JP2012051972A - New phosphorus atom-containing phenol resin and method for producing the same, curable resin composition and cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, and resin composition for interlayer insulating material for buildup substrate - Google Patents

New phosphorus atom-containing phenol resin and method for producing the same, curable resin composition and cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, and resin composition for interlayer insulating material for buildup substrate Download PDF

Info

Publication number
JP2012051972A
JP2012051972A JP2010193761A JP2010193761A JP2012051972A JP 2012051972 A JP2012051972 A JP 2012051972A JP 2010193761 A JP2010193761 A JP 2010193761A JP 2010193761 A JP2010193761 A JP 2010193761A JP 2012051972 A JP2012051972 A JP 2012051972A
Authority
JP
Japan
Prior art keywords
resin composition
resin
compound
naphthol
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010193761A
Other languages
Japanese (ja)
Other versions
JP5516979B2 (en
Inventor
Hiroshi Hayashi
弘司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2010193761A priority Critical patent/JP5516979B2/en
Publication of JP2012051972A publication Critical patent/JP2012051972A/en
Application granted granted Critical
Publication of JP5516979B2 publication Critical patent/JP5516979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new phosphorus atom-containing phenol resin and a curable resin composition, which are excellent in flame retardancy and heat resistance and can achieve an extremely low thermal expansion coefficient.SOLUTION: The new phosphorus atom-containing phenol resin is obtained by polycondensing a phosphorus atom-containing phenolic compound having a structure represented by a formula (wherein the biphenyl skeleton may be substituted by two phenyl groups) or a derivative thereof and a naphthol compound with formaldehyde. An epoxy resin composition using the phenol resin as a curing agent is provided.

Description

本発明は、難燃性と耐熱性と低収縮性に優れた性能を発現する新規リン原子含有フェノール樹脂、その製造方法、難燃性と耐熱性と低収縮性に優れる硬化性樹脂組成物、その硬化物、並びに前記硬化性樹脂組成物を用いたプリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物に関する。   The present invention is a novel phosphorus atom-containing phenol resin that exhibits excellent performance in flame retardancy, heat resistance and low shrinkage, its production method, curable resin composition excellent in flame retardancy, heat resistance and low shrinkage, The cured product, and a resin composition for a printed wiring board using the curable resin composition, a printed wiring board, a resin composition for a flexible wiring board, a resin composition for a semiconductor sealing material, and an interlayer insulation for a build-up board The present invention relates to a resin composition for materials.

エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、高耐熱性、耐湿性等の諸物性に優れる点から半導体封止材やプリント回路基板等の電子部品、電子部品分野、導電ペースト等の導電性接着剤、その他接着剤、複合材料用マトリックス、塗料、フォトレジスト材料、顕色材料等で広く用いられている。   An epoxy resin composition containing an epoxy resin and a curing agent as an essential component is excellent in various physical properties such as high heat resistance and moisture resistance, and is used for electronic components such as semiconductor encapsulants and printed circuit boards, electronic component fields, and conductive pastes. It is widely used in conductive adhesives such as, other adhesives, matrix for composite materials, paints, photoresist materials, developer materials, and the like.

近年、これら各種用途、とりわけ先端材料用途において、耐熱性、耐湿性、耐半田性に代表される性能の一層の向上が求められている。特に高い信頼性が求められる車載用の電子機器は、設置場所がキャビン内からより高温のエンジンルームへと移行することに加え、鉛フリー半田への対応によりリフロー処理温度が高温化するに至り、よって、これまでに増して耐熱性に優れた材料が求められている。   In recent years, in these various applications, especially in advanced materials, further improvements in performance typified by heat resistance, moisture resistance, and solder resistance have been demanded. In-vehicle electronic devices that require particularly high reliability, in addition to the shift from the cabin to the higher temperature engine room, the reflow processing temperature has increased due to the compatibility with lead-free solder. Therefore, there is a demand for a material that is more excellent in heat resistance than ever.

一方、エポキシ樹脂組成物をプリント配線板材料とする場合には、難燃性を付与するために臭素等のハロゲン系難燃剤がアンチモン化合物とともに配合されている。しかしながら、近年の環境・安全への取り組みのなかで、ダイオキシン発生が懸念されるハロゲン系難燃剤を用いず、且つ発ガン性が疑われているアンチモン化合物を用いない環境・安全対応型の難燃化方法の開発が強く要求されている。また、プリント配線板材料の分野ではハロゲン系難燃剤の使用が高温放置信頼性を損なう要因となっていることから非ハロゲン化への期待が高い。   On the other hand, when an epoxy resin composition is used as a printed wiring board material, a halogen-based flame retardant such as bromine is blended with an antimony compound in order to impart flame retardancy. However, in recent environmental and safety initiatives, environmentally and flame-resistant flame retardants that do not use halogen-based flame retardants that may cause dioxins and do not use antimony compounds that are suspected of carcinogenicity. There is a strong demand for the development of a conversion method. In the field of printed wiring board materials, the use of halogenated flame retardants is a factor that impairs reliability at high temperatures.

このような要求特性に応え、難燃性と高耐熱性とを兼備したエポキシ樹脂組成物として、例えば、下記特許文献1には、エポキシ樹脂用の硬化剤として、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(以下、「HCA」と略記する。)とホルムアルデヒド又はアセトンとを反応させて水酸基含有のリン化合物を得、これをフェノール樹脂に反応させ得られるリン原子含有フェノール樹脂を用いる技術が開示されている。しかしながら、かかるリン原子含有フェノール樹脂は、その製造工程において、多官能フェノールと、HCAとアルデヒド類との反応性が低く、HCAとアルデヒド類との反応生成物が未反応成分として生成フェノール樹脂中に残存するため、硬化物における耐熱剥離性に劣る他、難燃性も十分なものでなかった。加えて、HCAとホルムアルデヒド又はアセトンとを反応させて得られる水酸基含有リン化合物は、フェノール樹脂との反応性に劣るために、使用可能な多官能フェノールの種類が限られてしまい、リン原子含有フェノール樹脂の設計の幅が著しく制限されるものあった。   In response to such required characteristics, as an epoxy resin composition having both flame retardancy and high heat resistance, for example, Patent Document 1 listed below discloses 9,10-dihydro-9- as a curing agent for epoxy resin. Phosphorus atoms obtained by reacting oxa-10-phosphaphenanthrene-10-oxide (hereinafter abbreviated as “HCA”) with formaldehyde or acetone to obtain a hydroxyl group-containing phosphorus compound, which is reacted with a phenol resin. A technique using a phenol resin containing a resin is disclosed. However, such a phosphorus atom-containing phenol resin has a low reactivity between polyfunctional phenol, HCA and aldehydes in the production process, and a reaction product of HCA and aldehydes is an unreacted component in the generated phenol resin. Since it remained, in addition to being inferior in heat-resistant peelability in the cured product, the flame retardancy was not sufficient. In addition, since the hydroxyl group-containing phosphorus compound obtained by reacting HCA with formaldehyde or acetone is inferior in reactivity with the phenol resin, the types of polyfunctional phenol that can be used are limited. The width of the resin design was severely limited.

また、下記特許文献2には、リン原子含有エポキシ樹脂の中間体フェノール化合物として、HCAとヒドロキシベンズアルデヒドとの反応生成物をフェノールに反応させて得られる化合物が開示されている。   Patent Document 2 below discloses a compound obtained by reacting a reaction product of HCA and hydroxybenzaldehyde with phenol as an intermediate phenol compound of a phosphorus atom-containing epoxy resin.

しかしこのフェノール化合物も、やはりHCAとヒドロキシベンズアルデヒドとの反応生成物と、フェノールとの反応性が不十分で樹脂設計上の自由度が低い他、最終的に得られるフェノール化合物の融点が200℃以上となり、工業的に製造するのが困難であるばかりか、該フェノール化合物自体が結晶性の物質であって有機溶剤への溶解性に劣るため、取扱上作業性に劣るものであった。   However, this phenolic compound also has a low degree of freedom in resin design due to insufficient reactivity between the reaction product of HCA and hydroxybenzaldehyde and phenol, and the final melting point of the phenolic compound is 200 ° C or higher. In addition to being difficult to manufacture industrially, the phenolic compound itself is a crystalline substance and is poor in solubility in an organic solvent, so that it is inferior in handling workability.

また、下記特許文献3には、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂にHCAを反応させて得られるリン変性エポキシ樹脂を主剤として用い、エポキシ樹脂用硬化剤と配合してなる難燃性のエポキシ樹脂組成物が開示されている。しかしながら、この特許文献3記載のエポキシ樹脂組成物は、リン原子をエポキシ樹脂構造中に導入する手段として、HCAを本来架橋点となるエポキシ基と反応させるものであるため、十分な架橋密度が得られず、硬化物のガラス転移温度が低下し、鉛フリー半田実装に耐えられないものとなっていた。   In addition, in the following Patent Document 3, flame retardancy is obtained by using a phosphorus-modified epoxy resin obtained by reacting HCA with a phenol novolac type epoxy resin or a cresol novolak type epoxy resin as a main ingredient and blending with a curing agent for epoxy resin. An epoxy resin composition is disclosed. However, since the epoxy resin composition described in Patent Document 3 reacts with an epoxy group that originally becomes a crosslinking point as a means for introducing phosphorus atoms into the epoxy resin structure, a sufficient crosslinking density is obtained. In other words, the glass transition temperature of the cured product was lowered, so that it could not withstand lead-free solder mounting.

このように樹脂成分自体に難燃性を付与する手段として、フェノール樹脂又はエポキシ樹脂の変性剤としてHCAを使用する技術は知られているものの、HCAとアルデヒド又はケトンとの反応生成物をフェノール構造中の芳香核に反応させることにより、フェノール構造中にリン原子を導入しようとする場合、該反応生成物の反応性が低いために得られるリン原子含有フェノール樹脂の硬化物の耐熱性が十分な水準にないのが現状であった。   As a means for imparting flame retardancy to the resin component itself as described above, although a technique using HCA as a modifier for a phenol resin or an epoxy resin is known, a reaction product of HCA and an aldehyde or a ketone has a phenol structure. When a phosphorus atom is to be introduced into the phenol structure by reacting with the aromatic nucleus therein, the heat resistance of the cured product of the phosphorus atom-containing phenol resin obtained due to the low reactivity of the reaction product is sufficient. The current situation was not in the standard.

また、例えば、プリント配線板の分野では、近年、主に採用されているフリップチップ接続方式による半導体実装方式では、配線板と半導体との間にはんだボールを配置、全体を加熱して溶融接合させる所謂リフロー方式による半導体実装方式であることから、はんだリフロー時に配線板の熱収縮により、配線板と半導体を接続するはんだボールに大きな応力が発生し易く、配線の接続不良を起し易いものであった。その為、一般に、プリント配線板に用いられる絶縁材料には、低熱膨張率の材料が求められているが、前記した従来の各種リン原子含有フェノール樹脂やリン原子含有エポキシ樹脂は、何れも硬化物において線膨張係数が高く、高温環境下での低熱膨張性に劣るものであった。   Also, for example, in the field of printed wiring boards, in the semiconductor mounting system using the flip chip connection method which has been mainly adopted in recent years, solder balls are arranged between the wiring board and the semiconductor, and the whole is heated and melt-bonded. Since this is a so-called reflow semiconductor mounting method, thermal stress of the wiring board during solder reflow tends to cause a large stress on the solder balls connecting the wiring board and the semiconductor, and poor connection of the wiring. It was. Therefore, generally, insulating materials used for printed wiring boards are required to have a low coefficient of thermal expansion. However, the above-described conventional various phosphorus atom-containing phenol resins and phosphorus atom-containing epoxy resins are all cured products. , The coefficient of linear expansion was high, and the thermal expansion property was inferior in a high temperature environment.

特許3464783号公報Japanese Patent No. 3464783 特許3476780号公報Japanese Patent No. 3476780 特許3613724号公報Japanese Patent No. 3613724

従って、本発明が解決しようとする課題は、硬化物における難燃性、耐熱性に優れると共に、極めて低い熱膨張係数となる新規リン原子含有フェノール樹脂、これを含有する硬化性樹脂組成物、その硬化物、及びこれに用いるリン原子含有フェノール類の製造方法、並びに、該硬化性樹脂組成物を用いたプリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物を提供することにある。   Therefore, the problem to be solved by the present invention is a novel phosphorus atom-containing phenol resin that has excellent flame retardancy and heat resistance in a cured product and has an extremely low thermal expansion coefficient, a curable resin composition containing the same, and its Cured product, method for producing phosphorus atom-containing phenols used therefor, and printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, and semiconductor encapsulation using the curable resin composition It is providing the resin composition for materials, and the resin composition for interlayer insulation materials for buildup boards.

本発明者らは、上記課題を解決するため、鋭意検討した結果、ナフトール化合物とホルムアルデヒドとの重縮合した樹脂構造を有するフェノール樹脂の芳香核に前記HCAに代表されるリン原子含有化合物を反応させる際、先ず、該リン原子含有化合物にアルコキシ基を芳香核上の置換基として有する芳香族アルデヒドを反応させて、次いで、この反応生成物を、ナフトール構造を有する多官能フェノール類と反応させた場合に、その反応性が飛躍的に向上し、然も、最終的に得られるリン原子含有フェノール類の硬化物の耐熱性及び熱時の寸法安定性が飛躍的に向上することを見出し、本発明を完成するに至った。   As a result of intensive investigations to solve the above problems, the present inventors have reacted a phosphorus atom-containing compound typified by the HCA with an aromatic nucleus of a phenol resin having a resin structure obtained by polycondensation of a naphthol compound and formaldehyde. In this case, first, the phosphorus atom-containing compound is reacted with an aromatic aldehyde having an alkoxy group as a substituent on the aromatic nucleus, and then the reaction product is reacted with a polyfunctional phenol having a naphthol structure. In addition, it has been found that the reactivity is drastically improved, and that the heat resistance and the dimensional stability during heat of the finally obtained cured product of phosphorus atom-containing phenols are drastically improved. It came to complete.

即ち、本発明は、ナフトール化合物とホルムアルデヒドとの重縮合した樹脂構造を主骨格としており、かつ、該樹脂構造中の芳香核上の置換基として
下記構造式z1〜z4
That is, the present invention has a resin structure obtained by polycondensation of a naphthol compound and formaldehyde as a main skeleton, and the structural formulas z1 to z4 shown below as substituents on the aromatic nucleus in the resin structure.

Figure 2012051972

(上記構造式z1〜z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1〜5のアルキル基を表し、Rは炭素原子1〜4のアルキル基を表し、nは芳香核上の置換基ORの数であり1〜3である。)
で表される部分構造からなる群から選択される構造部位を有する樹脂構造を有することを特徴とする新規リン原子含有フェノール樹脂に関する。
Figure 2012051972

(In the structural formulas z1 to z4, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl. R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, R represents an alkyl group having 1 to 4 carbon atoms, n is the number of substituents OR on the aromatic nucleus, and 1 to 3)
The present invention relates to a novel phosphorus atom-containing phenol resin characterized by having a resin structure having a structural portion selected from the group consisting of the partial structures represented by the formula:

本発明は、更に、アルコキシ基を芳香核上の置換基として有する芳香族アルデヒド(a1)、及び、P−H基又はP−OH基を分子構造中に有する有機リン化合物(a2)を反応させ、次いで、得られた反応生成物を、前記ナフトール化合物とホルムアルデヒドとの重縮合体(a3)と反応させることを特徴とするリン原子含有フェノール類の製造方法に関する。   The present invention further comprises reacting an aromatic aldehyde (a1) having an alkoxy group as a substituent on the aromatic nucleus and an organophosphorus compound (a2) having a P—H group or a P—OH group in the molecular structure. Then, the reaction product obtained is reacted with the polycondensate (a3) of the naphthol compound and formaldehyde, which relates to a method for producing phosphorus atom-containing phenols.

本発明は、更に、エポキシ樹脂用硬化剤(A)及びエポキシ樹脂(B)を必須成分とする硬化性樹脂組成物であって、前記エポキシ樹脂用硬化剤(A)として、前記新規リン原子含有フェノール樹脂を用いることを特徴とする硬化性樹脂組成物に関する。   The present invention further includes a curable resin composition containing an epoxy resin curing agent (A) and an epoxy resin (B) as essential components, and the epoxy resin curing agent (A) contains the novel phosphorus atom. The present invention relates to a curable resin composition characterized by using a phenol resin.

本発明は、更に、前記硬化性樹脂組成物を硬化させてなる硬化物に関する。   The present invention further relates to a cured product obtained by curing the curable resin composition.

本発明は、更に、前記硬化性樹脂組成物からなるプリント配線基板用樹脂組成物に関する。   The present invention further relates to a printed wiring board resin composition comprising the curable resin composition.

本発明は、更に、前記硬化性樹脂組成物からなるフレキシブル配線基板用樹脂組成物に関する。   The present invention further relates to a resin composition for a flexible wiring board comprising the curable resin composition.

本発明は、更に、前記硬化性樹脂組成物をガラス基材に含浸、次いで硬化させてなるプリント配線基板に関する。   The present invention further relates to a printed wiring board obtained by impregnating a glass substrate with the curable resin composition and then curing the glass substrate.

本発明は、更に、前記硬化性樹脂組成物に加え、更に無機充填剤を含有する半導体封止材料用樹脂組成物に関する。   The present invention further relates to a resin composition for a semiconductor sealing material further containing an inorganic filler in addition to the curable resin composition.

本発明は、更に、前記硬化性樹脂組成物からなるビルドアップ基板用層間絶縁材料用樹脂組成物に関する。   The present invention further relates to a resin composition for an interlayer insulating material for build-up substrates, comprising the curable resin composition.

本発明によれば、硬化物における難燃性、耐熱性に優れると共に、極めて低い線膨張係数を達成できる硬化性樹脂組成物、その硬化物、及びこれに用いるリン原子含有フェノール類の製造方法、並びに、該硬化性樹脂組成物を用いたプリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物を提供できる。   According to the present invention, a curable resin composition that is excellent in flame retardancy and heat resistance in a cured product and can achieve an extremely low linear expansion coefficient, a cured product thereof, and a method for producing phosphorus atom-containing phenols used therein, In addition, a resin composition for a printed wiring board, a printed wiring board, a resin composition for a flexible wiring board, a resin composition for a semiconductor sealing material, and a resin for an interlayer insulating material for a build-up board using the curable resin composition A composition can be provided.

図1は、実施例1で得られたナフトールノボラック樹脂(A−1)のGPCチャート図である。1 is a GPC chart of the naphthol novolac resin (A-1) obtained in Example 1. FIG.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の新規リン原子含有フェノール樹脂は、ナフトール化合物とホルムアルデヒドとの重縮合した樹脂構造を主骨格としており、かつ、該樹脂構造中の芳香核上の置換基として
下記構造式z1〜z4
The novel phosphorus atom-containing phenol resin of the present invention has a resin structure obtained by polycondensation of a naphthol compound and formaldehyde as a main skeleton, and the following structural formulas z1 to z4 as substituents on an aromatic nucleus in the resin structure.

Figure 2012051972

(上記構造式z1〜z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1〜5のアルキル基を表し、Rは炭素原子1〜4のアルキル基を表し、nは芳香核上の置換基ORの数であり1〜3である。)
で表される部分構造からなる群から選択される構造部位を有する樹脂構造を有することを特徴とするものである。
Figure 2012051972

(In the structural formulas z1 to z4, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl. R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, R represents an alkyl group having 1 to 4 carbon atoms, n is the number of substituents OR on the aromatic nucleus, and 1 to 3)
It has the resin structure which has a structure site | part selected from the group which consists of the partial structure represented by these.

ここで、前記新規リン原子含有フェノール樹脂の主骨格を構成するナフトール化合物とホルムアルデヒドとの重縮合した樹脂構造は、具体的には、α−ナフトール、β−ナフトール、及びこれらにメチル基、エチル基、メトキシ基等のアルキル基が核置換した化合物等のナフトール化合物とホルムアルデヒドとの重縮合体であり、具体的には、α−ナフトールノボラック樹脂、β−ナフトールノボラック樹脂、α−ナフトール及びβ−ナフトールとホルムアルデヒドとの共縮合型ノボラック樹脂、及びこれらにメチル基、エチル基、メトキシ基等のアルキル基が核置換した分子構造を有する各種のノボラック樹脂、1,6−ジヒドロキシナフタレンのノボラック化物、2,7−ジヒドロキシナフタレンのジヒドロキシ化物などが挙げられる。該樹脂構造は、ナフトール核の平均核体数が3〜7となる範囲であることが難燃性及び密着性に優れる点から好ましい。ここで、ナフトール化合物の平均核体数とは後述するGPC測定に準拠して導出される値である。   Here, the resin structure obtained by polycondensation of naphthol compound and formaldehyde constituting the main skeleton of the novel phosphorus atom-containing phenol resin specifically includes α-naphthol, β-naphthol, and a methyl group and an ethyl group. A polycondensate of a naphthol compound such as a compound in which an alkyl group such as a methoxy group is substituted with a nucleus and formaldehyde, specifically, α-naphthol novolak resin, β-naphthol novolak resin, α-naphthol and β-naphthol. Co-condensation type novolak resins of aldehyde and formaldehyde, and various novolak resins having a molecular structure in which an alkyl group such as a methyl group, an ethyl group, or a methoxy group is substituted by a nucleus, a novolak product of 1,6-dihydroxynaphthalene, 2, Examples thereof include a dihydroxy product of 7-dihydroxynaphthalene. The resin structure is preferably in a range where the average number of naphthol nuclei is 3 to 7 from the viewpoint of excellent flame retardancy and adhesion. Here, the average number of nuclei of the naphthol compound is a value derived based on GPC measurement described later.

斯かる前記新規リン原子含有フェノール樹脂は、更に具体的には、アルコキシ基を芳香核上の置換基として有する芳香族アルデヒド(a1)、及び、P−H基又はP−OH基を分子構造中に有する有機リン化合物(a2)を反応させ、次いで、得られた反応生成物を、前記ナフトール化合物とホルムアルデヒドとの重縮合体(a3)と反応させる本発明の製造方法によって得られる樹脂構造を有するものであることが硬化物において難燃性及び耐熱性に優れたものとなる点から好ましい。   More specifically, such a novel phosphorus atom-containing phenol resin has an aromatic aldehyde (a1) having an alkoxy group as a substituent on the aromatic nucleus, and a P—H group or a P—OH group in the molecular structure. And having the resin structure obtained by the production method of the present invention in which the reaction product obtained is reacted with the polycondensate (a3) of the naphthol compound and formaldehyde. It is preferable that the cured product has excellent flame retardancy and heat resistance.

ここで用いるアルコキシ基を芳香核上の置換基として有する芳香族アルデヒド(a1)は、例えば、ベンズアルデヒド、o−トルアルデヒド、p−トルアルデヒド、o−エチルアルデヒド、p−エチルアルデヒド、p−イソプロピルベンズアルデヒド、ナフトアルデヒド、アントラセンアルデヒド等の芳香族アルデヒドの置換基としてアルコキシ基を有するものが挙げられ、具体的には下記構造式(A1−a)   The aromatic aldehyde (a1) having an alkoxy group as a substituent on the aromatic nucleus used here is, for example, benzaldehyde, o-tolualdehyde, p-tolualdehyde, o-ethylaldehyde, p-ethylaldehyde, p-isopropylbenzaldehyde. , Naphthaldehydes, anthracene aldehydes and the like as aromatic aldehyde substituents include those having an alkoxy group, specifically, the following structural formula (A1-a)

Figure 2012051972
Figure 2012051972

(式中、Rは水素原子又は炭素原子1〜3のアルキル基であり、Rは炭素原子1〜4のアルキル基を表し、nは芳香核上の置換基ORの数であり1〜3である。)
で表される化合物(a1−1)、或いは、下記構造式(A1−b)
Wherein R 5 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R represents an alkyl group having 1 to 4 carbon atoms, n is the number of substituents OR on the aromatic nucleus, and 1 to 3 .)
Or a compound represented by the following structural formula (A1-b)

Figure 2012051972
Figure 2012051972

(式中、Rは水素原子又は炭素原子1〜3のアルキル基であり、Rは炭素原子1〜4のアルキル基を表し、nは芳香核上の置換基ORの数であり1〜3である。)
で表される化合物(a1−2)が挙げられる。
Wherein R 5 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R represents an alkyl group having 1 to 4 carbon atoms, n is the number of substituents OR on the aromatic nucleus, and 1 to 3 .)
The compound (a1-2) represented by these is mentioned.

本発明ではこれらのなかでも特に1分子中におけるリンの含有率が高い点から前記化合物(A1−a)が好ましく、とりわけn=1のものが好ましい。   In the present invention, among these, the compound (A1-a) is particularly preferable because the phosphorus content in one molecule is high, and particularly, n = 1 is preferable.

本発明ではこのような芳香族アルデヒド(a1)の核置換基としてアルコキシ基を有することから、該芳香族アルデヒド(a1)とP−H基又はP−OH基を有する有機リン化合物(a2)との反応生成物中に生成する水酸基の反応性が優れたものとなり、殆ど触媒を用いなくとも、該生成物は前記ナフトール化合物とホルムアルデヒドとの重縮合体(a3)中の芳香核に反応する。このような特長がより顕著に現れる点からアルコキシ基はメトキシ基又はエトキシ基であることが好ましく、また、芳香族アルデヒドとしてはベンズアルデヒド、ナフトアルデヒドが好ましい。   In the present invention, since the aromatic aldehyde (a1) has an alkoxy group as a nucleus substituent, the aromatic aldehyde (a1) and an organophosphorus compound (a2) having a P—H group or a P—OH group, The reactivity of the hydroxyl group produced in the reaction product is excellent, and the product reacts with the aromatic nuclei in the polycondensate (a3) of the naphthol compound and formaldehyde even when almost no catalyst is used. The alkoxy group is preferably a methoxy group or an ethoxy group from the standpoint of such features, and the aromatic aldehyde is preferably benzaldehyde or naphthaldehyde.

芳香族アルデヒド(a1)と反応P−H基又はP−OH基を分子構造中に有する有機リン化合物(a2)は、具体的には、下記構造式(A2−a)又は構造式(A2−b)   Specifically, the organophosphorus compound (a2) having an aromatic aldehyde (a1) and a reactive P—H group or P—OH group in the molecular structure is represented by the following structural formula (A2-a) or structural formula (A2- b)

Figure 2012051972
Figure 2012051972

(上記構造式(A2−a)又は構造式(A2−b)中、Xaは水素原子又は水酸基であり、R、R、R、Rはそれぞれ独立的に、水素原子、炭素原子数1〜5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表す。)
で表される化合物が挙げられる。ここで、R、R、R、Rを構成する炭素原子数1〜5のアルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、t−ブチル基、n−ペンチル基が挙げられる。
(In the structural formula (A2-a) or the structural formula (A2-b), Xa is a hydrogen atom or a hydroxyl group, and R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom or a carbon atom. Represents an alkyl group, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl group of formulas 1 to 5.)
The compound represented by these is mentioned. Here, as R 1, R 2, R 3 , an alkyl group having 1 to 5 carbon atoms constituting the R 4, a methyl group, an ethyl group, n- propyl group, i- propyl, t- butyl group, An n-pentyl group may be mentioned.

本発明では、芳香族アルデヒド(a1)との反応によって生成する化合物(X)と
ナフトール化合物とホルムアルデヒドとの重縮合体(a3)との反応性が極めて良好なものとなる点から前記構造式(A2−a)又は構造式(A2−b)におけるXaが水素原子のものが好ましく、特にリン原子含有フェノール類の硬化物の難燃性に優れる点から前記構造式(A2−a)で表される化合物が好ましい。とりわけ、構造式(A2−a)においてR、R、R、Rの全てが水素原子であって、かつ、Xaが水素原子である、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイドであることが前記化合物(X)の反応性と、最終的に得られるリン原子含有フェノール類の硬化物の難燃性及び耐熱性が極めて良好なものとなる点から好ましい。
In the present invention, from the point that the reactivity of the compound (X) produced by the reaction with the aromatic aldehyde (a1), the polycondensate (a3) of naphthol compound and formaldehyde is extremely good, X2 in A2-a) or structural formula (A2-b) is preferably a hydrogen atom, and is represented by the structural formula (A2-a) from the viewpoint of excellent flame retardancy of a cured product of a phosphorus atom-containing phenol. Are preferred. In particular, 9,10-dihydro-9-oxa-10 in which R 1 , R 2 , R 3 and R 4 are all hydrogen atoms and Xa is a hydrogen atom in the structural formula (A2-a). -The point that it is the phosphaphenanthrene-10-oxide, and the flame retardance and heat resistance of the cured product of the phosphorus atom-containing phenols finally obtained are excellent. To preferred.

ここで、アルコキシ基を芳香核上の置換基として有する芳香族アルデヒド(a1)と、P−H基又はP−OH基を有する有機リン化合物(a2)との反応条件は、例えば、80〜180℃の温度条件下に行うことができる。該反応は無触媒で行うことができ、または、アルコール系有機溶媒、炭化水素系有機溶媒などの非ケトン系有機溶媒の存在下で行うことができる。   Here, the reaction conditions of the aromatic aldehyde (a1) having an alkoxy group as a substituent on the aromatic nucleus and the organophosphorus compound (a2) having a P—H group or a P—OH group are, for example, 80 to 180. It can be performed under the temperature condition of ° C. The reaction can be performed without a catalyst, or can be performed in the presence of a non-ketone organic solvent such as an alcohol organic solvent or a hydrocarbon organic solvent.

かかる反応によって生成する化合物(X)は、例えば、前記芳香族アルデヒド(a1)として構造式(a1−1)で表される化合物、前記有機リン化合物(a2)として構造式(a2−1)又は構造式(a2−2)で表される化合物を用いた場合、下記の構造式x1〜x4   The compound (X) produced by this reaction is, for example, a compound represented by the structural formula (a1-1) as the aromatic aldehyde (a1), a structural formula (a2-1) or the organic phosphorus compound (a2), or When the compound represented by the structural formula (a2-2) is used, the following structural formulas x1 to x4

Figure 2012051972
Figure 2012051972

(上記構造式x1〜x4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1〜5のアルキル基を表し、Rは炭素原子1〜4のアルキル基を表し、nは芳香核上の置換基ORの数であり1〜3である。)
が挙げられる。
(In the structural formulas x1 to x4, R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl. R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, R represents an alkyl group having 1 to 4 carbon atoms, n is the number of substituents OR on the aromatic nucleus, and 1 to 3)
Is mentioned.

これらの中でも特にナフトールノボラック樹脂成分(a3)との反応性に優れる点から前記構造式x1及びx2で表される化合物が好ましく、特に最終的に得られるリン原子含有フェノール類の硬化物の難燃性に優れる点から前記構造式x1で表される化合物が好ましい。   Among these, the compounds represented by the structural formulas x1 and x2 are preferable because they are particularly excellent in reactivity with the naphthol novolak resin component (a3), and the flame retardant of a cured product of phosphorus atom-containing phenols finally obtained is particularly preferable. The compound represented by the structural formula x1 is preferable from the viewpoint of excellent properties.

次に、本発明で用いる前記ナフトール化合物とホルムアルデヒドとの重縮合体(a3)は、α−ナフトール、β−ナフトール、及びこれらにメチル基、エチル基、メトキシ基等のアルキル基が核置換した化合物等のナフトール化合物とホルムアルデヒドとの重縮合体であり、具体的には、α−ナフトールノボラック樹脂、β−ナフトールノボラック樹脂、α−ナフトール及びβ−ナフトールとホルムアルデヒドとの共縮合型ノボラック樹脂、及びこれらにメチル基、エチル基、メトキシ基等のアルキル基が核置換した分子構造を有する各種のノボラック樹脂、1,6−ジヒドロキシナフタレンのノボラック化物、2,7−ジヒドロキシナフタレンのジヒドロキシ化物などが挙げられる。   Next, the polycondensate (a3) of the naphthol compound and formaldehyde used in the present invention is a compound in which α-naphthol, β-naphthol, and an alkyl group such as a methyl group, an ethyl group, or a methoxy group are substituted by a nucleus. Polycondensates of naphthol compounds such as aldehydes, specifically, α-naphthol novolak resins, β-naphthol novolak resins, α-naphthols and co-condensation type novolak resins of β-naphthols and formaldehyde, and these Examples thereof include various novolak resins having a molecular structure in which an alkyl group such as a methyl group, an ethyl group, or a methoxy group is substituted with a nucleus, a novolak product of 1,6-dihydroxynaphthalene, a dihydroxy product of 2,7-dihydroxynaphthalene, and the like.

本発明では、前記ナフトールノボラック樹脂(a3)を、該ナフトールノボラック樹脂(a3)とナフトール化合物(a3−2)との組成物であって、かつ、組成物中のナフトール化合物(a3−2)のGPC測定におけるピーク面積基準での含有率が1〜6%となる割合である組成物(以下、これを「ナフトールノボラック樹脂組成物」と略記する。)として使用することが、とりわけプリント配線基板用途における層間剥離強度に優れ、かつ、難燃性の一層の改善を図ることができる点から好ましい。   In the present invention, the naphthol novolak resin (a3) is a composition of the naphthol novolak resin (a3) and the naphthol compound (a3-2), and the naphthol compound (a3-2) in the composition Use as a composition (hereinafter, abbreviated as “naphthol novolak resin composition”) in which the content on a peak area basis in GPC measurement is 1 to 6% is particularly used for printed wiring boards. It is preferable in that it has excellent delamination strength and can further improve the flame retardancy.

ここで、ナフトールノボラック樹脂組成物中のナフトール化合物(a3−2)のGPC測定におけるピーク面積基準での含有率とは、GPC測定によって計算される、ナフトール化合物とホルムアルデヒドとの重縮合体(a3)とナフトール化合物(a3−2)との混合物であるナフトールノボラック樹脂組成物の全ピーク面積に対する、ナフトール化合物(a3−2)のピーク面積の存在割合であり、具体的には下記の方法にて測定及び算出される値である。
<GPC測定条件>
3)GPC:測定条件は以下の通り。
Here, the content of the naphthol compound (a3-2) in the naphthol novolak resin composition on the basis of the peak area in the GPC measurement is a polycondensate (a3) of the naphthol compound and formaldehyde calculated by the GPC measurement. Is the ratio of the peak area of the naphthol compound (a3-2) to the total peak area of the naphthol novolak resin composition that is a mixture of the naphthol compound (a3-2) and specifically measured by the following method. And a calculated value.
<GPC measurement conditions>
3) GPC: The measurement conditions are as follows.

測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折径)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column “HXL-L” manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ Tosoh Corporation “TSK-GEL G4000HXL”
Detector: RI (Differential refraction diameter)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II version 4.10”.

(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids and filtered through a microfilter (50 μl).

<含有率の算出方法>
ナフトール化合物(a3−2)のピーク面積基準での含有率の算出方法は、ナフトールノボラック樹脂組成物を上記のGPC測定条件で測定し、検出されたフェノール樹脂組成物の全てのピーク面積に対するナフトール化合物(a3−2)のピーク面積の割合で算出される値である。
<Calculation method of content rate>
The calculation method of the content rate on the basis of the peak area of the naphthol compound (a3-2) is the measurement of the naphthol novolak resin composition under the above GPC measurement conditions, and the naphthol compound for all the peak areas of the detected phenol resin composition. It is a value calculated by the ratio of the peak area of (a3-2).

ここで、ナフトール化合物(a3−2)は、α−ナフトール、β−ナフトール、及びこれらにメチル基、エチル基、メトキシ基等のアルキル基が核置換した化合物等が挙げられるが、これらのなかでも特に反応性に優れ、本発明の効果が顕著なものとなる点からα−ナフトールが好ましい。   Here, examples of the naphthol compound (a3-2) include α-naphthol, β-naphthol, and compounds in which an alkyl group such as a methyl group, an ethyl group, or a methoxy group is substituted by a nucleus. In particular, α-naphthol is preferable from the viewpoint of excellent reactivity and remarkable effects of the present invention.

また、前記したナフトール化合物とホルムアルデヒドとの重縮合体(a3)は、前記ナフトール化合物(a2)と同一化合物を原料として用いたナフトールノボラック樹脂であることが溶剤溶解性、硬化物の耐熱性、難燃性に優れる点から好ましい。更に、前記ナフトール化合物とホルムアルデヒドとの重縮合体(a3)は、ナフトール核の平均核体数が3〜7となる範囲であることが難燃性及び密着性に優れる点から好ましい。ここで、ナフトール化合物の平均核体数とは前記したGPCの測定によって導出される値である。   Further, the polycondensate (a3) of the naphthol compound and formaldehyde is a naphthol novolak resin using the same compound as the naphthol compound (a2) as a raw material. It is preferable from the viewpoint of excellent flammability. Furthermore, the polycondensate (a3) of the naphthol compound and formaldehyde is preferably in a range where the average number of naphthol nuclei is 3 to 7 from the viewpoint of excellent flame retardancy and adhesion. Here, the average number of nuclei of the naphthol compound is a value derived by the GPC measurement described above.

前記したナフトールノボラック樹脂組成物は、ナフトール化合物とホルムアルデヒドとの重縮合体(a3)とナフトール化合物(a3−2)とを、後者のGPC測定における面積比が1〜6%となるように配合することによって、製造することができるが、前記したとおり、ナフトール化合物(a3−2)と同一化合物を原料として用いたナフトールノボラック樹脂を前記重縮合体(a3)として用いることが好ましい。この場合、ナフトール化合物(a3−2)とホルムアルデヒド(f)とを酸触媒下で、組成物中の未反応ナフトール化合物(a3−2)のGPC測定における面積比が1〜6%となるように反応させる方法(以下、これを「方法1」と略記する。)によって前記ナフトールノボラック樹脂組成物を製造することが、工業的な生産性に優れると共に、混合物の均一性に優れ、難燃性及び密着性の改善効果がより顕著なものとなる点から好ましい。   In the naphthol novolak resin composition described above, a polycondensate (a3) of a naphthol compound and formaldehyde and a naphthol compound (a3-2) are blended so that the area ratio in the latter GPC measurement is 1 to 6%. As described above, it is preferable to use, as the polycondensate (a3), a naphthol novolak resin using the same compound as the naphthol compound (a3-2) as a raw material. In this case, the area ratio in the GPC measurement of the unreacted naphthol compound (a3-2) in the composition is 1 to 6% under the acid catalyst of the naphthol compound (a3-2) and formaldehyde (f). Producing the naphthol novolak resin composition by a reaction method (hereinafter abbreviated as “Method 1”) is excellent in industrial productivity, excellent in uniformity of the mixture, flame retardancy and It is preferable from the point that the adhesive improvement effect becomes more remarkable.

斯かる方法1において、ナフトール化合物(a3−2)とホルムアルデヒド(f)との反応割合は、これらのモル比[ホルムアルデヒド(f)/ナフトール化合物(a3−2)]が0.6〜0.8となる割合であることが難燃性及び密着性に優れる点から好ましい。   In such method 1, the reaction ratio between the naphthol compound (a3-2) and formaldehyde (f) is such that the molar ratio [formaldehyde (f) / naphthol compound (a3-2)] is 0.6 to 0.8. It is preferable from the point which is excellent in a flame retardance and adhesiveness.

上記反応で用いられるホルムアルデヒド(f)のホルムアルデヒド源としては、例えば、ホルマリン、パラホルムアルデヒド、トリオキサン等が挙げられる。ここで、ホルマリンは水希釈性や製造時の作業性の点から30〜60質量%のホルマリンであることが好ましい。   Examples of the formaldehyde source of formaldehyde (f) used in the above reaction include formalin, paraformaldehyde, trioxane and the like. Here, it is preferable that formalin is 30-60 mass% formalin from the point of water dilutability and workability | operativity at the time of manufacture.

上記反応で用いられる酸触媒としては塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、p−トルエンスルホン酸、シュウ酸などの有機酸、三弗化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。その使用量は仕込み原料の総重量に対して、0.1〜5重量%の範囲が好ましい。   Examples of the acid catalyst used in the above reaction include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, p-toluenesulfonic acid and oxalic acid, boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Lewis acid etc. are mentioned. The amount used is preferably in the range of 0.1 to 5% by weight with respect to the total weight of the charged raw materials.

また、方法1における反応温度は80〜150℃の範囲であることが反応性に優れる点から好ましい。   Moreover, it is preferable from the point which is excellent in the reactivity that the reaction temperature in the method 1 is the range of 80-150 degreeC.

このようにして得られる重縮合体(a1)とナフトール化合物(a2)とを含有するフェノール樹脂組成物は、その軟化点が110〜150℃の範囲であることが組成物における流動性と硬化物における耐熱性とのバランスに優れる点から好ましい。   The phenol resin composition containing the polycondensate (a1) and the naphthol compound (a2) thus obtained has a fluidity and a cured product having a softening point in the range of 110 to 150 ° C. It is preferable from the viewpoint of excellent balance with heat resistance.

前記したナフトール化合物とホルムアルデヒドとの重縮合体(a3)を含むナフトールノボラック樹脂組成物は、ナフトール化合物とホルムアルデヒドとの重縮合体(a3)とナフトール化合物(a3−2)に加え、フェノールノボラック又はアルキルフェノールノボラック成分(a3−3)を含有することが、硬化物の耐熱性を低下させることなく難燃性及び密着性を一層改善できる点から好ましい。   The naphthol novolak resin composition containing the polycondensate (a3) of naphthol compound and formaldehyde described above is a phenol novolac or alkylphenol in addition to the polycondensate (a3) of naphthol compound and formaldehyde and naphthol compound (a3-2). It is preferable to contain a novolak component (a3-3) from the viewpoint that flame retardancy and adhesion can be further improved without lowering the heat resistance of the cured product.

ここで、フェノールノボラック又はアルキルフェノールノボラック成分(a3−3)(以下、「ノボラック成分(a3−3)」と略記する。)とは、フェノールノボラック又はアルキルフェノールノボラック(n)、該フェノールノボラック又はアルキルフェノールノボラック(n)とナフトール化合物とホルムアルデヒドとの重縮合体(a3’)、或いはこれらの混合物が挙げられるが、特に、前記ノボラック(n)と前記重縮合体(a3’)とが渾然一体となった混合物であることが難燃性及び密着性の改善効果に優れる点から好ましい。   Here, the phenol novolak or alkylphenol novolak component (a3-3) (hereinafter abbreviated as “novolak component (a3-3)”) means the phenol novolak or alkylphenol novolak (n), the phenol novolak or alkylphenol novolak ( n), a polycondensate (a3 ′) of a naphthol compound and formaldehyde, or a mixture thereof. In particular, a mixture in which the novolak (n) and the polycondensate (a3 ′) are united. It is preferable from the point which is excellent in the improvement effect of a flame retardance and adhesiveness.

ここで、前記ナフトールノボラック樹脂組成物中のノボラック成分(a3−3)の存在割合は、前記重縮合体(a1)及びナフトール化合物(a2)中の全ナフトール骨格に対する前記ノボラック成分(a3−3)中の全フェノール骨格の割合として、ナフトール骨格1モルあたり、フェノール骨格が0.2〜0.01モルとなる割合であることが、硬化物における難燃性及び密着性の改善効果が顕著なものとなる点から好ましい。   Here, the proportion of the novolak component (a3-3) in the naphthol novolak resin composition is such that the novolak component (a3-3) with respect to the total naphthol skeleton in the polycondensate (a1) and the naphthol compound (a2). The ratio of the total phenol skeleton in the naphthol skeleton per mole is such that the phenol skeleton is 0.2 to 0.01 mole, and the effect of improving flame retardancy and adhesion in the cured product is remarkable. It is preferable from the point which becomes.

ここで、上記のナフトール骨格1モルあたり、フェノール骨格のモルの割合は13C−NMR測定によって計算され、具体的には下記の方法にて測定及び算出される値である。
13C−NMR測定条件>
13C−NMR:測定条件は以下の通り。
Here, the mole ratio of the phenol skeleton per mole of the naphthol skeleton is calculated by 13 C-NMR measurement, and specifically is a value measured and calculated by the following method.
< 13C -NMR measurement conditions>
13 C-NMR: Measurement conditions are as follows.

装置:日本電子(株)製 AL−400
測定モード:SGNNE(NOE消去の1H完全デカップリング法)
溶媒 :ジメチルスルホキシド
パルス角度:45℃パルス
試料濃度 :30wt%
積算回数 :10000回
<ナフトール骨格1モルあたりのフェノール骨格のモルの割合の算出方法>
ナフトールノボラック樹脂組成物を上記の13C−NMR測定条件で測定した場合、145ppmから160ppmの間に検出される水酸基が結合する炭素原子のピークの積算値(α)と100ppmから140ppmの間に検出される水酸基が結合していない炭素原子のピークの積算値(β)の関係は、下記式(1)及び下記式(2)を充足する。ここで(X)はナフトール骨格のモル数、(Y)はフェノール骨格のモル数を示す。
Device: AL-400 manufactured by JEOL Ltd.
Measurement mode: SGNNE (1H complete decoupling method of NOE elimination)
Solvent: Dimethyl sulfoxide Pulse angle: 45 ° C pulse Sample concentration: 30 wt%
Accumulation count: 10,000 times <Calculation method of the ratio of moles of phenol skeleton per mole of naphthol skeleton>
When the naphthol novolak resin composition is measured under the above-mentioned 13 C-NMR measurement conditions, the integrated value (α) of the peak of the carbon atom to which the hydroxyl group detected between 145 ppm and 160 ppm is bonded is detected between 100 ppm and 140 ppm. The relationship of the integrated value (β) of the peak of carbon atoms to which no hydroxyl group is bonded satisfies the following formula (1) and the following formula (2). Here, (X) represents the number of moles of the naphthol skeleton, and (Y) represents the number of moles of the phenol skeleton.

Figure 2012051972
Figure 2012051972

よって、上記式(1)及び式(2)から、ナフトール骨格1モルあたりのフェノール骨格のモルの割合(Y/X)は、下記式(3)により算出することができる。   Therefore, from the above formulas (1) and (2), the mole ratio (Y / X) of the phenol skeleton per mole of naphthol skeleton can be calculated by the following formula (3).

Figure 2012051972
Figure 2012051972

前記ナフトールノボラック樹脂組成物に、ノボラック成分(a3−3)を配合する方法としては、具体的には、該ナフトールノボラック樹脂組成物を製造する際に、フェノールノボラック又はアルキルフェノールノボラック(n)と、ナフトール化合物(a3−2)と、ホルムアルデヒド(f)とを酸触媒下で、組成物中の未反応ナフトール化合物(a3−2)のGPC測定における面積比が1〜6%となるように反応させる方法(以下、これを「方法2」と略記する。)が挙げられる。本発明では、かかる方法2により、ノボラック成分(a3−3)を含有するナフトールノボラック樹脂組成物を製造する方法が、該フェノール樹脂組成物の均一性に優れ、難燃性及び密着性の改善効果がより顕著なものとなる点から好ましい。   As a method for blending the naphthol novolak resin composition with the novolak component (a3-3), specifically, when producing the naphthol novolak resin composition, phenol novolak or alkylphenol novolak (n) and naphthol Method of reacting compound (a3-2) and formaldehyde (f) in an acid catalyst so that the area ratio in GPC measurement of unreacted naphthol compound (a3-2) in the composition is 1 to 6%. (Hereinafter, this is abbreviated as “Method 2”.). In the present invention, the method for producing a naphthol novolak resin composition containing the novolak component (a3-3) by the method 2 is excellent in uniformity of the phenol resin composition, and improves the flame retardancy and adhesion. Is preferable from the point that becomes more prominent.

ここで、前記方法2で用いるフェノールノボラック又はアルキルフェノールノボラック(n)は、具体的には、フェノールノボラック、クレゾールノボラック、t−ブチルフェノールノボラックなどが挙げられる。本発明では難燃性に優れる点からクレゾールノボラックであることが好ましい。また、かかるフェノールノボラック又はアルキルフェノールノボラック(n)は、軟化点が60〜120℃の範囲にあるもの、更に、前記条件でのGPC測定による平均核体数が3〜10の範囲にあるものが最終的に得られるフェノール樹脂組成物の流動性を高く保持しつつ、難燃性及び密着性の改善効果が良好なものとなる点から好ましい。   Here, specific examples of the phenol novolak or alkylphenol novolak (n) used in Method 2 include phenol novolak, cresol novolak, and t-butylphenol novolak. In the present invention, cresol novolac is preferable from the viewpoint of excellent flame retardancy. The phenol novolak or alkylphenol novolak (n) has a softening point in the range of 60 to 120 ° C., and further has an average number of nuclei in the range of 3 to 10 by GPC measurement under the above conditions. In particular, the phenol resin composition obtained is preferable in that the fluidity of the phenol resin composition is kept high and the effect of improving flame retardancy and adhesion is good.

前記方法2における、フェノールノボラック又はアルキルフェノールノボラック(n)使用量は、原料成分中、0.5〜10質量%となる割合であることが好ましい。ここで述べる原料成分とは、ナフトール化合物(a3−2)、ホルムアルデヒド(f)及びフェノールノボラック又はアルキルフェノールノボラック(n)の総量の事を示す。一方、ナフトール化合物(a3−2)とホルムアルデヒド(f)との反応割合は、方法1の場合と同様に、モル比[ホルムアルデヒド(f)/ナフトール化合物(a3−2)]が0.6〜0.8となる割合であることが難燃性及び密着性に優れる点から好ましい。   The amount of phenol novolak or alkylphenol novolak (n) used in Method 2 is preferably 0.5 to 10% by mass in the raw material components. The raw material component described here refers to the total amount of the naphthol compound (a3-2), formaldehyde (f) and phenol novolak or alkylphenol novolak (n). On the other hand, the reaction ratio between the naphthol compound (a3-2) and formaldehyde (f) is the same as in the case of Method 1 in that the molar ratio [formaldehyde (f) / naphthol compound (a3-2)] is 0.6 to 0. Is preferably from the viewpoint of excellent flame retardancy and adhesion.

また、方法2で用いられる酸触媒は、方法1の場合と同様に、塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、p−トルエンスルホン酸、シュウ酸などの有機酸、三弗化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。その使用量は仕込み原料の総重量に対して、0.1〜5質量%の範囲であることが好ましい。   The acid catalyst used in Method 2 is the same as in Method 1, such as inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, p-toluenesulfonic acid and oxalic acid, and trifluoride. Examples thereof include Lewis acids such as boron, anhydrous aluminum chloride, and zinc chloride. The amount used is preferably in the range of 0.1 to 5% by mass relative to the total weight of the raw materials charged.

方法2における反応温度は80〜150℃の範囲であることが反応性に優れる点から好ましい。   The reaction temperature in Method 2 is preferably in the range of 80 to 150 ° C. from the viewpoint of excellent reactivity.

このようにして方法2により製造されたナフトールノボラック樹脂組成物は、その軟化点が110〜150の範囲であることが組成物における流動性と硬化物における耐熱性とのバランスに優れる点から好ましい。   Thus, it is preferable that the naphthol novolak resin composition manufactured by the method 2 has a softening point in the range of 110 to 150 from the viewpoint of excellent balance between fluidity in the composition and heat resistance in the cured product.

該芳香族アルデヒド(a1)とP−H基又はP−OH基を有する有機リン化合物(a2)との反応生成物である化合物(X)と、前記ナフトールノボラック樹脂成分(a3)との反応は、140〜200℃の温度条件下で行うことができる。前記した通り、本発明ではこの化合物(X)と前記ナフトールノボラック樹脂成分(a3)との反応は、極めて反応性が高く、特に触媒を必要としないが、適宜、用いても構わない。ここで使用し得る触媒としては、塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、p−トルエンスルホン酸、シュウ酸などの有機酸、三弗化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。その使用量は仕込み原料の総重量に対して、5.0質量%未満であることが好ましい。   The reaction between the aromatic aldehyde (a1) and the compound (X), which is a reaction product of the organophosphorus compound (a2) having a P—H group or a P—OH group, with the naphthol novolak resin component (a3) , 140 to 200 ° C. As described above, in the present invention, the reaction between the compound (X) and the naphthol novolak resin component (a3) is extremely reactive and does not require a catalyst, but may be used as appropriate. Examples of catalysts that can be used here include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, p-toluenesulfonic acid, and oxalic acid, boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Lewis acid etc. are mentioned. The amount used is preferably less than 5.0% by mass with respect to the total weight of the charged raw materials.

また、本発明ではこの化合物(X)と前記ナフトールノボラック樹脂成分(a3)との反応割合は特に限定されることがなく、寧ろ、その良好な反応性ゆえ、目的とする難燃性や耐熱性の性能レベル、或いは、用途に応じて任意に前記ナフトールノボラック樹脂成分(a3)に対する化合物(X)の変性量をコントロールすることができる。但し、前記化合物(X)が反応生成物中に残存しないような割合、具体的には、ナフトールノボラック樹脂成分(a3)の芳香核上の反応点に対して、当量以下となる割合で反応させることが好ましい。更に、前記ナフトールノボラック樹脂成分(a3)として好ましく用いられるノボラック型フェノール樹脂、アラルキル型フェノール樹脂に前記化合物(X)を変性する場合、リン原子の含有率が質量基準で4.0〜7.0質量%となる割合となる範囲であることが耐熱性及び難燃性に優れる点から好ましい。   In the present invention, the reaction ratio between the compound (X) and the naphthol novolak resin component (a3) is not particularly limited. Rather, because of its good reactivity, the intended flame retardancy and heat resistance are achieved. The modified amount of the compound (X) with respect to the naphthol novolak resin component (a3) can be arbitrarily controlled according to the performance level or the application. However, the reaction is performed in such a ratio that the compound (X) does not remain in the reaction product, specifically, in a ratio of not more than the equivalent to the reaction point on the aromatic nucleus of the naphthol novolak resin component (a3). It is preferable. Further, when the compound (X) is modified into a novolak type phenol resin or an aralkyl type phenol resin preferably used as the naphthol novolak resin component (a3), the phosphorus atom content is 4.0 to 7.0 on a mass basis. It is preferable from the point which is the range used as the ratio which becomes the mass% from the point which is excellent in heat resistance and a flame retardance.

反応後は、必要により、脱水・乾燥して目的物を得ることができる。この様にして得られるリン原子含有フェノール樹脂には、未反応成分である前記化合物(X)が実質的に殆ど残存することがない。例えば、ノボラック型フェノール樹脂、アラルキル型フェノール樹脂に前記化合物(X)を変性し、リン原子の含有率を質量基準で4.0〜7.0質量%の範囲に調節した場合、前記化合物(X)の残存量は、リン原子含有フェノール樹脂中GPCでの検出限界以下となる。   After the reaction, the desired product can be obtained by dehydration and drying, if necessary. In the phosphorus atom-containing phenol resin thus obtained, the compound (X) that is an unreacted component hardly remains substantially. For example, when the compound (X) is modified into a novolac-type phenol resin or an aralkyl-type phenol resin and the phosphorus atom content is adjusted to a range of 4.0 to 7.0% by mass, the compound (X ) Is less than the detection limit of GPC in the phosphorus atom-containing phenol resin.

本発明で用いるリン原子含有フェノール樹脂(A)は前記した通り、上記した製造方法によって得られる分子構造を有するものである。具体的な分子構造は前記した各原料成分の選択により任意に設計することが可能であり、ナフトール構造を有するフェノール樹脂(a3)の芳香核上の置換基として、下記構造式z1〜z4   As described above, the phosphorus atom-containing phenol resin (A) used in the present invention has a molecular structure obtained by the production method described above. The specific molecular structure can be arbitrarily designed by selecting the respective raw material components described above, and the following structural formulas z1 to z4 are used as substituents on the aromatic nucleus of the phenol resin (a3) having a naphthol structure.

Figure 2012051972
Figure 2012051972

(上記構造式z1〜z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1〜5のアルキル基を表し、Rは炭素原子1〜4のアルキル基を表し、nは芳香核上の置換基ORの数であり1〜3である。)
で表される部分構造からなる群から選択される構造部位を有する分子構造を有するものが挙げられる。
(In the structural formulas z1 to z4, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl. R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, R represents an alkyl group having 1 to 4 carbon atoms, n is the number of substituents OR on the aromatic nucleus, and 1 to 3)
Those having a molecular structure having a structural portion selected from the group consisting of the partial structures represented by the formula:

また、前記構造式z1〜z4で表される部分構造のなかでも特に、硬化物の耐熱性に優れる点から前記構造式z1又はz2で表される部分構造が好ましく、特に前記前記構造式z1で表されるものが好ましい。   Further, among the partial structures represented by the structural formulas z1 to z4, the partial structure represented by the structural formula z1 or z2 is preferable from the viewpoint of excellent heat resistance of the cured product, and in particular, the structural formula z1. Those represented are preferred.

また、本発明では、新規リン原子含有フェノール樹脂中のリン原子含有率が4.0〜7.0質量%となる割合であることが難燃性の点から好ましく、前記構造式z1〜z4で表される部分構造も斯かる当該リン含有率を満たす割合でリン原子含有フェノール類中に存在することが好ましい。かかるリン原子含有率は、原料仕込み量と、反応時の原料流出量に基づき、下記計算式によって算出した値である。   Moreover, in this invention, it is preferable from the point of a flame retardance that the phosphorus atom content rate in a novel phosphorus atom containing phenol resin is a ratio used as 4.0-7.0 mass%, In said structural formula z1-z4, The represented partial structure is also preferably present in the phosphorus atom-containing phenols at a ratio satisfying the phosphorus content. The phosphorus atom content is a value calculated by the following formula based on the raw material charge and the raw material outflow during the reaction.

Figure 2012051972
Figure 2012051972

次に、本発明の硬化性樹脂組成物は、前記した新規リン原子含有フェノール樹脂をエポキシ樹脂用硬化剤(A)として用い、これとエポキシ樹脂(B)を必須成分とするものである。ここで用いるエポキシ樹脂(B)は、種々のエポキシ樹脂を用いることができるが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビフェニルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、ジグリシジルオキシナフタレン、1,1−ビス(2,7−ジグリシジルオキシ−1−ナフチル)アルカン等の分子構造中にナフタレン骨格を有するエポキシ樹脂;リン原子含有エポキシ樹脂等が挙げられる。また、これらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。   Next, the curable resin composition of the present invention uses the above-described novel phosphorus atom-containing phenol resin as the epoxy resin curing agent (A), and this and the epoxy resin (B) as essential components. Various epoxy resins can be used as the epoxy resin (B) used here, for example, bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin; biphenyl type epoxy resin, tetramethylbiphenyl type Biphenyl type epoxy resins such as epoxy resins; phenol novolak type epoxy resins, cresol novolak type epoxy resins, bisphenol A novolak type epoxy resins, epoxidized products of condensates of phenols and aromatic aldehydes having phenolic hydroxyl groups, biphenyl novolak type Novolak type epoxy resins such as epoxy resins; triphenylmethane type epoxy resins; tetraphenylethane type epoxy resins; dicyclopentadiene-phenol addition reaction type epoxy resins; Aralkyl epoxy resin; naphthol novolak epoxy resin, naphthol aralkyl epoxy resin, naphthol-phenol co-condensed novolac epoxy resin, naphthol-cresol co-condensed novolac epoxy resin, diglycidyloxynaphthalene, 1,1-bis (2, 7-diglycidyloxy-1-naphthyl) epoxy resins having a naphthalene skeleton in the molecular structure such as alkanes; phosphorus atom-containing epoxy resins. Moreover, these epoxy resins may be used independently and may mix 2 or more types.

ここで、リン原子含有エポキシ樹脂としては、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(以下、「HCA」と略記する。)のエポキシ化物、HCAとキノン類とを反応させて得られるフェノール樹脂のエポキシ化物、フェノールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、クレゾールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、また、ビスフェノールA型エポキシ樹脂を、HCAとキノン類とを反応させて得られるフェノール樹脂で変成して得られるエポキシ樹脂、及びビスフェノールF型エポキシ樹脂を、HCAとキノン類とを反応させて得られるフェノール樹脂で変成して得られるエポキシ樹脂等が挙げられる。   Here, as the phosphorus atom-containing epoxy resin, epoxidized product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (hereinafter abbreviated as “HCA”), HCA and quinones Epoxy product of phenol resin obtained by reacting phenolic resin, epoxy resin obtained by modifying phenol novolac type epoxy resin with HCA, epoxy resin obtained by modifying cresol novolac type epoxy resin with HCA, and bisphenol A type epoxy resin using HCA and quinone An epoxy resin obtained by modifying a phenol resin obtained by reacting with a phenol, an epoxy resin obtained by modifying a bisphenol F type epoxy resin with a phenol resin obtained by reacting an HCA and a quinone, and the like Can be mentioned.

上記したエポキシ樹脂(B)のなかでも、特に耐熱性の点から、分子構造中にノボラック型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂が好ましく、また、銅などの金属に対する密着性の点からビスフェノール型エポキシ樹脂が好ましい。   Among the above-mentioned epoxy resins (B), a novolac type epoxy resin and an epoxy resin having a naphthalene skeleton are preferable in the molecular structure from the viewpoint of heat resistance, and a bisphenol type from the viewpoint of adhesion to metals such as copper. Epoxy resins are preferred.

本発明の硬化性樹脂組成物では、前記エポキシ樹脂用硬化剤(A)の硬化剤として前記新規リン原子含有フェノール樹脂の他の硬化剤(A’)を併用してもよい。かかる他の硬化剤(A’)は、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ−ル系化合物などが挙げられる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(フェノール骨格、トリアジン環及び1級アミノ基を分子構造中に有する化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。 In the curable resin composition of this invention, you may use together the other hardening | curing agent (A ') of the said novel phosphorus atom containing phenol resin as a hardening | curing agent of the said hardening | curing agent for epoxy resins (A). Examples of such other curing agents (A ′) include amine compounds, amide compounds, acid anhydride compounds, phenol compounds, and the like. Specifically, examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, and guanidine derivative. Examples of the amide compound include dicyandiamide. And polyamide resins synthesized from dimer of linolenic acid and ethylenediamine. Examples of acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, and tetrahydrophthalic anhydride. Acid, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc., and phenolic compounds include phenol novolac resin, cresol novolac resin Aromatic hydrocarbon formaldehyde resin modified phenolic resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zyrock resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensation Novolac resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyhydric phenol compound with phenol nucleus linked by bismethylene group), biphenyl-modified naphthol resin (polyvalent naphthol compound with phenol nucleus linked by bismethylene group) , Aminotriazine-modified phenolic resin (compound having phenol skeleton, triazine ring and primary amino group in the molecular structure) and alkoxy group-containing aromatic ring-modified novolak Examples thereof include polyhydric phenol compounds such as resins (polyhydric phenol compounds in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde).

これらの中でも、特に芳香族骨格を分子構造内に多く含むものが低熱膨張性の点から好ましく、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、アルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)が寸法安定性に優れることから好ましい。   Among these, those containing a large amount of an aromatic skeleton in the molecular structure are preferred from the viewpoint of low thermal expansion, and specifically, phenol novolac resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, phenol aralkyls. Resin, naphthol aralkyl resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin, biphenyl-modified naphthol resin, aminotriazine-modified phenol resin, alkoxy group-containing aromatic ring-modified novolak resin (Polyhydric phenol compound in which a phenol nucleus and an alkoxy group-containing aromatic ring are connected with formaldehyde) is preferable because of its excellent dimensional stability.

ここで、前記したアミノトリアジン変性フェノール樹脂、すなわちフェノール骨格、トリアジン環及び1級アミノ基を分子構造中に有する化合物は、トリアジン化合物と、フェノール類と、アルデヒド類とを縮合反応させて得られる分子構造を有するものが硬化物の難燃性が良好となる点から好ましい。また、本発明では、該化合物(A’−b)中の窒素原子含有率が10〜25質量%となるもの、好ましくは15〜25質量%となるものを用いることにより硬化物における熱膨張係数が著しく低下し、優れた寸法安定性を発現させることができる。   Here, the aforementioned aminotriazine-modified phenol resin, that is, a compound having a phenol skeleton, a triazine ring and a primary amino group in the molecular structure is a molecule obtained by condensation reaction of a triazine compound, a phenol and an aldehyde. What has a structure is preferable from the point which the flame retardance of hardened | cured material becomes favorable. Moreover, in this invention, the thermal expansion coefficient in hardened | cured material is used by using what the nitrogen atom content rate in this compound (A'-b) becomes 10-25 mass%, Preferably it is 15-25 mass%. Is significantly reduced, and excellent dimensional stability can be exhibited.

更に、上記したトリアジン化合物と、フェノール類と、アルデヒド類とを縮合反応させた場合には、実際には、種々の化合物の混合物となるため、該化合物(A’−b)は、この混合物(以下、これを「混合物(A’−b)」と略記する)として用いることが好ましい。更に、本発明では、寸法安定性の点から前記混合物(A’−b)中の窒素原子含有率が10〜25質量%となる範囲、なかでも15〜25質量%であることが好ましい。   Further, when the above-mentioned triazine compound, phenols and aldehydes are subjected to a condensation reaction, in practice, the compound (A′-b) is a mixture of various compounds. Hereinafter, it is preferably used as “mixture (A′-b)”. Furthermore, in the present invention, from the viewpoint of dimensional stability, the nitrogen atom content in the mixture (A′-b) is preferably in the range of 10 to 25% by mass, and more preferably in the range of 15 to 25% by mass.

ここで、フェノール骨格とはフェノール類に起因するフェノール構造部位を現し、また、トリアジン骨格とはトリアジン化合物に起因するトリアジン構造部位を現す。   Here, the phenol skeleton represents a phenol structure site caused by phenols, and the triazine skeleton represents a triazine structure site caused by a triazine compound.

ここで用いられるフェノール類としては、特に限定されるものではなく、例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、キシレノール、エチルフェノール、ブチルフェノール、ノニルフェノール、オクチルフェノール等のアルキルフェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールAD、テトラメチルビスフェノールA、レゾルシン、カテコール等の多価フェノール類、モノヒドロキシナフタレン、ジヒドロキシナフタレン等のナフトール化合物、その他フェニルフェノール、アミノフェノール等が挙げられる。これらのフェノール類は、単独又は2種類以上併用で使用可能であるが、最終的な硬化物が難燃性に優れ、且つアミノ基含有トリアジン化合物との反応性に優れる点からフェノールが好ましい。   The phenols used here are not particularly limited. For example, phenol, o-cresol, m-cresol, p-cresol, xylenol, ethylphenol, butylphenol, nonylphenol, octylphenol and other alkylphenols, bisphenol A Polyphenols such as bisphenol F, bisphenol S, bisphenol AD, tetramethylbisphenol A, resorcin, and catechol, naphthol compounds such as monohydroxynaphthalene and dihydroxynaphthalene, and other phenylphenols and aminophenols. These phenols can be used alone or in combination of two or more. Phenols are preferred because the final cured product is excellent in flame retardancy and excellent in reactivity with amino group-containing triazine compounds.

次に、トリアジン環を含む化合物としては、特に限定されるものではないが、下記構造式   Next, the compound containing a triazine ring is not particularly limited, but the following structural formula

Figure 2012051972
Figure 2012051972

(式中、R’、R’、R’は、アミノ基、アルキル基、フェニル基、ヒドロキシル基、ヒドロキシルアルキル基、エーテル基、エステル基、酸基、不飽和基、シアノ基のいずれかを表わす。)
で表される化合物又はイソシアヌル酸が好ましい。
(In the formula, R ′ 1 , R ′ 2 and R ′ 3 are any of amino group, alkyl group, phenyl group, hydroxyl group, hydroxylalkyl group, ether group, ester group, acid group, unsaturated group, and cyano group. Represents.)
Or a compound represented by isocyanuric acid is preferred.

前記構造式で示される化合物のなかでも特に、反応性に優れる点から前記中、R’、R’、R’のうちのいずれか2つ又は3つがアミノ基であるメラミン、アセトグアナミン、ベンゾグアナミンなどのグアナミン誘導体に代表されるアミノ基含有トリアジン化合物が好ましい。 Among the compounds represented by the structural formula, melamine and acetoguanamine, in which any two or three of R ′ 1 , R ′ 2 , and R ′ 3 are amino groups are particularly preferred because of their excellent reactivity. An amino group-containing triazine compound represented by a guanamine derivative such as benzoguanamine is preferable.

これらの化合物も使用にあたって1種類のみに限定されるものではなく2種以上を併用することも可能である。   These compounds are not limited to one kind in use, and two or more kinds may be used in combination.

次に、アルデヒド類は、特に限定されるものではないが、取扱いの容易さの点からホルムアルデヒドが好ましい。ホルムアルデヒドとしては、限定するものではないが、代表的な供給源としてホルマリン、パラホルムアルデヒド等が挙げられる。   Next, aldehydes are not particularly limited, but formaldehyde is preferable from the viewpoint of easy handling. Although formaldehyde is not limited, Formalin, paraformaldehyde, etc. are mentioned as a typical supply source.

本発明の硬化性樹脂組成物におけるエポキシ樹脂(B)と前記エポキシ樹脂用硬化剤(A)の配合量としては、特に制限されるものではないが、得られる硬化物特性が良好である点から、エポキシ樹脂(B)のエポキシ基の合計1当量に対して、リン原子含有フェノール樹脂(A)中の活性水素が0.7〜1.5当量になる量が好ましい。   The blending amount of the epoxy resin (B) and the curing agent for epoxy resin (A) in the curable resin composition of the present invention is not particularly limited, but the obtained cured product has good characteristics. The amount of active hydrogen in the phosphorus atom-containing phenol resin (A) is preferably 0.7 to 1.5 equivalents relative to a total of 1 equivalent of epoxy groups in the epoxy resin (B).

また必要に応じて本発明の硬化性樹脂組成物に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、アミン系化合物では2−エチル4−メチルイミダゾールが好ましい。   Moreover, a hardening accelerator can also be suitably used together with the curable resin composition of this invention as needed. Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts. In particular, when used as a semiconductor sealing material, it is excellent in curability, heat resistance, electrical characteristics, moisture resistance reliability, etc., so that triphenylphosphine is used for phosphorus compounds and 2-ethyl 4-methyl is used for amine compounds. Imidazole is preferred.

以上詳述した本発明の硬化性樹脂組成物は、前記した通り、優れた溶剤溶解性を発現することを特徴としている。従って、該硬化性樹脂組成物は、上記各成分の他に有機溶剤(C)を配合することが好ましい。ここで使用し得る前記有機溶剤(C)としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、1−メトキシ−2−プロパノール等の沸点が160℃以下の極性溶剤であることが好ましく、また、不揮発分40〜80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途では、有機溶剤(C)として、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いることが好ましく、また、不揮発分30〜60質量%となる割合で使用することが好ましい。   As described above, the curable resin composition of the present invention described in detail above is characterized by exhibiting excellent solvent solubility. Therefore, the curable resin composition preferably contains an organic solvent (C) in addition to the above components. Examples of the organic solvent (C) that can be used here include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, etc. The proper amount used can be appropriately selected depending on the application, but for example, in a printed wiring board application, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, 1-methoxy-2-propanol, etc. The non-volatile content is preferably 40 to 80% by mass. On the other hand, in the adhesive film use for build-up, as the organic solvent (C), for example, ketones such as acetone, methyl ethyl ketone, cyclohexanone, acetic acid such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, etc. Esters, carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. are preferably used, and non-volatile content is 30 to 60 mass. It is preferable to use it in the ratio which becomes%.

また、上記熱硬化性樹脂組成物は、難燃性を発揮させるために、例えばプリント配線板の分野においては、信頼性を低下させない範囲で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。   The thermosetting resin composition is a non-halogen flame retardant that substantially does not contain a halogen atom in order to exert flame retardancy, for example, in the field of printed wiring boards, as long as the reliability is not lowered. May be blended.

前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。   Examples of the non-halogen flame retardants include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants. The flame retardants may be used alone or in combination, and a plurality of flame retardants of the same system may be used, or different types of flame retardants may be used in combination.

前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。   As the phosphorus flame retardant, either inorganic or organic can be used. Examples of the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .

また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。   The red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like. Examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide For example, a method of double coating with a resin may be used.

前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサー10−ホスファフェナントレン−10−オキシド、10−(2,5―ジヒドロオキシフェニル)―10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10―(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。   Examples of the organic phosphorus compound include, for example, general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, organic nitrogen-containing phosphorus compounds, and 9,10- Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,7- Examples thereof include cyclic organophosphorus compounds such as dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide and derivatives obtained by reacting them with compounds such as epoxy resins and phenol resins.

それらの配合量としては、リン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。   The blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. In 100 parts by mass of curable resin composition containing all of halogen-based flame retardant and other fillers and additives, 0.1 to 2.0 parts by mass of red phosphorus is used as a non-halogen flame retardant. It is preferable to mix in the range, and when using an organophosphorus compound, it is preferably mixed in the range of 0.1 to 10.0 parts by mass, particularly in the range of 0.5 to 6.0 parts by mass. It is preferable to do.

また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。   In addition, when using the phosphorous flame retardant, the phosphorous flame retardant may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.

前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。   Examples of the nitrogen-based flame retardant include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazines, and the like, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.

前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、前記アミノトリアジン変性フェノール樹脂、及び該アミノトリアジン変性フェノール樹脂を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。   Examples of the triazine compound include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, guanylmelamine sulfate, melem sulfate, melam sulfate, etc. Examples thereof include an aminotriazine sulfate compound, aminotriazine-modified phenol resin, and aminotriazine-modified phenol resin further modified with tung oil, isomerized linseed oil, and the like.

前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。   Specific examples of the cyanuric acid compound include cyanuric acid and cyanuric acid melamine.

前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。   The compounding amount of the nitrogen-based flame retardant is appropriately selected according to the type of the nitrogen-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. For example, an epoxy resin, It is preferable to mix in the range of 0.05 to 10 parts by mass in 100 parts by mass of the curable resin composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives. It is preferable to mix | blend in the range of 1-5 mass parts.

また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。   Moreover, when using the said nitrogen-type flame retardant, you may use together a metal hydroxide, a molybdenum compound, etc.

前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。   The silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.

前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。   The amount of the silicone-based flame retardant is appropriately selected depending on the type of the silicone-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. For example, an epoxy resin, It is preferable to mix in the range of 0.05 to 20 parts by mass in 100 parts by mass of the curable resin composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.

前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。   Examples of the inorganic flame retardant include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.

前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。   Specific examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.

前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。   Specific examples of the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide. Bismuth oxide, chromium oxide, nickel oxide, copper oxide, tungsten oxide and the like.

前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。   Specific examples of the metal carbonate compound include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.

前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。   Specific examples of the metal powder include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.

前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。   Specific examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.

前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。 Specific examples of the low-melting-point glass include, for example, Ceeley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O 5 —B 2 O 3 —PbO—MgO, P—Sn—O—F, PbO—V 2 O 5 —TeO 2 , Al 2 O 3 —H 2 O, lead borosilicate, etc. The glassy compound can be mentioned.

前記無機系難燃剤の配合量としては、無機系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましく、特に0.5〜15質量部の範囲で配合することが好ましい。   The amount of the inorganic flame retardant is appropriately selected depending on the type of the inorganic flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. For example, an epoxy resin, It is preferable to mix in the range of 0.05 to 20 parts by mass in 100 parts by mass of the curable resin composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives. It is preferable to mix | blend in 5-15 mass parts.

前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。   Examples of the organic metal salt flame retardant include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound.

前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.005〜10質量部の範囲で配合することが好ましい。   The amount of the organic metal salt flame retardant is appropriately selected depending on the type of the organic metal salt flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. In 100 parts by mass of the curable resin composition in which all of epoxy resin, curing agent, non-halogen flame retardant and other fillers and additives are blended, it is preferably blended in the range of 0.005 to 10 parts by mass. .

本発明の硬化性樹脂組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、硬化性樹脂組成物の全体量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。   An inorganic filler can be mix | blended with the curable resin composition of this invention as needed. Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica. The fused silica can be used in either a crushed shape or a spherical shape. However, in order to increase the blending amount of the fused silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape. In order to further increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica. The filling rate is preferably higher in consideration of flame retardancy, and particularly preferably 20% by mass or more with respect to the total amount of the curable resin composition. Moreover, when using for uses, such as an electrically conductive paste, electroconductive fillers, such as silver powder and copper powder, can be used.

本発明の硬化性樹脂組成物は、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。   Various compounding agents, such as a silane coupling agent, a mold release agent, a pigment, an emulsifier, can be added to the curable resin composition of this invention as needed.

本発明の硬化性樹脂組成物は、上記した各成分を均一に混合することにより得られる。本発明のエポキシ樹脂、硬化剤、更に必要により硬化促進剤の配合された本発明の硬化性樹脂組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。   The curable resin composition of the present invention can be obtained by uniformly mixing the above-described components. The curable resin composition of the present invention in which the epoxy resin of the present invention, a curing agent, and further, if necessary, a curing accelerator are blended can be easily made into a cured product by a method similar to a conventionally known method. Examples of the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films.

本発明の硬化性樹脂組成物が用いられる用途としては、プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料、半導体封止材料、導電ペースト、ビルドアップ用接着フィルム、樹脂注型材料、接着剤、等が挙げられる。また、これら各種用途のうち、プリント配線板や電子回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ所謂電子部品内蔵用基板用の絶縁材料として用いることができる。これらの中でも、高難燃性、高耐熱性、低熱膨張性、及び溶剤溶解性といった特性からフレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料、半導体封止材料に用いることが好ましい。   Applications for use of the curable resin composition of the present invention include printed wiring board materials, resin compositions for flexible wiring boards, interlayer insulating materials for build-up boards, semiconductor sealing materials, conductive pastes, and adhesive films for build-ups Resin casting materials, adhesives, and the like. Among these various applications, in printed circuit boards, insulating materials for electronic circuit boards, and adhesive films for build-up, passive parts such as capacitors and active parts such as IC chips are embedded in so-called electronic parts. It can be used as an insulating material for a substrate. Among these, from the characteristics such as high flame retardancy, high heat resistance, low thermal expansibility, and solvent solubility, it is preferably used for a resin composition for a flexible wiring board, an interlayer insulating material for a build-up board, and a semiconductor sealing material. .

ここで、本発明の硬化性樹脂組成物からプリント回路基板を製造するには、前記有機溶剤(D)を含むワニス状の硬化性樹脂組成物を、更に有機溶剤(D)を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させる方法が挙げられる。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状の硬化性樹脂組成物を、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得る。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、目的とするプリント回路基板を得ることができる。   Here, in order to produce a printed circuit board from the curable resin composition of the present invention, the varnish-like curable resin composition containing the organic solvent (D) is further blended with the organic solvent (D) to obtain a varnish. A method of impregnating a reinforced resin composition into a reinforcing base material and stacking a copper foil to heat-press is mentioned. Examples of the reinforcing substrate that can be used here include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth. If this method is described in further detail, first, the varnish-like curable resin composition is heated at a heating temperature corresponding to the solvent type used, preferably 50 to 170 ° C., thereby being a prepreg which is a cured product. Get. The mass ratio of the resin composition and the reinforcing substrate used at this time is not particularly limited, but it is usually preferable that the resin content in the prepreg is 20 to 60% by mass. Next, the prepreg obtained as described above is laminated by a conventional method, and a copper foil is appropriately stacked, and then subjected to thermocompression bonding at a pressure of 1 to 10 MPa at 170 to 250 ° C. for 10 minutes to 3 hours, A desired printed circuit board can be obtained.

本発明の硬化性樹脂組成物からフレキシルブル配線基板を製造するには、前記リン原子含有フェノール樹脂(A)、前記エポキシ樹脂(B)、硬化促進剤(C)、及び有機溶剤(D)を配合して、リバースロールコータ、コンマコータ等の塗布機を用いて、電気絶縁性フィルムに塗布する。次いで、加熱機を用いて60〜170℃で1〜15分間加熱し、溶媒を揮発させて、接着剤組成物をB−ステージ化する。次いで、加熱ロール等を用いて、接着剤に金属箔を熱圧着する。その際の圧着圧力は2〜200N/cm、圧着温度は40〜200℃が好ましい。それで十分な接着性能が得られれば、ここで終えても構わないが、完全硬化が必要な場合は、さらに100〜200℃で1〜24時間の条件で後硬化させることが好ましい。最終的に硬化させた後の接着剤組成物膜の厚みは、5〜100μmの範囲が好ましい。   In order to produce a flexible wiring board from the curable resin composition of the present invention, the phosphorus atom-containing phenol resin (A), the epoxy resin (B), the curing accelerator (C), and the organic solvent (D) are added. It mix | blends and it apply | coats to an electrically insulating film using coating machines, such as a reverse roll coater and a comma coater. Subsequently, it heats at 60-170 degreeC for 1 to 15 minutes using a heating machine, volatilizes a solvent, and B-stages an adhesive composition. Next, the metal foil is thermocompression bonded to the adhesive using a heating roll or the like. At that time, the pressure is preferably 2 to 200 N / cm and the pressure is preferably 40 to 200 ° C. If sufficient adhesive performance can be obtained, the process may be completed here. However, when complete curing is required, it is preferably post-cured at 100 to 200 ° C. for 1 to 24 hours. The thickness of the adhesive composition film after finally curing is preferably in the range of 5 to 100 μm.

本発明の硬化性樹脂組成物から半導体封止材料を調整するには、半導体封止材用に調製されたエポキシ樹脂組成物を作製するためには、前記リン原子含有フェノール樹脂(A)、前記エポキシ樹脂(B)、硬化促進剤(C)、及び無機充填剤等の配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に溶融混合して得ることができる。その際、無機充填剤としては、通常シリカが用いられるが、その充填率はエポキシ樹脂組成物100質量部当たり、充填剤を30〜95質量%の範囲が用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上が特に好ましく、それらの効果を格段に上げるためには、80質量部以上が一層その効果を高めることができる。半導体パッケージ成形としては、該組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間に加熱することにより成形物である半導体装置を得る方法がある   In order to prepare a semiconductor sealing material from the curable resin composition of the present invention, in order to prepare an epoxy resin composition prepared for a semiconductor sealing material, the phosphorus atom-containing phenol resin (A), Melt and mix the epoxy resin (B), curing accelerator (C), and compounding agents such as inorganic fillers as necessary using an extruder, kneader, roll, etc. until uniform. Can be obtained. At that time, silica is usually used as the inorganic filler, and the filling rate is preferably in the range of 30 to 95% by mass of the filler per 100 parts by mass of the epoxy resin composition. 70 parts by mass or more is particularly preferable in order to improve the moisture resistance and solder crack resistance and decrease the linear expansion coefficient, and 80 parts by mass or more is more effective in order to significantly increase these effects. Can be increased. For semiconductor package molding, the composition is molded by casting, using a transfer molding machine, an injection molding machine or the like, and further heated at 50 to 200 ° C. for 2 to 10 hours to form a semiconductor device which is a molded product. There is a way to get

本発明の硬化性樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては例えば、ゴム、フィラーなどを適宜配合した当該硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。   As a method for obtaining an interlayer insulating material for a build-up substrate from the curable resin composition of the present invention, for example, the curable resin composition appropriately blended with rubber, filler, etc., spray coating method on a wiring board on which a circuit is formed, After applying using a curtain coating method or the like, it is cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness | corrugation by washing the surface with hot water, and metal-treats, such as copper. As the plating method, electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent. Such operations are sequentially repeated as desired, and a build-up base can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern. However, the through-hole portion is formed after the outermost resin insulating layer is formed. In addition, a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil is thermocompression-bonded at 170 to 250 ° C. on a circuit board on which a circuit is formed, thereby forming a roughened surface and plating treatment. It is also possible to produce a build-up substrate by omitting the process.

本発明の硬化性樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明の硬化性樹脂組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。   The method for producing an adhesive film for buildup from the curable resin composition of the present invention is, for example, a multilayer printed wiring board in which the curable resin composition of the present invention is applied on a support film to form a resin composition layer. And an adhesive film for use.

本発明の硬化性樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。   When the curable resin composition of the present invention is used for a build-up adhesive film, the adhesive film is softened under the temperature condition of the laminate in the vacuum laminating method (usually 70 ° C. to 140 ° C.), and simultaneously with the lamination of the circuit board, It is important to show fluidity (resin flow) that allows resin filling in via holes or through holes present in a circuit board, and it is preferable to blend the above-described components so as to exhibit such characteristics.

ここで、多層プリント配線板のスルーホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。   Here, the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm. It is usually preferable to allow resin filling in this range. When laminating both surfaces of the circuit board, it is desirable to fill about 1/2 of the through hole.

上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明の硬化性樹脂組成物を調製した後、支持フィルムの表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて硬化性樹脂組成物の層(α)を形成させることにより製造することができる。   Specifically, the method for producing the adhesive film described above is, after preparing the varnish-like curable resin composition of the present invention, coating the varnish-like composition on the surface of the support film, further heating, Or it can manufacture by drying an organic solvent by hot air spraying etc. and forming the layer ((alpha)) of a curable resin composition.

形成される層(α)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。   The thickness of the formed layer (α) is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm.

なお、前記層(α)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。   In addition, the said layer ((alpha)) may be protected with the protective film mentioned later. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.

前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。   The above-mentioned support film and protective film are made of polyolefin such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples thereof include metal foil such as pattern paper, copper foil, and aluminum foil. In addition, the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.

支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。   Although the thickness of a support film is not specifically limited, Usually, it is 10-150 micrometers, Preferably it is used in 25-50 micrometers. Moreover, it is preferable that the thickness of a protective film shall be 1-40 micrometers.

上記した支持フィルムは、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。   The above support film is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing process can be prevented. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance.

次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(α)が保護フィルムで保護されている場合はこれらを剥離した後、層(α)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。   Next, the method for producing a multilayer printed wiring board using the adhesive film obtained as described above is, for example, when the layer (α) is protected with a protective film, Lamination is performed on one or both sides of the circuit board by, for example, vacuum laminating so that α) is in direct contact with the circuit board. The laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination.

ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×10〜107.9×10N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。 The laminating conditions are preferably a pressure bonding temperature (laminating temperature) of 70 to 140 ° C., a pressure bonding pressure of preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2), Lamination is preferably performed under reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less.

本発明の硬化性樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該硬化性樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。   When the curable resin composition of the present invention is used as a conductive paste, for example, a method of dispersing fine conductive particles in the curable resin composition to obtain a composition for anisotropic conductive film, liquid at room temperature And a paste resin composition for circuit connection and an anisotropic conductive adhesive.

本発明の硬化物を得る方法としては、一般的な硬化性樹脂組成物の硬化方法に準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、上記方法によって得られた組成物を、室温〜250℃程度の温度範囲で加熱すればよい。   The method for obtaining the cured product of the present invention may be based on a general curing method for a curable resin composition, but for example, the heating temperature condition may be appropriately selected depending on the kind of curing agent to be combined and the use. However, what is necessary is just to heat the composition obtained by the said method in the temperature range of about room temperature-250 degreeC.

従って、該フェノール樹脂を用いることによって、従来のリンで変性したフェノール樹脂に比べ溶剤溶解性が飛躍的に向上し、さらに硬化物とした際、難燃性や耐熱性、耐熱信頼性に加え優れた寸法安定性が発現され、最先端のプリント配線板材料に適用できる。また、該フェノール樹脂は、本発明の製造方法にて容易に効率よく製造する事が出来、目的とする前述の性能のレベルに応じた分子設計が可能となる。   Therefore, by using the phenol resin, the solvent solubility is dramatically improved compared to the conventional phenol resin modified with phosphorus, and when it is cured, it is excellent in addition to flame retardancy, heat resistance, and heat reliability. Dimensional stability is achieved and it can be applied to the most advanced printed wiring board materials. In addition, the phenol resin can be easily and efficiently produced by the production method of the present invention, and a molecular design corresponding to the target level of performance described above becomes possible.

次に本発明を実施例、比較例により具体的に説明する。   Next, the present invention will be specifically described with reference to examples and comparative examples.

合成例1(α−ナフトールノボラック樹脂の合成)
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、α−ナフトール505質量部(3.50モル)、水158質量部、蓚酸5質量部を仕込み、室温から100℃まで45分で昇温しながら撹拌した。続いて、42質量%ホルマリン水溶液177質量部(2.45モル)を1時間要して滴下した。滴下終了後、さらに100℃で1時間攪拌し、その後180℃まで3時間で昇温した。反応終了後、反応系内に残った水分を加熱減圧下に除去しフェノール樹脂(P−1)498質量部を得た。得られたフェノール樹脂(P−1)の軟化点は133℃(B&R法)、水酸基当量は154g/eq当量であった。
Synthesis Example 1 (Synthesis of α-naphthol novolak resin)
A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube and a stirrer was charged with 505 parts by mass of α-naphthol (3.50 mol), 158 parts by mass of water, and 5 parts by mass of oxalic acid. The mixture was stirred while raising the temperature in 45 minutes. Subsequently, 177 parts by mass (2.45 mol) of a 42 mass% formalin aqueous solution was added dropwise over 1 hour. After completion of dropping, the mixture was further stirred at 100 ° C. for 1 hour, and then heated to 180 ° C. in 3 hours. After completion of the reaction, water remaining in the reaction system was removed under reduced pressure by heating to obtain 498 parts by mass of phenol resin (P-1). The softening point of the obtained phenol resin (P-1) was 133 ° C. (B & R method), and the hydroxyl group equivalent was 154 g / eq equivalent.

合成例2(β−ナフトールノボラック樹脂の合成)
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、β−ナフトール505質量部(3.50モル)、水158質量部、蓚酸5質量部を仕込み、室温から100℃まで45分で昇温しながら撹拌した。続いて、42質量%ホルマリン水溶液177質量部(2.45モル)を1時間要して滴下した。滴下終了後、さらに100℃で1時間攪拌し、その後180℃まで3時間で昇温した。反応終了後、反応系内に残った水分を加熱減圧下に除去しフェノール樹脂(P−2)498質量部を得た。得られたフェノール樹脂(P−2)の軟化点は138℃(B&R法)、水酸基当量は154g/eqであった。
Synthesis Example 2 (Synthesis of β-naphthol novolak resin)
A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 505 parts by mass of β-naphthol (3.50 mol), 158 parts by mass of water, and 5 parts by mass of oxalic acid. The mixture was stirred while raising the temperature in 45 minutes. Subsequently, 177 parts by mass (2.45 mol) of a 42 mass% formalin aqueous solution was added dropwise over 1 hour. After completion of dropping, the mixture was further stirred at 100 ° C. for 1 hour, and then heated to 180 ° C. in 3 hours. After completion of the reaction, water remaining in the reaction system was removed under reduced pressure by heating to obtain 498 parts by mass of phenol resin (P-2). The obtained phenol resin (P-2) had a softening point of 138 ° C. (B & R method) and a hydroxyl group equivalent of 154 g / eq.

実施例1
フェノール樹脂(P−1)308g(水酸基量:2.0モル)、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド129.6g(0.6モル)、4−メトキシベンズアルデヒド81.6g(0.6モル)、1−メトキシ−2−プロパノール200gを仕込み、減圧脱水回路に切り替えた後、180℃まで昇温し8時間反応させた。次いで、水を加熱減圧下に除去し、リン原子含有ナフトールノボラック樹脂(A−1)508gを得た。得られたフェノール樹脂の軟化点は155℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:180℃)は300dPa・s、水酸基当量は254g/eq、リン含有量3.5質量%であった。
Example 1
Phenol resin (P-1) 308 g (hydroxyl group amount: 2.0 mol), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide 129.6 g (0.6 mol), 4-methoxy After charging 81.6 g (0.6 mol) of benzaldehyde and 200 g of 1-methoxy-2-propanol and switching to a vacuum dehydration circuit, the temperature was raised to 180 ° C. and reacted for 8 hours. Next, water was removed under reduced pressure by heating to obtain 508 g of a phosphorus atom-containing naphthol novolak resin (A-1). The resulting phenol resin has a softening point of 155 ° C. (B & R method), a melt viscosity (measurement method: ICI viscometer method, measurement temperature: 180 ° C.) of 300 dPa · s, a hydroxyl group equivalent of 254 g / eq, and a phosphorus content of 3. It was 5 mass%.

実施例2
フェノール樹脂(P−2)308g(水酸基量:2.0モル)、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド129.6g(0.6モル)、4−メトキシベンズアルデヒド81.6g(0.6モル)、1−メトキシ−2−プロパノール200gを仕込み、減圧脱水回路に切り替えた後、180℃まで昇温し8時間反応させた。次いで、水を加熱減圧下に除去し、リン原子含有ナフタレン骨格含有フェノール樹脂(A−2)508gを得た。得られたフェノール樹脂の軟化点は146℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:180℃)は290dPa・s、水酸基当量は254g/eq、リン含有量3.5質量%であった。
Example 2
Phenol resin (P-2) 308 g (hydroxyl group amount: 2.0 mol), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide 129.6 g (0.6 mol), 4-methoxy After charging 81.6 g (0.6 mol) of benzaldehyde and 200 g of 1-methoxy-2-propanol and switching to a vacuum dehydration circuit, the temperature was raised to 180 ° C. and reacted for 8 hours. Subsequently, water was removed under heating and reduced pressure to obtain 508 g of a phosphorus atom-containing naphthalene skeleton-containing phenol resin (A-2). The obtained phenol resin has a softening point of 146 ° C. (B & R method), a melt viscosity (measurement method: ICI viscometer method, measurement temperature: 180 ° C.) of 290 dPa · s, a hydroxyl group equivalent of 254 g / eq, and a phosphorus content of 3. It was 5 mass%.

比較例1〔前記特許文献1(特許第3464783号公報)記載の化合物の合成〕
HCA216g(1.0mol)と42質量%ホルマリン水溶液71g(1.0mol)を反応容器に仕込み、100℃まで昇温し、4時間反応させた。次いで析出した固体をろ別し、アセトンで洗浄して2−(6−オキシド−6H−ジベンズ<c,e><1,2>オキサ−ホスフォリン−6−イル)メタノール(以下、「ODOPM」と略記する。)245gを得た。得られた化合物は、融点152〜154℃であった。
ナスフラスコに、フェノールノボラック樹脂144g(水酸基量:1.0モル)を仕込み、窒素気流下、攪拌しながら100℃に昇温した。昇温後、ODOPM230g(1.0モル)を添加して、140℃に加熱して、12時間維持した。次いで、その混合物は室温に冷却されて、ろ過、乾燥を経て、フェノール樹脂(A−3)を得た。
Comparative Example 1 [Synthesis of Compound described in Patent Document 1 (Patent No. 3647784)]
216 g (1.0 mol) of HCA and 71 g (1.0 mol) of 42 mass% formalin aqueous solution were charged into a reaction vessel, heated to 100 ° C. and reacted for 4 hours. The precipitated solid was then filtered off and washed with acetone to give 2- (6-oxide-6H-dibenz <c, e><1,2> oxa-phosphorin-6-yl) methanol (hereinafter referred to as “ODOPM”). Abbreviated.) 245 g was obtained. The obtained compound had a melting point of 152 to 154 ° C.
An eggplant flask was charged with 144 g of phenol novolac resin (hydroxyl amount: 1.0 mol), and the temperature was raised to 100 ° C. with stirring in a nitrogen stream. After raising the temperature, 230 g (1.0 mol) of ODOPM was added, heated to 140 ° C., and maintained for 12 hours. Subsequently, the mixture was cooled to room temperature, filtered and dried to obtain a phenol resin (A-3).

比較例2〔前記特許文献2(特許第3476780号公報)記載のフェノール化合物(フェノール化合物(A−4))の合成〕
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、HCA216g(1.0モル)とトルエン216gを仕込み、110℃まで昇温して加熱溶解させる。次いで、p−ヒドロキシベンズアルデヒド122g(1.0モル)を仕込み、180℃まで昇温し180℃で8時間反応させた後、ろ過、乾燥を経て、下記構造式
Comparative Example 2 [Synthesis of Phenol Compound (Phenol Compound (A-4)) described in Patent Document 2 (Patent No. 3476780)]
A flask equipped with a thermometer, a condenser tube, a fractionating tube, a nitrogen gas inlet tube, and a stirrer is charged with 216 g (1.0 mol) of HCA and 216 g of toluene, heated to 110 ° C. and dissolved by heating. Next, 122 g (1.0 mol) of p-hydroxybenzaldehyde was charged, heated to 180 ° C. and reacted at 180 ° C. for 8 hours, followed by filtration and drying.

Figure 2012051972

で表されるフェノール化合物(A−4)を335g得た。得られたフェノール化合物(A−4)の融点は286℃であった。
Figure 2012051972

335 g of a phenol compound (A-4) represented by The melting point of the obtained phenol compound (A-4) was 286 ° C.

比較例3〔フェノール樹脂(A−5)の合成〕
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、フェノールノボラック樹脂457.6g(4.4モル)と216g(1.0モル)とp−ヒドロキシベンズアルデヒド122g(1.0モル)を仕込み、180℃まで昇温し180℃で8時間反応させた。ついで、水を加熱減圧下で除去し、フェノール樹脂(A−5)750gを得た。得られたフェノール樹脂の軟化点は150℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は120dPa・s、水酸基当量は164g/eq、リン含有量3.7質量%であった。
Comparative Example 3 [Synthesis of phenol resin (A-5)]
In a flask equipped with a thermometer, a condenser tube, a fractionating tube, a nitrogen gas inlet tube, and a stirrer, 457.6 g (4.4 mol) of phenol novolac resin, 216 g (1.0 mol), and 122 g of p-hydroxybenzaldehyde ( 1.0 mol), the temperature was raised to 180 ° C., and the mixture was reacted at 180 ° C. for 8 hours. Subsequently, water was removed under reduced pressure by heating to obtain 750 g of a phenol resin (A-5). The softening point of the obtained phenol resin is 150 ° C. (B & R method), the melt viscosity (measurement method: ICI viscometer method, measurement temperature: 150 ° C.) is 120 dPa · s, the hydroxyl equivalent is 164 g / eq, and the phosphorus content is 3. It was 7 mass%.

実施例3、4及び比較例4〜7(エポキシ樹脂組成物の調整及び物性評価)
下記、表1記載の配合に従い、エポキシ樹脂として、フェノールノボラック型エポキシ樹脂(DIC製「N−770」、エポキシ当量:185g/eq)、リン原子含有変性エポキシ樹脂(東都化成株式会社製「FX−289ZBEK75」、エポキシ当量:330g/eq)、硬化剤として(A−1)〜(A−5)、フェノールノボラック樹脂(DIC製「TD−2090」、水酸基当量105g/eq)を主剤:硬化剤の当量比1:1となるよう配合し、更に硬化触媒として2−エチル−4−メチルイミダゾール(2E4MZ)を加え、最終的に各組成物の不揮発分(N.V.)が58質量%となるようにメチルエチルケトンを配合して調整した。
Examples 3 and 4 and Comparative Examples 4 to 7 (Adjustment of epoxy resin composition and evaluation of physical properties)
In accordance with the composition shown in Table 1 below, as the epoxy resin, a phenol novolac type epoxy resin (“N-770” manufactured by DIC, epoxy equivalent: 185 g / eq), a phosphorus atom-containing modified epoxy resin (“FX-” manufactured by Toto Kasei Co., Ltd.) 289ZBEK75 ", epoxy equivalent: 330 g / eq), (A-1) to (A-5) as a curing agent, phenol novolak resin (DIC" TD-2090 ", hydroxyl equivalent 105 g / eq) as main agent: curing agent It mix | blends so that it may become an equivalence ratio 1: 1, Furthermore, 2-ethyl-4-methylimidazole (2E4MZ) is added as a curing catalyst, and the non volatile matter (NV) of each composition will be 58 mass% finally. Thus, methyl ethyl ketone was blended and adjusted.

[積層板作成条件]
基材:100μm 日東紡績株式会社製 プリント配線基板用ガラスクロス「2116」
プライ数:6
銅箔:18μm 日鉱金属株式会社製 TCR箔
プリプレグ化条件:160℃/2分
硬化条件:200℃、2.9MPa、2.0時間
成形後板厚:0.8mm、樹脂量40%
上記条件で作成した硬化物を試験片として用い、以下の各種の評価を行った。結果を表1に示す。
[Lamination board creation conditions]
Base material: 100 μm Nitto Boseki Co., Ltd. Printed wiring board glass cloth “2116”
Number of plies: 6
Copper foil: 18 μm Nikko Metal Co., Ltd. TCR foil prepreg condition: 160 ° C./2 minutes Curing condition: 200 ° C., 2.9 MPa, 2.0 hours after forming plate thickness: 0.8 mm, resin amount 40%
The following various evaluation was performed using the hardened | cured material created on the said conditions as a test piece. The results are shown in Table 1.

[耐熱性試験・熱膨張係数]
熱機械分析装置(TMA:セイコーインスツルメント社製SS−6100)を用いて、圧縮モードで熱機械分析を行った。
[Heat resistance test and thermal expansion coefficient]
Thermomechanical analysis was performed in a compressed mode using a thermomechanical analyzer (TMA: SS-6100 manufactured by Seiko Instruments Inc.).

測定条件
測定架重:88.8mN
昇温速度:3℃/分で2回
測定温度範囲:−50℃から300℃
上記条件での測定を同一サンプルにつき2回実施し、2回目の測定における、25℃から280℃の温度範囲における平均膨張係数を熱膨張係数として評価した。
Measurement conditions Measurement weight: 88.8mN
Temperature increase rate: 2 times at 3 ° C / minute Measurement temperature range: -50 ° C to 300 ° C
The measurement under the above conditions was performed twice for the same sample, and the average expansion coefficient in the temperature range from 25 ° C. to 280 ° C. in the second measurement was evaluated as the thermal expansion coefficient.

[燃焼試験]試験方法はUL−94垂直試験に準拠。 [Burn test] The test method conforms to the UL-94 vertical test.

Figure 2012051972
Figure 2012051972

表1中の略号は下記の通りである。
「A−1」:実施例1で得られたリン原子含有ナフトールノボラック樹脂(A−1)
「A−2」:実施例2で得られたリン原子含有ナフトールノボラック樹脂(A−2)
「A−3」:比較例1で得られたフェノール樹脂(A−3)
「A−4」:比較例2で得られたフェノール化合物(A−4)
「A−5」:比較例3で得られたフェノール樹脂(A−5)
「TD−2090」:フェノールノボラック樹脂(DIC製「TD−2090」水酸基当量:105g/eq)、
「N−770」:フェノールノボラック型エポキシ樹脂(DIC製「N−770」、エポキシ当量185g/eq)、
「FX−289BER75」:リン変性エポキシ樹脂(東都化成製「FX−289BEK75」:クレゾールノボラック型エポキシ樹脂に9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイドを反応させて得られたエポキシ樹脂、エポキシ当量330g/eq.、リン含有量3.0質量%)
Abbreviations in Table 1 are as follows.
“A-1”: Phosphorus atom-containing naphthol novolak resin (A-1) obtained in Example 1
“A-2”: Phosphorus atom-containing naphthol novolak resin (A-2) obtained in Example 2
“A-3”: phenolic resin (A-3) obtained in Comparative Example 1
“A-4”: the phenol compound (A-4) obtained in Comparative Example 2
“A-5”: phenolic resin obtained in Comparative Example 3 (A-5)
“TD-2090”: phenol novolac resin (“TD-2090” hydroxyl equivalent: 105 g / eq, manufactured by DIC),
“N-770”: phenol novolac type epoxy resin (“N-770” manufactured by DIC, epoxy equivalent of 185 g / eq),
“FX-289BER75”: Phosphorus-modified epoxy resin (“FX-289BEK75” manufactured by Toto Kasei): obtained by reacting cresol novolac type epoxy resin with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide Epoxy resin, epoxy equivalent 330 g / eq., Phosphorus content 3.0 mass%)

Claims (16)

ナフトール化合物とホルムアルデヒドとの重縮合した樹脂構造を主骨格としており、かつ、該樹脂構造中の芳香核上の置換基として
下記構造式z1〜z4
Figure 2012051972

(上記構造式z1〜z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1〜5のアルキル基を表し、Rは炭素原子1〜4のアルキル基を表し、nは芳香核上の置換基ORの数であり1〜3である。)
で表される部分構造からなる群から選択される構造部位を有する樹脂構造を有することを特徴とする新規リン原子含有フェノール樹脂。
A resin structure obtained by polycondensation of a naphthol compound and formaldehyde is used as a main skeleton, and the following structural formulas z1 to z4 are used as substituents on the aromatic nucleus in the resin structure.
Figure 2012051972

(In the structural formulas z1 to z4, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl. R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, R represents an alkyl group having 1 to 4 carbon atoms, n is the number of substituents OR on the aromatic nucleus, and 1 to 3)
A novel phosphorus atom-containing phenol resin having a resin structure having a structural portion selected from the group consisting of partial structures represented by the formula:
アルコキシ基を芳香核上の置換基として有する芳香族アルデヒド(a1)、及び、P−H基又はP−OH基を分子構造中に有する有機リン化合物(a2)を反応させ、次いで、得られた反応生成物を、ナフトール化合物とホルムアルデヒドとの重縮合体(a3)と反応させて得られる樹脂構造を有する請求項1記載の新規リン原子含有フェノール樹脂。 An aromatic aldehyde (a1) having an alkoxy group as a substituent on the aromatic nucleus and an organophosphorus compound (a2) having a P—H group or a P—OH group in the molecular structure were reacted, and then obtained. The novel phosphorus atom-containing phenol resin according to claim 1, having a resin structure obtained by reacting the reaction product with a polycondensate (a3) of a naphthol compound and formaldehyde. 前記ナフトール化合物とホルムアルデヒドとの重縮合体(a3)として、該重縮合体(a3)と共に、ナフトール化合物(a3−2)を含むナフトールノボラック樹脂組成物であって、かつ、組成物中のナフトール化合物(a3−2)のGPC測定におけるピーク面積基準での含有率が1〜6%となる割合である樹脂混合物を用いる請求項1記載の新規リン原子含有フェノール樹脂。 A naphthol novolak resin composition containing the naphthol compound (a3-2) together with the polycondensate (a3) as a polycondensate (a3) of the naphthol compound and formaldehyde, and the naphthol compound in the composition The novel phosphorus atom containing phenol resin of Claim 1 using the resin mixture which is a ratio from which the content rate on the basis of the peak area in GPC measurement of (a3-2) becomes 1 to 6%. アルコキシ基を芳香核上の置換基として有する芳香族アルデヒド(a1)、及び、P−H基又はP−OH基を分子構造中に有する有機リン化合物(a2)を反応させ、次いで、得られた反応生成物を、前記ナフトール化合物とホルムアルデヒドとの重縮合体(a3)と反応させることを特徴とするリン原子含有フェノール類の製造方法。 An aromatic aldehyde (a1) having an alkoxy group as a substituent on the aromatic nucleus and an organophosphorus compound (a2) having a P—H group or a P—OH group in the molecular structure were reacted, and then obtained. A method for producing a phosphorus atom-containing phenol, which comprises reacting a reaction product with the polycondensate (a3) of the naphthol compound and formaldehyde. 前記ナフトール化合物とホルムアルデヒドとの重縮合体(a3)が、その芳香核上の置換基として、下記構造式z1〜z4
Figure 2012051972

(上記構造式z1〜z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1〜5のアルキル基を表し、Rは炭素原子1〜4のアルキル基を表し、nは芳香核上の置換基ORの数であり1〜3である。)
で表される部分構造からなる群から選択される構造部位を有するものである請求項4記載の製造方法。
The polycondensate (a3) of the naphthol compound and formaldehyde has the following structural formulas z1 to z4 as substituents on the aromatic nucleus.
Figure 2012051972

(In the structural formulas z1 to z4, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl. R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, R represents an alkyl group having 1 to 4 carbon atoms, n is the number of substituents OR on the aromatic nucleus, and 1 to 3)
The manufacturing method according to claim 4, which has a structural portion selected from the group consisting of partial structures represented by the formula:
前記ナフトール化合物とホルムアルデヒドとの重縮合体(a3)として、該重縮合体(a3)と共に、ナフトール化合物(a3−2)を含むナフトールノボラック樹脂組成物であって、かつ、組成物中のナフトール化合物(a3−2)のGPC測定におけるピーク面積基準での含有率が1〜6%となる割合である樹脂混合物を用いる請求項4記載の製造方法。 A naphthol novolak resin composition containing the naphthol compound (a3-2) together with the polycondensate (a3) as a polycondensate (a3) of the naphthol compound and formaldehyde, and the naphthol compound in the composition The manufacturing method of Claim 4 using the resin mixture which is a ratio from which the content rate on the basis of the peak area in GPC measurement of (a3-2) becomes 1 to 6%. エポキシ樹脂用硬化剤(A)及びエポキシ樹脂(B)を必須成分とする硬化性樹脂組成物であって、前記エポキシ樹脂用硬化剤(A)として、前記請求項1〜3の何れか1つに記載の新規リン原子含有フェノール樹脂を用いることを特徴とする硬化性樹脂組成物。 It is a curable resin composition which has a hardening | curing agent for epoxy resins (A) and an epoxy resin (B) as an essential component, Comprising: As said hardening | curing agent for epoxy resins (A), any one of the said Claims 1-3 A curable resin composition comprising the novel phosphorus atom-containing phenol resin described in 1. 前記エポキシ樹脂用硬化剤(A)と、前記エポキシ樹脂(B)との配合比率が、エポキシ樹脂(B)のエポキシ基の合計1当量に対して、前記エポキシ樹脂用硬化剤(A)中の活性水素が0.7〜1.5当量となる割合である請求項7記載の硬化性樹脂組成物。 The compounding ratio of the epoxy resin curing agent (A) and the epoxy resin (B) is in the epoxy resin curing agent (A) with respect to a total of 1 equivalent of the epoxy groups of the epoxy resin (B). The curable resin composition according to claim 7, wherein the active hydrogen is in a ratio of 0.7 to 1.5 equivalents. 前記エポキシ樹脂用硬化剤(A)及び前記エポキシ樹脂(B)に加え、更に硬化促進剤(C)を配合する請求項7記載の硬化性樹脂組成物。 The curable resin composition according to claim 7, further comprising a curing accelerator (C) in addition to the epoxy resin curing agent (A) and the epoxy resin (B). (A)成分〜(C)成分に加え、更に、有機溶剤(D)を含有する請求項7記載の硬化性樹脂組成物。 The curable resin composition according to claim 7, further comprising an organic solvent (D) in addition to the components (A) to (C). 請求項7〜10の何れか1つに記載の硬化性樹脂組成物を硬化させてなる硬化物。 Hardened | cured material formed by hardening | curing the curable resin composition as described in any one of Claims 7-10. 請求項10記載の組成物からなるプリント配線基板用樹脂組成物。 The resin composition for printed wiring boards which consists of a composition of Claim 10. 請求項10記載の組成物からなるフレキシブル配線基板用樹脂組成物。 The resin composition for flexible wiring boards which consists of a composition of Claim 10. 請求項10記載の組成物をガラス基材に含浸、次いで硬化させてなるプリント配線基板。 A printed wiring board obtained by impregnating a glass substrate with the composition according to claim 10 and then curing the glass substrate. 請求項7記載の組成物に加え、更に無機充填剤を含有する半導体封止材料用樹脂組成物。 The resin composition for semiconductor sealing materials which contains an inorganic filler in addition to the composition of Claim 7. 請求項7記載の組成物からなるビルドアップ基板用層間絶縁材料用樹脂組成物。 A resin composition for an interlayer insulating material for buildup substrates, comprising the composition according to claim 7.
JP2010193761A 2010-08-31 2010-08-31 Novel phosphorus atom-containing phenol resin, production method thereof, curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, And resin composition for interlayer insulation material for build-up substrate Active JP5516979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193761A JP5516979B2 (en) 2010-08-31 2010-08-31 Novel phosphorus atom-containing phenol resin, production method thereof, curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, And resin composition for interlayer insulation material for build-up substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193761A JP5516979B2 (en) 2010-08-31 2010-08-31 Novel phosphorus atom-containing phenol resin, production method thereof, curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, And resin composition for interlayer insulation material for build-up substrate

Publications (2)

Publication Number Publication Date
JP2012051972A true JP2012051972A (en) 2012-03-15
JP5516979B2 JP5516979B2 (en) 2014-06-11

Family

ID=45905683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193761A Active JP5516979B2 (en) 2010-08-31 2010-08-31 Novel phosphorus atom-containing phenol resin, production method thereof, curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, And resin composition for interlayer insulation material for build-up substrate

Country Status (1)

Country Link
JP (1) JP5516979B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112480344A (en) * 2019-09-11 2021-03-12 广东广山新材料股份有限公司 Phenolic resin composition and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112480344A (en) * 2019-09-11 2021-03-12 广东广山新材料股份有限公司 Phenolic resin composition and preparation method and application thereof
CN112480344B (en) * 2019-09-11 2023-08-15 广东广山新材料股份有限公司 Phenolic resin composition and preparation method and application thereof

Also Published As

Publication number Publication date
JP5516979B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP4548547B1 (en) Method for producing phosphorus atom-containing phenols, novel phosphorus atom-containing phenols, curable resin composition, cured product thereof, printed wiring board, and semiconductor sealing material
JP4953039B2 (en) Phosphorus atom-containing oligomer, production method thereof, curable resin composition, cured product thereof, and printed wiring board
JP4930656B2 (en) Phenol resin composition, production method thereof, curable resin composition, cured product thereof, and printed wiring board
JP5458916B2 (en) Method for producing phosphorus atom-containing phenols, phosphorus atom-containing phenols, curable resin composition, cured product thereof, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, for semiconductor sealing material Resin composition and resin composition for interlayer insulation material for build-up substrate
JP5557033B2 (en) Phosphorus atom-containing oligomer, production method thereof, curable resin composition, cured product thereof, and printed wiring board
JP5146793B2 (en) Phosphorus atom-containing oligomer composition, curable resin composition, cured product thereof, and printed wiring board
JP5024642B2 (en) Novel phenolic resin, curable resin composition, cured product thereof, and printed wiring board
JP5402091B2 (en) Curable resin composition, cured product thereof, printed wiring board, novel phenol resin, and production method thereof
JP2012201798A (en) Curable resin composition, cured product thereof, printed wiring board, and naphthol resin
JP5344226B2 (en) Production method of phosphorus atom-containing phenols, novel phosphorus atom-containing phenols, novel phenol resin, curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, Resin composition for semiconductor sealing material, and resin composition for interlayer insulation material for build-up substrate
JP5515878B2 (en) Curable resin composition, cured product thereof, and printed wiring board
JP5532307B2 (en) Method for producing phosphorus atom-containing polyfunctional phenol, phosphorus atom-containing polyfunctional phenol, curable resin composition, cured product thereof, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, semiconductor encapsulation A resin composition for a material and a resin composition for an interlayer insulating material for a build-up substrate.
JP5402761B2 (en) Curable resin composition, cured product thereof, method for producing phosphorus atom-containing phenols, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, and build Resin composition for interlayer insulation material for up-substrate
JP5637367B2 (en) Curable resin composition, cured product thereof, method for producing phosphorus atom-containing phenol resin, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, semiconductor sealing material resin composition, and build Resin composition for interlayer insulation material for up-substrate
JP5637368B2 (en) Curable resin composition, cured product thereof, method for producing phosphorus atom-containing phenol compound, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, semiconductor sealing material resin composition, and build Resin composition for interlayer insulation material for up-substrate
JP5929660B2 (en) Biphenol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board
JP5516980B2 (en) Novel phosphorus atom-containing phenol resin, production method thereof, curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, And resin composition for interlayer insulation material for build-up substrate
JP5590405B2 (en) Novel phosphorus atom-containing epoxy resin, production method thereof, curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, And resin composition for interlayer insulation material for build-up substrate
JP6257020B2 (en) Phenylphenol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board
JP5516979B2 (en) Novel phosphorus atom-containing phenol resin, production method thereof, curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, And resin composition for interlayer insulation material for build-up substrate
JP6048035B2 (en) Cresol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board
JP6032476B2 (en) Cresol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board
JP5598373B2 (en) Curable resin composition, cured product thereof, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, semiconductor sealing material resin composition, and build-up board interlayer insulation material resin composition object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5516979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250