JP2012051854A - Indanone derivative and use thereof as color material for dye-sensitized solar battery - Google Patents

Indanone derivative and use thereof as color material for dye-sensitized solar battery Download PDF

Info

Publication number
JP2012051854A
JP2012051854A JP2010197227A JP2010197227A JP2012051854A JP 2012051854 A JP2012051854 A JP 2012051854A JP 2010197227 A JP2010197227 A JP 2010197227A JP 2010197227 A JP2010197227 A JP 2010197227A JP 2012051854 A JP2012051854 A JP 2012051854A
Authority
JP
Japan
Prior art keywords
group
photoelectric conversion
sensitizing dye
dye
dyes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010197227A
Other languages
Japanese (ja)
Other versions
JP2012051854A5 (en
JP5630156B2 (en
Inventor
Yasumasa Suda
康政 須田
Atsushi Betto
温 別当
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2010197227A priority Critical patent/JP5630156B2/en
Publication of JP2012051854A publication Critical patent/JP2012051854A/en
Publication of JP2012051854A5 publication Critical patent/JP2012051854A5/ja
Application granted granted Critical
Publication of JP5630156B2 publication Critical patent/JP5630156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PROBLEM TO BE SOLVED: To provide a sensitizing dye for photoelectric conversion for a dye-sensitized photoelectric conversion cell which is stable and has high conversion efficiency of solar energy without using any raw material with exhaustibility, such as ruthenium.SOLUTION: There is provided an indanone derivative represented by formula (in formula, Rto Rmutually independently represent a hydrogen atom or an electron-attracting group; and Rto Rmutually independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkoxy group, and so on).

Description

本発明は光電変換材料に関するものである。また、本発明はこの光電変換材料を用いた光電変換素子及びそれを利用した太陽電池に関するものである。   The present invention relates to a photoelectric conversion material. Moreover, this invention relates to the photoelectric conversion element using this photoelectric conversion material, and the solar cell using the same.

太陽光発電は単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池及びテルル化カドミウムやセレン化インジウム銅などの化合物太陽電池が実用化もしくは研究開発の対象となっている。これらの太陽電池を更に普及させる為には、製造コスト、原材料、エネルギーペイバックタイム等に関する問題点を克服する必要がある。一方、大面積化や低価格を指向した有機材料を用いた太陽電池もこれまでに数多く提案されてはいるが、これらの電池には変換効率、耐久性が低いという問題があった。   As for photovoltaic power generation, single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, and compound solar cells such as cadmium telluride and indium copper selenide have been put into practical use or research and development. In order to further spread these solar cells, it is necessary to overcome problems related to manufacturing costs, raw materials, energy payback time, and the like. On the other hand, a large number of solar cells using organic materials aimed at increasing the area and price have been proposed so far, but these cells have a problem of low conversion efficiency and durability.

こうした状況の中で、色素によって増感された半導体微多孔質体を用いた光電変換電極及び光電変換セル、ならびにこれを作製する為の材料及び製造技術が開示されている(非特許文献1、2及び特許文献1を参照)。開示されている電池は、ルテニウム錯体色素によって分光増感された酸化チタン多孔質薄層を作用電極とし、ヨウ素を主体とする電解質層及び対電極から成る色素増感型の光電変換セルである。この方式の第一の利点は、酸化チタン等の安価な酸化物半導体を用いることから安価な光電変換素子の提供が可能であることである。また、第二の利点は、使用されるルテニウム錯体色素が可視領域に幅広く吸収を有していることから、比較的高い変換効率が得られることである。   Under such circumstances, a photoelectric conversion electrode and a photoelectric conversion cell using a semiconductor microporous material sensitized with a dye, and a material and a manufacturing technique for producing the photoelectric conversion electrode are disclosed (Non-Patent Document 1, 2 and Patent Document 1). The disclosed battery is a dye-sensitized photoelectric conversion cell comprising a porous titanium oxide layer spectrally sensitized with a ruthenium complex dye as a working electrode, an electrolyte layer mainly composed of iodine, and a counter electrode. The first advantage of this method is that an inexpensive photoelectric conversion element can be provided because an inexpensive oxide semiconductor such as titanium oxide is used. The second advantage is that a relatively high conversion efficiency can be obtained because the ruthenium complex dye used has a wide absorption in the visible region.

一方、このような色素増感型光電変換セルの問題点の一つとして、色素の原料にルテニウムを用いていることが挙げられる。ルテニウムはクラーク数が0.01ppmと比較的低く、白金やパラジウムに匹敵する程度の少量が地球に現存している。従って、大量に使用された場合には枯渇する虞がある。更に、ルテニウム錯体色素は高価であることから、光電変換セルの更なる普及に対しての妨げとなるものである。   On the other hand, one of the problems of such a dye-sensitized photoelectric conversion cell is that ruthenium is used as a raw material for the dye. Ruthenium has a relatively low Clark number of 0.01 ppm, and a small amount is present on the earth comparable to platinum and palladium. Therefore, there is a risk of depletion when used in large quantities. Furthermore, since ruthenium complex dyes are expensive, they hinder further spread of photoelectric conversion cells.

最近、色素増感型太陽電池における増感色素として、ルテニウム錯体以外の色素の研究が盛んに行なわれている。その例としてはフェニルキサンテン系色素、フタロシアニン系色素、クマリン系色素、シアニン形色素、ポルフィリン系色素、アゾ系色素等が挙げられる。これらの有機色素はルテニウム錯体に比較して吸光係数、分子設計の自由度が大きいことから、高い光電変換効率の発現が期待されている。しかしながら、色素の光吸収領域が狭いこと、酸化チタンへの電荷注入が非効率的である等の理由から未だ良好な性能の有機増感色素は見出されていない。   Recently, researches on dyes other than ruthenium complexes have been actively conducted as sensitizing dyes in dye-sensitized solar cells. Examples thereof include phenylxanthene dyes, phthalocyanine dyes, coumarin dyes, cyanine dyes, porphyrin dyes, azo dyes, and the like. These organic dyes are expected to exhibit high photoelectric conversion efficiency because they have a larger extinction coefficient and a higher degree of freedom in molecular design than ruthenium complexes. However, organic sensitizing dyes with good performance have not yet been found because the light absorption region of the dye is narrow and charge injection into titanium oxide is inefficient.

これらの問題を解決するため、酸化チタンとの吸着末端に特徴を付与した増感色素として、置換アクリル酸部位を持つ増感色素が比較的高い変換効率を有することが開示されている(特許文献3、4参照)。これらの増感色素の特徴は、アクリル酸末端のカルボン酸基が結合する炭素原子をシアノ基等の電子吸引性基で置換することにより、アクリル酸末端の電子吸引効果を増大させている点にある。増感色素は末端のカルボキシ基で酸化チタン等の無機酸化物半導体表面に結着し、このカルボキシ基を通して、増感色素が光吸収することにより生じた励起電子を無機酸化物半導体側へ注入している。従って、この部位の電子吸引効果が強くなることにより電子注入効果が促進され、その結果として高い変換効率を実現している。代表的な例として、クマリン骨格とシアノ基を有するアクリル酸末端とを組み合わせた増感色素では5%以上の高い変換効率を実現している。(非特許文献3参照)また、ポリエン構造とアミノ基を組み合わせた発色団に同様のアクリル酸末端を導入した増感色素においても同様に5%以上の高い変換効率が達成されている(非特許文献4参照)。   In order to solve these problems, it has been disclosed that a sensitizing dye having a substituted acrylic acid moiety has a relatively high conversion efficiency as a sensitizing dye imparted with a feature at the adsorption end with titanium oxide (Patent Document). 3 and 4). The feature of these sensitizing dyes is that the electron-withdrawing effect at the acrylic acid terminal is increased by replacing the carbon atom to which the carboxylic acid group at the acrylic acid terminal is bonded with an electron-withdrawing group such as a cyano group. is there. The sensitizing dye is bonded to the surface of an inorganic oxide semiconductor such as titanium oxide at the terminal carboxy group, and through this carboxy group, excited electrons generated by light absorption of the sensitizing dye are injected into the inorganic oxide semiconductor side. ing. Therefore, the electron injecting effect at this part is strengthened to promote the electron injecting effect, and as a result, high conversion efficiency is realized. As a representative example, a sensitizing dye combining a coumarin skeleton and an acrylic acid terminal having a cyano group achieves a high conversion efficiency of 5% or more. (See Non-Patent Document 3) In addition, a high conversion efficiency of 5% or more is similarly achieved in a sensitizing dye in which a similar acrylate end is introduced into a chromophore in which a polyene structure and an amino group are combined (Non-patent Document 3). Reference 4).

しかしながら、クマリン骨格等の吸収波長領域は可視光領域の中で比較的短波長側に偏っているため、この骨格を基にして吸収の長波長化を図る為には長鎖の二重結合部位(ポリエン構造)などの導入が必要となる。長鎖の二重結合部位は活性酸素等に酸化され易く、熱安定性が低い為、耐久性の低い性質を有している。同様の理由から、非特許文献3に記載のポリエン構造を有する増感色素も耐久性に問題のあることが予想される。また、増感色素として機能するシアニン系色素等も長鎖二重結合部位を有している為、耐久性の低い色素の一例である。   However, since the absorption wavelength region such as a coumarin skeleton is biased to a relatively short wavelength side in the visible light region, a long-chain double bond site is required to increase the absorption wavelength based on this skeleton. (Polyene structure) must be introduced. A long double bond site is easily oxidized to active oxygen or the like, and has low thermal stability, and therefore has low durability. For the same reason, it is expected that the sensitizing dye having the polyene structure described in Non-Patent Document 3 also has a problem in durability. In addition, cyanine dyes that function as sensitizing dyes also have long-chain double bond sites, and thus are examples of dyes with low durability.

以上の理由から、長鎖二重結合部位等のように耐久性の低い部位の導入によらず、耐久性の高い骨格構造を有し、更に、枯渇の虞のない原料を使用し、安価で高い変換効率を有する光電変換セルの提供を可能にする増感色素が求められていた。   For the above reasons, regardless of the introduction of sites with low durability such as long-chain double bond sites, etc., it has a highly durable skeleton structure, and further uses raw materials that are not subject to depletion. A sensitizing dye capable of providing a photoelectric conversion cell having high conversion efficiency has been demanded.

Nature(第353巻、第737−740頁、1991年)Nature (Vol. 353, 737-740, 1991) J.Am.Chem.Soc.(第115巻、第6382−6390頁、1993年)J. Am. Chem. Soc. (Vol. 115, 6382-6390, 1993) Chem.Commun.(第569−570頁、2001年)Chem. Commun. (569-570, 2001) Chem.Commun.(第252−253頁、2003年)Chem. Commun. (Pages 252-253, 2003) 米国特許4927721号明細書US Pat. No. 4,927,721 特開2002‐164089号公報JP 2002-164089 A WO02/11213号パンフレットWO02 / 11213 pamphlet

本発明の目的は耐久性の高い骨格構造を有し、安価で高い変換効率を有する色素増感型光電変換セル用の増感色素を提供することにある。更には、この増感色素を無機半導体多孔質体表面に連結させた光電変換材料、及び、光電変換材料を導電性表面を有する透明基材の電導面に積層して成る光電変換電極、及び、光電変換電極を電解質層を介して導電性対極を組み合わせて成る光電変換セルを提供することにある。   An object of the present invention is to provide a sensitizing dye for a dye-sensitized photoelectric conversion cell that has a highly durable skeleton structure and is inexpensive and has high conversion efficiency. Furthermore, a photoelectric conversion material in which this sensitizing dye is connected to the surface of the inorganic semiconductor porous body, a photoelectric conversion electrode formed by laminating the photoelectric conversion material on the conductive surface of a transparent substrate having a conductive surface, and An object of the present invention is to provide a photoelectric conversion cell in which a photoelectric conversion electrode is combined with a conductive counter electrode via an electrolyte layer.

本発明者等は前記課題を解決すべく鋭意研究を重ねた結果、透明導電性基板上に積層させた無機酸化物半導体表面に特定の増感色素を連結させることにより、良好な特性を示す光電変換セルの作製が可能であることを見出し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventors have obtained a photoelectric property exhibiting good characteristics by linking a specific sensitizing dye to the surface of an inorganic oxide semiconductor laminated on a transparent conductive substrate. The inventors have found that a conversion cell can be produced and have reached the present invention.

すなわち、本発明は下記の一般式(1)で表される光機能材料に関する。
一般式(1)

Figure 2012051854
That is, the present invention relates to an optical functional material represented by the following general formula (1).
General formula (1)
Figure 2012051854

[式中、R1乃至R3はそれぞれ独立に水素原子もしくは電子吸引性基を表す。R4乃至R21はそれぞれ独立に、水素原子、無置換もしくは置換基を有するアルキル基、無置換もしくは置換基を有するアルコキシ基、無置換もしくは置換基を有するアルキルチオ基、無置換もしくは置換基を有するアリール基を表す。また、nは0乃至3の整数を表す。] [Wherein, R 1 to R 3 each independently represents a hydrogen atom or an electron-withdrawing group. R 4 to R 21 each independently have a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkoxy group, an unsubstituted or substituted alkylthio group, an unsubstituted or substituted group Represents an aryl group. N represents an integer of 0 to 3. ]

また、本発明は、上記光機能材料を含んでなる光電変換用増感色素に関する。   The present invention also relates to a sensitizing dye for photoelectric conversion comprising the optical functional material.

また、本発明は、上記増感色素と、無機半導体多孔質体とを連結させて成る光電変換材料に関する。   The present invention also relates to a photoelectric conversion material obtained by connecting the sensitizing dye and an inorganic semiconductor porous body.

また、本発明は、上記光電変換材料を透明電極に積層させて成る光電変換電極に関する。   Moreover, this invention relates to the photoelectric conversion electrode formed by laminating | stacking the said photoelectric conversion material on a transparent electrode.

また、本発明は、上記光電変換電極、電解質層及び導電性対極を含んで成る光電変換セルに関する。   The present invention also relates to a photoelectric conversion cell comprising the photoelectric conversion electrode, an electrolyte layer, and a conductive counter electrode.

本発明によれば、枯渇の虞のない材料で高い光電変換効率を有する光電変換セルを提供することが可能である。また、本発明の増感色素と他の増感色素とを組み合わせることにより、太陽光に対して広範囲の波長領域で高効率な光電変換機能を発現する光電変換材料、光電変換電極及び光電変換セルの作製が可能である。更に、色素にポリエン構造を有しない為、光、熱等による劣化が無く、安定性の高い電池の提供が可能である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the photoelectric conversion cell which has high photoelectric conversion efficiency with the material which does not have a possibility of exhaustion. In addition, by combining the sensitizing dye of the present invention with another sensitizing dye, a photoelectric conversion material, a photoelectric conversion electrode, and a photoelectric conversion cell that exhibit a highly efficient photoelectric conversion function in a wide wavelength range with respect to sunlight. Can be manufactured. Furthermore, since the dye does not have a polyene structure, it is possible to provide a highly stable battery without deterioration due to light, heat, or the like.

図1は、光電変換セル試験試料を表す。FIG. 1 represents a photoelectric conversion cell test sample.

以下、詳細に本発明について説明する。本発明において光電変換材料とは、光を吸収することにより電気を発生させる機能、すなわち光を電気エネルギーに変換する機能を発現する材料のことである。   Hereinafter, the present invention will be described in detail. In the present invention, the photoelectric conversion material is a material that exhibits a function of generating electricity by absorbing light, that is, a function of converting light into electric energy.

本明細書においては一般式(1)で表される化合物を光電変換用増感色素として用いる為、この材料を光電変換用増感色素あるいは増感色素と呼称する。   In this specification, since the compound represented by the general formula (1) is used as a sensitizing dye for photoelectric conversion, this material is referred to as a sensitizing dye for photoelectric conversion or a sensitizing dye.

色素増感型太陽電池の動作機構は次に記す過程より成るものである。すなわち、太陽光を吸収した増感色素が光励起された後に励起状態の増感色素から酸化チタン等の無機半導体の伝導帯へ電子が注入される過程、及び、無機半導体に電子を注入して酸化された増感色素に対してヨウ素をはじめとするレドックス系からの電子注入により還元される過程である。   The operation mechanism of the dye-sensitized solar cell consists of the following processes. That is, the process in which electrons are injected from the excited sensitizing dye into the conduction band of an inorganic semiconductor such as titanium oxide after photosensitizing the sunlight-absorbing dye, and the oxidation by injecting electrons into the inorganic semiconductor The sensitizing dye is reduced by electron injection from a redox system such as iodine.

従って、光電変換用増感色素に必要な機能としては、色素が広い光吸収領域を有し太陽光を効率的に吸収できること、酸化チタン等の無機半導体に効率よく電荷を注入できること等が挙げられる。   Therefore, functions necessary for the sensitizing dye for photoelectric conversion include that the dye has a wide light absorption region and can efficiently absorb sunlight, and that charges can be efficiently injected into an inorganic semiconductor such as titanium oxide. .

一般式(1)で表される増感色素は、特定の構造であるため、構造中の部位により増感色素の吸収領域を調節し広域化することが可能である。従来のシアニン系色素やChemical Communications、252−253頁、2003年に記載されている色素では、ポリエン構造を用いることにより色素の吸収領域を広域化している。この手法を用いた場合、ポリエン構造が活性酸素による酸化を受け易い為に光劣化を起こし易い傾向がある。また、熱安定性が低いという欠点もある。一般式(1)で表される増感色素ではポリエン構造をとることが無いことから、これらの問題を避けることが可能である。   Since the sensitizing dye represented by the general formula (1) has a specific structure, the absorption region of the sensitizing dye can be adjusted and broadened by the site in the structure. In conventional cyanine dyes and dyes described in Chemical Communications, pages 252-253, 2003, the absorption region of the dye is broadened by using a polyene structure. When this method is used, the polyene structure tends to undergo oxidation by active oxygen, and thus tends to cause photodegradation. There is also a drawback that the thermal stability is low. Since the sensitizing dye represented by the general formula (1) does not have a polyene structure, these problems can be avoided.

また、一般式(1)で表される増感色素は、少なくとも一つの酸性官能基を有している為、酸化チタン等の無機半導体表面の水酸基との相互作用により生ずるエステル結合等を介した化学吸着が可能である。このことにより、増感色素から酸化チタン等の無機半導体への電子注入が効率的に行われる。
また、一般式(1)で表される増感色素の酸性官能基が結合する芳香環に少なくとも一つの電子吸引基が置換されている場合には、酸性官能基の結合する芳香環の電子受容性が高くなり、励起電子がπ共役系を経由して酸化チタン等の無機半導体へ効率的に注入される。
Moreover, since the sensitizing dye represented by the general formula (1) has at least one acidic functional group, it has an ester bond or the like generated by interaction with a hydroxyl group on the surface of an inorganic semiconductor such as titanium oxide. Chemisorption is possible. As a result, electrons are efficiently injected from the sensitizing dye into an inorganic semiconductor such as titanium oxide.
In addition, when at least one electron-withdrawing group is substituted on the aromatic ring to which the acidic functional group of the sensitizing dye represented by the general formula (1) is bonded, electron acceptance of the aromatic ring to which the acidic functional group is bonded Therefore, excited electrons are efficiently injected into an inorganic semiconductor such as titanium oxide via a π-conjugated system.

また、一般式(1)で表される増感色素は一方の端に電子供与性のアミノ基を有し、他方の端に電子吸引性の置換基を有するという化学構造により光吸収領域が広域化し、酸化チタン等の無機半導体への電子注入の高効率化を期待できる。   Further, the sensitizing dye represented by the general formula (1) has a wide light absorption region due to a chemical structure having an electron-donating amino group at one end and an electron-withdrawing substituent at the other end. The efficiency of electron injection into an inorganic semiconductor such as titanium oxide can be expected.

さらに、一般式(1)で表される増感色素の構造上の特徴としては、電子受容性部位と電子供与性部位とを二重結合が分割し、かつπ共役系で繋ぐという化学構造をとっている。このような特徴的な化学構造は、基底状態で電子が電子供与性部位に局在化し、励起状態では電子が電子受容性部位に局在化するという傾向があり、電子受容性部位から酸化チタン等の無機半導体への電子注入を非常に効率的に行なうことができる。   Furthermore, as a structural feature of the sensitizing dye represented by the general formula (1), a chemical structure in which an electron-accepting site and an electron-donating site are separated by a double bond and connected by a π-conjugated system. I'm taking it. Such a characteristic chemical structure tends to localize electrons to an electron-donating site in the ground state and localize electrons to an electron-accepting site in the excited state. Electron injection into an inorganic semiconductor such as can be performed very efficiently.

すなわち、一般式(1)で表される増感色素の化学構造は、高い光電変換効率と高い安定性を達成し得る構造であると言える。   That is, it can be said that the chemical structure of the sensitizing dye represented by the general formula (1) is a structure that can achieve high photoelectric conversion efficiency and high stability.

次に、一般式(1)で表される増感色素中の各置換基について説明をする。
一般式(1)で表される増感色素中のR1乃至R3はそれぞれ独立に水素原子もしくは電子吸引性基を表す。
Next, each substituent in the sensitizing dye represented by the general formula (1) will be described.
R 1 to R 3 in the sensitizing dye represented by the general formula (1) each independently represents a hydrogen atom or an electron-withdrawing group.

本発明における電子吸引性基とは、ハメットの置換基定数σが0より大きい官能基
を表す。これらの官能基としては、特に制限はないが、シアノ基、カルボキシル基、ニトロ基、アシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アルキルスルホニル基、アリールスルホニル基、ペルフルオロアルキル基、ペルフルオロアルキルカルボニル基、ハロゲン原子等が挙げられる。
The electron-withdrawing group in the present invention represents a functional group having a Hammett's substituent constant σ greater than 0. These functional groups are not particularly limited, but are cyano group, carboxyl group, nitro group, acyl group, alkyloxycarbonyl group, aryloxycarbonyl group, alkylsulfonyl group, arylsulfonyl group, perfluoroalkyl group, perfluoroalkylcarbonyl. Group, halogen atom and the like.

上記の電子吸引性基のうち、アシル基としては、アセチル基、チオアセチル基、ベンゾイル基、チオベンゾイル基等が挙げられる。   Among the electron withdrawing groups, examples of the acyl group include an acetyl group, a thioacetyl group, a benzoyl group, and a thiobenzoyl group.

また、アルキルオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、プロピルオキシカルボニル基、ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基等が挙げられる。   Examples of the alkyloxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propyloxycarbonyl group, a butoxycarbonyl group, a pentyloxycarbonyl group, a hexyloxycarbonyl group, a heptyloxycarbonyl group, and an octyloxycarbonyl group.

また、アリールオキシカルボニル基としては、フェノキシカルボニル基、1−ナフチルオキシカルボニル基、2−ナフチルオキシカルボニル基等が挙げられる。   Examples of the aryloxycarbonyl group include a phenoxycarbonyl group, a 1-naphthyloxycarbonyl group, and a 2-naphthyloxycarbonyl group.

また、アルキルスルホニル基としては、メシル基、エチルスルホニル基、プロピルスルホニル基等が挙げられる。     Examples of the alkylsulfonyl group include a mesyl group, an ethylsulfonyl group, and a propylsulfonyl group.

また、アリールスルホニル基としては、ベンゼンスルホニル基、トルエンスルホニル基等が挙げられる。   Examples of the arylsulfonyl group include a benzenesulfonyl group and a toluenesulfonyl group.

また、ペルフルオロアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基等が挙げられる。   Examples of the perfluoroalkyl group include a trifluoromethyl group and a pentafluoroethyl group.

また、ペルフルオロアルキルカルボニル基としては、トリフルオロアセチル基、ペンタフルオロエチルカルボニル基等が挙げられる。   Examples of the perfluoroalkylcarbonyl group include a trifluoroacetyl group and a pentafluoroethylcarbonyl group.

また、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。   Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

以上に挙げた電子吸引性基のうち好ましいものとしては、シアノ基、カルボキシル基、ペルフルオロアルキルカルボニル基が挙げられる。   Of the electron-withdrawing groups listed above, preferred are a cyano group, a carboxyl group, and a perfluoroalkylcarbonyl group.

また、R4乃至R21はそれぞれ独立に、水素原子、無置換もしくは置換基を有するアルキル基、無置換もしくは置換基を有するアルコキシ基、無置換もしくは置換基を有するアルキルチオ基、無置換もしくは置換基を有するアリール基を表す。 R 4 to R 21 are each independently a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkoxy group, an unsubstituted or substituted alkylthio group, an unsubstituted or substituted group. Represents an aryl group having

アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基等がある。   As the alkyl group, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, Examples include isohexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, and nonadecyl group.

アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、イソプロポキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、イソペンチルオキシ基、イソヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基、テトラデシルオキシ基、ペンタデシルオキシ基、ヘキサデシルオキシ基、ヘプタデシルオキシ基、オクタデシルオキシ基、ノナデシルオキシ基等がある。   Alkoxy groups include methoxy, ethoxy, propoxy, butoxy, isopropoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, isopentyloxy, isohexyloxy Group, heptyloxy group, octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group, tridecyloxy group, tetradecyloxy group, pentadecyloxy group, hexadecyloxy group, heptadecyloxy group, There are an octadecyloxy group, a nonadecyloxy group, and the like.

アルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、イソプロピルチオ基、イソブチルチオ基、sec−ブチルチオ基、tert−ブチルチオ基、ペンチルチ基、ヘキシルチオ基、イソペンチルチオ基、イソヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ウンデシルチオ基、ドデシルチオ基、トリデシルチオ基、テトラデシルチオ基、ペンタデシルチオ基、ヘキサデシルチオ基、ヘプタデシルチオ基、オクタデシルチオ基、ノナデシルチオ基等がある。   As the alkylthio group, methylthio group, ethylthio group, propylthio group, butylthio group, isopropylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, pentylthio group, hexylthio group, isopentylthio group, isohexylthio group , Heptylthio group, octylthio group, nonylthio group, decylthio group, undecylthio group, dodecylthio group, tridecylthio group, tetradecylthio group, pentadecylthio group, hexadecylthio group, heptadecylthio group, octadecylthio group, nonadecylthio group and the like.

アリール基としては、フェニル基、ビフェニリル基、ターフェニリル基、クオーターフェニリル基、ペンタレニル基、インデニル基、ナフチル基、ビナフタレニル基、ターナフタレニル基、クオーターナフタレニル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、インダセニル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、フェナレニル基、フルオレニル基、アントリル基、ビアントラセニル基、ターアントラセニル基、クオーターアントラセニル基、アントラキノリル基、フェナントリル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基、プレイアデニル基、ピセニル基、ペリレニル基、ペンタフェニル基、ペンタセニル基、テトラフェニレニル基、ヘキサフェニル基、ヘキサセニル基、ルビセニル基、コロネニル基、トリナフチレニル基、ヘプタフェニル基、ヘプタセニル基、ピラントレニル基、オバレニル基等がある。   As the aryl group, phenyl group, biphenylyl group, terphenylyl group, quarterphenylyl group, pentarenyl group, indenyl group, naphthyl group, binaphthalenyl group, tarnaphthalenyl group, quarternaphthalenyl group, azulenyl group, heptalenyl group, biphenylenyl group, indacenyl Group, fluoranthenyl group, acephenanthrenyl group, aceanthrylenyl group, phenalenyl group, fluorenyl group, anthryl group, bianthracenyl group, teranthracenyl group, quarteranthracenyl group, anthraquinolyl group, phenanthryl group, triphenylenyl Group, pyrenyl group, chrycenyl group, naphthacenyl group, preadenyl group, picenyl group, perylenyl group, pentaphenyl group, pentacenyl group, tetraphenylenyl group, hexaphenyl group, hexyl group Seniru group, rubicenyl group, coronenyl groups, trinaphthylenyl groups, heptacenyl groups, pyranthrenyl groups, there is ovalenyl group.

これらアルキル基、アルコキシ基、アルキルチオ基、アリール基は置換基を有していてもよい。   These alkyl group, alkoxy group, alkylthio group, and aryl group may have a substituent.

この場合の置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基が挙げられる。   In this case, examples of the substituent include an alkyl group, an alkoxy group, an alkylthio group, and an aryl group.

4乃至R17における、アルキル基、アルコキシ基、アルキルチオ基、アリール基が置換基を有する場合の具体例を次に示す。 Specific examples in which the alkyl group, alkoxy group, alkylthio group, and aryl group in R 4 to R 17 have a substituent are shown below.

置換基を有するアルキル基としては、ベンジル基、4−ビフェニリルメチル基、4−(p−ターフェニリル)メチル基、1−ナフチルメチル基、2−ナフチルメチル基、9−フェナントリルメチル基、9−アントリルメチル基、2−フェネチル基、2−(4−ビフェニリル)エチル基、2−{4−(p−ターフェニリル)}エチル基、2−(1−ナフチル)エチル基、2−(2−ナフチル)エチル基、2−(9−フェナントリル)エチル基、2−(9−アントリル)エチル基、3−フェニルプロピル基、3−(4−ビフェニリル)プロピル基、3−{4−(p−ターフェニリル)}プロピル基、3−(1−ナフチル)プロピル基、3−(2−ナフチル)プロピル基、3−(9−フェナントリル)プロピル基、3−(9−アントリル)プロピル基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチルオキシメチル基、ヘキシルオキシメチル基、2−メトキシエチル基、2−エトキシエチル基、2−プロポキシエチル基、2−ブトキシエチル基、2−ペンチルオキシエチル基、2−ヘキシルオキシエチル基、3−メトキシプロピル基、3−エトキシプロピル基、3−プロポキシプロピル基、3−ブトキシプロピル基、3−ペンチルオキシプロピル基、3−ヘキシルオキシプロピル基、4−メトキシブチル基、4−エトキシブチル基、4−プロポキシブチル基、4−ブトキシブチル基、4−ペンチルオキシブチル基、4−ヘキシルオキシブチル基、メチルチオメチル基、エチルチオメチル基、プロピルチオメチル基、ブチルチオメチル基、ペンチルチオメチル基、ヘキシルチオメチル基、2−(メチルチオ)エチル基、2−(エチルチオ)エチル基、2−(プロピルチオ)エチル基、2−(ブチルチオ)エチル基、2−(ペンチルチオ)エチル基、2−(ヘキシルチオ)エチル基等が挙げられる。     Examples of the alkyl group having a substituent include a benzyl group, 4-biphenylylmethyl group, 4- (p-terphenylyl) methyl group, 1-naphthylmethyl group, 2-naphthylmethyl group, 9-phenanthrylmethyl group, 9 -Anthrylmethyl group, 2-phenethyl group, 2- (4-biphenylyl) ethyl group, 2- {4- (p-terphenylyl)} ethyl group, 2- (1-naphthyl) ethyl group, 2- (2- Naphthyl) ethyl group, 2- (9-phenanthryl) ethyl group, 2- (9-anthryl) ethyl group, 3-phenylpropyl group, 3- (4-biphenylyl) propyl group, 3- {4- (p-terphenylyl) )} Propyl group, 3- (1-naphthyl) propyl group, 3- (2-naphthyl) propyl group, 3- (9-phenanthryl) propyl group, 3- (9-anthryl) propyl , Methoxymethyl group, ethoxymethyl group, propoxymethyl group, butoxymethyl group, pentyloxymethyl group, hexyloxymethyl group, 2-methoxyethyl group, 2-ethoxyethyl group, 2-propoxyethyl group, 2-butoxyethyl group 2-pentyloxyethyl group, 2-hexyloxyethyl group, 3-methoxypropyl group, 3-ethoxypropyl group, 3-propoxypropyl group, 3-butoxypropyl group, 3-pentyloxypropyl group, 3-hexyloxy Propyl group, 4-methoxybutyl group, 4-ethoxybutyl group, 4-propoxybutyl group, 4-butoxybutyl group, 4-pentyloxybutyl group, 4-hexyloxybutyl group, methylthiomethyl group, ethylthiomethyl group, Propylthiomethyl group, butylthiomethyl group, pentyl Omethyl group, hexylthiomethyl group, 2- (methylthio) ethyl group, 2- (ethylthio) ethyl group, 2- (propylthio) ethyl group, 2- (butylthio) ethyl group, 2- (pentylthio) ethyl group, 2- (Hexylthio) ethyl group and the like can be mentioned.

置換基を有するアルコキシ基としては、ベンジルオキシ基、4−ビフェニリルメチルオキシ基、4−(p−ターフェニリル)メチルオキシ基、1−ナフチルメチルオキシ基、2−ナフチルメチルオキシ基、9−フェナントリルメチルオキシ基、9−アントリルメチルオキシ基、メチルチオメトキシ基、エチルチオメトキシ基、2−メチルチオエトキシ基、2−エチルチオエトキシ基、フェネチルオキシ基、2−(4−ビフェニリル)エチルオキシ基、2−{4−(p−ターフェニリル)}エチルオキシ基、2−(1−ナフチル)エチルオキシ基、2−(2−ナフチル)エチルオキシ基、2−(9−フェナントリル)エチルオキシ基、2−(9−アントリル)エチルオキシ基等が挙げられる。   Examples of the alkoxy group having a substituent include benzyloxy group, 4-biphenylylmethyloxy group, 4- (p-terphenylyl) methyloxy group, 1-naphthylmethyloxy group, 2-naphthylmethyloxy group, and 9-phenane. Tolylmethyloxy group, 9-anthrylmethyloxy group, methylthiomethoxy group, ethylthiomethoxy group, 2-methylthioethoxy group, 2-ethylthioethoxy group, phenethyloxy group, 2- (4-biphenylyl) ethyloxy group, 2 -{4- (p-terphenylyl)} ethyloxy group, 2- (1-naphthyl) ethyloxy group, 2- (2-naphthyl) ethyloxy group, 2- (9-phenanthryl) ethyloxy group, 2- (9-anthryl) An ethyloxy group etc. are mentioned.

置換基を有するアルキルチオ基としては、ベンジルチオ基、4−ビフェニリルメチルチオ基、1−ナフチルメチルチオ基、2−ナフチルメチルチオ基、9−フェナントリルメチルチオ基、9−アントリルメチルチオ基、フェネチルチオ基、2−(4−ビフェニリル)エチルチオ基、2−(1−ナフチル)エチルチオ基、2−(2−ナフチル)エチルチオ基、2−(9−フェナントリ)エチルチオ基、2−(9−アントリル)エチルチオ基、メトキシメチルチオ基、エトキシメチルチオ基、2−メトキシエチルチオ基、2−エトキシエチルチオ基、(メチルチオ)メチルチオ基、(エチルチオ)メチルチオ基、(2−メチルチオ)エチルチオ基、(2−エチルチオ)エチルチオ基等が挙げられる。   As the alkylthio group having a substituent, benzylthio group, 4-biphenylylmethylthio group, 1-naphthylmethylthio group, 2-naphthylmethylthio group, 9-phenanthrylmethylthio group, 9-anthrylmethylthio group, phenethylthio group, 2- (4-biphenylyl) ethylthio group, 2- (1-naphthyl) ethylthio group, 2- (2-naphthyl) ethylthio group, 2- (9-phenanthri) ethylthio group, 2- (9-anthryl) ethylthio group, Methoxymethylthio group, ethoxymethylthio group, 2-methoxyethylthio group, 2-ethoxyethylthio group, (methylthio) methylthio group, (ethylthio) methylthio group, (2-methylthio) ethylthio group, (2-ethylthio) ethylthio group, etc. Is mentioned.

置換基を有するアリール基としては、o−、m−及びp−トリル基、キシリル基、メシチル基、o−、m−及びp−エチルフェニル基、o−、m−及びp−クメニル基、4−(4’−メチル)ビフェニリル基、4−(4’−エチル)ビフェニリル基、1−(5−メチル)ナフチル基、1−(5−エチル)ナフチル基、2−(5−メチル)ナフチル基、2−(5−エチル)ナフチル基、9−(3−メチル)フェナントリル基、9−(3−エチル)フェナントリル基、9−(10−メチル)アントリル基、9−(10−エチル)アントリル基、o−、m−及びp−メトキシフェニル基、o−、m−及びp−エトキシフェニル基、2−メチルチオフェニル基、2−エチルチオフェニル基、2−プロピルチオフェニル基、2−ブチルチオフェニル基、4−(メチルチオ)フェニル基、4−(エチルチオ)フェニル基、4−(プロピルチオ)フェニル基、4−(ブチルチオ)フェニル基等が挙げられる。   Examples of the aryl group having a substituent include o-, m- and p-tolyl groups, xylyl groups, mesityl groups, o-, m- and p-ethylphenyl groups, o-, m- and p-cumenyl groups, 4 -(4'-methyl) biphenylyl group, 4- (4'-ethyl) biphenylyl group, 1- (5-methyl) naphthyl group, 1- (5-ethyl) naphthyl group, 2- (5-methyl) naphthyl group 2- (5-ethyl) naphthyl group, 9- (3-methyl) phenanthryl group, 9- (3-ethyl) phenanthryl group, 9- (10-methyl) anthryl group, 9- (10-ethyl) anthryl group O-, m- and p-methoxyphenyl groups, o-, m- and p-ethoxyphenyl groups, 2-methylthiophenyl groups, 2-ethylthiophenyl groups, 2-propylthiophenyl groups, 2-butylthiophenyl groups Group, - (methylthio) phenyl group, 4- (ethylthio) phenyl, 4- (propylthio) phenyl group, 4- (butylthio) phenyl group.

さて、本発明の化合物は、二重結合を有するため、シス体、トランス体などの構造異性体を種々とり得る。これらは、何れも光電変換用増感色素として良好に使用することができる。さらに、置換基等に二重結合を有した場合にも同様のことが言える。   Now, since the compound of this invention has a double bond, it can take various structural isomers, such as a cis body and a trans body. Any of these can be used favorably as a sensitizing dye for photoelectric conversion. Further, the same can be said when a substituent has a double bond.

一般式(1)で表される化合物は、例えば、次の式(1)に示すような合成経路により製造することができる。   The compound represented by the general formula (1) can be produced, for example, by a synthetic route as shown in the following formula (1).

式(1)

Figure 2012051854

Formula (1)
Figure 2012051854

Figure 2012051854
Figure 2012051854

次の表1に本発明の光電変換用増感色素として用いることができる代表的な化合物を示すが、本発明はこれらの例に限定されるものではない。   The following Table 1 shows typical compounds that can be used as the sensitizing dye for photoelectric conversion of the present invention, but the present invention is not limited to these examples.

Figure 2012051854
Figure 2012051854

Figure 2012051854
Figure 2012051854

Figure 2012051854
Figure 2012051854

Figure 2012051854
Figure 2012051854

Figure 2012051854
Figure 2012051854

Figure 2012051854
Figure 2012051854

Figure 2012051854
Figure 2012051854

Figure 2012051854
Figure 2012051854

Figure 2012051854
Figure 2012051854

Figure 2012051854
Figure 2012051854

Figure 2012051854
Figure 2012051854

Figure 2012051854
Figure 2012051854

本発明において用いられる光電変換用増感色素は、一般式(1)で表される増感色素が吸収し得ない領域の太陽光吸収を補うために他の増感色素と組み合わせて用いることができる。ここにおいて他の増感色素としてはアゾ系色素、キナクリドン系色素、ジケトピロロピロール系色素、スクワリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、クロロフィル系色素、ルテニウム錯体系色素、インジゴ系色素、ペリレン系色素、ジオキサジン系色素、アントラキノン系色素、フタロシアニン系色素、ナフタロシアニン系色素等及びその誘導体等があげられる。これらの増感色素はその化学構造中に無機半導体多孔質体表面に連結し得るような官能基を有していることが望ましい。その理由として、光励起された色素の励起電子を無機半導体多孔質体の伝導帯に迅速に伝達可能であることが挙げられる。ここでいう官能基とは、前述の酸性官能基等が挙げられるが、無機半導体多孔質体表面に増感色素を連結し、色素の励起電子を無機半導体多孔質体の伝導帯に迅速に伝え得る機能を有する置換基であればよい。   The sensitizing dye for photoelectric conversion used in the present invention may be used in combination with other sensitizing dyes in order to supplement sunlight absorption in a region where the sensitizing dye represented by the general formula (1) cannot absorb. it can. Other sensitizing dyes here include azo dyes, quinacridone dyes, diketopyrrolopyrrole dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, Examples thereof include chlorophyll dyes, ruthenium complex dyes, indigo dyes, perylene dyes, dioxazine dyes, anthraquinone dyes, phthalocyanine dyes, naphthalocyanine dyes, and derivatives thereof. These sensitizing dyes preferably have a functional group capable of being linked to the surface of the inorganic semiconductor porous body in the chemical structure. The reason is that the excited electrons of the photoexcited dye can be quickly transmitted to the conduction band of the inorganic semiconductor porous body. The functional group mentioned here includes the above-mentioned acidic functional group, etc., but a sensitizing dye is connected to the surface of the inorganic semiconductor porous body, and the excited electrons of the dye are quickly transmitted to the conduction band of the inorganic semiconductor porous body. Any substituent may be used as long as it has a function to obtain.

以下、本発明で使用される光電変換用増感色素以外の材料について説明する。   Hereinafter, materials other than the sensitizing dye for photoelectric conversion used in the present invention will be described.

(無機酸化物)
本発明において用いられる光電変換用増感色素は連結基を介して無機半導体多孔質体表面に連結することによって無機半導体多孔質体が増感された光電変換材料を形成する。無機半導体は、一般に、一部の領域の光に対して光電変換機能を有しているが、この表面に増感色素を連結することによって可視光及び/又は近赤外光領域までの光電変換が可能となる。無機半導体多孔質体としては主に無機酸化物が用いられるが、増感色素を連結することによって光電変換機能を有する無機半導体多孔質体であればこれに限らない。無機半導体としては、シリコン、ゲルマニウム、III族‐V族系半導体、金属カルコゲニド等が挙げられる。本発明で用いられる無機酸化物半導体多孔質体としては、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化インジウム、酸化ニオブ、酸化鉄、酸化ニッケル、酸化コバルト、酸化ストロンチウム、酸化タンタル、酸化アンチモン、酸化ランタノイド、酸化イットリウム、酸化バナジウム等の多孔質体を挙げることができるが、これらの表面が増感色素を連結することによって可視光及び/又は近赤外光領域までの光電変換が可能となるものであればこれらに限定されない。無機酸化物半導体多孔質体表面が増感色素によって増感されるためには無機酸化物の伝導帯が増感色素の光励起順位から電子を受容し易い準位に存在することが望ましい。この理由から、前記無機酸化物半導体多孔質体の中でも、特に酸化チタン、酸化スズ、酸化亜鉛、酸化ニオブ等が用いられる。さらに、価格や環境衛生性等の点から、特に酸化チタンが用いられる。また、本発明においては前記無機酸化物半導体多孔質体から一種類又は複数の種類を選択して組み合わせることができる。
(Inorganic oxide)
The photoelectric conversion sensitizing dye used in the present invention forms a photoelectric conversion material in which the inorganic semiconductor porous body is sensitized by connecting to the surface of the inorganic semiconductor porous body through a linking group. Inorganic semiconductors generally have a photoelectric conversion function for light in a certain region, but photoelectric conversion to the visible light and / or near infrared light region by connecting a sensitizing dye to this surface. Is possible. As the inorganic semiconductor porous body, an inorganic oxide is mainly used. However, the inorganic semiconductor porous body is not limited to this as long as it has a photoelectric conversion function by connecting a sensitizing dye. Examples of inorganic semiconductors include silicon, germanium, III-V group semiconductors, metal chalcogenides, and the like. Examples of the inorganic oxide semiconductor porous material used in the present invention include titanium oxide, tin oxide, tungsten oxide, zinc oxide, indium oxide, niobium oxide, iron oxide, nickel oxide, cobalt oxide, strontium oxide, tantalum oxide, and antimony oxide. , Lanthanoid oxides, yttrium oxides, vanadium oxides, and the like, but these surfaces can be combined with sensitizing dyes to enable visible and / or near-infrared photoelectric conversion. If it becomes, it will not be limited to these. In order for the surface of the inorganic oxide semiconductor porous body to be sensitized by the sensitizing dye, it is desirable that the conduction band of the inorganic oxide exists at a level at which electrons are easily accepted from the photoexcitation order of the sensitizing dye. For this reason, titanium oxide, tin oxide, zinc oxide, niobium oxide and the like are particularly used among the inorganic oxide semiconductor porous bodies. Furthermore, titanium oxide is particularly used from the viewpoint of price and environmental hygiene. In the present invention, one or more types can be selected and combined from the inorganic oxide semiconductor porous body.

(無機酸化物の多孔質化)
無機半導体多孔質体は、多量の増感色素をその表面に連結し、高効率な光電変換能力を発現させる目的から、多孔質化することにより広い表面積を有している。多孔質化の方法としては、粒子径が数乃至数十ナノメートルの酸化チタン等の無機酸化物粒子をペースト化した後に焼結する方法が広く知られているが、多孔質化して広い表面積を得る方法であればこれに限らない。
(Porous inorganic oxide)
The inorganic semiconductor porous body has a large surface area by making it porous for the purpose of linking a large amount of sensitizing dye to the surface thereof and expressing a highly efficient photoelectric conversion capability. As a porous method, a method of sintering inorganic oxide particles such as titanium oxide having a particle diameter of several to several tens of nanometers after pasting into a paste is widely known. If it is a method to obtain, it will not restrict to this.

(光電変換電極)
本発明において用いられる光電変換材料は電導性表面を有する透明基材の電導面に積層することによって光電変換電極を形成する。
(Photoelectric conversion electrode)
The photoelectric conversion material used in this invention forms a photoelectric conversion electrode by laminating | stacking on the conductive surface of the transparent base material which has an electroconductive surface.

(電導性表面)
本発明において用いられる電導性表面としては、太陽光の可視領域から近赤外領域に対して光吸収が少ない導電材料であれば特に限定されないが、ITO(インジウム−スズ酸化物)や酸化スズ(フッ素等がドープされたものを含む)、酸化亜鉛等の電導性の良好な金属酸化物が好適である。
(Conductive surface)
The conductive surface used in the present invention is not particularly limited as long as it is a conductive material that absorbs little light from the visible region of the sunlight to the near infrared region. However, ITO (indium-tin oxide) or tin oxide ( Metal oxides having good electrical conductivity such as zinc oxide are preferable.

(透明基材)
用いられる透明基材としては太陽光の可視領域から近赤外領域における光吸収の少ない材料であれば特に限定されない。石英、並ガラス、BK7、鉛ガラス等のガラス基材、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリエステル、ポリエチレン、ポリカーボネート、ポリビニルブチラート、ポリプロピレン、テトラアセチルセルロース、シンジオクタチックポリスチレン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフォン、ポリエステルスルフォン、ポリエーテルイミド、環状ポリオレフィン、ブロム化フェノキシ、塩化ビニール等の樹脂基材等を用いることができる。
(Transparent substrate)
The transparent substrate used is not particularly limited as long as it is a material that absorbs little light from the visible region of sunlight to the near infrared region. Glass substrates such as quartz, ordinary glass, BK7, lead glass, polyethylene terephthalate, polyethylene naphthalate, polyimide, polyester, polyethylene, polycarbonate, polyvinyl butyrate, polypropylene, tetraacetylcellulose, syndiocta polystyrene, polyphenylene sulfide, polyarylate Resin base materials such as polysulfone, polyester sulfone, polyetherimide, cyclic polyolefin, brominated phenoxy, and vinyl chloride can be used.

(積層方法)
本発明において用いられる光電変換材料を、電導性表面を有する透明基材の電導面に積層する方法としては、電導面にペースト化した無機酸化物粒子を塗布した後に乾燥又は焼結させることにより無機酸化物半導体多孔質体を形成し、これを透明基材ごと増感色素を溶解させた溶液中に浸すことにより、無機多孔質表面と増感色素の連結基の親和性を利用して増感色素を無機多孔質表面に結合させる方法が一般的であるが、この方法に限定されない。無機酸化物粒子をペースト化させるためには無機酸化物粒子を水又は適当な有機溶剤中に分散させる。均質で表面積が大きい無機多孔質表面として積層させるには分散性の良いペーストにすることが重要であり、必要に応じて、硝酸やアセチルアセトン等の酸やポリエチレングリコール、トリトンX−100等の分散剤をペースト成分に混合し、ペイントシェーカー等を用いてペースト化する。ペーストを透明基材の電導面に塗布する方法としてはスピンコーターによる塗布方法、スクリーン印刷法、スキージーを用いた塗布方法、ディップ法、吹き付け法、ローラー法等が用いられる。塗布された無機酸化物ペーストは乾燥又は焼成後にペースト中の揮発成分が除去され透明基材の電導面上に無機酸化物半導体多孔質体を形成する。乾燥又は焼成の条件としては、例えば400℃から500℃の温度で30分〜1時間程度の熱エネルギーを与える方法が一般的であるが、透明基材の電導面に密着性を有し、太陽光照射時に良好な起電力が得られる乾燥又は焼成方法であればこれに限らない。
(Lamination method)
As a method of laminating the photoelectric conversion material used in the present invention on the conductive surface of a transparent substrate having a conductive surface, it is possible to apply inorganic oxide particles pasted on the conductive surface and then dry or sinter the inorganic surface. Forming an oxide semiconductor porous body and immersing it in a solution in which the sensitizing dye is dissolved together with the transparent substrate, and thereby sensitizing using the affinity between the inorganic porous surface and the linking group of the sensitizing dye A method of bonding the dye to the inorganic porous surface is common, but is not limited to this method. In order to paste the inorganic oxide particles, the inorganic oxide particles are dispersed in water or a suitable organic solvent. It is important to make a paste with good dispersibility for lamination as an inorganic porous surface having a large surface area, and if necessary, a dispersant such as an acid such as nitric acid or acetylacetone, polyethylene glycol, or Triton X-100. Is mixed with the paste component and made into a paste using a paint shaker or the like. As a method for applying the paste to the conductive surface of the transparent substrate, an application method using a spin coater, a screen printing method, an application method using a squeegee, a dipping method, a spraying method, a roller method, or the like is used. After the applied inorganic oxide paste is dried or baked, volatile components in the paste are removed, and an inorganic oxide semiconductor porous body is formed on the conductive surface of the transparent substrate. As a condition for drying or firing, for example, a method of applying a thermal energy of about 30 minutes to 1 hour at a temperature of 400 ° C. to 500 ° C. is generally used. It is not limited to this as long as it is a drying or firing method that provides a good electromotive force during light irradiation.

増感色素を溶解させた溶液を調製する際に用いる溶剤としては、エタノール、ベンジルアルコールなどのアルコール系溶剤、アセトニトリル、プロピオニトリルなどのニトリル系溶剤、クロロホルム、ジクロロメタン、クロロベンゼン等のハロゲン系溶剤、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、炭酸ジエチル、炭酸プロピレン等の炭酸エステル系溶剤、ヘキサン、オクタン、ベンゼン、トルエン等の炭化水素系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチルイミダゾリノン、N−メチルピロリドン、水等を用いることができるがこれらに限らない。   Solvents used when preparing a solution in which a sensitizing dye is dissolved include alcohol solvents such as ethanol and benzyl alcohol, nitrile solvents such as acetonitrile and propionitrile, halogen solvents such as chloroform, dichloromethane and chlorobenzene, Ether solvents such as diethyl ether and tetrahydrofuran; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone; carbonate solvents such as diethyl carbonate and propylene carbonate; hexane, octane, benzene, Hydrocarbon solvents such as toluene, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, 1,3-dimethylimidazolinone, N-methylpyrrolidone, water and the like can be used, but are not limited thereto.

透明基材の電導面上に形成される無機酸化物半導体多孔質体の膜厚は0.5μm乃至200μmであることが望ましい。膜厚がこの範囲未満の場合には良好な変換効率が得られない。又膜厚がこの範囲より厚い場合には成膜時に割れや剥がれが生じる等作製が困難になるだけでなく、無機酸化物半導体多孔質体表層と電導面との距離が長くなる為発生した電荷が電導面に有効に伝えられなくなるので、良好な変換効率を得ることが困難になる。   The film thickness of the inorganic oxide semiconductor porous body formed on the conductive surface of the transparent substrate is desirably 0.5 μm to 200 μm. When the film thickness is less than this range, good conversion efficiency cannot be obtained. If the film thickness is thicker than this range, not only is it difficult to produce such as cracking or peeling during film formation, but also the charge generated due to the longer distance between the surface of the inorganic oxide semiconductor porous body and the conductive surface. Cannot be effectively transmitted to the conductive surface, making it difficult to obtain good conversion efficiency.

(光電変換セル)
本発明において用いられる光電変換電極は、電解質層を介して導電性対極を組み合わせることにより光電変換セルを形成する。
(Photoelectric conversion cell)
The photoelectric conversion electrode used in the present invention forms a photoelectric conversion cell by combining a conductive counter electrode through an electrolyte layer.

(電解質層)
本発明で用いられる電解質層は電解質、媒体、及び添加物から構成されることが好ましい。本発明の電解質はヨウ素とヨウ化物(例としてヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化マグネシウム、ヨウ化カルシウム、ヨウ化第一銅、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等)の混合物、臭素と臭化物(例として臭化リチウム等)の混合物、Inorganic Chemistry,35巻,1168−1178頁(1996年)に記載の溶融塩等を用いることができるがこの限りではない。この中でもヨウ素とヨウ化物の組み合わせとしてヨウ化リチウム、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等を混合した電解質が本発明では好ましいが、この組み合わせに限らない。好ましい電解質濃度は、媒体中のヨウ素が0.01M乃至0.5Mでありヨウ化物の混合物が0.1M乃至15Mである。
(Electrolyte layer)
The electrolyte layer used in the present invention is preferably composed of an electrolyte, a medium, and an additive. The electrolyte of the present invention contains iodine and iodide (for example, lithium iodide, sodium iodide, potassium iodide, cesium iodide, magnesium iodide, calcium iodide, cuprous iodide, tetraalkylammonium iodide, pyridinium iodide). A mixture of bromine and bromide (for example, lithium bromide), a molten salt described in Inorganic Chemistry, 35, 1168-1178 (1996), and the like can be used. However, this is not the case. Among them, an electrolyte in which lithium iodide, pyridinium iodide, imidazolium iodide, or the like is mixed as a combination of iodine and iodide is preferable in the present invention, but is not limited to this combination. Preferred electrolyte concentrations are 0.01M to 0.5M iodine in the medium and 0.1M to 15M iodide mixture.

本発明で電解質層に用いられる媒体は、良好なイオン電導性を発現できる化合物であることが望ましい。溶液状の媒体としては、ジオキサン、ジエチルエーテルなどのエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどの鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3−メチル−2−オキサゾリジノンなどの複素環化合物、ジメチルスルホキシド、スルホランなど非プロトン極性物質、水などを用いることができる。   The medium used for the electrolyte layer in the present invention is desirably a compound that can exhibit good ionic conductivity. Solution media include ether compounds such as dioxane and diethyl ether, chain ethers such as ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, and polypropylene glycol dialkyl ether, methanol, ethanol, and ethylene glycol monoalkyl. Alcohols such as ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, polyhydric alcohols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, glycerin, acetonitrile, glutarodinitrile, Methoxyacetonitrile, propioni Lil, nitrile compounds such as benzonitrile, ethylene carbonate, carbonate compounds such as propylene carbonate, 3-methyl-2-oxazolidinone heterocyclic compounds such as dimethyl sulfoxide, can be used aprotic polar substances such as sulfolane, water, and the like.

また、固体状(ゲル状を含む)の媒体を用いる目的で、ポリマーを含ませることもできる。この場合、ポリアクリロニトリル、ポリフッ化ビニリデン等のポリマーを前記溶液状媒体中に添加したり、エチレン性不飽和基を有する多官能性モノマーを前記溶液状媒体中で重合させることにより媒体を固体状にする。   Further, for the purpose of using a solid (including gel) medium, a polymer may be included. In this case, a polymer such as polyacrylonitrile or polyvinylidene fluoride is added to the solution-like medium, or a polyfunctional monomer having an ethylenically unsaturated group is polymerized in the solution-like medium to make the medium solid. To do.

電解質層としては、この他にCuI、CuSCN媒体を必要としない電解質及びNature,395巻,583−585頁(1998年)記載の2,2',7,7'−テトラキス(N,N‐ジ−p−メトキシフェニル−アミン)9,9'−スピロビフルオレンのような正孔輸送材料を用いることができる。   As the electrolyte layer, an electrolyte that does not require CuI or CuSCN medium, and 2,2 ′, 7,7′-tetrakis (N, N-dioxy) described in Nature, Vol. 395, pages 583 to 585 (1998) can be used. Hole transport materials such as -p-methoxyphenyl-amine) 9,9'-spirobifluorene can be used.

本発明に用いられる電解質層には、光電変換セルの電気的出力を向上させたり、耐久性を向上させる働きをする添加物を添加することができる。電気的出力を向上させる添加物として4−t−ブチルピリジンや、2−ピコリン、2,6−ルチジン等があげられる。耐久性を向上させる添加物としてはヨウ化マグネシウム等が挙げられる。   In the electrolyte layer used in the present invention, an additive that functions to improve the electrical output of the photoelectric conversion cell or improve the durability can be added. Examples of additives that improve electrical output include 4-t-butylpyridine, 2-picoline, and 2,6-lutidine. Examples of the additive for improving durability include magnesium iodide.

(導電性対極)
本発明で用いられる電導性対極は光電変換セルの正極として機能するものである。具体的に対極に用いる導電性の材料としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、金属酸化物、ITO(インジウム‐スズ酸化物)や酸化スズ(フッ素等がドープされたものを含む)、酸化亜鉛及び炭素等があげられる。対極の膜厚は特に制限はないが、5nm乃至10μmであることが好ましい。
(Conductive counter electrode)
The conductive counter electrode used in the present invention functions as a positive electrode of the photoelectric conversion cell. Specifically, the conductive material used for the counter electrode is metal (for example, platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), metal oxide, ITO (indium-tin oxide), tin oxide (fluorine, etc.). Including doped ones), zinc oxide and carbon. The thickness of the counter electrode is not particularly limited, but is preferably 5 nm to 10 μm.

(組み立て方)
前記の光電変換電極と導電性対極を、電解質層を介して組み合わせることにより光電変換セルを形成する。必要に応じて電解質層の漏れや揮発を防ぐために、光電変換セルの周囲に封止を施す。封止には熱可塑性樹脂、光硬化性樹脂、ガラスフリット等を封止材料として用いることができる。光電変換セルは必要に応じて小面積の光電変換セルを連結させて作る。光電変換セルを直列に組み合わせることにより起電圧を高くすることができる。
(How to assemble)
A photoelectric conversion cell is formed by combining the photoelectric conversion electrode and the conductive counter electrode via an electrolyte layer. In order to prevent leakage and volatilization of the electrolyte layer, sealing is performed around the photoelectric conversion cell as necessary. For sealing, a thermoplastic resin, a photocurable resin, glass frit, or the like can be used as a sealing material. The photoelectric conversion cell is made by connecting small-area photoelectric conversion cells as necessary. The electromotive voltage can be increased by combining the photoelectric conversion cells in series.

以下に実施例を具体的に示すが本発明は以下の実施例に限定されるものではない。   Examples are shown below specifically, but the present invention is not limited to the following examples.

合成例:例示化合物1の合成   Synthesis Example: Synthesis of Exemplary Compound 1

先ず、次の式(1)に示す反応により化合物(1)を合成した。   First, compound (1) was synthesized by a reaction represented by the following formula (1).

式(1)

Figure 2012051854
Formula (1)
Figure 2012051854

次に、式(2)に示す反応により化合物(2)を合成した。 Next, the compound (2) was synthesized by the reaction represented by the formula (2).

式(2)

Figure 2012051854
更に、化合物(2)と次式(3)で表されるアルデヒドから、式(4)に示す反応により本発明の例示化合物1を合成した。 Formula (2)
Figure 2012051854
Furthermore, Exemplified Compound 1 of the present invention was synthesized from Compound (2) and an aldehyde represented by the following Formula (3) by a reaction represented by Formula (4).

式(3)

Figure 2012051854
Formula (3)
Figure 2012051854

式(4)

Figure 2012051854
Formula (4)
Figure 2012051854

化合物(1)の合成
Trimellitic anhydride(5.10 g, 26.5 mmol) の無水酢酸溶液 (38 ml) にmethyl acetoacetate (6.01 g, 51.8 mmol) とtriethylamine (16.90 g, 167 mmol) を加えて100 ℃で1.5時間攪拌した。減圧下、無水酢酸と過剰量のtriethylamineを100℃にて除去し、カラムクロマトグラフィー(シリカゲル、クロロホルム:メタノール=10 : 1)により、化合物(1) 5.95 g を黒色液体として得た。
1H NMR (300 MHz, DMSO-d6) δ 1.13 (t, J = 7.2 Hz, 18H), 2.91 (q, J = 7.2 Hz, 12H), 3.53 (s, 3H), 7.37 (d, J = 7.4 Hz, 1H), 7.83 (s, 1H), 7.99 (d, J = 7.4 Hz, 1H).
Synthesis of compound (1)
Methyl acetoacetate (6.01 g, 51.8 mmol) and triethylamine (16.90 g, 167 mmol) were added to an acetic anhydride solution (38 ml) of Trimellitic anhydride (5.10 g, 26.5 mmol), and the mixture was stirred at 100 ° C. for 1.5 hours. Acetic anhydride and excess triethylamine were removed at 100 ° C. under reduced pressure, and 5.95 g of compound (1) was obtained as a black liquid by column chromatography (silica gel, chloroform: methanol = 10: 1).
1 H NMR (300 MHz, DMSO-d 6 ) δ 1.13 (t, J = 7.2 Hz, 18H), 2.91 (q, J = 7.2 Hz, 12H), 3.53 (s, 3H), 7.37 (d, J = 7.4 Hz, 1H), 7.83 (s, 1H), 7.99 (d, J = 7.4 Hz, 1H).

化合物(2)の合成
化合物(1) 2.09 g( 4.6 mmol) のメタノール溶液 (30 mL) に酢酸アンモニウム (1.06 g, 13.8 mmol) を加え、還流下3時間攪拌した。得られた懸濁液をろ過し、メタノールで洗浄することで化合物(2) 1.02 g を黄色固体として得た。
1H NMR (300 MHz, DMSO-d6) δ 3.51 (s, 3H), 7.27 (d, J = 7.5 Hz, 1H), 7.81 (s, 1H), 7.93 (d, J = 7.3 Hz, 1H).
Synthesis of Compound (2) Ammonium acetate (1.06 g, 13.8 mmol) was added to a methanol solution (30 mL) of Compound (1) 2.09 g (4.6 mmol), and the mixture was stirred for 3 hours under reflux. The obtained suspension was filtered and washed with methanol to obtain 1.02 g of Compound (2) as a yellow solid.
1 H NMR (300 MHz, DMSO-d 6 ) δ 3.51 (s, 3H), 7.27 (d, J = 7.5 Hz, 1H), 7.81 (s, 1H), 7.93 (d, J = 7.3 Hz, 1H) .

例示化合物1 の合成
化合物(2) 0.20 g( 0.58 mmol) の酢酸溶液 (2 mL) に式(3)で表されるアルデヒド0.21g(0.58 mmol) を加え、100℃にて1時間攪拌した。得られた混合物を70℃にて減圧濃縮し、カラムクロマトグラフィー(シリカゲル、クロロホルム:メタノール=10 : 1)精製により結晶0.24gを得た。MALDITOF−MS(ブルカーダルトニクス社製 autoflexII)による質量分析により、例示化合物1の分子量(理論値527.59、実測値527.81)に一致した。
Synthesis of Exemplary Compound 1 Compound (2) 0.21 g (0.58 mmol) of aldehyde represented by formula (3) was added to 0.20 g (0.58 mmol) of acetic acid solution (2 mL), and the mixture was stirred at 100 ° C. for 1 hour. The resulting mixture was concentrated under reduced pressure at 70 ° C. and purified by column chromatography (silica gel, chloroform: methanol = 10: 1) to obtain 0.24 g of crystals. It was in agreement with the molecular weight (theoretical value 527.59, measured value 527.81) of exemplary compound 1 by the mass spectrometry by MALDITF-MS (autoflex II by Bruker Daltonics).

変換用増感色素の評価
変換用増感色素の評価法として、増感色素を用いて組み立てた光電変換セルの変換効率を測定する方法について、光電変換セルの試験試料を表した図1を用いて説明する。
Evaluation of Conversion Sensitizing Dye As a method of evaluating the conversion sensitizing dye, FIG. 1 showing a test sample of a photoelectric conversion cell is used for a method of measuring the conversion efficiency of a photoelectric conversion cell assembled using a sensitizing dye. I will explain.

透明電極
フッ素ドープ型酸化スズ層(透明電極層)付ガラス基板3(旭ガラス社製、タイプU−TCO)を使用した。
Transparent electrode The glass substrate 3 with a fluorine dope type tin oxide layer (transparent electrode layer) (Asahi Glass Co., Ltd. type U-TCO) was used.

導電性対極
フッ素ドープ型酸化スズ層付ガラス基板3(旭ガラス社製、タイプU−TCO)の導電層上に、スパッタリング法により白金層(白金電極層)(厚み150nm)を積層した導電性対極4を用いた。
Conductive counter electrode A conductive counter electrode in which a platinum layer (platinum electrode layer) (thickness 150 nm) was laminated by sputtering on the conductive layer of a glass substrate 3 with fluorine-doped tin oxide layer (type U-TCO, manufactured by Asahi Glass Co., Ltd.) 4 was used.

酸化チタンペーストの調製
下記の処方で酸化チタンとジルコニアビーズを混合し、ペイントシェーカーを用いて分散することにより酸化チタンペーストを得た。
酸化チタン(日本アエロジル社製 P25 粒子径 21nm) 6 部
水(硝酸添加でpH2に調整) 14 部
アセチルアセトン 0.6 部
界面活性剤(ICN社製 Triton X−100) 0.04 部
PEG‐#500,000 0.3 部
Preparation of Titanium Oxide Paste Titanium oxide paste and zirconia beads were mixed according to the following formulation and dispersed using a paint shaker to obtain a titanium oxide paste.
Titanium oxide (Nippon Aerosil Co., Ltd., P25 particle size 21 nm) 6 parts Water (adjusted to pH 2 by addition of nitric acid) 14 parts Acetylacetone 0.6 parts Surfactant (ICN Triton X-100) 0.04 parts PEG- # 500 , 000 0.3 parts

酸化チタン多孔質層の作成
透明電極の導電面(透明電極層3)に厚さ60μmのメンディングテープを張り、1cm角のテープを除去することでマスクを作り、空いた部分に上記酸化チタンペーストを数滴たらした後に、スキージで余分なペーストを除去した。風乾後、全てのマスクを除去し、450℃のオーブンで1時間焼成して、有効面積1cm2の酸化チタン多孔質層を有する酸化チタン電極を得た。
Preparation of porous titanium oxide layer A 60μm thick mending tape is applied to the conductive surface (transparent electrode layer 3) of the transparent electrode, and a mask is made by removing the 1cm square tape. After dropping several drops, excess paste was removed with a squeegee. After air drying, all the masks were removed and baked in an oven at 450 ° C. for 1 hour to obtain a titanium oxide electrode having a titanium oxide porous layer having an effective area of 1 cm 2 .

増感色素の吸着
光電変換用増感色素をテトラヒドロフラン:アセトニトリル=1:1(体積比)に溶解(濃度0.6mmol/L)し、メンブランフィルターで不溶分を除去した後に、この色素溶液に上記酸化チタン電極を浸漬し、室温で24時間放置した。浸漬時間は、実際にセルを作成して変換効率を求め、その変換効率が最大となるように設定した。
着色した電極表面を、溶解に使用した溶剤及びアルコールで洗浄した後、4‐t‐ブチルピリジンの2mol%アルコール溶液に30分浸した後、乾燥させて、増感色素の吸着した酸化チタン多孔質層1を有する光電変換電極を得た。
Adsorption of sensitizing dye The sensitizing dye for photoelectric conversion is dissolved in tetrahydrofuran: acetonitrile = 1: 1 (volume ratio) (concentration 0.6 mmol / L), and insoluble matter is removed by a membrane filter. The titanium oxide electrode was immersed and left at room temperature for 24 hours. The immersion time was set so that the conversion efficiency was maximized by actually creating a cell and obtaining the conversion efficiency.
The colored electrode surface was washed with the solvent and alcohol used for dissolution, then immersed in a 2 mol% alcohol solution of 4-t-butylpyridine for 30 minutes, and then dried to form a porous titanium oxide adsorbed with a sensitizing dye. A photoelectric conversion electrode having the layer 1 was obtained.

電解質溶液の調製
下記処方の電解質溶液を調製した。溶媒にはメトキシアセトニトリルを用いた。
ヨウ化リチウム 0.1M
ヨウ素 0.05M
4−t−ブチルピリジン 0.5M
1−プロピル−2,3−ジメチルイミダゾリウムヨージド 0.6M
Preparation of electrolyte solution An electrolyte solution having the following formulation was prepared. Methoxyacetonitrile was used as the solvent.
Lithium iodide 0.1M
Iodine 0.05M
4-t-butylpyridine 0.5M
1-propyl-2,3-dimethylimidazolium iodide 0.6M

光電変換セルの組み立て
図1に示すように、光電変換セルの試験サンプルを組み立てた。すなわち、上記の手順により光電変換用増感色素を吸着させた酸化チタン多孔質層1が形成された透明電極(フッ素ドープ型酸化スズ層付ガラス基板3)と、フッ素ドープ型酸化スズ層付ガラス基板の導電層上に白金層が積層された導電性対極4とを、樹脂フィルム製スペーサー6(三井・デュポンポリケミカル社製「ハイミラン」フィルム(25μm厚))を挟んで固定し、その空隙に上記の電解質溶液を注入して電解質溶液層2を形成した。ガラス基板3及び白金対極層には、それぞれ変換効率測定用の導線7を固定した。
Assembly of Photoelectric Conversion Cell As shown in FIG. 1, a test sample of the photoelectric conversion cell was assembled. That is, a transparent electrode (a glass substrate 3 with a fluorine-doped tin oxide layer) on which a titanium oxide porous layer 1 on which a sensitizing dye for photoelectric conversion is adsorbed by the above procedure is formed, and a glass with a fluorine-doped tin oxide layer A conductive counter electrode 4 in which a platinum layer is laminated on a conductive layer of a substrate is fixed with a spacer 6 made of resin film (“High Milan” film (25 μm thickness) made by Mitsui-DuPont Polychemical Co., Ltd.) sandwiched in the gap. The above electrolyte solution was injected to form the electrolyte solution layer 2. Conductive wires 7 for measuring conversion efficiency were fixed to the glass substrate 3 and the platinum counter electrode layer, respectively.

変換効率の測定方法
ORIEL社製ソーラーシミュレーター(#8116)とエアマスフィルターを組み合わせ、光量計で100mW/cm2 の光量に調整して測定用光源とした。光電変換セルの試験サンプルに光照射をしながら、KEITHLEY MODEL 2400ソースメーターを使用してI−Vカーブ特性を測定した。変換効率ηは、I−Vカーブ特性測定から得られたVoc(開放電圧値)、Isc(短絡電流値)及びff(フィルファクター値)を用いて下記の式により算出した。
Measurement Method of Conversion Efficiency A solar simulator (# 8116) manufactured by ORIEL Co., Ltd. and an air mass filter were combined and adjusted to a light amount of 100 mW / cm 2 with a light meter to obtain a measurement light source. The IV curve characteristic was measured using a KEITHLEY MODEL 2400 source meter while irradiating the test sample of the photoelectric conversion cell with light. The conversion efficiency η was calculated by the following equation using Voc (open circuit voltage value), Isc (short circuit current value) and ff (fill factor value) obtained from the IV curve characteristic measurement.

Figure 2012051854
Figure 2012051854

実施例1−7
表1に記載した例示化合物を増感色素として用い、上記の方法により組み立てたセルを用いて評価を行なった。得られた結果を表2に示す。
Example 1-7
The exemplary compounds listed in Table 1 were used as sensitizing dyes, and evaluation was performed using the cell assembled by the above method. The obtained results are shown in Table 2.

Figure 2012051854
Figure 2012051854

表2から明らかなように、本発明の化合物を用いて作製した素子は、蛍光灯下暴露24時間後及び擬似太陽光照射100時間後においても作製直後とほぼ同等の変換効率を示していることが分かる。   As is apparent from Table 2, the device produced using the compound of the present invention shows almost the same conversion efficiency as that immediately after production even after 24 hours exposure under fluorescent lamps and 100 hours after simulated sunlight irradiation. I understand.

1.酸化チタン多孔質層(光電変換用増感色素を吸着済み)
2.電解質溶液層
3.透明電極層(フッ素ドープ型酸化スズ)
4.Pt電極層
5.ガラス基盤
6.樹脂フィルム製スペーサー
7.変換効率測定用導線
1. Titanium oxide porous layer (adsorbed sensitizing dye for photoelectric conversion)
2. 2. Electrolyte solution layer Transparent electrode layer (fluorine-doped tin oxide)
4). 4. Pt electrode layer 5. Glass substrate 6. Resin film spacer Conversion efficiency measurement lead

Claims (5)

下記一般式(1)で表されるインダノン誘導体。
一般式(1)
Figure 2012051854


[式中、R1乃至R3はそれぞれ独立に水素原子もしくは電子吸引性基を表す。また、R4乃至R17はそれぞれ独立に、水素原子、無置換もしくは置換基を有するアルキル基、無置換もしくは置換基を有するアルコキシ基、無置換もしくは置換基を有するアルキルチオ基、無置換もしくは置換基を有するアリール基を表す。]
An indanone derivative represented by the following general formula (1).
General formula (1)
Figure 2012051854


[Wherein, R 1 to R 3 each independently represents a hydrogen atom or an electron-withdrawing group. R 4 to R 17 are each independently a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkoxy group, an unsubstituted or substituted alkylthio group, an unsubstituted or substituted group. Represents an aryl group having ]
請求項1に記載のインダノン誘導体を含んで成る光電変換用増感色素。 A sensitizing dye for photoelectric conversion comprising the indanone derivative according to claim 1. 請求項2に記載の光電変換用増感色素と、無機半導体多孔質体とを連結させて成る光電変換材料。 A photoelectric conversion material obtained by linking the sensitizing dye for photoelectric conversion according to claim 2 and an inorganic semiconductor porous body. 請求項3に記載の光電変換材料を透明電極に積層させて成る光電変換電極。 A photoelectric conversion electrode obtained by laminating the photoelectric conversion material according to claim 3 on a transparent electrode. 請求項4に記載の光電変換電極、電解質層及び導電性対極を含んで成る光電変換セル。 A photoelectric conversion cell comprising the photoelectric conversion electrode according to claim 4, an electrolyte layer, and a conductive counter electrode.
JP2010197227A 2010-09-03 2010-09-03 Indanone derivatives and their use as colorants for dye-sensitized solar cells Active JP5630156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197227A JP5630156B2 (en) 2010-09-03 2010-09-03 Indanone derivatives and their use as colorants for dye-sensitized solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197227A JP5630156B2 (en) 2010-09-03 2010-09-03 Indanone derivatives and their use as colorants for dye-sensitized solar cells

Publications (3)

Publication Number Publication Date
JP2012051854A true JP2012051854A (en) 2012-03-15
JP2012051854A5 JP2012051854A5 (en) 2013-07-25
JP5630156B2 JP5630156B2 (en) 2014-11-26

Family

ID=45905632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197227A Active JP5630156B2 (en) 2010-09-03 2010-09-03 Indanone derivatives and their use as colorants for dye-sensitized solar cells

Country Status (1)

Country Link
JP (1) JP5630156B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016155A1 (en) * 2013-08-02 2015-02-05 富士フイルム株式会社 Photoelectric conversion material, photoelectric conversion element, optical sensor, and imaging element
JP2018014426A (en) * 2016-07-21 2018-01-25 キヤノン株式会社 Organic compound and organic photoelectric conversion element having the same
JP2019059824A (en) * 2017-09-26 2019-04-18 保土谷化学工業株式会社 Sensitizing dye, sensitizing dye for photoelectric conversion, and photoelectric conversion element and dye-sensitized solar cell including the same
KR20190057057A (en) 2016-09-27 2019-05-27 호도가야 가가쿠 고교 가부시키가이샤 A sensitizing dye, a sensitizing dye for photoelectric conversion, a photoelectric conversion element using the sensitizing dye, and a dye-sensitized solar cell
KR20190129837A (en) 2017-03-29 2019-11-20 호도가야 가가쿠 고교 가부시키가이샤 Sensitizing dye, sensitizing dye composition for photoelectric conversion, photoelectric conversion element and dye sensitizing solar cell using same
KR20210110229A (en) 2020-02-28 2021-09-07 호도가야 가가쿠 고교 가부시키가이샤 Sensitizing dye, sensitizing dye for photoelectric conversion, photoelectric transducer, and dye-sensitized solar cell
KR20230031149A (en) 2021-08-26 2023-03-07 호도가야 가가쿠 고교 가부시키가이샤 Sensitizing dye, sensitizing dye composition for photoelectric conversion, photoelectric conversion element, and dye-sensitized solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023353A (en) * 2004-07-06 2006-01-26 Fuji Photo Film Co Ltd Photosensitive composition and image recording method using it
JP2007091714A (en) * 2005-09-27 2007-04-12 Samsung Electronics Co Ltd New nitrogen-based semiconductor compound, organic thin membrane transistor, organic solar photovoltaic cell and organic electric field light-emitting element by using the same
JP2008226505A (en) * 2007-03-09 2008-09-25 Toyo Ink Mfg Co Ltd Phenanthrothiophene based compound, its usage, and its manufacturing method
JP2009212035A (en) * 2008-03-06 2009-09-17 Konica Minolta Business Technologies Inc Dye-sensitized photoelectric conversion element and solar cell
US20100076205A1 (en) * 2008-09-25 2010-03-25 Academia Sinica Dye compound and dye-sensitized solar cell
JP2010153764A (en) * 2008-11-27 2010-07-08 Fujifilm Corp Photoelectric conversion element, imaging element, and method of manufacturing the photoelectric conversion element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023353A (en) * 2004-07-06 2006-01-26 Fuji Photo Film Co Ltd Photosensitive composition and image recording method using it
JP2007091714A (en) * 2005-09-27 2007-04-12 Samsung Electronics Co Ltd New nitrogen-based semiconductor compound, organic thin membrane transistor, organic solar photovoltaic cell and organic electric field light-emitting element by using the same
JP2008226505A (en) * 2007-03-09 2008-09-25 Toyo Ink Mfg Co Ltd Phenanthrothiophene based compound, its usage, and its manufacturing method
JP2009212035A (en) * 2008-03-06 2009-09-17 Konica Minolta Business Technologies Inc Dye-sensitized photoelectric conversion element and solar cell
US20100076205A1 (en) * 2008-09-25 2010-03-25 Academia Sinica Dye compound and dye-sensitized solar cell
JP2010153764A (en) * 2008-11-27 2010-07-08 Fujifilm Corp Photoelectric conversion element, imaging element, and method of manufacturing the photoelectric conversion element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9997721B2 (en) 2013-08-02 2018-06-12 Fujifilm Corporation Photoelectric conversion material, photoelectric conversion element, optical sensor, and imaging element
JP2015046565A (en) * 2013-08-02 2015-03-12 富士フイルム株式会社 Photoelectric conversion material, photoelectric conversion element, optical sensor, and image pickup element
WO2015016155A1 (en) * 2013-08-02 2015-02-05 富士フイルム株式会社 Photoelectric conversion material, photoelectric conversion element, optical sensor, and imaging element
US20190148644A1 (en) * 2016-07-21 2019-05-16 Canon Kabushiki Kaisha Organic compound and organic photoelectric conversion element including the same
WO2018016354A1 (en) * 2016-07-21 2018-01-25 キヤノン株式会社 Organic compound and organic photoelectric conversion element comprising same
JP2018014426A (en) * 2016-07-21 2018-01-25 キヤノン株式会社 Organic compound and organic photoelectric conversion element having the same
US10978644B2 (en) 2016-07-21 2021-04-13 Canon Kabushiki Kaisha Organic compound and organic photoelectric conversion element including the same
JP2022021347A (en) * 2016-07-21 2022-02-02 キヤノン株式会社 Organic compound, and organic photoelectric conversion element
JP7379444B2 (en) 2016-07-21 2023-11-14 キヤノン株式会社 Organic compounds and organic photoelectric conversion elements
KR20190057057A (en) 2016-09-27 2019-05-27 호도가야 가가쿠 고교 가부시키가이샤 A sensitizing dye, a sensitizing dye for photoelectric conversion, a photoelectric conversion element using the sensitizing dye, and a dye-sensitized solar cell
KR20190129837A (en) 2017-03-29 2019-11-20 호도가야 가가쿠 고교 가부시키가이샤 Sensitizing dye, sensitizing dye composition for photoelectric conversion, photoelectric conversion element and dye sensitizing solar cell using same
JP2019059824A (en) * 2017-09-26 2019-04-18 保土谷化学工業株式会社 Sensitizing dye, sensitizing dye for photoelectric conversion, and photoelectric conversion element and dye-sensitized solar cell including the same
JP7055292B2 (en) 2017-09-26 2022-04-18 保土谷化学工業株式会社 Dye-sensitized dye, sensitizing dye for photoelectric conversion, photoelectric conversion element using it, and dye-sensitized solar cell
KR20210110229A (en) 2020-02-28 2021-09-07 호도가야 가가쿠 고교 가부시키가이샤 Sensitizing dye, sensitizing dye for photoelectric conversion, photoelectric transducer, and dye-sensitized solar cell
KR20230031149A (en) 2021-08-26 2023-03-07 호도가야 가가쿠 고교 가부시키가이샤 Sensitizing dye, sensitizing dye composition for photoelectric conversion, photoelectric conversion element, and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP5630156B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5630156B2 (en) Indanone derivatives and their use as colorants for dye-sensitized solar cells
Geiger et al. Molecular design of unsymmetrical squaraine dyes for high efficiency conversion of low energy photons into electrons using TiO2 nanocrystalline films
JP4841248B2 (en) Dye-sensitized photoelectric conversion element
US8242355B2 (en) Photoelectric conversion element and solar cell
Maeda et al. Intramolecular exciton-coupled squaraine dyes for dye-sensitized solar cells
Chen et al. Novel cyanine dyes with different methine chains as sensitizers for nanocrystalline solar cell
JP4423857B2 (en) Optical functional materials
Qu et al. Tuning the Electrical and Optical Properties of Diketopyrrolopyrrole Complexes for Panchromatic Dye‐Sensitized Solar Cells
JP2010529226A (en) Novel organic dye and method for producing the same
Lee et al. Electronically coupled porphyrin-arene dyads for dye-sensitized solar cells
JP4442105B2 (en) Optical functional materials
Kim et al. Structure–photovoltaic performance relationships for DSSC sensitizers having heterocyclic and benzene spacers
JP2011207784A (en) Indanone derivative, and use thereof as colorant for use in dye-sensitized solar cell
Sonigara et al. Augmentation in photocurrent through organic ionic plastic crystals as an efficient redox mediator for solid-state mesoscopic photovoltaic devices
JP2011026389A (en) Optically functional material
JP2007246885A (en) Photo functional material
JP4591667B2 (en) Optical functional materials
JP2014172835A (en) Optically functional material and sensitizing dye for photoelectric conversion
Ammasi et al. Molecular engineering on D-π-A organic dyes with flavone-based different acceptors for highly efficient dye-sensitized solar cells using experimental and computational study
JP2011001474A (en) Optical functional material
JP4314782B2 (en) Sensitizing dye for photoelectric conversion and use thereof
JP2008226505A (en) Phenanthrothiophene based compound, its usage, and its manufacturing method
Kotteswaran et al. Synthesis, optical, electrochemical and photovoltaic properties of donor modified organic dyes for dye-sensitized solar cell (DSSC) applications
JP2007131767A (en) Optically functional material
JP2012131906A (en) Dye and dye sensitized solar cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5630156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250