上記した充電用定電流回路1と過充電検出回路2とで構成される。過充電検出回路2は、コンパレータ2aと、基準電圧源2bと、を備える。
Here, the direction in which the polarity of the base of the diode 1c matches the polarity is that the cathode (N) of the diode 1c is directed to the base of the first transistor 1d when the first transistor 1d is formed of a PNP transistor. is there. Further, when the first transistor 1d is composed of an NPN transistor, the anode (P) of the diode 1c is directed to the base of the first transistor 1d.
[Charging device]
FIG. 3 shows a circuit configuration example of the charging device 100 of the present invention. The charging device 100 includes the charging constant current circuit 1 and the overcharge detection circuit 2 described above. The overcharge detection circuit 2 includes a comparator 2a and a reference voltage source 2b.

コンパレータ2aの非反転入力端子(+)は被充電二次電池3の正電極に接続され、反転入力端子(−)は基準電圧源2bに接続される。コンパレータ2aの出力端子は、第2の抵抗素子1eの他端に接続される。   The non-inverting input terminal (+) of the comparator 2a is connected to the positive electrode of the charged secondary battery 3, and the inverting input terminal (−) is connected to the reference voltage source 2b. The output terminal of the comparator 2a is connected to the other end of the second resistance element 1e.

充電の初期状態では、被充電二次電池3の電圧V3は、基準電圧Vrefよりも低いのでコンパレータ2aの出力電圧は充電用電源4の負電圧である。よって、充電用定電流回路1は充電流ICHを生成して被充電二次電池3を充電する。 In the initial state of charging, the voltage V 3 of the secondary battery 3 to be charged is lower than the reference voltage V ref , so that the output voltage of the comparator 2 a is the negative voltage of the charging power source 4. Therefore, the charging constant current circuit 1 generates the charging current I CH to charge the charged secondary battery 3.

被充電二次電池3が充電され続けるとその電圧V3が上昇し、基準電圧Vrefより大きくなると、コンパレータ2aの出力電圧は反転して充電用電源4の正電圧に変化する。すると、第2のトランジスタ1aが遮断され、充電電流ICHの供給は停止する。基準電圧Vrefを、被充電二次電池3の過充電防止電圧に設定して置くことで、被充電二次電池3の過充電を防止することができる。 When the secondary battery 3 to be charged continues to be charged, its voltage V 3 rises, and when it exceeds the reference voltage V ref , the output voltage of the comparator 2 a is inverted and changes to a positive voltage of the charging power source 4. Then, the second transistor 1a is cut off, and the supply of the charging current ICH is stopped. By setting the reference voltage V ref to the overcharge prevention voltage of the charged secondary battery 3, overcharge of the charged secondary battery 3 can be prevented.

なお、コンパレータ2aの非反転入力端子(+)に被充電二次電池3の正電極、反転入力端子(−)に基準電圧源2bを接続する例で説明したが、非反転入力端子(+)に基準電圧源2bの負電極、反転入力端子(−)に被充電二次電池3の負電極を接続しても、コンパレータ2aは同じ動作をする。つまり、コンパレータ2aの一方の入力端子に被充電二次電池3を接続し、他方の入力端子に基準電圧源2bを接続すれば良い。
〔充電装置の変形例〕
図4に、充電装置100を変形した充電装置200の回路構成例を示す。充電装置200は、第2のトランジスタ1aをPMOSトランジスタ20に、過充電検出回路2をリセットIC30に置き換えたものである。また、充電状態を表示する目的で発光ダイオード22が付加されている。
Although the example in which the positive electrode of the secondary battery 3 to be charged is connected to the non-inverting input terminal (+) of the comparator 2a and the reference voltage source 2b is connected to the inverting input terminal (−) has been described, the non-inverting input terminal (+) Even if the negative electrode of the reference voltage source 2b and the negative electrode of the secondary battery 3 to be charged are connected to the inverting input terminal (−), the comparator 2a performs the same operation. That is, the charged secondary battery 3 may be connected to one input terminal of the comparator 2a, and the reference voltage source 2b may be connected to the other input terminal.
[Modification of charging device]
FIG. 4 shows a circuit configuration example of a charging device 200 obtained by modifying the charging device 100. In the charging apparatus 200, the second transistor 1a is replaced with a PMOS transistor 20, and the overcharge detection circuit 2 is replaced with a reset IC 30. Further, a light emitting diode 22 is added for the purpose of displaying the state of charge.

PMOSトランジスタ20のソースとドレイン間に並列に接続されるボディダイオード20aは、MOSトランジスタの構造上備わる寄生ダイオードである。ボディダイオード20aの電流経路はダイオード1cによってブロックされる。また、PMOSトランジスタ20のゲートには電流が流れない。従って、充電装置200は充電装置100よりも電力効率を向上させることができ、回路設計も容易になる。   The body diode 20a connected in parallel between the source and drain of the PMOS transistor 20 is a parasitic diode provided in the structure of the MOS transistor. The current path of the body diode 20a is blocked by the diode 1c. Further, no current flows through the gate of the PMOS transistor 20. Therefore, the charging device 200 can improve the power efficiency as compared with the charging device 100, and the circuit design is facilitated.

リセットIC30は、ボルテージディテクタICとも称される汎用ICであり、超小型で且つ安価なものである。充電装置100の過充電検出回路2を、リセットIC30に置き換えることで、過充電検出回路2をディスクリート部品で構成するよりも充電装置200を小型で且つ低コストで作ることができる。   The reset IC 30 is a general-purpose IC that is also called a voltage detector IC, and is extremely small and inexpensive. Replacing the overcharge detection circuit 2 of the charging device 100 with a reset IC 30 makes it possible to make the charging device 200 smaller and less expensive than configuring the overcharge detection circuit 2 with discrete components.

リセットIC30は、例えばSNT-4Aと称されるパッケージ仕様によれば、1.2mmW×1.6mmL×0.5mmHの大きさである。具体例を示して充電装置200の動作を説明する。 The reset IC 30 has a size of 1.2 mm W × 1.6 mm L × 0.5 mm H , for example, according to a package specification called SNT-4A. The operation of the charging apparatus 200 will be described with a specific example.

リセットIC30の基準電圧源30bの基準電圧Vrefを4.3V、リセットIC30の出力段はオープンドレインのNMOSトランジスタ30cで構成されるものとする。充電用電源4の出力電圧は5.5Vの直流電源、被充電二次電池3は公称3.7V/480mAhのリチウムポリマー電池を用いる。このリチウムポリマー電池の満充電相当電圧は例えば4.3Vである。充電用定電流回路1のダイオード1cには、250mA通電時の順方向電圧降下が0.4Vのショットキィダイオードを用いる。電流制限抵抗である第1の抵抗素子1dは例えば1Ωとする。 It is assumed that the reference voltage V ref of the reference voltage source 30b of the reset IC 30 is 4.3V, and the output stage of the reset IC 30 is configured by an open drain NMOS transistor 30c. The output voltage of the charging power source 4 is a 5.5V DC power source, and the charged secondary battery 3 is a nominal 3.7V / 480mAh lithium polymer battery. The full charge equivalent voltage of this lithium polymer battery is, for example, 4.3V. As the diode 1c of the charging constant current circuit 1, a Schottky diode having a forward voltage drop of 0.4V when 250 mA is energized is used. The first resistance element 1d, which is a current limiting resistor, is set to 1Ω, for example.

充電の初期状態においては、被充電二次電池3の電圧は基準電圧Vref(4.3V)よりも低いので、コンパレータ30aの出力電圧は充電用電源4の正電圧である。よって、リセットIC30の出力段を構成するNMOSトランジスタ30cはON状態であり、PMOSトランジスタ20もON状態である。この時、被充電二次電池3は約200mAの充電電流ICHで充電される。また、発光ダイオード22は、抵抗21を介して充電用電源4から電流が供給されるので点灯し、充電中であることを表示する。 In the initial state of charging, the voltage of the secondary battery 3 to be charged is lower than the reference voltage V ref (4.3V), so the output voltage of the comparator 30a is the positive voltage of the charging power source 4. Therefore, the NMOS transistor 30c constituting the output stage of the reset IC 30 is in the ON state, and the PMOS transistor 20 is also in the ON state. At this time, the charging the secondary battery 3 is charged at a charge current I CH of about 200mA. Further, the light emitting diode 22 is turned on because current is supplied from the charging power supply 4 via the resistor 21, and displays that charging is in progress.

充電が進むと被充電二次電池3の電圧は上昇し、基準電圧Vref(4.3V)よりも高くなる。すると、コンパレータ30aの出力電圧は充電用電源4の負電圧に変化する。コンパレータ30aの出力電圧が充電用電源4の負電圧に変化すると、NMOSトランジスタ30cはOFF状態になる。NMOSトランジスタ30cがOFF状態になると、第2の抵抗素子1eの他端の電圧は充電用電源4の正電圧に近い電圧に変化するので、PMOSトランジスタ20がOFF状態になって充電電流ICHは遮断される。同時に発光ダイオード22は、電流が供給されなくなり消灯する。 As the charging proceeds, the voltage of the secondary battery 3 to be charged increases and becomes higher than the reference voltage V ref (4.3V). Then, the output voltage of the comparator 30a changes to the negative voltage of the charging power supply 4. When the output voltage of the comparator 30a changes to the negative voltage of the charging power supply 4, the NMOS transistor 30c is turned off. When the NMOS transistor 30c is turned off, the voltage at the other end of the second resistance element 1e changes to a voltage close to the positive voltage of the charging power supply 4, so that the PMOS transistor 20 is turned off and the charging current I CH is Blocked. At the same time, the light emitting diode 22 is turned off because no current is supplied.

なお、充電装置200は、充電用定電流回路1で説明したのと同じように逆極性のトランジスタで構成することが可能である。図5に、逆極性のトランジスタを用いて構成した充電装置200′の回路構成例を示す。動作は、極性が逆転しているだけで充電装置200と同じである。   Note that the charging device 200 can be formed of a transistor having a reverse polarity, as described in the charging constant current circuit 1. FIG. 5 shows a circuit configuration example of a charging device 200 ′ configured using reverse polarity transistors. The operation is the same as that of the charging device 200 except that the polarity is reversed.

なお、PMOSトランジスタ20とリセットIC30を組み合わせた例を説明したが、充電装置100(図3)の第2トランジスタをMOSトランジスタに置き換えても良い。
また、発光ダイオード22とリセットIC30を組み合わせた例で説明したが、充電装置100(図3)のコンパレータ2aの出力端子に発光ダイオード22のカソードを接続するようにしても良い。つまり、充電用電源4とコンパレータの出力端子との間に直列に接続される第3の抵抗素子21と、順方向に接続される発光ダイオード22を備えることで、充電表示を行うことが可能である。
In addition, although the example which combined the PMOS transistor 20 and the reset IC30 was demonstrated, you may replace the 2nd transistor of the charging device 100 (FIG. 3) with a MOS transistor.
Moreover, although the example which combined the light emitting diode 22 and the reset IC30 was demonstrated, you may make it connect the cathode of the light emitting diode 22 to the output terminal of the comparator 2a of the charging device 100 (FIG. 3). In other words, the charging display can be performed by providing the third resistance element 21 connected in series between the charging power supply 4 and the output terminal of the comparator and the light emitting diode 22 connected in the forward direction. is there.

以上説明したように、この発明の充電用定電流回路1は、充電電流の温度依存性を小さく且つ低コスト化することができる。また、この発明の充電装置100は、その充電電流の温度変化の小さい充電用定電流回路を用いて二次電池の過充電を防止することができる。また、汎用のリセットICを用いたこの発明の充電装置200は、更に小型で且つ低コストな充電装置とすることができる。   As described above, the charging constant current circuit 1 of the present invention can reduce the temperature dependence of the charging current and reduce the cost. Moreover, the charging apparatus 100 of this invention can prevent the overcharge of a secondary battery using the constant current circuit for charging with the small temperature change of the charging current. Moreover, the charging device 200 of the present invention using a general-purpose reset IC can be a smaller and lower cost charging device.

Claims (7)

同極性の第1のトランジスタと第2のトランジスタと、
ダイオードと、
第1と第2の抵抗素子を、備え、
上記第1のトランジスタのベースと上記第2のトランジスタのエミッタ、上記第1のトランジスタのコレクタと第2のトランジスタのベースが、それぞれ接続され、
上記ダイオードと第1の抵抗素子は、上記第1のトランジスタのベースとエミッタ間に直列に配列され、上記ダイオードは上記第1のトランジスタのベースの素性と極性が一致する向きに接続され、
上記第2の抵抗素子は、その一端が上記第1のトランジスタのコレクタと第2のトランジスタのベースとの接続点に接続された充電用定電流回路。
A first transistor and a second transistor of the same polarity;
A diode,
First and second resistance elements,
The base of the first transistor and the emitter of the second transistor, the collector of the first transistor and the base of the second transistor are connected, respectively.
The diode and the first resistance element are arranged in series between a base and an emitter of the first transistor, and the diode is connected in a direction in which the feature and polarity of the base of the first transistor coincide with each other.
The second resistance element is a charging constant current circuit having one end connected to a connection point between the collector of the first transistor and the base of the second transistor.
同極性の第1のトランジスタと第2のトランジスタと、
ダイオードと、
第1と第2の抵抗素子を、備え、
上記第1のトランジスタのベースと上記第2のトランジスタのエミッタ、上記第1のトランジスタのコレクタと第2のトランジスタのベースが、それぞれ接続され、
上記ダイオードと第1の抵抗素子は、上記第1のトランジスタのベースとエミッタ間に直列に配列され、上記ダイオードは上記第1のトランジスタのベースの素性と極性が一致する向きに接続され、
上記第2の抵抗素子は、その一端が上記第1のトランジスタのコレクタと第2のトランジスタのベースとの接続点に接続された充電用定電流回路であって、
上記第1のトランジスタのエミッタと上記第2の抵抗素子の他端との間に充電用電源が接続され、
上記第2のトランジスタのエミッタと上記第2の抵抗素子の他端との間に被充電用二次電池が接続されることを特徴とする充電用定電流回路。
A first transistor and a second transistor of the same polarity;
A diode,
First and second resistance elements,
The base of the first transistor and the emitter of the second transistor, the collector of the first transistor and the base of the second transistor are connected, respectively.
The diode and the first resistance element are arranged in series between a base and an emitter of the first transistor, and the diode is connected in a direction in which the feature and polarity of the base of the first transistor coincide with each other.
The second resistive element is a charging constant current circuit having one end connected to a connection point between the collector of the first transistor and the base of the second transistor,
A charging power source is connected between the emitter of the first transistor and the other end of the second resistance element,
A charging constant current circuit, wherein a charged secondary battery is connected between the emitter of the second transistor and the other end of the second resistance element.
請求項1又は2に記載した充電用定電流回路において、
上記ダイオードは、ショットキィダイオードであることを特徴とする充電用定電流回路。
In the constant current circuit for charging according to claim 1 or 2,
A constant current circuit for charging, wherein the diode is a Schottky diode.
請求項1乃至3の何れかに記載した充電用定電流回路において、
上記第2のトランジスタは、MOSトランジスタであることを特徴とする充電用定電流回路。
The constant current circuit for charging according to any one of claims 1 to 3,
The constant current circuit for charging, wherein the second transistor is a MOS transistor.
請求項1乃至4の何れかに記載した充電用定電流回路と、
一方の入力端子を上記被充電二次電池に接続し、他方の入力端子を基準電圧源に接続するコンパレータを備え、
上記コンパレータの出力端子と上記第2の抵抗素子の他端とが接続されることを特徴とする充電装置。
A constant current circuit for charging according to any one of claims 1 to 4,
A comparator that connects one input terminal to the charged secondary battery and connects the other input terminal to a reference voltage source;
The charging device, wherein an output terminal of the comparator is connected to the other end of the second resistance element.
請求項5に記載した充電装置において、
上記充電用電源と上記コンパレータの出力端子との間に直列に接続される第3の抵抗素子と、順方向に接続される発光ダイオードと、を備え、
上記発光ダイオードで充電表示を行うことを特徴とする充電装置。
The charging device according to claim 5,
A third resistance element connected in series between the charging power source and the output terminal of the comparator, and a light emitting diode connected in the forward direction,
A charging device which performs charging display with the light emitting diode.
請求項5又は6に記載した充電装置において、
上記コンパレータと上記基準電圧源とが、汎用のリセットICで構成されることを特徴とする充電装置。
The charging device according to claim 5 or 6,
The charging device, wherein the comparator and the reference voltage source are constituted by a general-purpose reset IC.
JP2010198491A 2010-09-06 2010-09-06 Constant current circuit for charge, and charging apparatus Pending JP2012060697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010198491A JP2012060697A (en) 2010-09-06 2010-09-06 Constant current circuit for charge, and charging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010198491A JP2012060697A (en) 2010-09-06 2010-09-06 Constant current circuit for charge, and charging apparatus

Publications (1)

Publication Number Publication Date
JP2012060697A true JP2012060697A (en) 2012-03-22

Family

ID=46057149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198491A Pending JP2012060697A (en) 2010-09-06 2010-09-06 Constant current circuit for charge, and charging apparatus

Country Status (1)

Country Link
JP (1) JP2012060697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10020667B2 (en) 2015-07-15 2018-07-10 Aisin Seiki Kabushiki Kaisha Charging circuit for charging a capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273135A (en) * 1985-05-29 1986-12-03 株式会社日立製作所 Charging circuit
JPS62138214U (en) * 1986-02-20 1987-08-31
JPS63245235A (en) * 1987-03-31 1988-10-12 日本光電工業株式会社 Charger of secondary battery
JPH1094190A (en) * 1996-09-18 1998-04-10 Nec Shizuoka Ltd Charging circuit for lithium secondary battery
JP2006134607A (en) * 2004-11-02 2006-05-25 Omron Corp Circuit for detecting state of switch and automobile window opening device
JP2009131143A (en) * 2007-11-27 2009-06-11 Denshi System Design Kk Charging device for portable electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273135A (en) * 1985-05-29 1986-12-03 株式会社日立製作所 Charging circuit
JPS62138214U (en) * 1986-02-20 1987-08-31
JPS63245235A (en) * 1987-03-31 1988-10-12 日本光電工業株式会社 Charger of secondary battery
JPH1094190A (en) * 1996-09-18 1998-04-10 Nec Shizuoka Ltd Charging circuit for lithium secondary battery
JP2006134607A (en) * 2004-11-02 2006-05-25 Omron Corp Circuit for detecting state of switch and automobile window opening device
JP2009131143A (en) * 2007-11-27 2009-06-11 Denshi System Design Kk Charging device for portable electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10020667B2 (en) 2015-07-15 2018-07-10 Aisin Seiki Kabushiki Kaisha Charging circuit for charging a capacitor

Similar Documents

Publication Publication Date Title
TWI439003B (en) Charge and discharge control circuit and rechargeable power supply device
WO2016127841A1 (en) Charging protective circuit
WO2015157928A1 (en) Electronic cigarette
JP2009100519A (en) Overvoltage protecting circuit, power managing circuit using it, and electronic equipment
US20110025276A1 (en) Charge control circuit
US11342770B2 (en) Charge and power supply circuit for a portable electronic device, and portable electronic device
JP2013255017A (en) Power pass circuit
JP6818153B2 (en) Control circuit compatible with battery and external power supply
JP2009219176A5 (en)
JP2007312484A (en) Battery charge circuit, portable electronic equipment, and semiconductor integrated circuit
JP5954091B2 (en) Power switching device
JP5588370B2 (en) Output circuit, temperature switch IC, and battery pack
CN103840436A (en) Cell reversal-connection protection circuit
JPWO2017061192A1 (en) Power receiving device
JP2012060697A (en) Constant current circuit for charge, and charging apparatus
US8947019B2 (en) Handheld device and power supply circuit thereof
JP2009183050A (en) Battery pack
US20160118832A1 (en) Apparatus for charging and discharging battery
US20130057179A1 (en) Circuit and Method for Operating a Lighting Unit and a Luminaire Having a Circuit of this kind
CN111433991B (en) Connection device
US20120007566A1 (en) Charging circuit
CN218102677U (en) Secondary over-temperature protection circuit and charging equipment
CN118017650A (en) Charge state prompting circuit and electronic equipment
JP7205210B2 (en) Charge/discharge circuit and battery device
CN109995120B (en) Charging control circuit and charger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211