JP2012056821A - Method for producing ps ash-based sintered compact, and ps ash-based sintered compact - Google Patents
Method for producing ps ash-based sintered compact, and ps ash-based sintered compact Download PDFInfo
- Publication number
- JP2012056821A JP2012056821A JP2010204101A JP2010204101A JP2012056821A JP 2012056821 A JP2012056821 A JP 2012056821A JP 2010204101 A JP2010204101 A JP 2010204101A JP 2010204101 A JP2010204101 A JP 2010204101A JP 2012056821 A JP2012056821 A JP 2012056821A
- Authority
- JP
- Japan
- Prior art keywords
- ash
- sludge
- sintered body
- sintered compact
- kneading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
本発明は、廃棄物を再資源化する方法に係り、より詳しくは、PS(=ペーパースラッジ)灰の再資源化方法に関するものである。 The present invention relates to a method for recycling waste, and more particularly to a method for recycling PS (= paper sludge) ash.
最近では古紙の再生が活発に行われているが、その際には大量の製紙汚泥が生ずる。この製紙汚泥は、脱水、焼却により減容化されPS灰となる。
PS灰の粒子は、金平糖に似た複雑な凹凸形状をしており、水を加えただけでは流動性を持たず、圧縮固形化も困難である。さらには、古紙を再生した場合には、印刷インク由来で有害物質であるフッ素が含まれている場合が多い。
そのため、一部はPS灰に含まれる水硬性の遊離石灰を活用してセメント原料として再資源化されているが、大部分はそのまま廃棄され埋め立て処理されている。
Recently, recycling of used paper has been actively carried out, but in that case, a large amount of paper sludge is generated. This paper sludge is reduced in volume by dehydration and incineration to become PS ash.
The particles of PS ash have a complicated uneven shape similar to that of konpeito, and it does not have fluidity just by adding water, and is difficult to compress and solidify. Furthermore, when used paper is recycled, it often contains fluorine, which is a harmful substance derived from printing ink.
Therefore, some are recycled as cement raw materials by utilizing hydraulic free lime contained in PS ash, but most are discarded and landfilled as they are.
而して、現在の埋め立て処分場は飽和状態に近づきつつあり、新たな埋め立て処分場の確保も難しいことから、PS灰の再資源化は緊急の課題となっている。
本発明は、上記した問題点に鑑みてなされたものであり、PS灰の特性を生かした再資源化方法とその方法により再資源化したものを提供することを、その目的とする。
Thus, because the current landfill site is approaching saturation and it is difficult to secure a new landfill site, the recycling of PS ash is an urgent issue.
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a recycling method utilizing the characteristics of PS ash and a recycling method using the method.
本発明は、上記目的を達成するためになされたものであり、請求項1の発明は、PS灰を含む焼却灰に粘性土成分を含む汚泥を加えて混練造形し、その造形物を焼結することを特徴とするPS灰系焼結体の製造方法である。
請求項2の発明は、請求項1に記載したPS灰系焼結体の製造方法において、汚泥として建設汚泥を用いることを特徴とする製造方法である。
請求項3の発明は、請求項1または2に記載したPS灰系焼結体の製造方法において、シルト系汚泥を加えて混練造形した後に、さらに粘土系汚泥または粘土を加えて混練造形することを特徴とする製造方法である。
請求項4の発明は、請求項1から3のいずれかに記載したPS灰系焼結体の製造方法において、PS灰を含む焼却灰に消石灰を加えてPS灰に含まれる重金属類を不溶化した上で、粘土性成分を含む汚泥を加えて混練造形することを特徴とする製造方法である。
請求項5の発明は、請求項1から4のいずれかに記載したPS灰系焼結体の製造方法において、さらに、鉱さいとガラス屑を加えて混練造形し、焼結の際には当該鉱さいを溶融しそこに含まれる重金属類をガラススラグと一体化して不溶化することを特徴とする製造方法である。
請求項6の発明は、請求項1から5のいずれかに記載した方法により製造された焼結体である。
The present invention has been made in order to achieve the above object, and the invention of claim 1 is to add incinerated ash containing PS ash to a sludge containing a viscous earth component and knead and model the sintered product. This is a method for producing a PS ash-based sintered body.
Invention of Claim 2 is a manufacturing method characterized by using construction sludge as sludge in the manufacturing method of PS ash system sintered compact described in Claim 1.
The invention of claim 3 is the method for producing a PS ash-based sintered body according to claim 1 or 2, wherein after adding silt sludge and kneading and modeling, further adding clay sludge or clay and kneading and modeling. Is a manufacturing method characterized by
The invention of claim 4 is the method for producing a PS ash-based sintered body according to any one of claims 1 to 3, wherein slaked lime is added to incinerated ash containing PS ash to insolubilize heavy metals contained in PS ash. Above, it is a manufacturing method characterized by adding the sludge containing a clay component and carrying out kneading modeling.
According to a fifth aspect of the present invention, in the method for producing a PS ash-based sintered body according to any one of the first to fourth aspects, the slag is further kneaded and shaped by adding slag and glass debris, and the sinter is subjected to sintering. And a heavy metal contained therein is integrated with the glass slag and insolubilized.
The invention of claim 6 is a sintered body produced by the method according to any one of claims 1 to 5.
本発明の方法によれば、PS灰の形態的特徴を生かしたものに再資源化できる。 According to the method of the present invention, it is possible to recycle the material using the morphological characteristics of PS ash.
先ず、原材料について説明する。
〈PS灰〉
PS灰は、古紙の再生工程や製紙工程で発生した製紙汚泥を脱水、焼却により減容化されて生成されたものであり、煤塵、燃えがら、ダストのいずれの形態のものも含まれる。PS灰は、顕微鏡観察レベルで見ると、金平糖様の凹凸形状をしており、内部に細孔が多数存在する。
PS灰には、シリカ、アルミナ、酸化カルシウム、酸化鉄等の細粒成分が含まれており、強アルカリ性である。
古紙由来の場合には、印刷インクの成分であるフッ素や、再生工程における塩素系漂白剤の使用により塩素が含まれている場合が多い。
使用する際には、乾燥状態でも含水状態でもよい。
First, raw materials will be described.
<PS ash>
The PS ash is produced by reducing the volume of papermaking sludge generated in the used paper recycling process and papermaking process by dehydration and incineration, and includes any form of soot, flaming dust, and dust. The PS ash has a confetti-like irregular shape when viewed at a microscope observation level, and has many pores inside.
PS ash contains fine-grained components such as silica, alumina, calcium oxide, and iron oxide, and is strongly alkaline.
In the case of derived from used paper, chlorine is often contained due to the use of fluorine, which is a component of printing ink, and chlorine-based bleach in the recycling process.
When used, it may be dry or hydrated.
〈消石灰〉
古紙由来のPS灰を用いる場合には、消石灰(Ca(OH)2)を併用する。これを併用することで、有害物質であるフッ素がフッ化カルシウムとなって不溶化する。
フッ素の存在量は予め一々測定しておくわけではなく、消石灰は想定される上限値を目安として配合量が決められている。従って、消石灰は未反応のまま残留するものもある。
<Slaked lime>
When PS ash derived from used paper is used, slaked lime (Ca (OH) 2 ) is used in combination. By using this together, fluorine which is a harmful substance becomes calcium fluoride and insolubilized.
The amount of fluorine present is not measured in advance, and the amount of slaked lime is determined based on the assumed upper limit. Therefore, some slaked lime remains unreacted.
〈汚泥〉
PS灰は大部分が既にセラミック化しており、融解しないため、汚泥が焼結バインダーとして用いられている。そのため、汚泥は、粘性土成分を含むものである。汚泥には、浄水汚泥、下水汚泥、建設汚泥など種々のものがあるが、建設汚泥が好ましい。建設汚泥は元々土であり、粘性土である粘土やシルトが大部分を占めているからである。なお、セメント混じりのものはアルカリ性になっている。
使用する際には、乾燥状態でも含水状態でもよい。
<Sludge>
Since most of PS ash is already ceramicized and does not melt, sludge is used as a sintered binder. Therefore, sludge contains a viscous soil component. There are various types of sludge, such as purified water sludge, sewage sludge, and construction sludge, but construction sludge is preferred. This is because construction sludge is originally soil, and clay and silt, which are clayey soils, account for the majority. In addition, the thing with cement is alkaline.
When used, it may be dry or hydrated.
〈その他の粘性土成分供給源〉
粘性土層から産出したものを、粘性土成分供給源として汚泥と併用してもよい。例えば、PS灰をシルト系汚泥と共に混練造粒し、さらに粘土質の高い粘土、例えば木節粘土を加えて核となる玉を造れば、PS灰を追加して玉を容易に大きくしていくことができる。併用した場合には焼結体は強度が高いものとなっている。また、木節粘土を加えた場合には焼結体はオレンジ〜茶に着色したものとなる。
<Other viscous soil component sources>
What was produced from the cohesive soil layer may be used in combination with sludge as a cohesive soil component supply source. For example, if PS ash is kneaded and granulated with silt sludge, and a clay ball with high clay quality, such as Kibushi clay, is made to make a core ball, PS ash is added to easily enlarge the ball. be able to. When used in combination, the sintered body has high strength. When Kibushi clay is added, the sintered body is colored orange to brown.
〈鉱さい、ガラス屑〉
鉱さいは鉱石から金属を製練する際などに出てくる副産物であり、現状ではPS灰と同様に埋め立てにより廃棄処理されているが、有害物質である水銀、ヒ素などの重金属類が含まれていることもあり、その取扱いに苦慮している。
而して、この鉱さいに含まれる重金属類は、ガラス屑を溶融した後に冷却してできたガラスの固化物、すなわち溶融スラグと一体化することで溶出を防止することができる。
本発明では、上記したPS灰と汚泥とで焼結体を作り出すので、用途によっては、鉱さいとガラス屑も混入させてその焼結工程での熱を利用して重金属類をガラス固定化することで鉱さい分も合わせて再資源化する。
<Mineral, glass scrap>
Slag is a by-product that comes out when smelting metal from ore, and is currently disposed of by landfill just like PS ash, but it contains heavy metals such as mercury and arsenic, which are harmful substances. Sometimes it is difficult to handle.
Thus, elution of heavy metals contained in the slag can be prevented by integrating with the solidified product of glass, ie, molten slag, which has been cooled after melting glass waste.
In the present invention, a sintered body is produced from the above-described PS ash and sludge. Depending on the application, mineral slag and glass scraps are also mixed, and heat is used in the sintering process to fix heavy metals to glass. In order to recycle the slag.
〈カーボン、チタンなど〉
その他、カーボンやチタンなどを添加して、用途を広げることができる。
<Carbon, titanium, etc.>
In addition, the use can be expanded by adding carbon or titanium.
次に、製造方法について説明する。
先ず、PS灰に消石灰を加えて、PS灰に含まれるフッ素を不溶化する。
続いて、PS灰と汚泥と水を造粒機(ミキサー)に投入し混合造粒して玉にする。最初から全量を投入するのでなく、PS灰等に最初から含まれている水分量などを考慮しながら段階を分けて投入することで玉にし易くなる。玉のサイズは、4号〜パチンコ玉が想定されている。その後に、さらに用途によっては複数の玉を手で丸めてより大きくしたり、型を用いて種々の形状に造形する。
以下、配合例毎に、具体的な混練造形方法について説明する。
Next, a manufacturing method will be described.
First, slaked lime is added to PS ash to insolubilize fluorine contained in PS ash.
Subsequently, PS ash, sludge and water are put into a granulator (mixer), mixed and granulated to form balls. Rather than throwing in the whole amount from the beginning, it becomes easy to make a ball by putting it in stages while considering the amount of water contained in PS ash etc. from the beginning. The size of the balls is assumed to be No. 4 to pachinko balls. After that, depending on the application, a plurality of balls may be rounded up by hand, or formed into various shapes using a mold.
Hereinafter, a specific kneading modeling method will be described for each blending example.
配合例1(基本)
(1)PS灰(含水率20〜30%程度、900g)+汚泥(水洗シルト系汚泥、含水率20〜30%程度、900g)を造粒機に投入し、3分程度混練する。
(2)水(100cc、40cc)を二段階に分けて造粒機に投入し、合計で10分程度混練・造粒して核となる玉を造る。
玉をさらに大きくする場合には、引き続いて下記の工程(3)、(4)を行う。
(3)水(20cc)+PS灰(含水率20〜30%程度、100g)を造粒機に投入して玉を大きくしていく。
(4)さらに、玉の状態を確認しながら適宜水を加えて仕上げの玉とする。
玉をさらに大きくしたり、不揃いにする場合には、上記の工程(2)、(4)で造られた小玉や大玉を合わせて手で丸めたりする。
Formulation Example 1 (basic)
(1) PS ash (moisture content of about 20-30%, 900 g) + sludge (washed silt sludge, moisture content of about 20-30%, 900 g) is put into a granulator and kneaded for about 3 minutes.
(2) Water (100 cc, 40 cc) is divided into two stages and charged into a granulator, and kneaded and granulated for about 10 minutes in total to produce a core ball.
In order to further enlarge the ball, the following steps (3) and (4) are subsequently performed.
(3) Water (20 cc) + PS ash (water content of about 20-30%, 100 g) is put into a granulator to increase the size of the balls.
(4) Further, water is added as appropriate while checking the state of the ball to obtain a finished ball.
In order to make the balls larger or uneven, the small balls and large balls made in the above steps (2) and (4) are combined and rounded by hand.
配合例2(木節粘土添加)
(1)PS灰(含水率20〜30%程度、900g)+汚泥(水洗シルト系汚泥、含水率20〜30%程度、900g)を造粒機に投入し、3分程度混練する。
(2)水(100cc)+木節粘土(50g)を造粒機に投入し、さらに5分程度混練・造粒して核となる玉を造る。
(3)水(100cc)+PS灰(含水率20〜30%程度、150g)を造粒機に投入し、5分程度かけて玉を大きくしていく。
(4)水(50cc)+PS灰(含水率20〜30%程度、100g)を造粒機に投入し、玉をさらに大きくしていく。
(5)さらに、玉の状態を確認しながら適宜水を加えて仕上げの玉とする。
Formulation example 2 (kibushi clay added)
(1) PS ash (moisture content of about 20-30%, 900 g) + sludge (washed silt sludge, moisture content of about 20-30%, 900 g) is put into a granulator and kneaded for about 3 minutes.
(2) Water (100 cc) + Kibushi clay (50 g) is put into a granulator, and further kneaded and granulated for about 5 minutes to make a core ball.
(3) Water (100 cc) + PS ash (water content of about 20-30%, 150 g) is put into a granulator, and the balls are enlarged over about 5 minutes.
(4) Water (50 cc) + PS ash (water content of about 20 to 30%, 100 g) is put into a granulator to further enlarge the balls.
(5) Further, water is appropriately added while checking the state of the ball to obtain a finished ball.
配合例3(カーボン添加)
配合例1と配合例2の一部改変例であり、いぶし焼煉瓦を造るように酸素欠乏雰囲気内で焼結させて、不完全燃焼させて黒色乃至黒銀色(=墨色)の炭化物を生成したり、焼結の最終段階にカーボン(粉末)を添加して焼結体の表面をカーボンで被覆したり、焼結後にカーボン水に浸漬させて焼結体の表面をカーボンで被覆したりする。上記3種類の黒化方法から2つ以上を選んで併用してもよい。但し、最も効率の良い黒化方法は不完全燃焼方法なのでこの方法は採用するのが好ましい。
Formulation example 3 (carbon addition)
This is a partial modification of Formulation Example 1 and Formulation Example 2, which is sintered in an oxygen-deficient atmosphere so as to produce an smoldered brick and burnt incompletely to produce black to black silver (= black) carbide. Alternatively, carbon (powder) is added to the final stage of sintering to coat the surface of the sintered body with carbon, or the sintered body is immersed in carbon water after sintering to coat the surface of the sintered body with carbon. Two or more of the above three types of blackening methods may be selected and used in combination. However, this method is preferably employed because the most efficient blackening method is an incomplete combustion method.
配合例4(酸化チタン添加)
配合例1と配合例2の一部改変例であり、焼結後に酸化チタンを吹付けコーティングして焼結体の表面を酸化チタンで被覆する。
Formulation Example 4 (with titanium oxide added)
This is a partial modification of Formulation Example 1 and Formulation Example 2, in which titanium oxide is spray-coated after sintering, and the surface of the sintered body is coated with titanium oxide.
配合例5(鉱さい+ガラス屑添加)
(1)PS灰(含水率20〜30%程度、800g)+汚泥(水洗シルト系汚泥、含水率20〜30%程度、800g)を造粒機に投入し、3分程度混練する。
(2)鉱さい(200g)+ガラス屑粉末(150g)を造粒機に投入し、さらに5分程度混練する。
(3)水(150cc)を造粒機に投入し、5分程度混練・造粒して核となる玉を造る。
(4)水(50cc)+PS灰(含水率20〜30%程度、100g)を造粒機に投入し、玉をさらに大きくしていく。
(5)さらに、混練状態を確認しながら適宜水を加えて仕上げの玉とする。
Formulation example 5 (mineralization + glass waste added)
(1) PS ash (water content of about 20 to 30%, 800 g) + sludge (washed silt sludge, water content of about 20 to 30%, 800 g) is put into a granulator and kneaded for about 3 minutes.
(2) Slag (200 g) + glass scrap powder (150 g) is put into a granulator and further kneaded for about 5 minutes.
(3) Water (150 cc) is put into a granulator and kneaded and granulated for about 5 minutes to make a core ball.
(4) Water (50 cc) + PS ash (water content of about 20 to 30%, 100 g) is put into a granulator to further enlarge the balls.
(5) Further, water is appropriately added while confirming the kneading state to obtain a finished ball.
次に、造粒機から取り出した玉をそのまま、或いは玉を型に詰め込んで圧縮造形した上で乾燥する。
通常は、100〜150℃程度に設定した乾燥機内に半日程度入れて乾燥し、取出した後は半日程度かけて冷やす。十分に乾燥しておくことで、後述の焼結を経たときに、クラックが発生したり、強度が出なかったりするような不都合が無くなる。
次に、乾燥したものを焼成炉に入れて、1000℃以上の高温で半日から1日程度かけて焼き、常温まで冷やす。なお、木節粘土が含まれてなくとも、オレンジ〜茶に着色したい場合には外に出して急冷すればよい。着色しない場合にはそのまま炉内で徐冷する。冷やされた物は、セラミック焼結体になっている。なお、焼結温度は1000℃以上なので、PS灰に塩素が残留していてもダイオキシンが発生することはない。
Next, the balls taken out from the granulator are dried as they are or after they are packed into a mold and compression-molded.
Usually, it is dried for about half a day in a dryer set at about 100 to 150 ° C., and after taking out, it is cooled for about half a day. By sufficiently drying, there are no inconveniences such as cracks or lack of strength when sintering described later.
Next, the dried product is put in a firing furnace, baked at a high temperature of 1000 ° C. or more for about half a day to about a day, and cooled to room temperature. Even if Kibushi clay is not included, if it is desired to color orange to brown, it may be taken out and cooled rapidly. If not colored, slowly cool in the furnace. The cooled object is a ceramic sintered body. In addition, since sintering temperature is 1000 degreeC or more, even if chlorine remains in PS ash, a dioxin will not generate | occur | produce.
(焼結体の性状、用途)
配合例1の焼結体は、図1に示すPS灰と、図2に示す汚泥からなるものであり、図3に示すような玉状になっている。顕微鏡検察によれば、凹凸状のPS灰の凸部が汚泥をバインダーとして互いに連結されて三次元状に組立てられ形状になっている。そのため、PS灰どうしの間には大きな空隙があり、PS灰の表面の細孔は開口している。
この十分に大きい細孔容積を各種成分の吸着部位や忌避剤の含浸部位として活用して、脱臭剤、水処理のろ過材、害虫駆除剤、家畜の敷床材等に利用できる。また、微生物の活着部位としても利用できる。
(Properties of sintered body, application)
The sintered body of Formulation Example 1 is made of PS ash shown in FIG. 1 and sludge shown in FIG. 2, and has a ball shape as shown in FIG. According to the microscopic inspection, the convex portions of the concavo-convex PS ash are connected to each other using sludge as a binder and assembled into a three-dimensional shape. Therefore, there is a large gap between the PS ash, and the pores on the surface of the PS ash are open.
This sufficiently large pore volume can be used as an adsorption site for various components or an impregnation site for repellents, and can be used as a deodorant, a water treatment filter, a pest control agent, a livestock flooring, and the like. It can also be used as a microbial site.
また、土壌と似た成分構成で、軽量で、保水性・透水性に優れているので、人工土壌として利用できる。例えば、水耕栽培に利用した場合には、根が焼結体間に伸びて倒れ難く、且つ水や液肥の供給量が少なくて済む。また、緑地の床土や目砂、屋上緑化、屋上菜園、プランター等の土にもなる。さらには水分調整剤として観葉植物の根元に散布したりもできる。
さらに、アルカリが強く、ミネラル分が豊富に含まれているので、田畑の消毒や、堆肥化の促進や、土壌改良に使用できる。
不揃いの玉は、玉を構成するPS灰どうしが噛合い易いので、塩の代わりに滑止め剤として利用できるので、塩害の発生を心配せずに済む。
また、適宜な形状に造形したものを砂漠の地中に埋めてそこに水を供給するようにすれば、植物はそこから水分を吸収することができ砂漠緑化を促進できる。
さらに、セラミックのマイナスイオン発生作用を活用して、屋内外の床材や壁材にも利用できる。
In addition, it has a component composition similar to that of soil, is lightweight, has excellent water retention and water permeability, and can be used as artificial soil. For example, when it is used for hydroponics, the roots are not easily collapsed between the sintered bodies, and the supply amount of water or liquid fertilizer is small. In addition, it can also be used as soil for green floor soil, sand, rooftop greening, rooftop gardens, and planters. Furthermore, it can be applied to the roots of foliage plants as a moisture regulator.
Furthermore, since it is strong in alkali and rich in minerals, it can be used for disinfection of fields, promotion of composting, and soil improvement.
The irregular balls are easy to mesh with the PS ash constituting the balls, and can be used as a non-slip agent instead of salt, so there is no need to worry about the occurrence of salt damage.
In addition, if an object shaped in an appropriate shape is buried in the desert ground and water is supplied to the plant, the plant can absorb water from it and promote desert greening.
Furthermore, it can be used for indoor and outdoor flooring and wall materials by utilizing the negative ion generation effect of ceramics.
配合例2の焼結体の玉には、木節粘土が添加されており、図4に示すように、大きくなっている。この玉は、配合例1の焼結体と同様な用途に利用できるが、強度も上がっているので、特に荷重がかかる校庭、駐車場、ゴルフ場のグリーンの滑り調整砂等に有用である。また、オレンジ〜茶に着色されているので、識別表示にも利用できる。 Kibushi clay is added to the balls of the sintered body of the blending example 2 and is enlarged as shown in FIG. This ball can be used for the same application as the sintered body of Formulation Example 1, but has increased strength, and is particularly useful for schoolyards, parking lots, and green slip-adjusting sand for golf courses that are loaded. Further, since it is colored orange to brown, it can be used for identification display.
配合例3の焼結体は黒に着色されている。この点が配合例1や配合例2のものと異なっている。
黒に着色されていので、黒体輻射による遠赤外線効果を活用して、路面上に散布して融雪剤や路面凍結防止剤として利用したり、畑に入れて地温を上げて、農作物の成長を促進したり、霜を防止したりするのに利用できる。
特に、配合例1で不揃いな玉に着色した場合には、滑り止めと融雪・路面凍結防止機能を合わせ持ったものとなり、有用である。
The sintered body of Formulation Example 3 is colored black. This is different from those of Formulation Example 1 and Formulation Example 2.
Because it is colored black, it uses the far-infrared effect of black body radiation and sprays it on the road surface to use it as a snow melting agent and road surface anti-freezing agent. Can be used to promote or prevent frost.
In particular, when the irregular balls are colored in Formulation Example 1, it has both anti-slip and snow melting / road surface freezing prevention functions, which is useful.
配合例4の焼結体には酸化チタンが被覆されているので光触媒作用により殺菌、脱臭効果が期待できる。 Since the sintered body of Formulation Example 4 is coated with titanium oxide, a sterilizing and deodorizing effect can be expected by photocatalytic action.
配合例5の焼結体は溶融スラグ化されており、上記した配合例1〜4のような多孔質ではない。
この焼結体は、高強度を利用して校庭や駐車場等の強度が必要とされる場所に敷き詰めたりできる。
また、ガラスに自在に着色できるので、ガラス屑等と共に植物性着色料や樹脂等の着色剤を添加することで図5に示すような化粧砂にできる。
The sintered body of the blending example 5 is melted into slag, and is not porous like the blending examples 1 to 4 described above.
This sintered body can be spread in places where strength is required, such as schoolyards and parking lots, using high strength.
Further, since the glass can be colored freely, it is possible to make a cosmetic sand as shown in FIG. 5 by adding a colorant such as a vegetable colorant or a resin together with glass waste.
配合例1の焼結体の大玉について、成分を分析したところ、以下の通りであった。 The components of the sintered body of Formulation Example 1 were analyzed and the results were as follows.
PSセラミックA品とB品が本発明品であり、有害物質の溶出が基準以下であることを確認できた。
It was confirmed that PS ceramic products A and B were products of the present invention, and the elution of harmful substances was below the standard.
(捕捉性)
配合例1の焼結体の大玉を用いて、各種成分の捕捉効果を確認したところ、以下の結果が得られた。
(Capture)
The following results were obtained when the effect of capturing various components was confirmed using the large ball of the sintered body of Formulation Example 1.
(害虫駆除効果)
配合例1の焼結体の大玉の細孔に害虫忌避剤としての薬剤を含浸させたものを設置し、虫を近づけたところ、クモ、ヤスデ、蟻、だんご虫、ワラジムシ、ナメクジについて効果を確認できた。
(Pest control effect)
When a large impregnated pore of the sintered body of Formulation Example 1 was impregnated with a chemical as a pest repellent and brought close to the insect, the effect was confirmed for spiders, millipedes, ants, worms, strawberries and slugs. did it.
(バイオモジュール的効果)
配合例1の焼結体の大玉を、バイオモジュールとして用いて、バシラス属サブチリウスを溶融した溶媒に所定時間浸漬してそれを巣営させた。そして、これを閉鎖水系である池に設置して、化学的酸素要求量(COD)と生物化学的酸素要求量(BOD)の変化を見たところ、以下に示すように明らかな水質浄化作用の発現を確認できた。
(Bio-modular effect)
The large ball of the sintered body of Formulation Example 1 was used as a biomodule, and was immersed for a predetermined time in a solvent in which Bacillus subtilis was melted to nest it. And when this was installed in a pond, which is a closed water system, and the changes in chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were observed, as shown below, the clear water purification action was demonstrated. Expression was confirmed.
(肥料効果)
配合例1の焼結体の小玉を、芝生用の砂に混ぜて育成中の芝生に散布し、42日経過後を無散布のものと比較したところ、図6に示すように明らかな違いを確認できた。
(Fertilizer effect)
The small balls of the sintered body of Formulation Example 1 were mixed with lawn sand and sprayed on the growing lawn. After 42 days, the difference was confirmed as shown in FIG. did it.
配合例1の焼結体の小玉を有機物に混ぜて堆肥化したものと、通常の市販されている堆肥の成分を比較したところ、以下の通りであった。 A comparison of composts obtained by mixing small particles of the sintered body of Formulation Example 1 with organic substances and compost commodities commercially available was as follows.
また、牛糞及び牛糞尿オガクズ混合物に、配合例1の焼結体の小玉を混和して以下の試験を行った。
試験1.牛糞及び牛糞尿オガクズ混合物に小玉を添加量をかえ混和し、4〜60℃の恒温槽内で静置培養し、大腸菌数及び好気性中温細菌数を測定した。
結果は、大腸菌は小玉を約1%添加した場合、20℃以下の培養温度では速やかに検出限界以下となったが、30℃及び37℃培養では試験期間中残存した。37℃培養では約2%以上の添加で大腸菌は死滅した。好気性中温菌はPS灰1〜2%の添加で約1〜20オ−ダー減少した。
試験2.肉牛牛舎から排出される糞尿―オガクズ混合物に対して小玉を0〜3%混和し、堆積・発酵させた。品温、水分、PH、全窒素含有、有機物含有、大腸菌及び好気性中温細菌数を測定した。
結果は、堆積時に小玉を1〜3%混和した堆肥は、特に寒冷地において品温上昇の開始が遅れた。また、無添加区に比較して、堆肥化期間中の有機物分解率が抑制される傾向が見られた。堆肥化過程における大腸菌は、小玉添加区では無添加区より速やかに検出限界以下となった。
Moreover, the following test was performed by mixing the small balls of the sintered body of Formulation Example 1 into the cow dung and cow manure sawdust mixture.
Test 1. A small amount of small balls were mixed in the cow dung and cow manure sawdust mixture, and the mixture was statically cultured in a thermostatic bath at 4 to 60 ° C., and the number of Escherichia coli and the number of aerobic mesophilic bacteria were measured.
As a result, Escherichia coli quickly became below the detection limit at a culture temperature of 20 ° C. or less when about 1% of small balls were added, but remained at 30 ° C. and 37 ° C. during the test period. In 37 ° C. culture, E. coli was killed by addition of about 2% or more. Aerobic mesophilic bacteria were reduced by about 1 to 20 orders with the addition of 1-2% PS ash.
Test 2. 0 to 3% of Kodama was mixed with the manure-sawdust mixture discharged from the beef cattle barn and deposited and fermented. The product temperature, moisture, PH, total nitrogen content, organic matter content, E. coli and aerobic mesophilic bacteria count were measured.
As a result, compost mixed with 1-3% of Kodama at the time of deposition was delayed in the start of the rise in product temperature, particularly in cold regions. Moreover, the tendency for the organic matter decomposition | disassembly rate during a composting period to be suppressed was seen compared with the additive-free zone. Escherichia coli in the composting process was below the detection limit more quickly in the Kodama addition group than in the No additive group.
本発明の方法により製造された焼結体は種々の用途に利用できるので、PS灰を原料として無駄なく利用できる。 Since the sintered compact produced by the method of the present invention can be used for various applications, PS ash can be used as a raw material without waste.
Claims (6)
汚泥として建設汚泥を用いることを特徴とする製造方法。 In the manufacturing method of PS ash system sintered compact according to claim 1,
A manufacturing method characterized by using construction sludge as sludge.
シルト系汚泥を加えて混練造形した後に、さらに粘土系汚泥または粘土を加えて混練造形することを特徴とする製造方法。 In the manufacturing method of PS ash system sintered compact according to claim 1 or 2,
A production method comprising adding a silt sludge and kneading and shaping, and further adding clay sludge or clay and kneading and shaping.
PS灰を含む焼却灰に消石灰を加えてPS灰に含まれる重金属類を不溶化した上で、粘土性成分を含む汚泥を加えて混練造形することを特徴とする製造方法。 In the method for producing a PS ash-based sintered body according to any one of claims 1 to 3,
A manufacturing method characterized by adding slaked lime to incinerated ash containing PS ash to insolubilize heavy metals contained in PS ash, and then kneading and shaping sludge containing a clay component.
さらに、鉱さいとガラス屑を加えて混練造形し、焼結の際には当該鉱さいを溶融しそこに含まれる重金属類をガラススラグと一体化して不溶化することを特徴とする製造方法。 In the method for producing a PS ash-based sintered body according to any one of claims 1 to 4,
Furthermore, the manufacturing method characterized by adding a mineral waste and glass waste, kneading and shaping, and melting the mineral waste and integrating the heavy metal contained therein with the glass slag to insolubilize.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010204101A JP2012056821A (en) | 2010-09-13 | 2010-09-13 | Method for producing ps ash-based sintered compact, and ps ash-based sintered compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010204101A JP2012056821A (en) | 2010-09-13 | 2010-09-13 | Method for producing ps ash-based sintered compact, and ps ash-based sintered compact |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012056821A true JP2012056821A (en) | 2012-03-22 |
Family
ID=46054360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010204101A Pending JP2012056821A (en) | 2010-09-13 | 2010-09-13 | Method for producing ps ash-based sintered compact, and ps ash-based sintered compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012056821A (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02129058A (en) * | 1988-11-09 | 1990-05-17 | Hamamatsu Yogyo Kyodo Kumiai | New building material |
JPH04108665A (en) * | 1990-08-27 | 1992-04-09 | Imahashi Kazuo | Production of ceramic plate with pulp sludge |
JP2002047074A (en) * | 2000-07-28 | 2002-02-12 | Japan Science & Technology Corp | Method of manufacturing lightweight porous sintered product utilizing waste as raw material |
JP2003171153A (en) * | 2001-12-05 | 2003-06-17 | Japan Science & Technology Corp | Method for producing lightweight mixed sintered product using waste material as raw material |
JP2005103464A (en) * | 2003-09-30 | 2005-04-21 | Penta Ocean Constr Co Ltd | Papermaking-sludge-ash-containing granule and method for manufacturing the same |
JP2005238193A (en) * | 2004-02-27 | 2005-09-08 | Taiheiyo Cement Corp | Method for reducing elution of arsenic from soil |
JP2006198505A (en) * | 2005-01-20 | 2006-08-03 | Oji Paper Co Ltd | Processing method of combustion ash |
JP2008137820A (en) * | 2006-11-30 | 2008-06-19 | Taiheiyo Material Kk | Method for production of artificial aggregate |
JP2009132564A (en) * | 2007-11-30 | 2009-06-18 | Taiheiyo Material Kk | Method of manufacturing artificial aggregate |
JP2009148712A (en) * | 2007-12-21 | 2009-07-09 | Taiheiyo Materials Corp | Granule, sintered body, and methods for producing them |
-
2010
- 2010-09-13 JP JP2010204101A patent/JP2012056821A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02129058A (en) * | 1988-11-09 | 1990-05-17 | Hamamatsu Yogyo Kyodo Kumiai | New building material |
JPH04108665A (en) * | 1990-08-27 | 1992-04-09 | Imahashi Kazuo | Production of ceramic plate with pulp sludge |
JP2002047074A (en) * | 2000-07-28 | 2002-02-12 | Japan Science & Technology Corp | Method of manufacturing lightweight porous sintered product utilizing waste as raw material |
JP2003171153A (en) * | 2001-12-05 | 2003-06-17 | Japan Science & Technology Corp | Method for producing lightweight mixed sintered product using waste material as raw material |
JP2005103464A (en) * | 2003-09-30 | 2005-04-21 | Penta Ocean Constr Co Ltd | Papermaking-sludge-ash-containing granule and method for manufacturing the same |
JP2005238193A (en) * | 2004-02-27 | 2005-09-08 | Taiheiyo Cement Corp | Method for reducing elution of arsenic from soil |
JP2006198505A (en) * | 2005-01-20 | 2006-08-03 | Oji Paper Co Ltd | Processing method of combustion ash |
JP2008137820A (en) * | 2006-11-30 | 2008-06-19 | Taiheiyo Material Kk | Method for production of artificial aggregate |
JP2009132564A (en) * | 2007-11-30 | 2009-06-18 | Taiheiyo Material Kk | Method of manufacturing artificial aggregate |
JP2009148712A (en) * | 2007-12-21 | 2009-07-09 | Taiheiyo Materials Corp | Granule, sintered body, and methods for producing them |
Non-Patent Citations (1)
Title |
---|
JPN6015006754; 佐々木 雅美 他: 紙パルプの技術 50巻、1号, 1999, 2-7頁 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106007563B (en) | A kind of ecological environment-friendly type pervious concrete prepared using discarded concrete | |
SG188568A1 (en) | Porous ceramic sintered body | |
CN102515834A (en) | Preparation method of waterworks sludge ceramsites for pretreating micro-polluted water | |
CN109465274A (en) | A kind of garbage loading embeading covering material and preparation method thereof | |
KR101915782B1 (en) | A composition for conditioning soil and promoting plant growth | |
KR101815017B1 (en) | Manufacturing method of eco-friendly colonnade protective plate using oyster shell and eco-friendly colonnade protective plate and staging process | |
CN101891367B (en) | Solidification and stabilization method of municipal sludge | |
CN103571497A (en) | Curing agent for treating heavy metal contaminated soil and application thereof | |
KR100742620B1 (en) | Manufacturing method of permeable tree transplant block based on recycled aggregate and charcoal ocher solid | |
JP2012056821A (en) | Method for producing ps ash-based sintered compact, and ps ash-based sintered compact | |
CN106082443A (en) | A kind of artificial swamp porous composite interstitial substance and preparation method thereof | |
JP2013247860A (en) | Recycled soil | |
JP3733040B2 (en) | Soil improver, method for producing soil improver, and method for improving soil | |
JP2006265504A (en) | Hardening material containing charcoal | |
CN106927656A (en) | A kind of method of Fenton sludge filler | |
KR101524363B1 (en) | Light-weight aggregate coated with fertilizer for planting and method for manufacturing thereof | |
CN113024180A (en) | Method for manufacturing environment-friendly baking-free light brick | |
KR20000053826A (en) | Sea la mix construction a system | |
KR100568930B1 (en) | Lightweight Artificial Soil And Its Manufacturing Method By Using Waste | |
CN104370514A (en) | Method for sintering micropore ecological brick by comprehensive utilization of garbage | |
JPH09182526A (en) | Artificial soil and its production | |
KR101486055B1 (en) | Soil conditioner for salt damaged area using coal ash | |
EP0837039B1 (en) | Construction of material for carrier structure for group of effective microorganisms and group of products | |
KR20000017957A (en) | The organic manure, yellow soil gypsum base cement mortar and preparation method of yellow bricks using yellow soil, waste gypsum and pig excreta | |
JP2004181772A (en) | Bamboo charcoal particle-containing composition and its molded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130711 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140311 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150223 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150625 |