JP2012052954A - Position finding apparatus - Google Patents

Position finding apparatus Download PDF

Info

Publication number
JP2012052954A
JP2012052954A JP2010196795A JP2010196795A JP2012052954A JP 2012052954 A JP2012052954 A JP 2012052954A JP 2010196795 A JP2010196795 A JP 2010196795A JP 2010196795 A JP2010196795 A JP 2010196795A JP 2012052954 A JP2012052954 A JP 2012052954A
Authority
JP
Japan
Prior art keywords
state
receiver clock
prediction
receiver
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010196795A
Other languages
Japanese (ja)
Other versions
JP5528267B2 (en
Inventor
Un Kyo
耘 喬
Taro Kashiwayagi
太郎 柏柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2010196795A priority Critical patent/JP5528267B2/en
Publication of JP2012052954A publication Critical patent/JP2012052954A/en
Application granted granted Critical
Publication of JP5528267B2 publication Critical patent/JP5528267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a position finding apparatus capable of finding the current position with high accuracy and on a real time basis even when a relatively large receiver clock drift occurs.SOLUTION: A position finding apparatus 20 comprises a receive signal analyzer 21 that analyzes receive signals; a receiver clock 22 that provides reception time information to the receive signal analyzer 21; and a Kalman filter 40 that estimates the position of a user, the velocity of the user and the receiver time, wherein the Kalman filter 40 is provided with state predicting means 41 that predicts a state, state estimator 42 that estimates the state and clock abnormal variation detector 43 that detects any abnormal variation in the receiver clock 22, the state predicting means 41 being further provided with a state predictor 41a that predicts a state variable vector of the current epoch on the basis of a state variable vector of one epoch before obtained from the state estimator 42 and a predicted state value corrector 41b that corrects the predicted state value on the basis of the result of detection by the clock abnormal variation detector 43.

Description

本発明は、カルマンフィルタを用いた衛星航法システムの測位装置に関する。   The present invention relates to a positioning device for a satellite navigation system using a Kalman filter.

GPSといった衛星航法システムにおける測位装置は、衛星の送信電波に付加されている情報から得られる電波の送信時刻(以下「衛星送信時刻」)、衛星位置、衛星速度、受信電波の搬送波の測定により得られる利用者位置変化、衛星位置変化、受信機発振器の周波数ずれに起因するドップラシフト等から、利用者位置、利用者速度及び受信機における衛星航法システム系の時刻(以下「受信機時刻」)を推定する装置である。   A positioning device in a satellite navigation system such as GPS is obtained by measuring radio wave transmission time (hereinafter referred to as “satellite transmission time”), satellite position, satellite speed, and received radio wave carrier obtained from information added to the radio wave transmission. User position change, satellite position change, Doppler shift due to frequency shift of receiver oscillator, etc., user position, user speed and time of satellite navigation system system in receiver (hereinafter referred to as “receiver time”) This is an estimation device.

この測位装置において、利用者位置、利用者速度及び受信機時刻の推定には、前回の状態から今回の状態への変化、及び今回状態と観測値の関係をモデル化し、そのモデル方程式をカルマンフィルタによって解く方法が一般的である。   In this positioning device, the user position, the user speed and the receiver time are estimated by modeling the change from the previous state to the current state and the relationship between the current state and the observed value, and the model equation is expressed by a Kalman filter. The solving method is common.

カルマンフィルタにおいては、利用者位置、利用者速度及び受信機時刻を状態変数とおき、1エポック前の状態変数値とその誤差の共分散行列から予測モデルを用いて現在の状態変数値及びその共分散行列を予測する処理と、現在の観測量と状態推定値の関係式を用いて予測した状態変数値及び共分散行列から現在の状態変数値及び共分散行列を推定する処理が行われる。なお、エポックは観測データの取得時を意味している。   In the Kalman filter, the user position, the user speed, and the receiver time are taken as state variables, and the current state variable value and its covariance are calculated using a prediction model from the state variable value and its error covariance matrix one epoch before. A process of predicting a matrix and a process of estimating the current state variable value and the covariance matrix from the state variable value and the covariance matrix predicted using the relational expression between the current observation amount and the state estimated value are performed. Epoch means when the observation data is acquired.

通常、カルマンフィルタを用いて利用者位置、利用者速度及び受信機時刻を推定する場合、状態変数ベクトルxは、[数1]で表すのが一般的である。   Normally, when estimating a user position, a user speed, and a receiver time using a Kalman filter, the state variable vector x is generally expressed by [Equation 1].

Figure 2012052954
Figure 2012052954

ここで、pは利用者位置(3次元ベクトル)、Δtは受信機時計の時刻と衛星航法システムにおける時刻との差(以下「受信機時計オフセット」)、vは利用者速度(3次元ベクトル)、ΔTは受信機時計における単位時間当たりの受信機時計オフセットのずれ(以下「受信機時計ドリフト」)、上付の"T"は転置行列を示す。なお、利用者位置とは受信機を利用する利用者の位置をいい、利用者速度とは利用者の移動速度をいう。   Here, p is the user position (three-dimensional vector), Δt is the difference between the time of the receiver clock and the time in the satellite navigation system (hereinafter “receiver clock offset”), and v is the user speed (three-dimensional vector). , ΔT is a receiver clock offset deviation (hereinafter “receiver clock drift”) per unit time in the receiver clock, and a superscript “T” indicates a transposed matrix. The user position refers to the position of the user who uses the receiver, and the user speed refers to the moving speed of the user.

カルマンフィルタを用いた衛星航法システムの測位装置では、発振器を備えた受信機時計において、受信機時計ドリフトの1エポック当たりの変化量は、ガウス分布に従うと仮定することができ、その分散量は発振器の周波数安定度によって決まる。予測モデルに前記仮定を組み入れることで、受信機時計ドリフトの推定精度を向上させることが可能であり、周波数安定度の高い発振器を用いるほど推定精度は向上する。   In a positioning device of a satellite navigation system using a Kalman filter, in a receiver clock equipped with an oscillator, it can be assumed that the amount of change in the receiver clock drift per epoch follows a Gaussian distribution, and the amount of dispersion is determined by the oscillator clock. Determined by frequency stability. By incorporating the above assumption into the prediction model, it is possible to improve the estimation accuracy of the receiver clock drift, and the estimation accuracy improves as the oscillator having a higher frequency stability is used.

通常の安価な衛星航法システムの測位装置においては、発振器に温度補償型水晶発振器(以下「TCXO」)が用いられる。この発振器では、温度が安定している環境では周波数安定度は比較的高いが、その一方で、急激な温度変化が発生した場合や衝撃を受けた場合には、受信機時計ドリフトが大きく変化してしまう。このような状態下でも安定した測位を行うには、受信機時計ドリフトの1エポック当たりの変化量の大きさ(分散)を大きめに設定する必要があった。しかしながら、上記分散を大きめに設定すると、受信機時計ドリフトが安定した状況下において精度が悪化してしまうという問題があった。   In a positioning device of a normal inexpensive satellite navigation system, a temperature-compensated crystal oscillator (hereinafter referred to as “TCXO”) is used as an oscillator. In this oscillator, the frequency stability is relatively high in an environment where the temperature is stable, but on the other hand, when a sudden temperature change occurs or an impact is applied, the receiver clock drift changes greatly. End up. In order to perform stable positioning even in such a state, it is necessary to set a large amount (variance) of the amount of change per epoch of the receiver clock drift. However, when the dispersion is set to be large, there is a problem that the accuracy deteriorates under a situation where the receiver clock drift is stable.

このような問題を解決する技術として、適応カルマンフィルタが用いられている(例えば、非特許文献1参照)。非特許文献1に示された適応カルマンフィルタは、観測雑音の分散に基づき与えられたシステム雑音モデルのパラメータが妥当かどうかを判断して妥当でなければ調整することができ、また、連続する数エポックにおいて平均化処理を行って状態推定の信頼性を高めることができるようになっている。   As a technique for solving such a problem, an adaptive Kalman filter is used (for example, see Non-Patent Document 1). The adaptive Kalman filter shown in Non-Patent Document 1 can determine whether a given system noise model parameter is valid based on the variance of the observed noise, and can adjust the parameter if it is not valid. The state estimation reliability can be improved by performing an averaging process.

Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory, Algorithms, and Software, Wiley, New York, 2001, pp. 424-425.Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory, Algorithms, and Software, Wiley, New York, 2001, pp. 424-425.

しかしながら、従来の適応カルマンフィルタでは、受信機時計ドリフトの変化が安定しているにもかかわらず、観測値に大きな観測誤差が含まれている場合に受信機時計ドリフトに大きな変化が発生していると誤判断する可能性があり、測位精度の劣化をもたらすという課題があった。また、従来の適応カルマンフィルタでは、状態推定の信頼性を高めるため平均化処理を行う構成となっているので、受信機時計ドリフトの変化をリアルタイムに検出できなくなり、測位精度が劣化するという課題があった。   However, in the conventional adaptive Kalman filter, even if the change in the receiver clock drift is stable, a large change in the receiver clock drift occurs when the observation value includes a large observation error. There is a possibility of misjudgment, and there has been a problem of causing deterioration in positioning accuracy. In addition, the conventional adaptive Kalman filter is configured to perform averaging processing in order to increase the reliability of state estimation, so that a change in receiver clock drift cannot be detected in real time, and there is a problem that positioning accuracy deteriorates. It was.

この発明は、上述した課題を解決するためのもので、比較的大きな受信機時計ドリフトが発生した場合でも高精度でリアルタイムに現在位置を測位することができる測位装置を提供することを目的とする。   An object of the present invention is to solve the above-described problem, and to provide a positioning device that can accurately determine the current position in real time even when a relatively large receiver clock drift occurs. .

本発明の測位装置は、衛星航法システムにおいて衛星からの測位信号を受信する受信機の利用者の位置を測位する測位装置であって、前記利用者の位置を示す利用者位置と、前記利用者の移動速度を示す利用者速度と、前記受信機が有する受信機時計の時刻と前記衛星航法システムにおける時刻との差を示す受信機時計オフセットと、前記受信機時計における単位時間当たりの前記受信機時計オフセットのずれを示す受信機時計ドリフトとを状態変数として含む状態変数ベクトルに基づき、前記衛星航法システムに関する状態予測及び状態推定を行うカルマンフィルタと、前記衛星からの測位信号を受信して前記衛星の状態を示す観測データを取得する観測データ取得手段と、を備え、前記カルマンフィルタは、前記状態変数ベクトルの予測値及び予測誤差の共分散行列を算出する状態予測手段と、前記状態予測手段の算出結果及び前記観測データに基づいて前記状態変数ベクトルの推定値及び推定誤差の共分散行列を算出して前記状態予測手段の算出結果を更新する状態推定更新手段と、前記状態予測手段が算出した状態変数ベクトルの予測値に含まれる受信機時計ドリフト予測値と、前記状態推定更新手段が算出した状態変数ベクトルの推定値に含まれる受信機時計ドリフト推定値との差分を算出する差分算出手段と、前記差分が予め定められた閾値を超えたとき、前記予測誤差の共分散行列に含まれる受信機時計ドリフトの分散を、より大きい値に修正する分散修正手段と、を備え、前記状態推定更新手段は、前記分散修正手段が前記受信機時計ドリフトの分散を修正したとき、前記状態予測手段が算出した予測誤差の共分散行列に含まれる受信機時計ドリフトの分散を修正された受信機時計ドリフトの分散に置き換えて前記状態変数ベクトルの推定値及び推定誤差の共分散行列を再計算するものである構成を有している。   The positioning device of the present invention is a positioning device that measures the position of a user of a receiver that receives a positioning signal from a satellite in a satellite navigation system, the user position indicating the position of the user, and the user A user speed indicating a moving speed of the receiver, a receiver clock offset indicating a difference between a time of a receiver clock of the receiver and a time of the satellite navigation system, and the receiver per unit time of the receiver clock Based on a state variable vector including a receiver clock drift indicating a clock offset deviation as a state variable, a Kalman filter that performs state prediction and state estimation related to the satellite navigation system, a positioning signal from the satellite, Observation data acquisition means for acquiring observation data indicating a state, wherein the Kalman filter predicts the state variable vector And a state prediction means for calculating a covariance matrix of the prediction error, and the state prediction by calculating an estimated value of the state variable vector and a covariance matrix of the estimation error based on the calculation result of the state prediction means and the observation data State estimation update means for updating the calculation result of the means, receiver clock drift prediction value included in the prediction value of the state variable vector calculated by the state prediction means, and estimation of the state variable vector calculated by the state estimation update means A difference calculating means for calculating a difference from a receiver clock drift estimated value included in the value, and a variance of the receiver clock drift included in the covariance matrix of the prediction error when the difference exceeds a predetermined threshold The state estimation update unit is configured to correct the variance of the receiver clock drift. The receiver clock drift variance included in the covariance matrix of the prediction error calculated by the state prediction means is replaced with a modified receiver clock drift variance, and the estimated value of the state variable vector and the covariance matrix of the estimation error Is recalculated.

この構成により、本発明の測位装置は、受信機時計ドリフト予測値と受信機時計ドリフト推定値との差分が予め定められた閾値を超えたとき、予測誤差の共分散行列に含まれる受信機時計ドリフトの分散を、より大きい値に修正するので、比較的大きな受信機時計ドリフトが発生した場合でも高精度でリアルタイムに現在位置を測位することができる。   With this configuration, the positioning device of the present invention enables the receiver clock included in the covariance matrix of the prediction error when the difference between the receiver clock drift predicted value and the receiver clock drift estimated value exceeds a predetermined threshold. Since the dispersion of the drift is corrected to a larger value, the current position can be measured in real time with high accuracy even when a relatively large receiver clock drift occurs.

また、本発明の測位装置は、衛星航法システムにおいて衛星からの測位信号を受信する受信機の利用者の位置を測位する測位装置であって、前記利用者の位置を示す利用者位置と、前記利用者の移動速度を示す利用者速度と、前記受信機が有する受信機時計の時刻と前記衛星航法システムにおける時刻との差を示す受信機時計オフセットと、前記受信機時計における単位時間当たりの前記受信機時計オフセットのずれを示す受信機時計ドリフトとを状態変数として含む第1の状態変数ベクトルに基づき、前記衛星航法システムに関する状態予測及び状態推定を行うカルマンフィルタと、前記衛星からの測位信号を受信して前記衛星の状態を示す観測データを取得する観測データ取得手段と、を備え、前記カルマンフィルタは、前記第1の状態変数ベクトルの予測値及び予測誤差の共分散行列を算出する状態予測手段と、前記状態予測手段の算出結果の内の前記利用者速度及び前記受信機時計ドリフトのみを状態変数として含む第2の状態変数ベクトルの予測値及び予測誤差の共分散行列と前記観測データとに基づいて前記第2の状態変数ベクトルの推定値及び推定誤差の共分散行列を算出する状態推定手段と、前記状態予測手段が算出した前記第1の状態変数ベクトルの予測値に含まれる受信機時計ドリフト予測値と、前記状態推定手段が算出した前記第2の状態変数ベクトルの推定値に含まれる受信機時計ドリフト推定値との差分を算出する差分算出手段と、前記差分が予め定められた閾値を超えたとき、前記状態予測手段が算出した予測誤差の共分散行列に含まれる受信機時計ドリフトの分散を、より大きい値に修正する分散修正手段と、前記分散修正手段が前記受信機時計ドリフトの分散を修正したとき、前記状態予測手段が算出した予測誤差の共分散行列に含まれる受信機時計ドリフトの分散を修正された受信機時計ドリフトの分散に置き換えて前記第1の状態変数ベクトルの推定値及び推定誤差の共分散行列を算出して前記状態予測手段の算出結果を更新するとともに、前記分散修正手段が前記受信機時計ドリフトの分散を修正しなかったとき、前記状態予測手段の算出結果及び前記観測データに基づいて前記第1の状態変数ベクトルの推定値及び推定誤差の共分散行列を算出して前記状態予測手段の算出結果を更新する状態推定更新手段と、を備えた構成を有している。   The positioning device of the present invention is a positioning device that measures the position of a user of a receiver that receives a positioning signal from a satellite in a satellite navigation system, the user position indicating the position of the user, A user speed indicating a moving speed of the user, a receiver clock offset indicating a difference between a time of a receiver clock included in the receiver and a time in the satellite navigation system, and the unit time per unit time in the receiver clock. A Kalman filter that performs state prediction and state estimation for the satellite navigation system based on a first state variable vector including a receiver clock drift indicating a receiver clock offset deviation as a state variable, and receives a positioning signal from the satellite Observation data acquisition means for acquiring observation data indicating the state of the satellite, and the Kalman filter includes the first state A state prediction unit that calculates a covariance matrix of a prediction value of a number vector and a prediction error, and a second state that includes only the user speed and the receiver clock drift among the calculation results of the state prediction unit as state variables A state estimation unit that calculates an estimated value of the second state variable vector and a covariance matrix of the estimation error based on a prediction value of the variable vector and a covariance matrix of the prediction error and the observation data; and the state prediction unit A receiver clock drift predicted value included in the calculated predicted value of the first state variable vector, and a receiver clock drift estimated value included in the estimated value of the second state variable vector calculated by the state estimating means; Difference calculating means for calculating the difference between the receiver and the receiver clock included in the covariance matrix of the prediction error calculated by the state prediction means when the difference exceeds a predetermined threshold Dispersion correcting means for correcting the variance of the lift to a larger value, and the reception included in the covariance matrix of the prediction error calculated by the state predicting means when the dispersion correcting means corrects the variance of the receiver clock drift The variance of the machine clock drift is replaced with the modified variance of the receiver clock drift to calculate the estimated value of the first state variable vector and the covariance matrix of the estimation error and update the calculation result of the state prediction means When the variance correction means does not correct the variance of the receiver clock drift, the estimated value of the first state variable vector and the covariance of the estimation error based on the calculation result of the state prediction means and the observation data A state estimation updating unit that calculates a matrix and updates a calculation result of the state prediction unit.

この構成により、本発明の測位装置は、利用者速度及び受信機時計ドリフトのみを状態変数として含む第2の状態変数ベクトルの推定値及び推定誤差の共分散行列を状態推定手段が算出し、状態予測手段が算出した第1の状態変数ベクトルの予測値に含まれる受信機時計ドリフト予測値と、状態推定手段が算出した第2の状態変数ベクトルの推定値に含まれる受信機時計ドリフト推定値との差分が予め定められた閾値を超えたとき、状態予測手段が算出した予測誤差の共分散行列に含まれる受信機時計ドリフトの分散を、より大きい値に修正するので、比較的大きな受信機時計ドリフトが発生した場合でも高精度でリアルタイムに現在位置を測位することができる。   With this configuration, the positioning apparatus of the present invention calculates the estimated value of the second state variable vector including only the user speed and the receiver clock drift as the state variables and the covariance matrix of the estimated error, and the state estimating means A receiver clock drift predicted value included in the predicted value of the first state variable vector calculated by the predicting means, and a receiver clock drift estimated value included in the estimated value of the second state variable vector calculated by the state estimating means; When the difference between the values exceeds a predetermined threshold, the variance of the receiver clock drift included in the covariance matrix of the prediction error calculated by the state prediction means is corrected to a larger value, so that a relatively large receiver clock Even if drift occurs, the current position can be measured in real time with high accuracy.

さらに、本発明の測位装置は、前記受信機時計が、前記衛星に搭載された時計が有する発振器よりも安定度が低い発振器を備え、前記分散修正手段が、前記受信機時計の発振器の周波数短期安定度により見積もられた値を前記閾値とするものである構成を有している。   Further, in the positioning device of the present invention, the receiver clock includes an oscillator having a lower stability than an oscillator included in the clock mounted on the satellite, and the dispersion correction unit includes a frequency short-term of the oscillator of the receiver clock. It has a configuration in which a value estimated by the stability is used as the threshold value.

この構成により、本発明の測位装置は、温度補償型水晶発振器を代表とする安定度の低い発振器を用いても、高精度でリアルタイムに現在位置を測位することができ、製造コストの低減化を図ることができる。   With this configuration, the positioning device of the present invention can measure the current position with high accuracy in real time even when using a low-stability oscillator typified by a temperature-compensated crystal oscillator, thereby reducing the manufacturing cost. Can be planned.

本発明は、比較的大きな受信機時計ドリフトが発生した場合でも高精度でリアルタイムに現在位置を測位することができるという効果を有する測位装置を提供することができるものである。   The present invention can provide a positioning device having an effect that the current position can be measured with high accuracy in real time even when a relatively large receiver clock drift occurs.

本発明に係る測位信号受信機の第1実施形態におけるブロック構成図である。It is a block block diagram in 1st Embodiment of the positioning signal receiver which concerns on this invention. 本発明に係る測位装置の第1実施形態におけるブロック構成図である。It is a block block diagram in 1st Embodiment of the positioning apparatus which concerns on this invention. 本発明に係る測位装置の第1実施形態におけるフローチャートである。It is a flowchart in 1st Embodiment of the positioning apparatus which concerns on this invention. 本発明に係る測位装置の第2実施形態におけるブロック構成図である。It is a block block diagram in 2nd Embodiment of the positioning apparatus which concerns on this invention. 本発明に係る測位装置の第2実施形態におけるフローチャートである。It is a flowchart in 2nd Embodiment of the positioning apparatus which concerns on this invention.

まず、本発明の実施形態を説明する前にカルマンフィルタ処理について説明する。   First, Kalman filter processing will be described before describing an embodiment of the present invention.

(カルマンフィルタ処理)
前述の[数1]において、利用者位置p、利用者速度vは、ECEF座標系のx軸、y軸、z軸を用いると、それぞれ、利用者位置p=[p,p,p、利用者速度v=[v,v,vと表される。したがって、[数1]に示した状態変数ベクトルxは8変数を含むものとなる。よって、その状態推定値^xの誤差の共分散行列は、[数2]で表される。なお、"^x"は、xの上部に推定値を示すハット(^)が付されたものを表すものとする。
(Kalman filter processing)
In the above [Equation 1], the user position p and the user speed v are respectively the user position p = [p x , p y , p when the x-axis, y-axis, and z-axis of the ECEF coordinate system are used. z] T, user velocity v = [v x, v y , denoted v z] T. Therefore, the state variable vector x shown in [Equation 1] includes 8 variables. Therefore, the error covariance matrix of the estimated state value ^ x is expressed by [Equation 2]. It should be noted that “^ x” indicates that a hat (^) indicating an estimated value is added to the upper part of x.

Figure 2012052954
Figure 2012052954

ここで、上式の行列内の各成分は[数3]で示される。但し、[数3]において、eは利用者位置pに関する誤差、eΔtは受信機時計オフセットΔtに関する誤差、eは利用者速度vに関する誤差、eΔTは受信機時計ドリフトΔTに関する誤差であり、E{}は期待値を意味する。 Here, each component in the matrix of the above equation is expressed by [Equation 3]. However, in [Expression 3], e p is error for user position p, e Delta] t is the error relates to the receiver clock offset Delta] t, e v is the error regarding user velocity v, e [Delta] T is an error regarding the receiver clock drift [Delta] T Yes, E {} means an expected value.

Figure 2012052954
Figure 2012052954

(k−1)エポックの状態推定値からkエポックの状態を予測するモデル式(状態方程式)は、[数4]で表される。但し、ここで、eΔp(k)、eΔΔt(k)、eΔv(k)、eΔΔT(k)は、(k−1)エポックの状態推定値からkエポックでの状態を行列Aで予測した値と、実際の値との不確定性を表すシステム雑音ベクトルである。また、Iは単位行列である。 (K-1) A model equation (state equation) for predicting the state of k epoch from the estimated value of epoch is expressed by [Equation 4]. Here, e Δp (k) , e ΔΔt (k) , e Δv (k) , and e ΔΔT (k) are (k−1) epoch state estimates, and the state at k epochs is expressed as matrix A. This is a system noise vector representing the uncertainty between the predicted value and the actual value. I is a unit matrix.

Figure 2012052954
Figure 2012052954

カルマンフィルタによる予測処理は、[数5]で表される。但し、QΔp(k)、QΔv(k)はそれぞれeΔp(k)、eΔv(k)についての共分散行列であり、σΔΔt(k) 、σΔΔT(k) はそれぞれeΔΔt(k)、eΔΔT(k)についての分散である。また、上付(−)は予測処理で得られた値であることを意味する。 The prediction process by the Kalman filter is expressed by [Equation 5]. Here, Q Δp (k) and Q Δv (k) are covariance matrices for e Δp (k) and e Δv (k) , respectively, and σ ΔΔt (k) 2 and σ ΔΔT (k) 2 are e It is dispersion about ΔΔt (k) , e ΔΔT (k) . Superscript (-) means a value obtained by the prediction process.

Figure 2012052954
Figure 2012052954

観測量と状態推定値の関係式(観測方程式)は、[数6]で表される。但し、各変数の上付のi(i=1、2、・・・n)は衛星の番号を示す。また、tsvは衛星の衛星送信時刻、tuserは受信機時刻、φdopplerはドップラ観測値、psat(tsv)は利用者位置pにおいて衛星送信時刻tsvの信号を取得したときの衛星位置、Ionは電離層遅延誤差、Tは対流圏遅延量、eρは擬似距離ρ(ρ=c(tsv−tuser))の観測誤差、edopplerはドップラ観測値の観測誤差である。 The relational expression (observation equation) between the observed quantity and the state estimated value is expressed by [Equation 6]. However, the superscript i (i = 1, 2,... N) of each variable indicates the satellite number. T sv is the satellite transmission time of the satellite, t user is the receiver time, φ doppler is the Doppler observation value, p sat (t sv ) is the satellite when the signal at the satellite transmission time t sv is acquired at the user position p. The position, I on is the ionospheric delay error, T r is the tropospheric delay, e ρ is the observation error of the pseudorange ρ (ρ = c (t sv −t user )), and e doppler is the observation error of the Doppler observation value.

Figure 2012052954
Figure 2012052954

カルマンフィルタによる推定処理は、[数7]で表される。但し、Kはカルマンゲイン、Pは推定誤差の共分散行列、Rは観測雑音eの共分散行列である。 The estimation process by the Kalman filter is expressed by [Equation 7]. However, K is the Kalman gain, P is the covariance matrix of the estimation error, R is the covariance matrix of the observation noise e k.

Figure 2012052954
Figure 2012052954

[数7]において、デザイン行列Hは、h(^x ,0)をxで微分したヤコビアン行列であり、[数8]で表される。 In [Expression 7], the design matrix H is a Jacobian matrix obtained by differentiating h k (^ x k , 0) by x k and is expressed by [Expression 8].

Figure 2012052954
Figure 2012052954

ここで、cは光速である。また、h AOAは衛星iから受信機への単位方向ベクトルであり、[数9]で表される。 Here, c is the speed of light. H i AOA is a unit direction vector from the satellite i to the receiver, and is represented by [Equation 9].

Figure 2012052954
Figure 2012052954

システムの状態を精確に推定するため、予測処理と推定処理のそれぞれに対して、システム特性に合致するようなシステム雑音の共分散行列QΔp(k)、QΔv(k)及び分散値σΔΔt(k) 、σΔΔT(k) と、観測雑音の共分散行列Rを与えることで、推定の精度を向上させることができる。 In order to accurately estimate the state of the system, for each of the prediction process and the estimation process, system noise covariance matrices Q Δp (k) and Q Δv (k) and variance values σ ΔΔt that match the system characteristics are used. By providing (k) 2 , σ ΔΔT (k) 2, and the covariance matrix R k of observation noise, the accuracy of estimation can be improved.

(第1実施形態)
次に、本発明に係る測位装置の第1実施形態における構成について説明する。
(First embodiment)
Next, the configuration of the positioning device according to the first embodiment of the present invention will be described.

図1に示すように、本実施形態における測位信号受信機1は、受信部10、測位装置20、制御部30を備えている。この測位信号受信機1は、例えば、車両に搭載されるものである。   As shown in FIG. 1, the positioning signal receiver 1 in this embodiment includes a receiving unit 10, a positioning device 20, and a control unit 30. This positioning signal receiver 1 is mounted on a vehicle, for example.

受信部10は、所定の個数(例えば4個)のGPS衛星からの無線周波数(RF)帯の電波を受信するアンテナ、RF帯の信号を中間周波数帯の信号にダウンコンバートする変換回路等を備え、ダウンコンバートした受信信号を測位装置20に出力するようになっている。   The receiving unit 10 includes an antenna that receives radio frequency (RF) band radio waves from a predetermined number (for example, four) of GPS satellites, a conversion circuit that down-converts an RF band signal into an intermediate frequency band signal, and the like. The down-converted received signal is output to the positioning device 20.

測位装置20は、例えばマイクロコンピュータで構成され、入力した受信信号を解析し、車両の現在位置(利用者位置)を測位するようになっている。   The positioning device 20 is composed of, for example, a microcomputer, and analyzes an input received signal to measure the current position (user position) of the vehicle.

制御部30は、例えばマイクロコンピュータで構成され、予めメモリに記憶されたプログラムに基づいて受信部10及び測位装置20の動作を制御するようになっている。   The control unit 30 is configured by a microcomputer, for example, and controls operations of the receiving unit 10 and the positioning device 20 based on a program stored in advance in a memory.

図2は、第1実施形態における測位装置20のブロック構成図である。図2に示すように、測位装置20は、受信信号を解析する受信信号解析部21と、受信時刻情報を受信信号解析部21及び状態推定処理部42(後述)に提供する受信機時計22と、利用者位置、利用者速度及び受信機時刻を推定するカルマンフィルタ40と、を備えている。本実施形態における受信機時計22は、発振器としてTCXOを備えたものであるが、これに限定されず、他の発振器を備えた構成としてもよい。なお、受信信号解析部21は、本発明に係る観測データ取得手段を構成する。   FIG. 2 is a block configuration diagram of the positioning device 20 in the first embodiment. As shown in FIG. 2, the positioning device 20 includes a reception signal analysis unit 21 that analyzes a reception signal, and a receiver clock 22 that provides reception time information to a reception signal analysis unit 21 and a state estimation processing unit 42 (described later). A Kalman filter 40 for estimating the user position, the user speed, and the receiver time. The receiver clock 22 in the present embodiment includes the TCXO as an oscillator, but is not limited thereto, and may be configured to include another oscillator. The received signal analyzer 21 constitutes observation data acquisition means according to the present invention.

カルマンフィルタ40は、状態予測を行う状態予測処理手段41と、状態推定を行う状態推定処理部42と、受信機時計22の異常変化をリアルタイムに検出する時計異常変化検出部43と、を備えている。なお、時計異常変化検出部43は、本発明に係る差分算出手段を構成する。   The Kalman filter 40 includes a state prediction processing unit 41 that performs state prediction, a state estimation processing unit 42 that performs state estimation, and a clock abnormality change detection unit 43 that detects abnormal changes in the receiver clock 22 in real time. . The clock abnormality change detection unit 43 constitutes a difference calculation unit according to the present invention.

状態予測処理手段41は、状態推定処理部42から得る1エポック前の状態変数ベクトルに基づいて現エポックの状態変数ベクトルを予測する状態予測処理部41aと、時計異常変化検出部43の検出結果に基づいて状態予測値を動的に修正する状態予測値修正部41bと、を備えている。なお、状態予測処理部41a及び状態予測値修正部41bは、それぞれ、本発明に係る状態予測手段及び分散修正手段を構成する。   The state prediction processing unit 41 uses the state prediction processing unit 41 a that predicts the state variable vector of the current epoch based on the state variable vector one epoch before obtained from the state estimation processing unit 42, and the detection result of the clock abnormality change detection unit 43. A state prediction value correction unit 41b that dynamically corrects the state prediction value based on this. The state prediction processing unit 41a and the state prediction value correction unit 41b constitute a state prediction unit and a dispersion correction unit according to the present invention, respectively.

状態推定処理部42は、衛星に関する観測データを受信信号解析部21から入力するとともに、状態予測処理手段41から現エポックでの状態変数ベクトル、予測誤差の共分散行列を入力し、状態変数ベクトルを更新して状態予測処理部41aに出力するようになっている。なお、状態推定処理部42は、本発明に係る状態推定更新手段を構成する。   The state estimation processing unit 42 receives observation data relating to the satellite from the received signal analysis unit 21, and also inputs the state variable vector at the current epoch and the covariance matrix of the prediction error from the state prediction processing unit 41, and obtains the state variable vector. It is updated and output to the state prediction processing unit 41a. The state estimation processing unit 42 constitutes state estimation update means according to the present invention.

次に、本実施形態における測位装置20のカルマンフィルタ40の動作について説明する。   Next, the operation of the Kalman filter 40 of the positioning device 20 in this embodiment will be described.

受信信号解析部21は、入力した受信信号を解析し、各衛星の衛星送信時刻、衛星位置、衛星速度の情報を得る。また、受信信号解析部21は、受信した電波の搬送波に基づいてドップラ観測値を算出する。そして、受信信号解析部21は、算出した結果を状態推定処理部42に渡す。   The reception signal analysis unit 21 analyzes the input reception signal and obtains information on the satellite transmission time, satellite position, and satellite speed of each satellite. The received signal analyzer 21 calculates a Doppler observation value based on the received carrier wave of the radio wave. Then, the received signal analysis unit 21 passes the calculated result to the state estimation processing unit 42.

以下、カルマンフィルタ40の動作を図3に基づき説明する。   Hereinafter, the operation of the Kalman filter 40 will be described with reference to FIG.

状態予測処理手段41の状態予測処理部41aは、状態推定処理部42から得る1エポック前(k−1)の利用者位置及び利用者速度、推定誤差の共分散行列から、現エポックの利用者位置及び利用者速度を予測し、予測誤差の共分散行列P を[数5]を用いて算出する(ステップS11)。 The state prediction processing unit 41a of the state prediction processing unit 41 calculates the user of the current epoch from the covariance matrix of the user position, user speed, and estimation error one epoch before (k-1) obtained from the state estimation processing unit 42. The position and the user speed are predicted, and the covariance matrix P k of the prediction error is calculated using [Equation 5] (step S11).

ここで、モデルにおける受信機時計ドリフトの変化量は、受信機時計ドリフトの安定時におけるTCXOの周波数短期安定度で見積もった値程度とする。なお、周波数短期安定度とは、比較的短い時間周期内におけるTCXOの出力周波数の揺らぎ(不規則変動)を表したものをいう。   Here, the amount of change in the receiver clock drift in the model is approximately the value estimated by the short-term stability of the TCXO frequency when the receiver clock drift is stable. Note that the short-term frequency stability means a fluctuation (irregular fluctuation) in the output frequency of the TCXO within a relatively short time period.

状態推定処理部42は、受信信号解析部21から衛星送信時刻、衛星位置、衛星速度、ドップラ観測値、受信時刻等の各データを入力する。また、状態推定処理部42は、状態予測処理手段41が予測した現エポックの状態変数ベクトルx 、共分散行列P のデータを入力する。そして、状態推定処理部42は、入力したこれらのデータを用いて、[数7]により、カルマンゲインを求め、状態変数ベクトル及び共分散行列を推定する(ステップS12)。但し、状態推定処理部42は、状態予測値修正部41bによる修正があった場合は、受信機時計ドリフトの分散値が修正された共分散行列P のデータを状態予測値修正部41bから入力する。 The state estimation processing unit 42 inputs data such as satellite transmission time, satellite position, satellite speed, Doppler observation value, and reception time from the reception signal analysis unit 21. Further, the state estimation processing unit 42 inputs data of the state variable vector x k and the covariance matrix P k of the current epoch predicted by the state prediction processing unit 41. And the state estimation process part 42 calculates | requires a Kalman gain by [Equation 7] using these input data, and estimates a state variable vector and a covariance matrix (step S12). However, when there is a correction by the state prediction value correction unit 41b, the state estimation processing unit 42 receives the data of the covariance matrix P k in which the variance value of the receiver clock drift is corrected from the state prediction value correction unit 41b. input.

時計異常変化検出部43は、状態推定処理部42が推定した状態変数ベクトル^xに含まれる受信機時計ドリフトΔ^Tと、状態予測処理部41aが予測した状態変数ベクトル^x に含まれる受信機時計ドリフトΔ^T とを状態推定処理部42から入力する。また、時計異常変化検出部43は、両者の変化分の差(|Δ^T−Δ^T |)を計算し、[数10]により、TCXOの周波数短期安定度により見積もった受信機時計ドリフトの標準偏差σΔΔTと比較することにより、受信機時計22に異常な変化があったか否かを判断する(ステップS13)。なお、αは、許容量範囲を決めるスレッショルド係数である。 The clock abnormality change detection unit 43 includes the receiver clock drift Δ ^ T k included in the state variable vector ^ x k estimated by the state estimation processing unit 42 and the state variable vector ^ x k predicted by the state prediction processing unit 41a. The receiver clock drift Δ ^ T k included in is input from the state estimation processing unit 42. Further, the clock abnormality change detection unit 43 calculates a difference (| Δ ^ T k −Δ ^ T k |) between the two changes, and the reception estimated by the short-term frequency stability of the TCXO by [Equation 10]. By comparing with the standard deviation σ ΔΔT of the machine clock drift, it is determined whether or not the receiver clock 22 has changed abnormally (step S13). Α is a threshold coefficient that determines the allowable range.

Figure 2012052954
Figure 2012052954

時計異常変化検出部43は、受信機時計ドリフトの変化分が数[10]を満たさない場合は、受信機時計22の異常変化が発生していると判断し、σΔT 2−より大きい値σnewΔT 2−を受信機時計ドリフトの分散の修正値として状態予測値修正部41bに出力する。なお、上記のα及びσnewΔT 2−は、例えば実験やシミュレーション等の結果に基づいて予め定められるものである。 When the change in the receiver clock drift does not satisfy the number [10], the clock abnormality change detection unit 43 determines that an abnormal change in the receiver clock 22 has occurred, and a value σ greater than σ ΔT 2 − newΔT 2− is output to the state prediction value correction unit 41b as a correction value of the variance of the receiver clock drift. Note that α and σ newΔT 2− are determined in advance based on, for example, results of experiments and simulations.

一方、時計異常変化検出部43は、受信機時計ドリフトの変化分が数[10]を満たす場合は、受信機時計22の異常変化が発生していないと判断し、処理を終了する。   On the other hand, when the change in the receiver clock drift satisfies the number [10], the clock abnormality change detection unit 43 determines that an abnormal change in the receiver clock 22 has not occurred and ends the process.

状態予測値修正部41bは、時計異常変化検出部43から受信機時計ドリフトの分散の修正値σnewΔT 2−を受け取る。そして、状態予測値修正部41bは、状態予測処理部41aから受け取った予測誤差の共分散行列P における受信機時計ドリフトの分散σΔT(k) 2−を、時計異常変化検出部43から受け取った受信機時計ドリフトの分散の修正値σnewΔT 2−に置き換えることにより、予測誤差の共分散行列P を修正する(ステップS14)。 The state predicted value correction unit 41b receives the receiver clock drift variance correction value σ newΔT 2- from the clock abnormality change detection unit 43. Then, the state prediction value correction unit 41 b receives the receiver clock drift variance σ ΔT (k) 2− in the prediction error covariance matrix P k received from the state prediction processing unit 41 a from the clock abnormality change detection unit 43. By replacing the received receiver clock drift variance correction value σ newΔT 2− , the covariance matrix P k of the prediction error is corrected (step S14).

そして、ステップS12に進み、状態推定処理部42は、修正された予測誤差の共分散行列P に基づいて推定処理を再度行う。 In step S12, the state estimation processing unit 42 performs the estimation process again based on the corrected covariance matrix P k of the prediction error.

以上のように、本実施形態における測位装置20によれば、受信機時計ドリフト予測値と受信機時計ドリフト推定値との差分が予め定められた閾値を超えたとき、予測誤差の共分散行列に含まれる受信機時計ドリフトの分散をより大きな値に動的に修正する構成としたので、比較的大きな受信機時計ドリフトが発生した場合でも高精度でリアルタイムに現在位置を測位することができる。   As described above, according to the positioning device 20 in the present embodiment, when the difference between the receiver clock drift predicted value and the receiver clock drift estimated value exceeds a predetermined threshold, the prediction error covariance matrix is calculated. Since the dispersion of the included receiver clock drift is dynamically corrected to a larger value, the current position can be measured with high accuracy in real time even when a relatively large receiver clock drift occurs.

(第2実施形態)
本発明に係る測位装置の第2実施形態について説明する。
(Second Embodiment)
A second embodiment of the positioning device according to the present invention will be described.

図4に示すように、本実施形態における測位装置50は、第1実施形態における測位装置20(図2参照)のカルマンフィルタ40をカルマンフィルタ60に変更したものである。したがって、カルマンフィルタ60に係る構成について説明し、第1実施形態の説明と重複する構成の説明は省略する。   As shown in FIG. 4, the positioning device 50 in this embodiment is obtained by changing the Kalman filter 40 of the positioning device 20 (see FIG. 2) in the first embodiment to a Kalman filter 60. Therefore, the configuration related to the Kalman filter 60 will be described, and the description of the configuration overlapping with the description of the first embodiment will be omitted.

カルマンフィルタ60は、状態予測を行う状態予測処理手段61と、受信機時計22から受信時刻情報を取得するとともに状態推定を行う状態推定処理部62と、受信機時計22の異常変化を検出する時計異常変化検出部63と、を備えている。状態予測処理手段61は、状態を予測する状態予測処理部61aと、時計異常変化検出部63の検出結果に基づいて状態予測値を修正する状態予測値修正部61bと、を備えている。   The Kalman filter 60 includes a state prediction processing unit 61 that performs state prediction, a state estimation processing unit 62 that acquires reception time information from the receiver clock 22 and performs state estimation, and a clock abnormality that detects an abnormal change in the receiver clock 22. A change detection unit 63. The state prediction processing unit 61 includes a state prediction processing unit 61a that predicts a state, and a state prediction value correction unit 61b that corrects the state prediction value based on the detection result of the clock abnormality change detection unit 63.

次に、本実施形態における測位装置50のカルマンフィルタ60の動作について図5に基づき説明する。   Next, operation | movement of the Kalman filter 60 of the positioning apparatus 50 in this embodiment is demonstrated based on FIG.

状態予測処理部61aは、状態推定処理部62から得る1エポック前の利用者位置及び利用者速度、推定誤差の共分散行列から、現エポックの利用者位置及び利用者速度を予測し、予測誤差の共分散行列を、[数5]を用いて算出する(ステップS21)。ここで、モデルにおける受信機時計ドリフトの変動量は、受信機時計ドリフトの安定時におけるTCXOの周波数短期安定度で見積もった値程度とする。   The state prediction processing unit 61a predicts the user position and user speed of the current epoch from the covariance matrix of the user position and user speed one epoch before obtained from the state estimation processing unit 62, and the estimation error. Is calculated using [Equation 5] (step S21). Here, the fluctuation amount of the receiver clock drift in the model is about the value estimated by the short-term stability of the frequency of the TCXO when the receiver clock drift is stable.

時計異常変化検出部63は、状態予測処理部61aから、予測された状態変数ベクトルxk―1に含まれる状態変数の内、利用者速度及び受信機時計ドリフト(v、v、v、ΔT)と、予測誤差の共分散行列Pk―1 の部分行列である利用者速度、受信機時計ドリフトの状態変数ベクトルに関する共分散行列を受け取る。この共分散行列を[数11]に示す。 The clock abnormality change detection unit 63 receives the user speed and the receiver clock drift (v x , v y , v z) from among the state variables included in the predicted state variable vector x k-1 from the state prediction processing unit 61a. , ΔT) and a covariance matrix relating to a user variable and a state variable vector of a receiver clock drift, which are partial matrices of the prediction error covariance matrix P k−1 . This covariance matrix is shown in [Equation 11].

Figure 2012052954
Figure 2012052954

また、時計異常変化検出部63は、状態変数ベクトルを[数12]とおき、観測方程式を[数13]とおいて[数14]により、時計異常検出用の状態推定処理を状態推定処理部62に行わせる(ステップS22)。この場合、状態推定処理部62は、本発明に係る状態推定手段を構成する。   Further, the clock abnormality change detecting unit 63 sets the state variable vector as [Equation 12], sets the observation equation as [Equation 13], and performs [Equation 14] to perform the state estimation processing for detecting the clock abnormality as the state estimation processing unit 62. (Step S22). In this case, the state estimation processing unit 62 constitutes a state estimation unit according to the present invention.

Figure 2012052954
Figure 2012052954

Figure 2012052954
Figure 2012052954

Figure 2012052954
Figure 2012052954

時計異常変化検出部63は、ステップS22において推定した受信機時計ドリフトΔ^Tと、状態予測処理部61aが予測した受信機時計ドリフトΔ^T とに基づき、両者の変化分の差(|Δ^T−Δ^T |)を計算し、[数15]により、TCXOの周波数短期安定度により見積もった受信機時計ドリフトの標準偏差σΔΔTと比較することにより、受信機時計22に異常な変化があったか否かを判断する(ステップS23)。 Based on the receiver clock drift Δ ^ T k estimated in step S22 and the receiver clock drift Δ ^ T k predicted by the state prediction processing unit 61a, the clock abnormality change detection unit 63 determines the difference between the two changes. (| Δ ^ T k −Δ ^ T k |) is calculated and compared with the standard deviation σ ΔΔT of the receiver clock drift estimated by the short-term frequency stability of the TCXO by [ Equation 15]. It is determined whether or not the clock 22 has changed abnormally (step S23).

Figure 2012052954
Figure 2012052954

時計異常変化検出部63は、受信機時計ドリフトの変化分が[数15]を満たさない場合は、受信機時計22の異常変化が発生していると判断し、σΔT 2−より大きい値σnewΔT 2−を受信機時計ドリフトの分散の修正値として状態予測値修正部61bに出力する。 When the change in the receiver clock drift does not satisfy [Equation 15], the clock abnormality change detection unit 63 determines that an abnormal change in the receiver clock 22 has occurred, and has a value σ greater than σ ΔT 2 −. newΔT 2− is output to the state prediction value correction unit 61b as a correction value of the variance of the receiver clock drift.

状態予測値修正部61bは、状態予測処理部61aから受け取った予測誤差の共分散行列P における受信機時計ドリフトの分散σΔT(k) 2−を、時計異常変化検出部63から受け取った受信機時計ドリフトの分散の修正値σnewΔT 2−に置き換えることにより、予測誤差の共分散行列P を修正する(ステップS24)。 The state prediction value correction unit 61b receives from the clock abnormality change detection unit 63 the receiver clock drift variance σ ΔT (k) 2− in the covariance matrix P k of the prediction error received from the state prediction processing unit 61a. The covariance matrix P k of the prediction error is corrected by replacing it with the correction value σ newΔT 2− of the receiver clock drift variance (step S24).

一方、時計異常変化検出部63は、受信機時計ドリフトの変化分が[数15]を満たす場合は、受信機時計22の異常変化が発生していないと判断し、ステップS21で予測された値で状態推定処理部62に[数7]により状態推定を行わせる(ステップS25)。また、状態推定処理部62は、ステップS24において予測誤差の共分散行列P が修正された場合は、修正された予測誤差の共分散行列P による推定処理をステップS25において行う。この場合、状態推定処理部62は、本発明に係る状態推定更新手段を構成する。 On the other hand, if the change in the receiver clock drift satisfies [Equation 15], the clock abnormality change detection unit 63 determines that no abnormal change in the receiver clock 22 has occurred, and the value predicted in step S21. Then, the state estimation processing unit 62 is caused to perform state estimation by [Equation 7] (step S25). When the prediction error covariance matrix P k is corrected in step S24, the state estimation processing unit 62 performs an estimation process using the corrected prediction error covariance matrix P k in step S25. In this case, the state estimation processing unit 62 constitutes state estimation update means according to the present invention.

なお、前述の受信機時計ドリフトの分散の修正に代えて、例えば、[数11]においてσΔT 2−の項目をσnewΔT 2−に変更して予測誤差の共分散行列を[数16]とし、[数17]を満たすような値を割り出す手法を用いてもよい。この場合、σnewΔT 2−がσnewΔΔT を用いて[数18]により算出される。 Instead of the dispersion of the correction of the receiver clock drift described above, for example, the following equation 16] The covariance matrix of the prediction error by changing the sigma [Delta] T 2 scores sigma NewderutaT in 2 in Equation 11] A method for calculating a value satisfying [Equation 17] may be used. In this case, σ newΔT 2− is calculated by [ Equation 18] using σ newΔΔT 2 .

Figure 2012052954
Figure 2012052954

Figure 2012052954
Figure 2012052954

Figure 2012052954
Figure 2012052954

ここで、[数16]の右辺の行列においてP の部分行列である速度v、受信機時計ドリフトΔTの状態変数ベクトルに関する共分散行列について、kエポックでの予測値をそのまま用いるのではなく、必要に応じて変更してもかまわない。 Here, in the matrix on the right side of [Equation 16], the predicted value at k epoch is not used as it is for the covariance matrix related to the state variable vector of velocity v and receiver clock drift ΔT which is a submatrix of P k −. You can change it if necessary.

以上のように、本実施形態における測位装置50によれば、利用者速度及び受信機時計ドリフトのみを状態変数として含む状態変数ベクトルの推定値及び推定誤差の共分散行列を算出し、この算出した状態変数ベクトルの推定値に含まれる受信機時計ドリフト推定値と、状態予測処理手段61が算出した状態変数ベクトルの予測値に含まれる受信機時計ドリフト予測値との差分が予め定められた閾値を超えたとき、状態予測処理手段61が算出した予測誤差の共分散行列に含まれる受信機時計ドリフトの分散を、より大きい値に修正する構成としたので、比較的大きな受信機時計ドリフトが発生した場合でも高精度でリアルタイムに現在位置を測位することができる。   As described above, according to the positioning device 50 in this embodiment, the estimated value of the state variable vector including only the user speed and the receiver clock drift as the state variables and the covariance matrix of the estimated error are calculated, and this calculation is performed. A threshold value in which a difference between a receiver clock drift estimated value included in the estimated value of the state variable vector and a receiver clock drift predicted value included in the predicted value of the state variable vector calculated by the state prediction processing unit 61 is determined in advance. When exceeded, the receiver clock drift variance included in the covariance matrix of the prediction error calculated by the state prediction processing means 61 is corrected to a larger value, so that a relatively large receiver clock drift occurred. Even in this case, the current position can be measured in real time with high accuracy.

以上のように、本発明に係る測位装置は、比較的大きな受信機時計ドリフトが発生した場合でも高精度でリアルタイムに現在位置を測位することができるという効果を有し、カルマンフィルタを用いた衛星航法システムの測位装置等として有用である。   As described above, the positioning device according to the present invention has the effect that the current position can be measured in real time with high accuracy even when a relatively large receiver clock drift occurs, and satellite navigation using the Kalman filter It is useful as a system positioning device.

10 受信部
20、50 測位装置
21 受信信号解析部(観測データ取得手段)
22 受信機時計
30 制御部
40、60 カルマンフィルタ
41、61 状態予測処理手段
41a、61a 状態予測処理部(状態予測手段)
41b、61b 状態予測値修正部(分散修正手段)
42 状態推定処理部(状態推定更新手段)
43、63 時計異常変化検出部(差分算出手段)
62 状態推定処理部(状態推定手段、状態推定更新手段)
10 receiving unit 20, 50 positioning device 21 received signal analyzing unit (observation data acquiring means)
22 receiver clock 30 control unit 40, 60 Kalman filter 41, 61 state prediction processing unit 41a, 61a state prediction processing unit (state prediction unit)
41b, 61b State predicted value correction unit (dispersion correction means)
42 State estimation processing unit (state estimation update means)
43, 63 Clock abnormality change detector (difference calculating means)
62 State estimation processing unit (state estimation means, state estimation update means)

Claims (3)

衛星航法システムにおいて衛星からの測位信号を受信する受信機の利用者の位置を測位する測位装置であって、
前記利用者の位置を示す利用者位置と、前記利用者の移動速度を示す利用者速度と、前記受信機が有する受信機時計の時刻と前記衛星航法システムにおける時刻との差を示す受信機時計オフセットと、前記受信機時計における単位時間当たりの前記受信機時計オフセットのずれを示す受信機時計ドリフトとを状態変数として含む状態変数ベクトルに基づき、前記衛星航法システムに関する状態予測及び状態推定を行うカルマンフィルタと、
前記衛星からの測位信号を受信して前記衛星の状態を示す観測データを取得する観測データ取得手段と、を備え、
前記カルマンフィルタは、
前記状態変数ベクトルの予測値及び予測誤差の共分散行列を算出する状態予測手段と、
前記状態予測手段の算出結果及び前記観測データに基づいて前記状態変数ベクトルの推定値及び推定誤差の共分散行列を算出して前記状態予測手段の算出結果を更新する状態推定更新手段と、
前記状態予測手段が算出した状態変数ベクトルの予測値に含まれる受信機時計ドリフト予測値と、前記状態推定更新手段が算出した状態変数ベクトルの推定値に含まれる受信機時計ドリフト推定値との差分を算出する差分算出手段と、
前記差分が予め定められた閾値を超えたとき、前記予測誤差の共分散行列に含まれる受信機時計ドリフトの分散を、より大きい値に修正する分散修正手段と、を備え、
前記状態推定更新手段は、前記分散修正手段が前記受信機時計ドリフトの分散を修正したとき、前記状態予測手段が算出した予測誤差の共分散行列に含まれる受信機時計ドリフトの分散を修正された受信機時計ドリフトの分散に置き換えて前記状態変数ベクトルの推定値及び推定誤差の共分散行列を再計算するものであることを特徴とする測位装置。
A positioning device for positioning a user of a receiver that receives a positioning signal from a satellite in a satellite navigation system,
A receiver clock indicating a difference between a user position indicating the position of the user, a user speed indicating the moving speed of the user, a time of a receiver clock included in the receiver and a time in the satellite navigation system. A Kalman filter for performing state prediction and state estimation for the satellite navigation system based on a state variable vector including an offset and a receiver clock drift indicating a shift of the receiver clock offset per unit time in the receiver clock as a state variable When,
Observation data acquisition means for receiving a positioning signal from the satellite and acquiring observation data indicating the state of the satellite; and
The Kalman filter is
State prediction means for calculating a covariance matrix of predicted values and prediction errors of the state variable vectors;
A state estimation updating unit that calculates a covariance matrix of the estimation value and estimation error of the state variable vector based on the calculation result of the state prediction unit and the observation data, and updates the calculation result of the state prediction unit;
The difference between the receiver clock drift prediction value included in the predicted value of the state variable vector calculated by the state prediction unit and the receiver clock drift estimation value included in the estimated value of the state variable vector calculated by the state estimation update unit Difference calculating means for calculating
Dispersion correction means for correcting the variance of the receiver clock drift included in the prediction error covariance matrix to a larger value when the difference exceeds a predetermined threshold;
The state estimation updating means corrects the receiver clock drift variance included in the prediction error covariance matrix calculated by the state prediction means when the variance correction means corrects the receiver clock drift variance. A positioning apparatus characterized by recalculating the covariance matrix of the estimated value and estimated error of the state variable vector in place of the receiver clock drift variance.
衛星航法システムにおいて衛星からの測位信号を受信する受信機の利用者の位置を測位する測位装置であって、
前記利用者の位置を示す利用者位置と、前記利用者の移動速度を示す利用者速度と、前記受信機が有する受信機時計の時刻と前記衛星航法システムにおける時刻との差を示す受信機時計オフセットと、前記受信機時計における単位時間当たりの前記受信機時計オフセットのずれを示す受信機時計ドリフトとを状態変数として含む第1の状態変数ベクトルに基づき、前記衛星航法システムに関する状態予測及び状態推定を行うカルマンフィルタと、
前記衛星からの測位信号を受信して前記衛星の状態を示す観測データを取得する観測データ取得手段と、を備え、
前記カルマンフィルタは、
前記第1の状態変数ベクトルの予測値及び予測誤差の共分散行列を算出する状態予測手段と、
前記状態予測手段の算出結果の内の前記利用者速度及び前記受信機時計ドリフトのみを状態変数として含む第2の状態変数ベクトルの予測値及び予測誤差の共分散行列と前記観測データとに基づいて前記第2の状態変数ベクトルの推定値及び推定誤差の共分散行列を算出する状態推定手段と、
前記状態予測手段が算出した前記第1の状態変数ベクトルの予測値に含まれる受信機時計ドリフト予測値と、前記状態推定手段が算出した前記第2の状態変数ベクトルの推定値に含まれる受信機時計ドリフト推定値との差分を算出する差分算出手段と、
前記差分が予め定められた閾値を超えたとき、前記状態予測手段が算出した予測誤差の共分散行列に含まれる受信機時計ドリフトの分散を、より大きい値に修正する分散修正手段と、
前記分散修正手段が前記受信機時計ドリフトの分散を修正したとき、前記状態予測手段が算出した予測誤差の共分散行列に含まれる受信機時計ドリフトの分散を修正された受信機時計ドリフトの分散に置き換えて前記第1の状態変数ベクトルの推定値及び推定誤差の共分散行列を算出して前記状態予測手段の算出結果を更新するとともに、前記分散修正手段が前記受信機時計ドリフトの分散を修正しなかったとき、前記状態予測手段の算出結果及び前記観測データに基づいて前記第1の状態変数ベクトルの推定値及び推定誤差の共分散行列を算出して前記状態予測手段の算出結果を更新する状態推定更新手段と、を備えたことを特徴とする測位装置。
A positioning device for positioning a user of a receiver that receives a positioning signal from a satellite in a satellite navigation system,
A receiver clock indicating a difference between a user position indicating the position of the user, a user speed indicating the moving speed of the user, a time of a receiver clock included in the receiver and a time in the satellite navigation system. State prediction and state estimation for the satellite navigation system based on a first state variable vector including an offset and a receiver clock drift indicating a shift of the receiver clock offset per unit time in the receiver clock as a state variable A Kalman filter that performs
Observation data acquisition means for receiving a positioning signal from the satellite and acquiring observation data indicating the state of the satellite; and
The Kalman filter is
State prediction means for calculating a covariance matrix of predicted values and prediction errors of the first state variable vector;
Based on the prediction value of the second state variable vector including only the user speed and the receiver clock drift among the calculation results of the state prediction means as the state variables, the covariance matrix of the prediction error, and the observation data State estimation means for calculating a covariance matrix of the estimated value and estimation error of the second state variable vector;
Receiver clock drift predicted value included in the predicted value of the first state variable vector calculated by the state predicting means, and receiver included in the estimated value of the second state variable vector calculated by the state estimating means A difference calculating means for calculating a difference from the clock drift estimated value;
Dispersion correction means for correcting the variance of the receiver clock drift included in the covariance matrix of the prediction error calculated by the state prediction means when the difference exceeds a predetermined threshold;
When the dispersion correction means corrects the dispersion of the receiver clock drift, the dispersion of the receiver clock drift included in the covariance matrix of the prediction error calculated by the state prediction means is corrected to the dispersion of the receiver clock drift. Replacing the calculation value of the first state variable vector and the covariance matrix of the estimation error to update the calculation result of the state prediction means, and the dispersion correction means corrects the variance of the receiver clock drift. When there is no state, a state in which the estimated value of the first state variable vector and the covariance matrix of the estimated error are calculated based on the calculation result of the state prediction unit and the observation data, and the calculation result of the state prediction unit is updated A positioning apparatus comprising: an estimation updating means;
前記受信機時計は、前記衛星に搭載された時計が有する発振器よりも安定度が低い発振器を備え、
前記分散修正手段は、前記受信機時計の発振器の周波数短期安定度により見積もられた値を前記閾値とするものであることを特徴とする請求項1又は請求項2に記載の測位装置。
The receiver clock includes an oscillator having a lower stability than an oscillator included in the clock mounted on the satellite,
The positioning apparatus according to claim 1, wherein the dispersion correcting unit uses a value estimated based on a short-term frequency stability of an oscillator of the receiver clock as the threshold value.
JP2010196795A 2010-09-02 2010-09-02 Positioning device Active JP5528267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010196795A JP5528267B2 (en) 2010-09-02 2010-09-02 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010196795A JP5528267B2 (en) 2010-09-02 2010-09-02 Positioning device

Publications (2)

Publication Number Publication Date
JP2012052954A true JP2012052954A (en) 2012-03-15
JP5528267B2 JP5528267B2 (en) 2014-06-25

Family

ID=45906422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196795A Active JP5528267B2 (en) 2010-09-02 2010-09-02 Positioning device

Country Status (1)

Country Link
JP (1) JP5528267B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023975A (en) * 2014-07-17 2016-02-08 大成建設株式会社 Signal processor
CN105319565A (en) * 2015-10-27 2016-02-10 厦门雅迅网络股份有限公司 Method and device of filtering positioning drift data for vehicle GPS equipment
JP2017134515A (en) * 2016-01-26 2017-08-03 トヨタ自動車株式会社 State estimation device
CN114113661A (en) * 2021-09-15 2022-03-01 中国人民解放军陆军工程大学 Fixed carrier for measuring axial acceleration of projectile, speed measuring system and measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189320A (en) * 2005-01-06 2006-07-20 Mitsubishi Electric Corp Positioning computation unit, positioning device, and positioning computation method
JP2009092541A (en) * 2007-10-10 2009-04-30 Seiko Epson Corp Positioning method, program, positioning apparatus, and electronic device
JP2009156734A (en) * 2007-12-27 2009-07-16 Seiko Epson Corp Positioning method, program, positioning device, and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189320A (en) * 2005-01-06 2006-07-20 Mitsubishi Electric Corp Positioning computation unit, positioning device, and positioning computation method
JP2009092541A (en) * 2007-10-10 2009-04-30 Seiko Epson Corp Positioning method, program, positioning apparatus, and electronic device
JP2009156734A (en) * 2007-12-27 2009-07-16 Seiko Epson Corp Positioning method, program, positioning device, and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023975A (en) * 2014-07-17 2016-02-08 大成建設株式会社 Signal processor
CN105319565A (en) * 2015-10-27 2016-02-10 厦门雅迅网络股份有限公司 Method and device of filtering positioning drift data for vehicle GPS equipment
CN105319565B (en) * 2015-10-27 2020-10-30 厦门雅迅网络股份有限公司 Method and device for filtering positioning drift data by vehicle-mounted GPS equipment
JP2017134515A (en) * 2016-01-26 2017-08-03 トヨタ自動車株式会社 State estimation device
CN114113661A (en) * 2021-09-15 2022-03-01 中国人民解放军陆军工程大学 Fixed carrier for measuring axial acceleration of projectile, speed measuring system and measuring method
CN114113661B (en) * 2021-09-15 2023-08-22 中国人民解放军陆军工程大学 Fixed carrier for measuring axial acceleration of projectile, speed measuring system and measuring method

Also Published As

Publication number Publication date
JP5528267B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
US9568321B2 (en) Systems and methods for determining inertial navigation system faults
US8773303B2 (en) Position tracking device and method
US6505122B1 (en) Method and apparatus for providing accurate position estimates in instances of severe dilution of precision
JP5424338B2 (en) Abnormal value detection device, abnormal value detection method and abnormal value detection program for satellite positioning system
US8593341B2 (en) Position calculation method and position calculation apparatus
US9026362B2 (en) Position calculating method and position calculating device
US20110106450A1 (en) Satellite navigation/dead-reckoning navigation integrated positioning device
JP2012207919A (en) Abnormal value determination device, positioning device, and program
JP2011013189A (en) Positioning device and program
JP2006189320A (en) Positioning computation unit, positioning device, and positioning computation method
JP5528267B2 (en) Positioning device
EP2685214A2 (en) Multiple truth reference system and method
JP2012233800A (en) Multi-sensor determination device and program
EP2869026B1 (en) Systems and methods for off-line and on-line sensor calibration
KR101502721B1 (en) Method and apparatus for providing precise positioning information using adaptive interacting multiple model estimator
KR20160143438A (en) Tightly-coupled localization method and apparatus in dead-reckoning system
JP5936411B2 (en) Displacement detection method and displacement detection apparatus at GPS observation point
EP4027171A1 (en) Systems and methods using chip-scale atomic clock to detect spoofed gnss
EP4019896A1 (en) System and method for fast magnetometer calibration using gyroscope
JP2013253814A (en) Positioning method, positioning program, positioning apparatus, and information apparatus terminal
JP2014044056A (en) Positioning device, positioning method, and positioning program
CN111158021A (en) Ionosphere interference estimation method and system and early warning terminal
EP4336222A1 (en) Positioning device, positioning method, and positioning program
US8912956B2 (en) Cooperative calibration of platform shared voltage controlled oscillator
JP5903906B2 (en) Positioning satellite signal receiver, positioning satellite signal receiver processing method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140415

R150 Certificate of patent or registration of utility model

Ref document number: 5528267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150