US20110106450A1 - Satellite navigation/dead-reckoning navigation integrated positioning device - Google Patents

Satellite navigation/dead-reckoning navigation integrated positioning device Download PDF

Info

Publication number
US20110106450A1
US20110106450A1 US12867271 US86727109A US2011106450A1 US 20110106450 A1 US20110106450 A1 US 20110106450A1 US 12867271 US12867271 US 12867271 US 86727109 A US86727109 A US 86727109A US 2011106450 A1 US2011106450 A1 US 2011106450A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
positioning calculation
module
navigation
integrated
calculation module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12867271
Inventor
Hiroyuki Toda
Masaki Suyama
Hiroshi Hamada
Mika Tanaka
Kunihiko Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed, acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/10Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial

Abstract

Disclosed is a satellite navigation/dead-reckoning navigation integrated positioning device with improved accuracy of navigation data including position, velocity, and the like, which can be constituted at low cost. A tracking processing module (31) performs, based on a GPS positioning signal, acquisition processing and tracking processing thereof and demodulation processing of a navigation message. A GPS positioning calculation module (32) calculates position, velocity, and the like based on a pseudo-range observation, a Doppler frequency observation, and ephemeris data and gives the calculated position, velocity, and the like to an output judgment module (43) and the tracking processing module (31). Based on external support information including output of an inertial sensor, map information or information about the difference between a map position and a measured position, and the like in addition to the pseudo-range observation and the Doppler frequency observation, an integrated positioning calculation module (42) estimates the position, velocity, and the like, and gives the estimated position, velocity, and the like to the output judgment module (43). The output judgment module (43) compares the outputs of the GPS positioning calculation module (32) and the outputs of the integrated positioning calculation module (42) to judge the reliability of output data from the integrated positioning calculation module (42) and the abnormality of external support data.

Description

    TECHNICAL FIELD
  • The present invention relates to a satellite navigation/dead-reckoning navigation integrated positioning device that integrates an observation obtained by receiving a positioning signal from a navigation satellite and an observation obtained from a dead-reckoning navigation device to perform positioning.
  • BACKGROUND ART
  • There have been known various configurations in terms of which observation to use for positioning and how to integrate the observations for positioning in a satellite navigation/dead-reckoning navigation integrated positioning device (hereinafter, referred to as “GPS/DR integrated positioning device”) in which an observation (hereinafter, referred to as “GPS observation”) obtained from a GPS positioning system, for example, as a non-autonomous system, and an observation (hereinafter, referred to as “DR observation”) obtained from a dead-reckoning navigation system (DR: dead-reckoning navigation system), as an autonomous system, are integrated (for example, see Patent Documents 1 and 2).
  • Which type of configuration is employed in order to integrate the GPS observation and the DR observation largely depends on the cost of the device, required accuracy and the like. FIG. 1 is a block diagram of a typical example of the aforementioned integration type.
  • FIG. 1(A) shows a loosely-coupled approach, and FIG. 1(B) shows a tightly-coupled approach and a deeply-coupled approach.
  • In FIG. 1(A), a tracking processing module 11 tracks a phase of a GPS positioning signal of a baseband obtained by receiving a signal from a GPS satellite, and finds a position, a velocity, and the like of each satellite. A GPS positioning calculation module 12 finds a position and a velocity at a receiving point based on a pseudo range (PR), a Doppler frequency observation and the position and velocity of each satellite found by the tracking processing module 11. A DR positioning calculation module 13 finds the position and velocity based on external support data of an inertial sensor and the like. Then, an integrated positioning calculation module 14 integrates the GPS observation, such as the position and velocity obtained by the GPS positioning calculation module 12 and the DR observation, such as the position and velocity obtained by the DR positioning calculation module 13 to provide the position and velocity of higher quality to a user.
  • In FIG. 1(B), a tracking processing module 21 tracks a phase of a GPS positioning signal of a baseband obtained by receiving a signal from a GPS satellite, and finds a position, a velocity, and the like of each satellite. In the case of the tightly-coupled approach, an integrated positioning calculation module 22 integrates a pseudo range and a Doppler frequency obtained by the tracking processing module 21 as the GPS observation and an external support data of the inertial sensor and the like as the DR observation in one integrated positioning calculation module 22 to provide the position and velocity of higher quality to a user.
  • In the case of the deeply-coupled approach, the integrated positioning calculation module 22 uses a baseband complex signal (I, Q) obtained by the tracking processing module 21 as the GPS observation and an external support data of the inertial sensor as the DR observation to perform an integrated positioning calculation.
  • Note that the GPS positioning calculation module 12 and the integrated positioning calculation module 14 of the loosely-coupled approach and the integrated positioning calculation module 22 of the tightly/deeply-coupled approach are also referred to as a “navigation filter” in which usually the position and position error, the velocity and velocity error, inertial sensor error and the like are estimated by a Kalman filter, and the estimated respective errors are negatively fed back as a correction amount to a certain portion to be corrected.
  • In PNDs (Portable Navigation Devices) for personal and vehicle use, which have attracted attention in recent years, lower price and higher accuracy are required. For this reason, as disclosed in Patent Documents 1 and 2, being used is a device which integrates the external support data of a low-price inertial sensor (such as a gyroscope and an acceleration sensor), map data and the like, and the GPS observation using the loosely-coupled approach or the tightly-coupled approach.
    • Patent Document 1: JP 2007-93483(A)
    • Patent Document 2: U.S. Pat. No. 6,643,587
    DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
  • However, the GPS/DR integrated positioning device of related art, including Patent Documents 1 and 2, has had problems as described below.
  • (1) In the loosely-coupled approach, the data of the position, velocity, and the like at the receiving point found by the GPS positioning calculation module and the position and velocity found by the DR positioning calculation module are integrated. Thus, in the loosely-coupled approach, until a result of the GPS positioning calculation is obtained, the GPS data cannot be utilized for calculation of the DR positioning. A general method for the GPS positioning needs at least four satellites to find four variables of a three-dimensional position (X, Y, Z) and a time. However, for the reason above, unless signals from four or more satellites can be acquired and tracked, the GPS data cannot be utilized for the DR calculation.
  • Further, the biggest drawback of the loosely-coupled approach is the error of the position and velocity obtained from the GPS positioning calculation module 12 being colored noise, which does not meet a white noise error condition as an indispensable requirement of a Kalman filter in the integrated positioning calculation module 22.
  • (2) In the tightly-coupled approach, the pseudo range and Doppler frequency as the GPS observation, and the DR observation are integrated in one integrated positioning calculation module; therefore, detailed knowledge about the GPS is required to design the Kalman filter. Furthermore, compared with the loosely-coupled approach, the integrated positioning calculation module has a very complex design.
  • Additionally, when an abnormality occurs in an output from the inertial sensor, for example, the position, velocity, attitude or the like (hereinafter, referred to as navigation data) cannot be provided to the user.
  • (3) In the deeply-coupled approach, a positioning result fed back to the tracking processing module of the GPS positioning signal is affected by an input value (such as map-match data) from the sensor module and the user. For this reason, for example, if the abnormal sensor data is input, the GPS satellite cannot be tracked to make it impossible to detect the abnormality of the sensor using the GPS positioning results.
  • In this way, a method for detecting an abnormality is very important technology, particularly in the case of using the inertial sensor, which has low reliability, but is low in cost in order to balance the cost with the performance However, the GPS/DR integrated positioning device of related art, including Patent Documents 1 and 2, cannot determine the abnormality of the output of the positioning calculation module due to the abnormality of the external support data of the inertial sensor and the like.
  • Consequently, an object of the invention is to provide a satellite navigation/dead-reckoning navigation integrated positioning device which can be constituted by low cost, and in which accuracy of the navigation data including the position and velocity is improved.
  • Means for Solving the Problems
  • The satellite navigation/dead-reckoning navigation integrated positioning device of the invention is constituted as below in order to solve the problems.
  • (1) According to an aspect of the invention, a satellite navigation/dead-reckoning navigation integrated positioning device is configured to include:
  • a tracking processing module for receiving positioning signals transmitted from navigation satellites to track the positioning signals (phase information of the positioning signals) and finding a pseudo range and Doppler frequency information;
  • a satellite navigation positioning calculation module for executing a positioning calculation based on the pseudo range and the Doppler frequency information to find a position and a velocity of a moving body; an integrated positioning calculation module for determining, based on the pseudo range and the Doppler frequency information found by the tracking processing module and external support data (such as data of an inertial sensor and map data), errors of the external support data to correct the external support data, and finding the position and velocity of the moving body; and
  • an abnormality determination module for comparing a result of the positioning calculation by the satellite navigation positioning calculation module with a result of the positioning calculation by the integrated positioning calculation module to determine the abnormality of the external support data.
  • With the aforementioned configuration, unlike the loosely-coupled approach of related art, even in a state where a satellite navigation positioning calculation is impossible or is not completed, the position and velocity of the moving body can be found based on the pseudo range and Doppler frequency information already observed. Further, if the external support data becomes abnormal and thus the integrated positioning calculation is impossible, a calculation result by the satellite navigation positioning calculation module can be provided to an user.
  • (2) The external support data may include, for example, data by an inertial sensor, and the abnormality determination module may compare the result of the positioning calculation by the satellite navigation positioning calculation module with the data by the inertial sensor to determine the abnormality of the inertial sensor.
  • With the aforementioned configuration, the abnormality of the inertial sensor can be detected; therefore, positioning accuracy can be prevented from lowering due to the use of the inertial sensor in an abnormality state.
  • (3) The external support data may include, for example, map data input information, and the abnormality determination module may compare the result of the positioning calculation by the satellite navigation positioning calculation module with the map data to determine the abnormality of the map data input information.
  • With the aforementioned configuration, the abnormality of the map data input information can be detected; therefore, positioning accuracy can be prevented from lowering due to the use of the abnormal map data.
  • (4) The abnormality determination module may compare the result found by the satellite navigation positioning calculation module with the result found by the integrated positioning calculation module to determine the abnormality of the result of the calculation of the integrated positioning calculation module.
  • With the aforementioned configuration, the abnormality of the external support data used for the integrated positioning calculation or the abnormality of the integrated positioning calculation module can be detected; therefore, the abnormal navigation data can be prevented from being provided to the user.
  • (5) A module may be provided to output the calculation results by the satellite navigation positioning calculation module to the user if the abnormality determination module determines an abnormality. The user may be informed of the abnormality state along with the calculation result.
  • With the aforementioned configuration, even if the abnormality state is determined, the calculation result of the satellite navigation positioning calculation module can be obtained. Additionally, if the abnormality state is output to the user, the user can grasp the abnormality state.
  • (6) The integrated positioning calculation module, when, for example, resuming the positioning calculation from a state where the integrated positioning calculation module is stopped due to the abnormality of the external support data, may resume the integrated positioning calculation using the position and the velocity found by the satellite navigation positioning calculation module as initial values.
  • This makes it possible for the integrated positioning calculation module to quickly obtain the positioning result when recovering from the down state of the integrated positioning calculation.
  • (7) The integrated positioning calculation module may execute the positioning calculation based on the pseudo range and the Doppler frequency information by a single difference between satellites found by the tracking processing module.
  • In this way, if the positioning calculation is performed based on the single difference between satellites, the integrated positioning calculation module does not need to estimate a clock error of a receiver and changes thereof by the Kalman filter. Therefore, not only a computational load of the Kalman filter in the integrated positioning calculation module can be reduced, but also the clock error and a model of the changes thereof do not need to be considered.
  • EFFECT OF THE INVENTION
  • According to the aspect of the invention, unlike the loosely-coupled approach of related art, even in a state, for example, where the satellite navigation positioning calculation is impossible or is not completed with the positioning signals from four or more navigation satellites not being received, the position and velocity of the moving body can be obtained based on the pseudo range and Doppler frequency information already observed. Further, in a case where the external support data becomes abnormal and thus the integrated positioning calculation is impossible, the calculation result by the satellite navigation positioning calculation module can be provided to the user.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Hereinafter, several specific embodiments are described.
  • First Embodiment
  • FIG. 2 is a block diagram showing a configuration of a satellite navigation/dead-reckoning navigation integrated positioning device according to a first embodiment.
  • A GPS receiving circuit 30 converts a positioning signal from a satellite received by a GPS antenna into an intermediate frequency and A/D-converts it to output a so-called baseband GPS positioning signal.
  • A sensor module 40 is an external device, which includes at least an acceleration sensor, an angular velocity sensor, and a gyroscope inertial sensor, for obtaining orientation information and outputs external support data.
  • For the external support information other than the value obtained by the above various sensors, used are map position input information (map-match data) or error input information of the map position (map-match data error) input by a user.
  • A tracking processing module 31 performs, based on the above GPS positioning signal, acquisition processing and tracking processing thereof and demodulation processing of a navigation message including ephemeris data (satellite orbit information), and gives a pseudo-range observation and a Doppler frequency observation to a GPS positioning calculation module 32 and an integrated positioning calculation module 42.
  • The GPS positioning calculation module 32 calculates the navigation data such as a position, a velocity by a usual method based on the pseudo-range observation, the Doppler frequency observation, the ephemeris data and the like.
  • Based on the external support information including an output of the inertial sensor (gyroscope and acceleration sensor as needed), the above map information (map-match data) or information about the difference between the map position and a measured position (map-match data error), and the like as needed in addition to the pseudo-range observation and the Doppler frequency observation, the integrated positioning calculation module 42 estimates the position, position error, velocity, velocity error, error of the external support data of the inertial sensor or the like using a known Kalman filter. Then, the integrated positioning calculation module 42 gives the navigation data such as the position, velocity and the like to an output judgment module 43. Moreover, the estimated error of the external support data is fed back to a predetermined processing module as a correction amount.
  • The navigation data of the GPS positioning calculation module 32 is calculated independent of the integrated positioning calculation module 42. With this configuration, even if an abnormality caused due to the external support data occurs in the navigation data of the integrated positioning calculation module 42, the navigation data of the GPS positioning calculation module 32 is not affected by the abnormality of the external support data, and the navigation data of the GPS positioning calculation module 32 can be used to determine an abnormality of the navigation data of the integrated positioning calculation module 42. That is, in the output judgment module 43, all or any piece of the navigation data calculated by the GPS positioning calculation module 32 can be used as a comparative criterion to determine reliability of the output of the integrated positioning calculation module 42 output to a hardware/software 44 of the user.
  • Note that the GPS positioning calculation module 32 and the integrated positioning calculation module 42 are provided, along with the pseudo range and Doppler frequency, with the ephemeris data, which has no direct relation therewith in the first embodiment, thus is omitted in the figure.
  • Next, a method for determining various abnormalities by the output judgment module 43 is described with reference to FIG. 3 to FIG. 5.
  • FIG. 3 is a flowchart showing a procedure of abnormality determination of the integrated positioning calculation module executed by the output judgment module 43.
  • The output judgment module 43 compares the output of the GPS positioning calculation module 32 and the output of the integrated positioning calculation module 42 (S11). In an example shown in FIG. 3, the reliability of the output data of the integrated positioning calculation module 42 is determined by the AND condition of the position determination, velocity determination and attitude determination of the navigation data (S12, S13, S14).
  • Between the navigation data found respectively by the GPS positioning calculation module 32 and the integrated positioning calculation module 42, if a difference of the positions is equal to or more than a predetermined threshold value, the navigation data found by the GPS positioning calculation module 32 is switched to be output to the hardware/software 44 of the user (S12→S16). Similarly, if a difference of the velocities thereof is equal to or more than a predetermined threshold value, the navigation data found by the GPS positioning calculation module 32 is switched to be output to the hardware/software 44 of the user (S13→S16).
  • Further, if a difference between the attitude of the moving body found by the GPS positioning calculation module 32 and the attitude of the moving body found by the integrated positioning calculation module 42 is equal to or more than a predetermined threshold value, the navigation data found by the GPS positioning calculation module 32 is switched to be output to the hardware/software 44 of the user (S14→S16). Here, the attitude of the moving body is an orientation which the moving body is directed, and is found, for example, from a position vector at a certain time in a case of being found based on the position information, and is found using a ratio with respect to a horizontal velocity component in a case of being found based on the velocity information.
  • If the position, velocity and attitude are all less than the predetermined threshold values, the navigation data found by the integrated positioning calculation module 42 is output to the hardware/software 44 of the user.
  • Note that when the integrated positioning calculation module 42 resumes the positioning calculation, the processing of the integrated positioning calculation module is resumed using the position and velocity found by the GPS positioning calculation module 32 as initial values or the velocity thereof as an initial value.
  • The reliability of the output data of the integrated positioning calculation module 42 may be determined by a combination of the OR condition of the position determination, velocity determination and attitude determination of the navigation data, or by the AND or OR condition of any two of them and the AND or OR condition of the rest. For example, determination may be performed by a condition of (position AND velocity) OR attitude, or a condition of (position OR velocity) AND attitude.
  • FIG. 4 is a flowchart showing a procedure of abnormality determination of the external support data executed by the output judgment module 43.
  • The output judgment module 43 executes the abnormality determination of the external support data using the output of the GPS positioning calculation module 32. For example, the abnormality of the signal of the gyroscope inertial sensor for obtaining the orientation information is determined by calculating an azimuth variation at a predetermined time interval of an azimuth angle calculated based on the velocity of the GPS positioning calculation module 32, at least during movement, and comparing the signal of the gyroscope inertial sensor with the azimuth angle variation amount as a reference (S21→S22). If a difference between them is less than a predetermined threshold value, the navigation data found by the integrated positioning calculation module 42 is output to the hardware/software 44 of the user (S22→S23). If the difference between them is equal to or more than the predetermined threshold value, the signal of the gyroscope inertial sensor is determined to be abnormal, and the navigation data found by the GPS positioning calculation module 32 is switched to be output to the hardware/software 44 of the user (S22→S24).
  • Note that a program may be defined in a case in which the azimuth variation is equal to or more than a certain value; if the signal of the gyroscope inertial sensor does not change, the output of the gyroscope inertial sensor is determined to be abnormal.
  • FIG. 5 is a flowchart showing a procedure of abnormality determination of another external support data executed by the output judgment module 43.
  • The output judgment module 43 calculates a variation amount of the velocity at a predetermined time interval found by the GPS positioning calculation module 32, and, with the velocity variation amount being used as a reference value, compares the reference value with a signal of the acceleration sensor (S31→S32). If a difference between them is less than a predetermined threshold value, the navigation data found by the integrated positioning calculation module 42 is output to the hardware/software 44 of the user (S32→S33). If the difference between them is equal to or more than the predetermined value, the signal of the acceleration sensor is determined to be abnormal and the navigation data found by the GPS positioning calculation module 32 is output to the hardware/software 44 of the user (S32→S34).
  • Note that the program may be defined in a case in which the velocity variation is equal to or more than the predetermined threshold value set in advance; if the signal of the acceleration sensor does not change, the acceleration sensor is determined to be abnormal.
  • Similarly, in a case where a velocity sensor is used for the external support data, the abnormality of the signal of the velocity sensor is determined by comparing, with the velocity of the GPS positioning calculation module 32 being as a reference value, the reference value with the signal of the velocity sensor. Further, in a case where the velocity is equal to or more than a predetermined threshold value, if the signal of the velocity sensor does not change, the velocity sensor may be determined to be abnormal.
  • Further, the abnormality of the map position input information is determined by, with the position found by the GPS positioning calculation module 32 being used as a reference value, comparing the reference value with the map position input information.
  • Similarly, the abnormality of the error input information of the map position is determined by, with the velocity found by the GPS positioning calculation module 32 or the position variation at a predetermined time interval being as a reference value, comparing the reference value with the error input information of the map position.
  • The above map position input information is specifically the map position data of, for example, the satellite navigation/dead-reckoning navigation integrated device generated in a car navigation system, and the map position is input as latitude and longitude data.
  • Additionally, the error input information of the map position is specifically information of a difference between, for example, data of the car navigation system or other position measurement devices and the map position data, and are input as position error information.
  • Note that in any of the above abnormality determinations, the abnormality of the input data may be determined depending on not only whether or not the difference between the reference value and a value of the target to be determined about abnormality thereof exceeds a predetermined threshold value, but also whether or not the number of cases where the difference exceeds the predetermined threshold value reaches a predetermined number.
  • Second Embodiment
  • FIG. 6 is a block diagram showing a configuration of a satellite navigation/dead-reckoning navigation integrated positioning device according to a second embodiment of the invention.
  • This embodiment is different from the satellite navigation/dead-reckoning navigation integrated positioning device shown in FIG. 2 of the first embodiment in the configuration of the integrated positioning calculation module 53 and a relationship between the integrated positioning calculation module 53 and the GPS positioning calculation module 32.
  • A satellite position correction value calculation module 51 in the GPS positioning calculation module 32 calculates values concerning satellite position and correction values including a position and a velocity of a satellite, a satellite time correction value, an ionospheric correction value, a tropospheric correction value and the like from information, such as the ephemeris and the positioning results obtained by the positioning calculation module 52. The values themselves have configurations similar to the general GPS receiver. The values calculated by the satellite position/correction value calculation module 51 are used in both the positioning calculation module 52 and the integrated positioning calculation module 53.
  • In this way, the satellite position/correction amount calculation module 51 is commonly used, and thus, the calculation processing load on the satellite navigation/dead-reckoning navigation integrated positioning device can entirely be reduced. Therefore, processing can be performed with a low velocity CPU, leading to low cost correspondingly.
  • Note that in the embodiments shown above, the example using GPS for the satellite navigation positioning is shown, but it is similarly applicable to a case of using another satellite navigation positioning system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1(A) and 1(B) are block diagrams showing typical configuration examples of an integration type of a satellite navigation/dead-reckoning navigation integrated positioning device of related art.
  • FIG. 2 is a block diagram showing a configuration of a satellite navigation/dead-reckoning navigation integrated positioning device according to a first embodiment.
  • FIG. 3 is a flowchart showing a procedure of abnormality determination of an integrated positioning calculation module executed by an output judgment module of the satellite navigation/dead-reckoning navigation integrated positioning device.
  • FIG. 4 is a flowchart showing a procedure of abnormality determination of external support data executed by the output judgment module of the satellite navigation/dead-reckoning navigation integrated positioning device.
  • FIG. 5 is a flowchart showing a procedure of abnormality determination of another external support data executed by the output judgment module of the satellite navigation/dead-reckoning navigation integrated positioning device.
  • FIG. 6 is a block diagram showing a configuration of a satellite navigation/dead-reckoning navigation integrated positioning device according to a second embodiment.
  • BRIEF DESCRIPTION OF THE NUMERALS
      • 30 . . . GPS Receiving Circuit; 31 . . . Tracking Processing Module; 32 . . . GPS Positioning Calculation Module; 42 . . . Integrated Positioning Calculation Module; 43 . . . Output Judgment Module; 51 . . . Satellite Position Correction Value Calculation Module; 52 . . . Positioning Calculation Module; 53 . . . Integrated Positioning Calculation Module; and 100, 101 . . . Satellite Navigation/Dead-Reckoning Navigation Integrated Positioning Device.

Claims (16)

  1. 1. A satellite navigation/dead-reckoning navigation integrated positioning device, comprising:
    a tracking processing module for receiving positioning signals of navigation satellites to track the positioning signals and finding a pseudo range and Doppler frequency information;
    a satellite navigation positioning calculation module for executing a positioning calculation based on the pseudo range and the Doppler frequency information to find a position and a velocity of a moving body;
    an integrated positioning calculation module for finding, based on the pseudo range and the Doppler frequency information found by the tracking processing module and external support data obtained from an external device, a position and a velocity of the moving body; and
    an abnormality determination module for comparing a result of the positioning calculation by the satellite navigation positioning calculation module with a result of the positioning calculation by the integrated positioning calculation module to determine abnormality of the external support data.
  2. 2. The satellite navigation/dead-reckoning navigation integrated positioning device of claim 1, wherein the external support data includes data by an inertial sensor, and the abnormality determination module compares the result of the positioning calculation by the satellite navigation positioning calculation module with the data by the inertial sensor to determine abnormality of the inertial sensor.
  3. 3. The satellite navigation/dead-reckoning navigation integrated positioning device of claim 1, wherein the external support data includes map data input information, and the abnormality determination module compares the result of the positioning calculation by the satellite navigation positioning calculation module with the map data to determine abnormality of the map data input information.
  4. 4. The satellite navigation/dead-reckoning navigation integrated positioning device of claim 1, wherein the abnormality determination module compares the result found by the satellite navigation positioning calculation module with the result found by the integrated positioning calculation module to determine abnormality of the result of the calculation of the integrated positioning calculation module.
  5. 5. The satellite navigation/dead-reckoning navigation integrated positioning device of any one of claims 1 to 4, comprising a module for outputting the calculation result by the satellite navigation positioning calculation module to a user if the abnormality determination module determines an abnormality.
  6. 6. The satellite navigation/dead-reckoning navigation integrated positioning device of claim 1, wherein the integrated positioning calculation module, when resuming the positioning calculation from a state where the positioning calculation is stopped due to the abnormality of the external support data, resumes the integrated positioning calculation using the position and the velocity found by the satellite navigation positioning calculation module as initial values.
  7. 7. The satellite navigation/dead-reckoning navigation integrated positioning device of claim 1, wherein the integrated positioning calculation module executes the positioning calculation based on the pseudo range and the Doppler frequency information by a single difference between the satellites found by the tracking processing module.
  8. 8. The satellite navigation/dead-reckoning navigation integrated positioning device of claim 2, wherein the integrated positioning calculation module, when resuming the positioning calculation from a state where the positioning calculation is stopped due to the abnormality of the external support data, resumes the integrated positioning calculation using the position and the velocity found by the satellite navigation positioning calculation module as initial values.
  9. 9. The satellite navigation/dead-reckoning navigation integrated positioning device of claims 3, wherein the integrated positioning calculation module, when resuming the positioning calculation from a state where the positioning calculation is stopped due to the abnormality of the external support data, resumes the integrated positioning calculation using the position and the velocity found by the satellite navigation positioning calculation module as initial values.
  10. 10. The satellite navigation/dead-reckoning navigation integrated positioning device of any one of claim 4, wherein the integrated positioning calculation module, when resuming the positioning calculation from a state where the positioning calculation is stopped due to the abnormality of the external support data, resumes the integrated positioning calculation using the position and the velocity found by the satellite navigation positioning calculation module as initial values.
  11. 11. The satellite navigation/dead-reckoning navigation integrated positioning device of claims 5, wherein the integrated positioning calculation module, when resuming the positioning calculation from a state where the positioning calculation is stopped due to the abnormality of the external support data, resumes the integrated positioning calculation using the position and the velocity found by the satellite navigation positioning calculation module as initial values.
  12. 12. The satellite navigation/dead-reckoning navigation integrated positioning device of claim 2, wherein the integrated positioning calculation module executes the positioning calculation based on the pseudo range and the Doppler frequency information by a single difference between the satellites found by the tracking processing module.
  13. 13. The satellite navigation/dead-reckoning navigation integrated positioning device of claim 3, wherein the integrated positioning calculation module executes the positioning calculation based on the pseudo range and the Doppler frequency information by a single difference between the satellites found by the tracking processing module.
  14. 14. The satellite navigation/dead-reckoning navigation integrated positioning device of claim 4, wherein the integrated positioning calculation module executes the positioning calculation based on the pseudo range and the Doppler frequency information by a single difference between the satellites found by the tracking processing module.
  15. 15. The satellite navigation/dead-reckoning navigation integrated positioning device of claim 5, wherein the integrated positioning calculation module executes the positioning calculation based on the pseudo range and the Doppler frequency information by a single difference between the satellites found by the tracking processing module.
  16. 16. The satellite navigation/dead-reckoning navigation integrated positioning device of claim 6, wherein the integrated positioning calculation module executes the positioning calculation based on the pseudo range and the Doppler frequency information by a single difference between the satellites found by the tracking processing module.
US12867271 2008-02-13 2009-01-20 Satellite navigation/dead-reckoning navigation integrated positioning device Abandoned US20110106450A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008-32207 2008-02-13
JP2008032207A JP5270184B2 (en) 2008-02-13 2008-02-13 Satellite navigation / dead-reckoning navigation integrated positioning device
PCT/JP2009/050743 WO2009101843A1 (en) 2008-02-13 2009-01-20 Satellite navigation/dead-reckoning navigation integrated positioning device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050743 A-371-Of-International WO2009101843A1 (en) 2008-02-13 2009-01-20 Satellite navigation/dead-reckoning navigation integrated positioning device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13848565 Continuation US9714841B2 (en) 2008-02-13 2013-03-21 Satellite navigation/dead-reckoning navigation integrated positioning device

Publications (1)

Publication Number Publication Date
US20110106450A1 true true US20110106450A1 (en) 2011-05-05

Family

ID=40956873

Family Applications (2)

Application Number Title Priority Date Filing Date
US12867271 Abandoned US20110106450A1 (en) 2008-02-13 2009-01-20 Satellite navigation/dead-reckoning navigation integrated positioning device
US13848565 Active US9714841B2 (en) 2008-02-13 2013-03-21 Satellite navigation/dead-reckoning navigation integrated positioning device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13848565 Active US9714841B2 (en) 2008-02-13 2013-03-21 Satellite navigation/dead-reckoning navigation integrated positioning device

Country Status (4)

Country Link
US (2) US20110106450A1 (en)
EP (1) EP2244099B1 (en)
JP (1) JP5270184B2 (en)
WO (1) WO2009101843A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110050903A1 (en) * 2009-04-08 2011-03-03 Topcon Positioning Systems, Inc. Method for determining position and orientation of vehicle trailers
US20110208496A1 (en) * 2010-02-24 2011-08-25 Clarion Co.,Ltd. Position Estimation Device and Position Estimation Method
WO2013188148A1 (en) * 2012-06-14 2013-12-19 Intel Corporation Reliability for location services
US20150042451A1 (en) * 2012-03-06 2015-02-12 Megachips Corporation Positioning system, terminal device, recording medium, and positioning method
US20150330792A1 (en) * 2012-12-20 2015-11-19 Continental Teves Ag & Co. Ohg Device for outputting a measurement signal indicating a physical measurement variable
US9354324B2 (en) 2011-10-20 2016-05-31 Qualcomm Incorporated Techniques for affecting a wireless signal-based positioning capability of a mobile device based on one or more onboard sensors
US9915947B1 (en) * 2016-02-26 2018-03-13 Waymo Llc System and method for determining pose data for a vehicle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589324B2 (en) * 2009-08-28 2014-09-17 富士通株式会社 Using a novel sensor fusion techniques, apparatus for state estimation of the moving body, METHOD, AND PROGRAM
JP5645635B2 (en) * 2010-12-16 2014-12-24 Udトラックス株式会社 A vehicle speed signal falsification detection apparatus, a vehicle speed suppression device, the vehicle speed signal alteration detection method and a vehicle speed suppression method
JP5994237B2 (en) * 2011-11-24 2016-09-21 株式会社豊田中央研究所 Positioning device and program
CN103998896B (en) * 2011-12-19 2017-06-30 英特尔公司 Navigation system and method
JP6288060B2 (en) * 2015-12-10 2018-03-07 カシオ計算機株式会社 The autonomous mobile unit, the autonomous mobile METHOD AND PROGRAM
JP6323439B2 (en) 2015-12-17 2018-05-16 カシオ計算機株式会社 The autonomous mobile unit, the autonomous mobile METHOD AND PROGRAM

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087919A (en) * 1989-09-05 1992-02-11 Pioneer Electronic Corporation On-board navigation apparatus
US5179519A (en) * 1990-02-01 1993-01-12 Pioneer Electronic Corporation Navigation system for vehicle
US5686925A (en) * 1994-06-30 1997-11-11 Matsushita Electric Industrial Co., Ltd. System for obtaining a velocity of a moving object from a speed sensor with an improved adjustment of a speed conversion coefficient
US6167347A (en) * 1998-11-04 2000-12-26 Lin; Ching-Fang Vehicle positioning method and system thereof
US6240367B1 (en) * 1998-11-27 2001-05-29 Ching-Fang Lin Full fusion positioning method for vehicle
US6246960B1 (en) * 1998-11-06 2001-06-12 Ching-Fang Lin Enhanced integrated positioning method and system thereof for vehicle
US6311129B1 (en) * 1998-04-06 2001-10-30 American Gnc Corporation Positioning process and system thereof
US6408245B1 (en) * 2000-08-03 2002-06-18 American Gnc Corporation Filtering mechanization method of integrating global positioning system receiver with inertial measurement unit
US6480152B2 (en) * 2000-07-20 2002-11-12 American Gnc Corporation Integrated GPS/IMU method and microsystem thereof
US6643587B2 (en) * 1999-09-16 2003-11-04 Sirf Technology, Inc. Navigation system and method for tracking the position of an object
US6650285B2 (en) * 2000-08-24 2003-11-18 Fast Location.Net, Llc Method and apparatus for rapidly estimating the doppler-error and other receiver frequency errors of global positioning system satellite signals weakened by obstructions in the signal path
US6697736B2 (en) * 2002-02-06 2004-02-24 American Gnc Corporation Positioning and navigation method and system thereof
US6791456B2 (en) * 2001-01-17 2004-09-14 Honda Giken Kogyo Kabushiki Kaisha Vehicular reporting system
JP2007073827A (en) * 2005-09-08 2007-03-22 Dainippon Screen Mfg Co Ltd Reduced-pressure drying apparatus
US8149163B2 (en) * 2007-03-22 2012-04-03 Furuno Electric Company Limited GPS compound navigation device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148179A (en) * 1991-06-27 1992-09-15 Trimble Navigation Differential position determination using satellites
US5740048A (en) * 1992-08-07 1998-04-14 Abel; Jonathan S. Method and apparatus for GPS positioning, filtering and integration
JP3381397B2 (en) * 1994-08-05 2003-02-24 株式会社デンソー Vehicle navigation device
JP3112405B2 (en) * 1995-12-01 2000-11-27 富士通テン株式会社 Vehicle position detecting device
US5906655A (en) * 1997-04-02 1999-05-25 Caterpillar Inc. Method for monitoring integrity of an integrated GPS and INU system
JP2000131089A (en) * 1998-10-28 2000-05-12 Greenfield Enterprises Inc Navigation system and method therefor
US6331835B1 (en) * 1999-02-02 2001-12-18 The Charles Stark Draper Laboratory, Inc. Deeply-integrated adaptive GPS-based navigator with extended-range code tracking
JP4216419B2 (en) * 1999-10-07 2009-01-28 古野電気株式会社 Movement speed measurement device
JP4304400B2 (en) * 2000-05-31 2009-07-29 株式会社日立製作所 Sensor failure detecting apparatus for a vehicle
JP2002022818A (en) * 2000-07-05 2002-01-23 Clarion Co Ltd Gps receiver and navigation system
US20070037588A1 (en) * 2000-07-14 2007-02-15 Norman Mohi Locating system and method
US6820025B2 (en) * 2000-10-30 2004-11-16 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for motion tracking of an articulated rigid body
US6754584B2 (en) * 2001-02-28 2004-06-22 Enpoint, Llc Attitude measurement using a single GPS receiver with two closely-spaced antennas
JP2002333332A (en) * 2001-05-08 2002-11-22 Pioneer Electronic Corp Hybrid processing method and device thereof, navigation system, and computer program
WO2004084022A3 (en) * 2003-03-13 2005-07-14 John M Belcea Real-time system and method for computing location of mobile subcriber in a wireless ad-hoc network
JP4391458B2 (en) 2005-09-29 2009-12-24 三菱電機株式会社 Positioning device, positioning method and positioning program
JP2007218868A (en) * 2006-02-20 2007-08-30 Mitsubishi Electric Corp Position detection method of mobile station, and mobile station, position-detecting device thereof, and base station
DE102006016396A1 (en) * 2006-04-07 2007-10-11 Deere & Company, Moline Mobile reference station for generating correction signals for a differential positioning device
JP2007292610A (en) * 2006-04-25 2007-11-08 Furuno Electric Co Ltd Satellite navigation receiver
US8019542B2 (en) * 2007-04-16 2011-09-13 Honeywell International Inc. Heading stabilization for aided inertial navigation systems
CN103098108B (en) * 2010-11-25 2017-09-08 松下电器(美国)知识产权公司 communication device
US8855929B2 (en) * 2010-01-18 2014-10-07 Qualcomm Incorporated Using object to align and calibrate inertial navigation system
US9410809B2 (en) * 2011-12-16 2016-08-09 Microsoft Technology Licensing, Llc Applying a correct factor derivative method for determining an orientation of a portable electronic device based on sense gravitation component linear accelerate filter data obtained
US9341683B2 (en) * 2014-09-29 2016-05-17 Caterpillar Inc. Navigation system and method for machine

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087919A (en) * 1989-09-05 1992-02-11 Pioneer Electronic Corporation On-board navigation apparatus
US5179519A (en) * 1990-02-01 1993-01-12 Pioneer Electronic Corporation Navigation system for vehicle
US5686925A (en) * 1994-06-30 1997-11-11 Matsushita Electric Industrial Co., Ltd. System for obtaining a velocity of a moving object from a speed sensor with an improved adjustment of a speed conversion coefficient
US6311129B1 (en) * 1998-04-06 2001-10-30 American Gnc Corporation Positioning process and system thereof
US6292750B1 (en) * 1998-11-04 2001-09-18 Ching-Fang Lin Vehicle positioning method and system thereof
US6167347A (en) * 1998-11-04 2000-12-26 Lin; Ching-Fang Vehicle positioning method and system thereof
US6246960B1 (en) * 1998-11-06 2001-06-12 Ching-Fang Lin Enhanced integrated positioning method and system thereof for vehicle
US6240367B1 (en) * 1998-11-27 2001-05-29 Ching-Fang Lin Full fusion positioning method for vehicle
US6643587B2 (en) * 1999-09-16 2003-11-04 Sirf Technology, Inc. Navigation system and method for tracking the position of an object
US6480152B2 (en) * 2000-07-20 2002-11-12 American Gnc Corporation Integrated GPS/IMU method and microsystem thereof
US6408245B1 (en) * 2000-08-03 2002-06-18 American Gnc Corporation Filtering mechanization method of integrating global positioning system receiver with inertial measurement unit
US6650285B2 (en) * 2000-08-24 2003-11-18 Fast Location.Net, Llc Method and apparatus for rapidly estimating the doppler-error and other receiver frequency errors of global positioning system satellite signals weakened by obstructions in the signal path
US6791456B2 (en) * 2001-01-17 2004-09-14 Honda Giken Kogyo Kabushiki Kaisha Vehicular reporting system
US6697736B2 (en) * 2002-02-06 2004-02-24 American Gnc Corporation Positioning and navigation method and system thereof
JP2007073827A (en) * 2005-09-08 2007-03-22 Dainippon Screen Mfg Co Ltd Reduced-pressure drying apparatus
US8149163B2 (en) * 2007-03-22 2012-04-03 Furuno Electric Company Limited GPS compound navigation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110050903A1 (en) * 2009-04-08 2011-03-03 Topcon Positioning Systems, Inc. Method for determining position and orientation of vehicle trailers
US20110208496A1 (en) * 2010-02-24 2011-08-25 Clarion Co.,Ltd. Position Estimation Device and Position Estimation Method
US9057781B2 (en) * 2010-02-24 2015-06-16 Clarion Co., Ltd. Position estimation device and position estimation method
US9354324B2 (en) 2011-10-20 2016-05-31 Qualcomm Incorporated Techniques for affecting a wireless signal-based positioning capability of a mobile device based on one or more onboard sensors
US20150042451A1 (en) * 2012-03-06 2015-02-12 Megachips Corporation Positioning system, terminal device, recording medium, and positioning method
US9516469B2 (en) * 2012-03-06 2016-12-06 Megachips Corporation Positioning system, terminal device, recording medium, and positioning method
WO2013188148A1 (en) * 2012-06-14 2013-12-19 Intel Corporation Reliability for location services
US9635557B2 (en) 2012-06-14 2017-04-25 Intel Corporation Reliability for location services
US20150330792A1 (en) * 2012-12-20 2015-11-19 Continental Teves Ag & Co. Ohg Device for outputting a measurement signal indicating a physical measurement variable
US9915947B1 (en) * 2016-02-26 2018-03-13 Waymo Llc System and method for determining pose data for a vehicle

Also Published As

Publication number Publication date Type
JP2009192325A (en) 2009-08-27 application
WO2009101843A1 (en) 2009-08-20 application
EP2244099B1 (en) 2016-09-14 grant
EP2244099A1 (en) 2010-10-27 application
EP2244099A4 (en) 2014-06-04 application
US9714841B2 (en) 2017-07-25 grant
JP5270184B2 (en) 2013-08-21 grant
US20130311085A1 (en) 2013-11-21 application

Similar Documents

Publication Publication Date Title
US7193559B2 (en) Inertial GPS navigation system with modified kalman filter
US6205400B1 (en) Vehicle positioning and data integrating method and system thereof
US6496778B1 (en) Real-time integrated vehicle positioning method and system with differential GPS
US6424915B1 (en) System for determining the heading and/or attitude of a body
US20080234933A1 (en) Systems and Methods for Detecting a Vehicle Static Condition
US6240368B1 (en) Positioning system for a motor vehicle having a satellite receiver
US20110238308A1 (en) Pedal navigation using leo signals and body-mounted sensors
US20100141515A1 (en) Position tracking device and method
US20100211315A1 (en) Gps composite navigation apparatus
US7286933B2 (en) GPS/dead-reckoning combination system and operating method thereof
US6408245B1 (en) Filtering mechanization method of integrating global positioning system receiver with inertial measurement unit
US6480152B2 (en) Integrated GPS/IMU method and microsystem thereof
US20040158354A1 (en) Robot localization system
US20090018772A1 (en) Position Sensing Device And Method
US7248964B2 (en) System and method for using multiple aiding sensors in a deeply integrated navigation system
US20120221244A1 (en) Method and apparatus for improved navigation of a moving platform
US20020158796A1 (en) Integrated GPS and IGS system and method
US20100109945A1 (en) Loosely-coupled integration of global navigation satellite system and inertial navigation system: speed scale-factor and heading bias calibration
US20100109950A1 (en) Tightly-coupled gnss/imu integration filter having speed scale-factor and heading bias calibration
US20060114151A1 (en) GPS receiver
US20110071759A1 (en) Performance of a Navigation Receiver Operating in a Power-Save Mode with the Aid of Sensors
US20090128407A1 (en) Systems and Methods for Detecting GPS Measurement Errors
CN1530635A (en) Apparatus and method for detecting movable object position in navigation system
US8065074B1 (en) Configurable inertial navigation system with dual extended kalman filter modes
US20100097268A1 (en) Tightly-coupled gnss/imu integration filter having calibration features

Legal Events

Date Code Title Description
AS Assignment

Owner name: FURUNO ELECTRIC CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TODA, HIROYUKI;SUYAMA, MASAKI;HAMADA, HIROSHI;AND OTHERS;SIGNING DATES FROM 20100806 TO 20100818;REEL/FRAME:024917/0217