JP2012057277A5 - - Google Patents

Download PDF

Info

Publication number
JP2012057277A5
JP2012057277A5 JP2010202955A JP2010202955A JP2012057277A5 JP 2012057277 A5 JP2012057277 A5 JP 2012057277A5 JP 2010202955 A JP2010202955 A JP 2010202955A JP 2010202955 A JP2010202955 A JP 2010202955A JP 2012057277 A5 JP2012057277 A5 JP 2012057277A5
Authority
JP
Japan
Prior art keywords
component
fiber bundle
reinforcing fiber
composite reinforcing
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010202955A
Other languages
Japanese (ja)
Other versions
JP2012057277A (en
JP5614187B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010202955A priority Critical patent/JP5614187B2/en
Priority claimed from JP2010202955A external-priority patent/JP5614187B2/en
Publication of JP2012057277A publication Critical patent/JP2012057277A/en
Publication of JP2012057277A5 publication Critical patent/JP2012057277A5/ja
Application granted granted Critical
Publication of JP5614187B2 publication Critical patent/JP5614187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明者らは、鋭意検討した結果、上記課題を解決することができる、次の複合強化繊維束の製造方法を発明するに至った。すなわち、強化繊維束(A)50〜87質量%に、条件(1)、(2)を満たし、10℃/分昇温(空気中)の300℃における加熱減量が5%以下であるエポキシ樹脂(B)13〜50質量%を含浸させてなる強化繊維束の製造方法であって、成分(A)に成分(B)を供給し、成分(B)を100〜300℃の溶融状態で成分(A)と接触させる工程(I)と、成分(B)と接触している成分(A)を加熱して成分(B)の供給量の80〜100質量%を成分(A)に含浸させる工程(II)を有する複合強化繊維束の製造方法である。
条件(1):成分(B)100質量部のうちグリシジルエーテル型エポキシ樹脂が50〜100質量部、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂から選ばれる少なくとも1種のエポキシ樹脂が0〜50質量部である。
条件(2):200℃における溶融粘度は0.001〜10Pa・sであり、かつ、200℃にて2時間加熱後の溶融粘度変化率が2以下である。
As a result of intensive studies, the present inventors have invented the following method for producing a composite reinforcing fiber bundle that can solve the above problems. That is, the reinforcing fiber bundle (A) 50-87 wt%, Condition (1), (2) meets, heat loss at 300 ° C. for 10 ° C. / min heating (in air) is not more than 5% epoxy A method for producing a reinforcing fiber bundle impregnated with 13 to 50% by mass of resin (B), wherein component (B) is supplied to component (A), and component (B) is melted at 100 to 300 ° C. The step (I) for contacting with the component (A) and the component (A) in contact with the component (B) are heated to impregnate the component (A) with 80 to 100% by mass of the supply amount of the component (B). It is a manufacturing method of the composite reinforcing fiber bundle which has the process (II) to make.
Condition (1): At least one selected from glycidyl ether type epoxy resin, glycidyl amine type epoxy resin, glycidyl ester type epoxy resin, and alicyclic epoxy resin among 100 parts by mass of component (B). The epoxy resin is 0 to 50 parts by mass.
Condition (2): The melt viscosity at 200 ° C. is 0.001 to 10 Pa · s, and the rate of change in melt viscosity after heating at 200 ° C. for 2 hours is 2 or less.

炭素繊維の表面酸素濃度比は、X線光電子分光法により、次の手順にしたがって求めるものである。まず、溶剤で炭素繊維表面に付着しているサイジング剤などを除去した炭素繊維束を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてA1Kα1、2を用い、試料チャンバー中を1×10 −8 Torrに保つ。測定時の帯電に伴うピークの補正値としてC1sの主ピークの運動エネルギー値(K.E.)を1202eVに合わせる。C1sピーク面積をK.E.として1191〜1205eVの範囲で直線のベースラインを引くことにより求める。O1sピーク面積をK.E.として947〜959eVの範囲で直線のベースラインを引くことにより求める。 The surface oxygen concentration ratio of the carbon fiber is determined by X-ray photoelectron spectroscopy according to the following procedure. First, after cutting the carbon fiber bundle from which the sizing agent and the like adhering to the carbon fiber surface with a solvent was cut to 20 mm and spreading and arranging on a copper sample support base, using A1Kα1,2 as the X-ray source, The sample chamber is kept at 1 × 10 −8 Torr. The kinetic energy value (KE) of the main peak of C 1s is adjusted to 1202 eV as a peak correction value associated with charging during measurement. C 1s peak area E. Is obtained by drawing a straight base line in the range of 1191 to 1205 eV. O 1s peak area E. Is obtained by drawing a straight base line in the range of 947 to 959 eV.

ここで、表面酸素濃度比は、表面酸化処理を行ったあとの炭素繊維を用いて、X線光電子分光法により、次の手順にしたがって求めた。まず、炭素繊維束を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてA1Kα1、2を用い、試料チャンバー中を1×10 −8 Torrに保った。測定時の帯電に伴うピークの補正値としてC1sの主ピークの運動エネルギー値(K.E.)を1202eVに合わせた。C1sピーク面積をK.E.として1191〜1205eVの範囲で直線のベースラインを引くことにより求めた。O1sピーク面積をK.E.として947〜959eVの範囲で直線のベースラインを引くことにより求めた。O1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出した。X線光電子分光法装置として、国際電気社製モデルES−200を用い、感度補正値を1.74とした。 Here, the surface oxygen concentration ratio was determined according to the following procedure by X-ray photoelectron spectroscopy using the carbon fiber after the surface oxidation treatment. First, the carbon fiber bundle was cut to 20 mm, spread and arranged on a copper sample support, and then A1Kα1 and 2 were used as X-ray sources, and the inside of the sample chamber was kept at 1 × 10 −8 Torr. The kinetic energy value (KE) of the main peak of C 1s was adjusted to 1202 eV as a peak correction value associated with charging during measurement. C 1s peak area E. As a linear base line in the range of 1191 to 1205 eV. O 1s peak area E. As a linear base line in the range of 947 to 959 eV. The atomic ratio was calculated from the ratio of the O 1s peak area to the C 1s peak area using the sensitivity correction value unique to the apparatus. As an X-ray photoelectron spectroscopy apparatus, Kokusai Denki Co., Ltd. model ES-200 was used, and the sensitivity correction value was set to 1.74.

参考例2
被含浸剤として、成分(B)である(B)−2(三菱化学(株)製フェノールノボラック型エポキシ樹脂、jER(登録商標)154)を用い、成分(C)として、PPS(東レ(株)製、ポリフェニレンスルフィド樹脂、M2588)を用い、シリンダー温度:320℃、金型温度:150℃に変更した以外は実施例1と同様にして、複合体、成形材料、成形品を得た。特性評価結果はまとめて表1に記載した。
Reference example 2
(B) -2 (Mitsubishi Chemical Co., Ltd. phenol novolac type epoxy resin, jER (registered trademark) 154) is used as the impregnating agent, and PPS (Toray Industries, Inc.) is used as the component (C). ), Polyphenylene sulfide resin, M2588), a composite, a molding material, and a molded product were obtained in the same manner as in Example 1 except that the cylinder temperature was changed to 320 ° C. and the mold temperature was changed to 150 ° C. The characteristic evaluation results are collectively shown in Table 1.

参考例14
被含浸剤として、成分(B)である(B)−11(三菱化学(株)製ビスフェノールA型エポキシ樹脂の混合物、jER(登録商標)828/jER(登録商標)1001=90/10)を用いた以外は実施例1と同様にして、複合体、成形材料、成形品を得た。特性評価結果はまとめて表2に記載した。
Reference Example 14
As an impregnating agent, component (B) -11 (B) -11 (mixture of bisphenol A type epoxy resin manufactured by Mitsubishi Chemical Corporation, jER (registered trademark) 828 / jER (registered trademark) 1001 = 90/10) Except having used, it carried out similarly to Example 1, and obtained the composite_body | complex, the molding material, and the molded article. The characteristic evaluation results are collectively shown in Table 2.

Figure 2012057277
Figure 2012057277

Figure 2012057277
Figure 2012057277

以上のように、実施例1、313においては、本発明における複合強化繊維束の製造方法により、含浸性が良好であり、かつボイドの少ない複合強化繊維束が得られる。また、得られた複合強化繊維束を用いた成形材料は、成形時に揮発分が少なく、強化繊維の成形品中への分散が良好である成形材料を得ることができた。 As described above, in Examples 1 and 3 to 13 , a composite reinforcing fiber bundle with good impregnation and few voids can be obtained by the method for manufacturing a composite reinforcing fiber bundle in the present invention. Moreover, the molding material using the obtained composite reinforcing fiber bundle had a low volatile content at the time of molding, and a molding material having good dispersion of the reinforcing fibers in the molded product could be obtained.

Claims (13)

強化繊維束(A)50〜87質量%に、条件(1)、(2)を満たし、10℃/分昇温(空気中)の300℃における加熱減量が5%以下であるエポキシ樹脂(B)13〜50質量%を含浸させてなる複合強化繊維束の製造方法であって、成分(A)に成分(B)を供給し、成分(B)を100〜300℃の溶融状態で当該成分(A)と接触させる工程(I)と、成分(B)と接触している成分(A)を加熱して成分(B)の供給量の80〜100質量%を成分(A)に含浸させる工程(II)を有する複合強化繊維束の製造方法。
条件(1):成分(B)100質量部のうちグリシジルエーテル型エポキシ樹脂が50〜100質量部、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂から選ばれる少なくとも1種のエポキシ樹脂が0〜50質量部である。
条件(2):200℃における溶融粘度は0.001〜10Pa・sであり、かつ、200℃にて2時間加熱後の溶融粘度変化率が2以下である。
The reinforcing fiber bundle (A) 50 to 87 wt%, Condition (1), (2) meets, 10 ° C. / min heating epoxy resin heat loss at 300 ° C. of (in air) is not more than 5% ( B) A method for producing a composite reinforcing fiber bundle impregnated with 13 to 50% by mass, wherein component (B) is supplied to component (A), and component (B) is melted at 100 to 300 ° C. The step (I) for contacting with the component (A) and the component (A) in contact with the component (B) are heated to impregnate the component (A) with 80 to 100% by mass of the supply amount of the component (B). The manufacturing method of the composite reinforcing fiber bundle which has the process (II) to make.
Condition (1): At least one selected from glycidyl ether type epoxy resin, glycidyl amine type epoxy resin, glycidyl ester type epoxy resin, and alicyclic epoxy resin among 100 parts by mass of component (B). The epoxy resin is 0 to 50 parts by mass.
Condition (2): The melt viscosity at 200 ° C. is 0.001 to 10 Pa · s, and the rate of change in melt viscosity after heating at 200 ° C. for 2 hours is 2 or less.
成分(A)は、サイジング剤が付与されてなり、サイジング剤と成分(B)の質量比が、0.001〜0.5/1である請求項1に記載の複合強化繊維束の製造方法。The method for producing a composite reinforcing fiber bundle according to claim 1, wherein the component (A) is provided with a sizing agent, and the mass ratio of the sizing agent and the component (B) is 0.001 to 0.5 / 1. . 前記サイジング剤が3官能以上の多官能脂肪族エポキシである請求項2に記載の複合強化繊維束の製造方法。The method for producing a composite reinforcing fiber bundle according to claim 2, wherein the sizing agent is a trifunctional or higher polyfunctional aliphatic epoxy. 成分(B)は、エポキシ当量が100〜2500g/eqである請求項1〜3いずれかに記載の複合強化繊維束の製造方法。The method for producing a composite reinforcing fiber bundle according to any one of claims 1 to 3, wherein the component (B) has an epoxy equivalent of 100 to 2500 g / eq. 成分(B)は、数平均分子量が500〜3000である請求項1〜4いずれかに記載の複合強化繊維束の製造方法。The number average molecular weight of the component (B) is 500 to 3000. The method for producing a composite reinforcing fiber bundle according to any one of claims 1 to 4. 条件(1)において、グリシジルエーテル型エポキシ樹脂は、ノボラック型エポキシ樹脂が50〜100質量%を占める請求項1〜5いずれかに記載の複合強化繊維束の製造方法。 In the condition (1), the glycidyl ether type epoxy resin is a method for producing a composite reinforcing fiber bundle according to any one of claims 1 to 5, wherein the novolac type epoxy resin accounts for 50 to 100% by mass. 条件(1)において、成分(B)100質量部のうちグリシジルエーテル型エポキシ樹脂が80〜99質量部、グリシジルアミン型エポキシ樹脂が1〜20質量部である請求項1〜6いずれかに記載の複合強化繊維束の製造方法。In the condition (1), the glycidyl ether type epoxy resin is 80 to 99 parts by mass and the glycidyl amine type epoxy resin is 1 to 20 parts by mass in 100 parts by mass of the component (B). A method for producing a composite reinforcing fiber bundle. 強化繊維束が炭素繊維である、請求項1〜7いずれかに記載の複合強化繊維束の製造方法。The method for producing a composite reinforcing fiber bundle according to any one of claims 1 to 7, wherein the reinforcing fiber bundle is a carbon fiber. 炭素繊維束のフィラメント数が20,000〜100,000本である請求項8に記載の複合強化繊維束の製造方法。The method for producing a composite reinforcing fiber bundle according to claim 8, wherein the number of filaments of the carbon fiber bundle is 20,000 to 100,000. 工程(II)において、成分(B)の最高温度が150〜400℃である請求項1〜9いずれかに記載の複合強化繊維束の製造方法。The method for producing a composite reinforcing fiber bundle according to any one of claims 1 to 9, wherein in step (II), the maximum temperature of the component (B) is 150 to 400 ° C. 請求項1〜10いずれかに記載の方法で製造される複合強化繊維束に、熱可塑性樹脂(C)が接着されている成形材料。The molding material by which the thermoplastic resin (C) is adhere | attached on the composite reinforcing fiber bundle manufactured by the method in any one of Claims 1-10. 複合強化繊維束が芯構造であり、その周囲を成分(C)が被覆した芯鞘構造である請求項11に記載の成形材料。The molding material according to claim 11, wherein the composite reinforcing fiber bundle has a core structure and a core-sheath structure in which the component (C) is covered. 長さ1〜50mmに切断されてなる請求項11または12に記載の成形材料。The molding material according to claim 11 or 12, which is cut into a length of 1 to 50 mm.
JP2010202955A 2010-09-10 2010-09-10 Manufacturing method of composite reinforcing fiber bundle and molding material using the same Active JP5614187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202955A JP5614187B2 (en) 2010-09-10 2010-09-10 Manufacturing method of composite reinforcing fiber bundle and molding material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202955A JP5614187B2 (en) 2010-09-10 2010-09-10 Manufacturing method of composite reinforcing fiber bundle and molding material using the same

Publications (3)

Publication Number Publication Date
JP2012057277A JP2012057277A (en) 2012-03-22
JP2012057277A5 true JP2012057277A5 (en) 2013-07-18
JP5614187B2 JP5614187B2 (en) 2014-10-29

Family

ID=46054710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202955A Active JP5614187B2 (en) 2010-09-10 2010-09-10 Manufacturing method of composite reinforcing fiber bundle and molding material using the same

Country Status (1)

Country Link
JP (1) JP5614187B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5964638B2 (en) * 2012-04-10 2016-08-03 東邦テナックス株式会社 Carbon fiber chopped strand and method for producing the same
WO2014084194A1 (en) * 2012-11-27 2014-06-05 三菱レイヨン株式会社 Fiber-reinforced thermoplastic resin prepreg, molded body of same, and method for producing fiber-reinforced thermoplastic resin prepreg
WO2014175011A1 (en) * 2013-04-22 2014-10-30 東京応化工業株式会社 Method for producing porous polyimide film, porous polyimide film and separator using same
WO2015064482A1 (en) 2013-10-29 2015-05-07 東レ株式会社 Molded article and molding material
EP3048137B1 (en) 2013-10-29 2018-07-25 Toray Industries, Inc. Molding material, method for producing same, and master batch used in same
JP6520043B2 (en) * 2013-12-27 2019-05-29 東レ株式会社 Molding material, method for producing the same, and molded article
JP6838425B2 (en) * 2017-02-28 2021-03-03 東レ株式会社 Polyphenylene sulfide resin composition and molded article
JP7368929B2 (en) * 2017-08-08 2023-10-25 株式会社日本製鋼所 Manufacturing method of fiber reinforced resin intermediate material
JP6737939B1 (en) * 2019-08-09 2020-08-12 住友化学株式会社 Liquid crystal polyester resin composition, method for producing the same, and molded article
KR20220101110A (en) * 2019-11-11 2022-07-19 도레이 카부시키가이샤 Molding materials and molded articles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747546A (en) * 1993-08-03 1995-02-21 Mazda Motor Corp Material for molding liquid crystal resin composite and molding method using the material
JP2000327814A (en) * 1999-05-19 2000-11-28 Mitsubishi Rayon Co Ltd Prepreg and tubular molded product using same
JP4361663B2 (en) * 2000-04-04 2009-11-11 三菱レイヨン株式会社 Method for opening reinforcing fiber bundle and method for producing prepreg
JP2004277671A (en) * 2003-03-19 2004-10-07 Sumitomo Bakelite Co Ltd Prepreg and printed circuit board using the same
JP2005280124A (en) * 2004-03-30 2005-10-13 Toray Ind Inc Carbon fiber-reinforced sheet-like article and carbon fiber-reinforced composite material
JP2007112041A (en) * 2005-10-21 2007-05-10 Daicel Chem Ind Ltd Carbon filament reinforced resin molded article and its manufacturing method
JP5494375B2 (en) * 2010-09-10 2014-05-14 東レ株式会社 Manufacturing method of composite reinforcing fiber bundle and molding material using the same

Similar Documents

Publication Publication Date Title
JP2012057277A5 (en)
JP2012056232A5 (en)
WO2016043037A1 (en) Fiber-reinforced resin molding material
JP5614187B2 (en) Manufacturing method of composite reinforcing fiber bundle and molding material using the same
JP5494375B2 (en) Manufacturing method of composite reinforcing fiber bundle and molding material using the same
JP4938281B2 (en) Polymer bonded fiber agglomerates
JP5883875B2 (en) Method for producing carbon fiber composite material
EP2990185A1 (en) Composite material including unidirectional continuous fibers thermoplastic resin
JP2015093883A (en) Carbon fiber composite material and carbon fiber
JP6816010B2 (en) Thermoplastic composites and moldings
JP2013011050A (en) Composite reinforcement fiber bundle, method for producing the same, and molding material
JP2013173811A (en) Resin composition, molding material and method for producing the same
JPWO2016093250A1 (en) Surface-treated carbon fiber, surface-treated carbon fiber strand, and production method thereof
JP2013203941A (en) Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and automobile part that uses the carbon fiber-reinforced composite material
KR102478812B1 (en) Fiber-reinforced resin molding material and manufacturing method thereof
CN111788258A (en) Sheet molding compound and carbon fiber composite material molded article
CN110267785A (en) Fiber-reinforced resin sheet material
JP2011136491A (en) Process of producing composite container
CN110461919B (en) Method for producing fiber-reinforced composite material
JP2008044999A (en) Process for producing prepreg excellent in uniformity
JP2014173053A (en) Prepreg for press molding and fiber reinforced composite material
RU2572139C1 (en) Method for obtaining carbon fibre-reinforced polymers based of heat-resistant binding agent
WO2017110595A1 (en) Method for manufacturing heated molding material and device for heating molding material
JP6467864B2 (en) Molding material, method for producing the same, and molded product
JP2013173810A (en) Resin composition, molding material and method for producing the same