JP2012050704A - Electronic endoscope and manufacturing method of the same - Google Patents

Electronic endoscope and manufacturing method of the same Download PDF

Info

Publication number
JP2012050704A
JP2012050704A JP2010195942A JP2010195942A JP2012050704A JP 2012050704 A JP2012050704 A JP 2012050704A JP 2010195942 A JP2010195942 A JP 2010195942A JP 2010195942 A JP2010195942 A JP 2010195942A JP 2012050704 A JP2012050704 A JP 2012050704A
Authority
JP
Japan
Prior art keywords
conductive material
thermal conductive
high thermal
endoscope
electronic endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010195942A
Other languages
Japanese (ja)
Other versions
JP5414640B2 (en
JP2012050704A5 (en
Inventor
Naoyuki Fukutake
直之 福武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010195942A priority Critical patent/JP5414640B2/en
Publication of JP2012050704A publication Critical patent/JP2012050704A/en
Publication of JP2012050704A5 publication Critical patent/JP2012050704A5/ja
Application granted granted Critical
Publication of JP5414640B2 publication Critical patent/JP5414640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to effectively radiate the heat generated from the imaging module arranged in the distal end part of an endoscope.SOLUTION: In the electronic endoscope having a space for arranging the imaging module including an imaging element in the distal end part of the endoscope inside of the same, the inside of the metal frame 26 including the imaging module is filled with an isotropic highly thermalconductive resin, the space around the metal frame is filled with anisotropic highly thermalconductive resin 42 having higher thermal conductivity in the endoscope outer peripheral direction than in the endoscope longitudinal direction, the heat generated from the imaging module is effectively conducted to the metallic cylindrical body 30 of the endoscope outer peripheral part and is radiated from the same.

Description

本発明は電子内視鏡及びその製造方法に係り、特に内視鏡先端部の温度上昇を抑制する技術に関する。   The present invention relates to an electronic endoscope and a method for manufacturing the same, and more particularly to a technique for suppressing a temperature rise at the endoscope distal end.

従来、内視鏡先端部に金属等よりなる熱伝導部材を配設し、この熱伝導部材に接して熱が伝達されるように撮像素子及び回路基板を配設し、更に熱伝導部材の後端側には、鉄粉等よりなる熱伝導軟性体を充填し、撮像装置を駆動することにより発生する熱を、熱伝導部材及び熱伝導軟性体等を介して外気に放熱し、回路基板上の電子回路部品の駆動熱を熱伝導軟性体等を介して外気に放熱する内視鏡装置が提案されている(特許文献1)。   Conventionally, a heat conducting member made of metal or the like is disposed at the distal end portion of the endoscope, an image pickup device and a circuit board are disposed so as to transmit heat in contact with the heat conducting member, and further after the heat conducting member. The heat conductive soft body made of iron powder or the like is filled on the end side, and the heat generated by driving the imaging device is radiated to the outside air through the heat conductive member and the heat conductive soft body. An endoscope apparatus that dissipates driving heat of electronic circuit components to the outside air through a heat conductive soft body has been proposed (Patent Document 1).

また、内視鏡先端部に配設されている照明部に、長さ方向の熱伝導率が厚み方向よりも高く、熱伝導の方向に異方性をもつ熱伝導材(熱伝導フイルム)の一端を取り付け、この熱伝導フイルムの他端を、挿入部後端側の内壁に取り付け、照明部で生じた熱を、熱伝導フイルムの長さ方向の照明部よりも温度が低い方、即ち、挿入部後端側に向けて伝達し、この伝熱の過程で、熱源が存在しない挿入部後端側内部の空気によって冷却する内視鏡が提案されている(特許文献2)。   In addition, the illuminating unit provided at the distal end of the endoscope has a thermal conductivity in the length direction higher than that in the thickness direction and an anisotropy in the direction of thermal conduction (thermal conductive film). One end is attached, the other end of this heat conduction film is attached to the inner wall on the rear end side of the insertion part, and the heat generated in the illumination part is lower in temperature than the illumination part in the longitudinal direction of the heat conduction film, that is, There has been proposed an endoscope that transmits toward the rear end side of the insertion portion and cools by air inside the rear end side of the insertion portion where no heat source exists in the process of heat transfer (Patent Document 2).

特開平5−228105号公報JP-A-5-228105 特開2009−56107号公報JP 2009-56107 A

特許文献1に記載の内視鏡装置において、内視鏡先端部の空間に充填されている熱伝導軟性体は、鉄粉等よりなるものであるが、特許文献1には、前記熱伝導軟性体が熱伝導の方向に異方性をもっているという記載がなく、また、異方性高熱伝導体で構成するという発想もない。尚、異方性高熱伝導樹脂等の熱伝導材は、等方性高熱伝導樹脂等に比べて熱伝導度が高い。   In the endoscope apparatus described in Patent Document 1, the heat conductive soft body filled in the space at the distal end portion of the endoscope is made of iron powder or the like. There is no description that the body has anisotropy in the direction of heat conduction, and there is no idea that the body is composed of an anisotropic high heat conductor. Note that a heat conductive material such as an anisotropic high heat conductive resin has a higher thermal conductivity than an isotropic high heat conductive resin or the like.

一方、特許文献2に記載の熱伝導材(熱伝導フイルム)は、熱伝導の方向に異方性をもっているが、内視鏡先端部の空間に充填されるものではなく、また、熱伝導フイルムによる熱伝導の方向は、内視鏡先端側から後端側への内視鏡の長手方向である。即ち、特許文献2に記載の熱伝導材は、照明部で生じた熱を内視鏡先端部の外周部に伝熱するものではない。   On the other hand, the heat conducting material (heat conducting film) described in Patent Document 2 has anisotropy in the direction of heat conduction, but is not filled in the space at the distal end of the endoscope, and the heat conducting film. The direction of heat conduction by the endoscope is the longitudinal direction of the endoscope from the endoscope front end side to the rear end side. That is, the heat conductive material described in Patent Document 2 does not transfer heat generated in the illumination unit to the outer peripheral portion of the endoscope distal end portion.

本発明はこのような事情に鑑みてなされたもので、内視鏡先端部に配設された撮像モジュールから発生した熱を効率よく放熱することができ、画質劣化の防止及び照明・回路素子の増強が可能な電子内視鏡及びその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and can efficiently dissipate heat generated from the imaging module disposed at the distal end portion of the endoscope, thereby preventing image quality deterioration and lighting / circuit elements. An object of the present invention is to provide an electronic endoscope that can be augmented and a method for manufacturing the same.

前記目的を達成するために請求項1に係る発明は、先端部に撮像モジュールを設置する空間を内部に持つ電子内視鏡において、前記撮像モジュールの周囲空間に、内視鏡長手方向よりも内視鏡外周部方向への熱伝導率の高い異方性高熱伝導材を充填したことを特徴としている。   In order to achieve the above object, an invention according to claim 1 is an electronic endoscope having a space in which an imaging module is installed at a distal end portion. It is characterized by being filled with an anisotropic high thermal conductive material with high thermal conductivity in the direction of the outer periphery of the endoscope.

一般に、異方性高熱伝導材は、等方性高熱伝導材よりも熱伝導度が高いが、この異方性高熱伝導材を、内視鏡長手方向よりも内視鏡外周部方向への熱伝導率が高くなるように前記撮像モジュールの周囲空間に充填するようにしたため、前記撮像モジュールから発生した熱を効率よく内視鏡外周部に放熱することができる。   In general, an anisotropic high thermal conductive material has a higher thermal conductivity than an isotropic high thermal conductive material. However, this anisotropic high thermal conductive material is used in the direction of the endoscope outer peripheral portion rather than the longitudinal direction of the endoscope. Since the surrounding space of the imaging module is filled so as to increase the conductivity, the heat generated from the imaging module can be efficiently radiated to the outer periphery of the endoscope.

請求項2に示すように請求項1に記載の電子内視鏡において、前記撮像モジュールを構成する撮像素子を囲む金属枠内に等方性高熱伝導材を充填したことを特徴としている。前記金属枠内に等方性高熱伝導材を充填することにより撮像モジュール全体で均等に発熱させることができ、また、等方性高熱伝導材は、狭スペースの金属枠内への充填が可能である。   According to a second aspect of the present invention, in the electronic endoscope according to the first aspect of the present invention, an isotropic high thermal conductive material is filled in a metal frame surrounding an image pickup device constituting the image pickup module. By filling the metal frame with an isotropic high heat conductive material, heat can be generated uniformly throughout the imaging module, and the isotropic high heat conductive material can be filled into a narrow space metal frame. is there.

請求項3に示すように請求項2に記載の電子内視鏡において、前記金属枠内には、前記撮像素子を駆動するための集積回路が実装された回路基板が収容されていることを特徴としている。回路基板に実装される集積回路は発熱源となっており、この集積回路から発生する熱を効率よく放熱できるようにしている。   According to a third aspect of the present invention, in the electronic endoscope according to the second aspect, a circuit board on which an integrated circuit for driving the imaging device is mounted is accommodated in the metal frame. It is said. The integrated circuit mounted on the circuit board serves as a heat source, and heat generated from the integrated circuit can be efficiently radiated.

請求項4に示すように請求項2又は3に記載の電子内視鏡において、前記異方性高熱伝導材は、前記金属枠と内視鏡外周部の金属製筒状体との間の内部空間に充填され、前記撮像モジュールで発生した熱は、前記等方性高熱伝導材により前記金属枠全体に伝達され、該金属枠から前記異方性高熱伝導材を介して前記金属製筒状体に伝達されることを特徴としている。   4. The electronic endoscope according to claim 2, wherein the anisotropic high thermal conductive material is an interior between the metal frame and a metal cylindrical body at an outer peripheral portion of the endoscope. The heat generated in the imaging module filled in the space is transmitted to the entire metal frame by the isotropic high heat conductive material, and the metal cylindrical body is transmitted from the metal frame through the anisotropic high heat conductive material. It is characterized by being transmitted to.

請求項5に示すように請求項2から4のいずれかに記載の電子内視鏡において、前記等方性高熱伝導材は、絶縁性を有する等方性高熱伝導材であり、前記異方性高熱伝導材は、導電性を有する異方性高熱伝導材であることを特徴としている。   The electronic endoscope according to any one of claims 2 to 4, wherein the isotropic high thermal conductive material is an isotropic high thermal conductive material having an insulating property and the anisotropy. The high thermal conductive material is characterized by being an anisotropic high thermal conductive material having electrical conductivity.

電気接続不可な撮像モジュールの内部(金属枠の内部)には、絶縁性を有する等方性高熱伝導材を充填することにより絶縁性を確保し、一方、撮像モジュールの周囲(金属枠と金属製筒状体との間)には、導電性を有する異方性高熱伝導材を充填することにより、金属枠と金属製筒状体とを電気的に接続し、ノイズを抑制できるようにしている。   The interior of the imaging module that cannot be electrically connected (inside the metal frame) is filled with an isotropic high thermal conductive material that has insulating properties, while ensuring insulation, while the surroundings of the imaging module (the metal frame and the metal frame) Between the cylindrical body), the metal frame and the metallic cylindrical body are electrically connected by filling an anisotropic high thermal conductive material having conductivity so that noise can be suppressed. .

請求項6に示すように請求項1から5のいずれかに記載の電子内視鏡において、前記異方性高熱伝導材は、接着剤に高アスペクト比形状フィラーが配向して配合された異方性高熱伝導樹脂であり、配向方向の熱伝導率が7W/mK以上であることを特徴としている。前記高アスペクト比形状フィラーは、例えば、径が数μm、長さが数百μmのアスペクト比が10以上のカーボンファイバ、又はグラファイトなどが適用できる。   The electronic endoscope according to any one of claims 1 to 5, wherein the anisotropic high thermal conductive material is an anisotropic material in which a high aspect ratio shape filler is oriented in an adhesive. High thermal conductive resin, characterized in that the thermal conductivity in the orientation direction is 7 W / mK or more. As the high aspect ratio shape filler, for example, a carbon fiber having a diameter of several μm and a length of several hundred μm and an aspect ratio of 10 or more, or graphite can be applied.

請求項7に示すように請求項2から5のいずれかに記載の電子内視鏡において、前記等方性高熱伝導材は、接着剤に低アスペクト比形状フィラーがランダムに配合された等方性高熱伝導樹脂であり、熱伝導率が3W/mK以下で、絶縁抵抗が1012Ω・m以上であることを特徴としている。前記低アスペクト比形状フィラーは、粒子径が1〜20μmのダイヤモンド、窒化アルミ、アルミナ、又は酸化マグネシウムなどが適用できる。 The electronic endoscope according to any one of claims 2 to 5, wherein the isotropic high thermal conductive material is isotropic in which a low aspect ratio shape filler is randomly mixed in an adhesive. It is a high thermal conductive resin, characterized by having a thermal conductivity of 3 W / mK or less and an insulation resistance of 10 12 Ω · m or more. As the low aspect ratio shape filler, diamond, aluminum nitride, alumina, magnesium oxide or the like having a particle diameter of 1 to 20 μm can be applied.

請求項8に係る発明は、請求項1から7のいずれかに記載の電子内視鏡を製造する電子内視鏡の製造方法において、接着剤と高アスペクト比形状フィラーとを攪拌装置により攪拌して前記高アスペクト比形状フィラーを一定方向に配向させてなる異方性高熱伝導材を生成する生成工程と、前記生成された異方性高熱伝導材を、前記高アスペクト比形状フィラーの配向方向が、少なくとも内視鏡長手方向と直交する面内方向と一致するように、前記撮像モジュールと前記金属製筒状体との間の内部空間に充填する充填工程と、を含むことを特徴としている。   The invention according to claim 8 is the method of manufacturing an electronic endoscope according to any one of claims 1 to 7, wherein the adhesive and the high aspect ratio shape filler are stirred by a stirring device. Generating the anisotropic high heat conductive material obtained by orienting the high aspect ratio shape filler in a certain direction, and forming the anisotropic high heat conductive material into an orientation direction of the high aspect ratio shape filler. And a filling step of filling the internal space between the imaging module and the metal cylindrical body so as to coincide with at least the in-plane direction orthogonal to the longitudinal direction of the endoscope.

請求項9に示すように請求項8に記載の電子内視鏡の製造方法において、前記充填工程は、前記生成された異方性高熱伝導材を、前記撮像モジュールの周囲に前記高アスペクト比形状フィラーの配向を崩さないように塗布する工程と、前記異方性高熱伝導材が塗布された撮像モジュールを、前記内視鏡先端部の金属製筒状体内に挿入する工程と、を含むことを特徴としている。   9. The method of manufacturing an electronic endoscope according to claim 8, wherein in the filling step, the generated anisotropic high thermal conductive material is placed around the imaging module in the shape of the high aspect ratio. Applying the filler so as not to break the orientation of the filler, and inserting the imaging module coated with the anisotropic high thermal conductive material into the metallic cylindrical body of the endoscope distal end. It is a feature.

本発明によれば、内視鏡先端部に設置される撮像モジュールの周囲空間に、内視鏡長手方向よりも内視鏡外周部方向への熱伝導率の高い異方性高熱伝導材を充填するようにしたため、撮像モジュールから発生した熱を異方性高熱伝導材を介して効率よく内視鏡外周部に伝熱することができ、特に等方性高熱伝導材よりも熱伝導度が高い異方性高熱伝導材を使用することにより、内視鏡外周部に効率よく放熱することができる。   According to the present invention, the space around the imaging module installed at the distal end portion of the endoscope is filled with an anisotropic high thermal conductive material having a higher thermal conductivity in the direction of the outer periphery of the endoscope than in the longitudinal direction of the endoscope. As a result, heat generated from the imaging module can be efficiently transferred to the outer periphery of the endoscope via the anisotropic high heat conductive material, and in particular has a higher thermal conductivity than the isotropic high heat conductive material. By using the anisotropic high thermal conductive material, heat can be efficiently radiated to the outer periphery of the endoscope.

本実施形態に係る電子内視鏡を含む内視鏡システムの概略構成を示した全体構成図Overall configuration diagram showing a schematic configuration of an endoscope system including an electronic endoscope according to the present embodiment 電子内視鏡の先端部を示した正面図Front view showing the tip of the electronic endoscope 電子内視鏡の先端部を示した側面断面図Side sectional view showing the tip of the electronic endoscope 等方性高熱伝導樹脂を説明するために用いた図Diagram used to explain isotropic high thermal conductive resin 異方性高熱伝導樹脂を説明するために用いた図Diagram used to describe anisotropic high thermal conductivity resin 熱伝導のしやすさを説明するために用いた電子内視鏡の先端部の要部の側面断面図Side cross-sectional view of the main part of the tip of the electronic endoscope used to explain the ease of heat conduction 熱伝導のしやすさを説明するために用いた図6の7−7線に沿う断面図Sectional view along line 7-7 in FIG. 6 used to explain the ease of heat conduction 熱の流れを説明するために用いた図3の内視鏡先端部の8−8線に沿う断面図Sectional drawing which follows the 8-8 line of the endoscope front-end | tip part of FIG. 3 used in order to demonstrate the flow of a heat | fever 異方性高熱伝導樹脂の生成方法を説明するために用いた図The figure used to explain the production method of anisotropic high thermal conductive resin 異方性高熱伝導樹脂の塗布方法を説明するために用いた図Figure used to explain how to apply anisotropic high thermal conductive resin

以下、添付図面に従って本発明に係る電子内視鏡及びその製造方法の実施の形態について説明する。   Embodiments of an electronic endoscope and a manufacturing method thereof according to the present invention will be described below with reference to the accompanying drawings.

[電子内視鏡を含む内視鏡システムの概略構成例]
図1は本実施形態に係る電子内視鏡を含む内視鏡システムの概略構成を示した全体構成図である。
[Schematic configuration example of an endoscope system including an electronic endoscope]
FIG. 1 is an overall configuration diagram showing a schematic configuration of an endoscope system including an electronic endoscope according to the present embodiment.

図1に示すように、この内視鏡システム1は、電子内視鏡100、プロセッサ装置200、光源装置300などから構成される。   As shown in FIG. 1, the endoscope system 1 includes an electronic endoscope 100, a processor device 200, a light source device 300, and the like.

電子内視鏡100は、患者(被検体)の体腔内に挿入される可撓性の挿入部120と、挿入部120の基端部分に連設された操作部122と、プロセッサ装置200及び光源装置300に接続されるユニバーサルコード124とを備えている。   The electronic endoscope 100 includes a flexible insertion portion 120 that is inserted into a body cavity of a patient (subject), an operation portion 122 that is connected to a proximal end portion of the insertion portion 120, a processor device 200, and a light source. And a universal cord 124 connected to the apparatus 300.

挿入部120の先端には、体腔内撮影用の撮像モジュール50(図3参照)などが内蔵された先端部126が連設されている。先端部126の後方には、複数の湾曲駒を連結した湾曲部128が設けられている。湾曲部128は、操作部122に設けられたアングルノブ130が操作されて、挿入部120内に挿設されたワイヤが押し引きされることにより、上下左右方向に湾曲動作する。これにより、先端部126が体腔内の所望の方向に向けられる。   At the distal end of the insertion portion 120, a distal end portion 126 in which an imaging module 50 (see FIG. 3) for in-vivo imaging is incorporated is connected. Behind the distal end portion 126 is provided a bending portion 128 that connects a plurality of bending pieces. The bending portion 128 is bent in the vertical and horizontal directions when the angle knob 130 provided in the operation portion 122 is operated and the wire inserted in the insertion portion 120 is pushed and pulled. Thereby, the front-end | tip part 126 is orient | assigned to the desired direction in a body cavity.

ユニバーサルコード124の基端は、コネクタ136に連結されている。コネクタ136は、複合タイプのものであり、コネクタ136にはプロセッサ装置200が接続される他、光源装置300が接続される。   The base end of the universal cord 124 is connected to the connector 136. The connector 136 is of a composite type. The connector 136 is connected to the light source device 300 in addition to the processor device 200.

プロセッサ装置200は、挿入部120及びユニバーサルコード124内に挿通されたケーブル28(図3参照)を介して撮像モジュール50に給電を行い、撮像モジュール50の駆動を制御するとともに、撮像モジュール50からケーブル28を介して伝送された撮像信号を受信し、受信した撮像信号に各種信号処理を施して画像データに変換する。プロセッサ装置200で変換された画像データは、プロセッサ装置200にケーブル接続されたモニタ400に内視鏡画像として表示される。また、プロセッサ装置200は、コネクタ136を介して光源装置300と電気的に接続され、内視鏡システム1の動作を統括的に制御する。   The processor device 200 supplies power to the imaging module 50 through the cable 28 (see FIG. 3) inserted through the insertion unit 120 and the universal cord 124, controls the driving of the imaging module 50, and controls the cable from the imaging module 50. The image pickup signal transmitted via 28 is received, and the received image pickup signal is subjected to various signal processing and converted into image data. The image data converted by the processor device 200 is displayed as an endoscopic image on a monitor 400 connected to the processor device 200 by a cable. The processor device 200 is electrically connected to the light source device 300 via the connector 136 and controls the operation of the endoscope system 1 in an integrated manner.

図2は電子内視鏡100の先端部126を示した正面図である。図2に示すように、先端部126の先端面126aには、レンズ鏡筒12、照明窓14、送水パイプ16及び鉗子パイプ18の開口が設けられている。照明窓14は、レンズ鏡筒12に関して対称な位置に2個配され、体腔内の被観察部位に光源装置300からの照明光を照射する。鉗子パイプ18は、操作部122に設けられた鉗子口134(図1参照)に連通している。鉗子口134には、注射針や高周波メスなどが先端に配された各種処置具が挿通され、各種処置具の先端が鉗子パイプ18の開口から露呈される。送水パイプ16は、操作部122に設けられた送気・送水ボタン132(図1参照)の操作に応じて送気・送水装置から供給される洗浄水や空気を、レンズ鏡筒12の観察窓や体腔内に向けて噴射する。   FIG. 2 is a front view showing the distal end portion 126 of the electronic endoscope 100. As shown in FIG. 2, the lens barrel 12, the illumination window 14, the water supply pipe 16, and the forceps pipe 18 are provided on the tip surface 126 a of the tip portion 126. Two illumination windows 14 are arranged at symmetrical positions with respect to the lens barrel 12 and irradiate the observation site in the body cavity with illumination light from the light source device 300. The forceps pipe 18 communicates with a forceps port 134 (see FIG. 1) provided in the operation unit 122. Various types of treatment tools having an injection needle, a high-frequency knife or the like disposed at the tip are inserted into the forceps port 134, and the tips of the various types of treatment tools are exposed from the opening of the forceps pipe 18. The water supply pipe 16 supplies cleaning water and air supplied from the air supply / water supply apparatus in response to an operation of an air supply / water supply button 132 (see FIG. 1) provided in the operation unit 122. And spray into the body cavity.

図3は電子内視鏡100の先端部126を示した側面断面図である。図3に示すように、先端部126の内部には、レンズ鏡筒12、プリズム13、撮像素子20、及び回路基板22等を含む撮像モジュール50が配設されている。   FIG. 3 is a side sectional view showing the distal end portion 126 of the electronic endoscope 100. As shown in FIG. 3, an imaging module 50 including a lens barrel 12, a prism 13, an imaging device 20, a circuit board 22, and the like is disposed inside the distal end portion 126.

レンズ鏡筒12は、体腔内の被観察部位の像光を取り込むための対物レンズを有しており、このレンズ鏡筒12の後端には、被観察部位の像光を、略直角に曲げて撮像素子20に向けて導光するプリズム13が接続されている。   The lens barrel 12 has an objective lens for capturing the image light of the site to be observed in the body cavity, and the image light of the site to be observed is bent at a substantially right angle at the rear end of the lens barrel 12. A prism 13 that guides light toward the image sensor 20 is connected.

撮像素子20は、固体撮像素子であり、回路基板22に実装されている。この回路基板22には、撮像素子20を駆動させて画像信号を得るための集積回路(IC回路)24が実装されている。また、回路基板22の後端部には、複数の入出力端子が回路基板22に並べて設けられており、入出力端子には、ケーブル接続部28Aを介してプロセッサ装置200との各種信号の遣り取りを媒介するためのケーブル28が接合されている。   The image sensor 20 is a solid-state image sensor and is mounted on the circuit board 22. An integrated circuit (IC circuit) 24 for driving the image pickup device 20 to obtain an image signal is mounted on the circuit board 22. A plurality of input / output terminals are arranged on the circuit board 22 at the rear end portion of the circuit board 22, and various signals are exchanged with the processor device 200 via the cable connection portion 28 </ b> A. A cable 28 for mediating the above is joined.

また、図示は省略したが、照明窓14の奥には、照明部が設けられている。照明部には、光源装置300からの照明光を導くライトガイドの出射端が配されている。ライトガイドは、ケーブル28と同様に、挿入部120、操作部122、及びユニバーサルコード124の各内部を挿通し、コネクタ136に入射端が接続されている。   Although not shown, an illumination unit is provided in the back of the illumination window 14. The illumination unit is provided with an exit end of a light guide that guides illumination light from the light source device 300. Like the cable 28, the light guide is inserted through the insertion portion 120, the operation portion 122, and the universal cord 124, and the incident end is connected to the connector 136.

[電子内視鏡の放熱構造]
次に、本発明に係る電子内視鏡100の放熱構造について説明する。
[Electronic endoscope heat dissipation structure]
Next, the heat dissipation structure of the electronic endoscope 100 according to the present invention will be described.

図3に示すように、撮像モジュール50を構成するレンズ鏡筒12の後端部、プリズム13、撮像素子20及び回路基板22は、その周囲が金属枠26により囲まれており、この金属枠26内に、等方性高熱伝導材(等方性高熱伝導樹脂)40が充填されている。   As shown in FIG. 3, the rear end portion of the lens barrel 12, the prism 13, the imaging element 20, and the circuit board 22 constituting the imaging module 50 are surrounded by a metal frame 26. An isotropic high heat conductive material (isotropic high heat conductive resin) 40 is filled therein.

内視鏡外周部は、金属製筒状体30とその外側のゴム製の外皮32とにより構成されており、この内視鏡外周部(先端部126)内に撮像モジュール50、送水パイプ16(図2)、鉗子パイプ18、ケーブル28、図示しないライトガイド等の内容物が収容される。   The outer peripheral portion of the endoscope is configured by a metal cylindrical body 30 and a rubber outer shell 32 on the outer side thereof, and the imaging module 50 and the water supply pipe 16 (in the outer peripheral portion (tip portion 126) of the endoscope. 2), contents such as a forceps pipe 18, a cable 28, and a light guide (not shown) are accommodated.

また、撮像モジュールを囲む金属枠26と前記内視鏡外周部の金属製筒状体30との間の内部空間には、異方性高熱伝導材(異方性高熱伝導樹脂)42が充填されている。   An internal space between the metal frame 26 surrounding the imaging module and the metal cylindrical body 30 on the outer periphery of the endoscope is filled with an anisotropic high heat conductive material (anisotropic high heat conductive resin) 42. ing.

ここで、金属枠26内に充填される等方性高熱伝導樹脂40は、図4に示すように樹脂(接着剤)に低アスペクト比形状フィラーがランダムに配合されており、熱伝導率が3W/mK以下で、絶縁抵抗が1012Ω・m以上のものである。 Here, in the isotropic high thermal conductive resin 40 filled in the metal frame 26, as shown in FIG. 4, low aspect ratio shape fillers are randomly blended in the resin (adhesive), and the thermal conductivity is 3W. / MK or less and an insulation resistance of 10 12 Ω · m or more.

前記低アスペクト比形状フィラーのフィラー形状は、球形、多角形粒子の低アスペクト比形状であり、フィラーサイズは、数十μm以下である。材質例としては、ダイヤモンド、窒化アルミ、アルミナ、酸化マグネシウム等を挙げることができる。   The filler shape of the low aspect ratio shape filler is a low aspect ratio shape of spherical and polygonal particles, and the filler size is several tens of μm or less. Examples of materials include diamond, aluminum nitride, alumina, magnesium oxide and the like.

等方性高熱伝導樹脂40は、方向によって熱の伝達のしやすさに差がなく、撮像素子20及びIC回路24から発生した熱を、撮像モジュール50全体(金属枠26内の全体)に行き渡らせ、モジュール全体で発熱させる。また、電気接続不可なモジュール内部は、上記のように絶縁抵抗の大きい等方性高熱伝導樹脂40により絶縁性が確保される。   The isotropic high thermal conductive resin 40 has no difference in the ease of heat transfer depending on the direction, and the heat generated from the imaging device 20 and the IC circuit 24 is distributed to the entire imaging module 50 (the entire inside of the metal frame 26). Heat the entire module. The inside of the module that cannot be electrically connected is secured by the isotropic high thermal conductive resin 40 having a large insulation resistance as described above.

一方、金属枠26と金属製筒状体30との間の内部空間に充填される異方性高熱伝導樹脂42は、図5に示すように樹脂(接着剤)に高アスペクト比形状フィラーが一定方向に配向して配合されており、配向方向の熱伝導率が7W/mK以上のものである。また、異方性高熱伝導樹脂42は、導電性を有している。   On the other hand, the anisotropic high thermal conductive resin 42 filled in the internal space between the metal frame 26 and the metal cylindrical body 30 has a constant high aspect ratio shape filler in the resin (adhesive) as shown in FIG. It is blended by being oriented in the direction, and the thermal conductivity in the orientation direction is 7 W / mK or more. The anisotropic high thermal conductive resin 42 has conductivity.

前記高アスペクト比形状フィラーのフィラー形状は、ファイバ(繊維)形状、鱗片形状、円盤形状の高アスペクト比形状であり、フィラーサイズは、長さ数百μm〜数十μmである。材質例としては、カーボンファイバ、グラファイト等を挙げることができる。カーボンファイバの場合、径が数μm、長さが数百μmで、アスペクト比が10以上のファイバ形状が好ましい。   The filler shape of the high aspect ratio shape filler is a high aspect ratio shape of fiber (fiber) shape, scale shape, and disk shape, and the filler size is several hundred μm to several tens μm in length. Examples of materials include carbon fiber and graphite. In the case of carbon fiber, a fiber shape having a diameter of several μm, a length of several hundred μm, and an aspect ratio of 10 or more is preferable.

異方性高熱伝導樹脂42は、方向によって熱の伝達のしやすさに差があり、図5に示すように高アスペクト比形状フィラーの配向方向は熱伝導しやすく、配光方向と直交する方向は熱伝導しにくい。   The anisotropic high thermal conductive resin 42 has a difference in heat transferability depending on the direction. As shown in FIG. 5, the orientation direction of the high aspect ratio shape filler is easy to conduct heat, and is a direction orthogonal to the light distribution direction. Is difficult to conduct heat.

そして、この異方性高熱伝導樹脂42は、図6及び図7に示すように内視鏡長手方向よりも内視鏡外周部方向に熱伝導しやすくなるように、高アスペクト比形状フィラーの配向方向を考慮して充填されている。具体的には、高アスペクト比形状フィラーの配向方向が、内視鏡長手方向と直交する面内の方向(好ましくは、面内の中央部から外周方向)と一致するように、高アスペクト比形状フィラーの配向方向を考慮して充填されている。換言すると、異方性高熱伝導樹脂42は、高アスペクト比形状フィラーの配向方向が内視鏡長手方向にならないように充填されている。   And this anisotropic high heat conductive resin 42 is oriented to a high aspect ratio shape filler so that it becomes easier to conduct heat in the outer peripheral part of the endoscope than in the longitudinal direction of the endoscope as shown in FIGS. Filled in consideration of direction. Specifically, the high aspect ratio shape filler is aligned so that the orientation direction of the high aspect ratio shape filler coincides with the in-plane direction (preferably, from the center to the outer peripheral direction). The filler is filled in consideration of the orientation direction of the filler. In other words, the anisotropic high thermal conductive resin 42 is filled so that the orientation direction of the high aspect ratio shape filler does not become the longitudinal direction of the endoscope.

図8は図3に示した内視鏡先端部の8−8線に沿う断面図である。   FIG. 8 is a cross-sectional view taken along line 8-8 of the endoscope front end portion shown in FIG.

図8に示すように撮像モジュール50(撮像素子20及びIC回路24)から発生した熱は、等方性高熱伝導樹脂40によりモジュール全体(金属枠26内の全体)に行き渡り、その後、矢印で示すように異方性高熱伝導樹脂42により外周部の金属製筒状体30に伝熱し、ここで放熱される。   As shown in FIG. 8, the heat generated from the imaging module 50 (imaging device 20 and IC circuit 24) is distributed to the entire module (entirely inside the metal frame 26) by the isotropic high thermal conductive resin 40, and then indicated by an arrow. In this way, heat is transferred to the metallic cylindrical body 30 at the outer peripheral portion by the anisotropic high thermal conductive resin 42 and is dissipated here.

また、金属枠26と金属製筒状体30との間は、導電性を有する異方性高熱伝導樹脂42により電気的に接続され、ノイズを抑制できるようになっている。   In addition, the metal frame 26 and the metal cylindrical body 30 are electrically connected by an anisotropic high thermal conductive resin 42 having conductivity, so that noise can be suppressed.

[電子内視鏡の製造方法]
次に、本発明に係る電子内視鏡100の製造方法について説明する。
[Method for manufacturing electronic endoscope]
Next, a method for manufacturing the electronic endoscope 100 according to the present invention will be described.

図9に示すように、高アスペクト比形状フィラー(ファイバー状フィラー)と接着剤とを少量容器に取り、遊星攪拌装置で攪拌する。これにより、フィラーが一定方向に配向した異方性高熱伝導樹脂42を生成する。   As shown in FIG. 9, a high aspect ratio shape filler (fiber filler) and an adhesive are taken in a small amount of container and stirred with a planetary stirrer. Thereby, the anisotropic high thermal conductive resin 42 in which the filler is oriented in a certain direction is generated.

一方、撮像モジュール50に金属枠26を取り付け、その内部に等方性高熱伝導樹脂40を充填する。尚、金属枠26内は狭スペースであるため、異方性高熱伝導樹脂42をその配向を崩さずに充填することは困難であるが、等方性高熱伝導樹脂40の場合には配向を考慮する必要がないため、充填可能である。   On the other hand, the metal frame 26 is attached to the imaging module 50, and the inside is filled with the isotropic high thermal conductive resin 40. Since the metal frame 26 has a narrow space, it is difficult to fill the anisotropic high thermal conductive resin 42 without breaking its orientation, but in the case of the isotropic high thermal conductive resin 40, the orientation is considered. Since it is not necessary to fill, it can be filled.

続いて、容器から異方性高熱伝導樹脂42をヘラ等ですくい取り、金属枠26が取り付けられ、等方性高熱伝導樹脂40が充填された撮像モジュール50の周囲に、異方性高熱伝導樹脂42を塗布する。   Subsequently, the anisotropic high heat conductive resin 42 is scooped out from the container with a spatula or the like, and the anisotropic high heat conductive resin is mounted around the imaging module 50 to which the metal frame 26 is attached and filled with the isotropic high heat conductive resin 40. 42 is applied.

このとき、ヘラ等で異方性高熱伝導樹脂42をすくい取り、撮像モジュール50の周囲に塗布する過程で、フィラーの配向を崩さないようにし、かつ前述したようにフィラーの配向方向を考慮して、内視鏡外周方向に熱伝導しやすいように(内視鏡長手方向に熱伝導しにくいように)塗布する。   At this time, in the process of scooping up the anisotropic high thermal conductive resin 42 with a spatula and applying it around the imaging module 50, the orientation of the filler should not be disturbed, and the orientation direction of the filler is taken into consideration as described above. It is applied so that heat conduction is easy in the outer circumference direction of the endoscope (so that heat conduction is difficult in the longitudinal direction of the endoscope).

その後、上記のようして異方性高熱伝導樹脂42が塗布された撮像モジュール50を、内視鏡先端部に挿入する。尚、内視鏡先端部に異方性高熱伝導樹脂42が充填されない空間が生じないように、撮像モジュール50の周囲等に十分に異方性高熱伝導樹脂42を塗布する。   Thereafter, the imaging module 50 coated with the anisotropic high thermal conductive resin 42 as described above is inserted into the distal end portion of the endoscope. It should be noted that the anisotropic high heat conductive resin 42 is sufficiently applied around the imaging module 50 so that a space not filled with the anisotropic high heat conductive resin 42 does not occur at the distal end portion of the endoscope.

[その他]
本実施形態では、等方性高熱伝導樹脂40と異方性高熱伝導樹脂42とを使用して内視鏡外周部に熱を放熱するようにしたが、異方性高熱伝導樹脂42のみを使用するようにしてもよい。
[Others]
In this embodiment, the isotropic high heat conductive resin 40 and the anisotropic high heat conductive resin 42 are used to dissipate heat to the outer peripheral portion of the endoscope. However, only the anisotropic high heat conductive resin 42 is used. You may make it do.

また、本発明は上述した実施形態に限定されず、本発明の精神を逸脱しない範囲で種々の変形が可能であることは言うまでもない。   Moreover, it goes without saying that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

12…レンズ鏡筒、13…プリズム、14…照明窓、16…送水パイプ、18…鉗子パイプ、20…撮像素子、22…回路基板、24…集積回路(IC回路)、26…金属枠、28…ケーブル、30…金属製筒状体、32…外皮、40…等方性高熱伝導樹脂、42…異方性高熱伝導樹脂、50…撮像モジュール、100…電子内視鏡、120…挿入部、126…先端部   DESCRIPTION OF SYMBOLS 12 ... Lens barrel, 13 ... Prism, 14 ... Illumination window, 16 ... Water supply pipe, 18 ... Forceps pipe, 20 ... Image sensor, 22 ... Circuit board, 24 ... Integrated circuit (IC circuit), 26 ... Metal frame, 28 DESCRIPTION OF SYMBOLS ... Cable, 30 ... Metal cylindrical body, 32 ... Outer skin, 40 ... Isotropic high heat conductive resin, 42 ... Anisotropic high heat conductive resin, 50 ... Imaging module, 100 ... Electronic endoscope, 120 ... Insertion part, 126 ... tip

Claims (9)

先端部に撮像モジュールを設置する空間を内部に持つ電子内視鏡において、
前記撮像モジュールの周囲空間に、内視鏡長手方向よりも内視鏡外周部方向への熱伝導率の高い異方性高熱伝導材を充填したことを特徴とする電子内視鏡。
In an electronic endoscope having a space for installing an imaging module at the tip,
An electronic endoscope in which a space around the imaging module is filled with an anisotropic high thermal conductive material having a higher thermal conductivity in the direction of the outer periphery of the endoscope than in the longitudinal direction of the endoscope.
前記撮像モジュールを構成する撮像素子を囲む金属枠内に等方性高熱伝導材を充填したことを特徴とする請求項1に記載の電子内視鏡。   The electronic endoscope according to claim 1, wherein an isotropic high thermal conductive material is filled in a metal frame that surrounds an imaging element that constitutes the imaging module. 前記金属枠内には、前記撮像素子を駆動するための集積回路が実装された回路基板が収容されていることを特徴とする請求項2に記載の電子内視鏡。   The electronic endoscope according to claim 2, wherein a circuit board on which an integrated circuit for driving the imaging device is mounted is accommodated in the metal frame. 前記異方性高熱伝導材は、前記金属枠と内視鏡外周部の金属製筒状体との間の内部空間に充填され、
前記撮像モジュールで発生した熱は、前記等方性高熱伝導材により前記金属枠全体に伝達され、該金属枠から前記異方性高熱伝導材を介して前記金属製筒状体に伝達されることを特徴とする請求項2又は3に記載の電子内視鏡。
The anisotropic high thermal conductive material is filled in an internal space between the metal frame and a metal cylindrical body at the outer periphery of the endoscope,
The heat generated in the imaging module is transmitted to the entire metal frame by the isotropic high heat conductive material, and is transmitted from the metal frame to the metal cylindrical body through the anisotropic high heat conductive material. The electronic endoscope according to claim 2 or 3, characterized by the above-mentioned.
前記等方性高熱伝導材は、絶縁性を有する等方性高熱伝導材であり、前記異方性高熱伝導材は、導電性を有する異方性高熱伝導材であることを特徴とする請求項2から4のいずれかに記載の電子内視鏡。   The isotropic high thermal conductive material is an isotropic high thermal conductive material having insulation, and the anisotropic high thermal conductive material is an anisotropic high thermal conductive material having conductivity. The electronic endoscope according to any one of 2 to 4. 前記異方性高熱伝導材は、接着剤に高アスペクト比形状フィラーが配向して配合された異方性高熱伝導樹脂であり、配向方向の熱伝導率が7W/mK以上であることを特徴とする請求項1から5のいずれかに記載の電子内視鏡。   The anisotropic high thermal conductive material is an anisotropic high thermal conductive resin in which a high aspect ratio shape filler is aligned in an adhesive and has a thermal conductivity of 7 W / mK or more in the alignment direction. The electronic endoscope according to any one of claims 1 to 5. 前記等方性高熱伝導材は、接着剤に低アスペクト比形状フィラーがランダムに配合された等方性高熱伝導樹脂であり、熱伝導率が3W/mK以下で、絶縁抵抗が1012Ω・m以上であることを特徴とする請求項2から5のいずれかに記載の電子内視鏡。 The isotropic high thermal conductive material is an isotropic high thermal conductive resin in which low aspect ratio shape fillers are randomly mixed in an adhesive, and has a thermal conductivity of 3 W / mK or less and an insulation resistance of 10 12 Ω · m. The electronic endoscope according to any one of claims 2 to 5, wherein the electronic endoscope is as described above. 請求項1から7のいずれかに記載の電子内視鏡を製造する電子内視鏡の製造方法において、
接着剤と高アスペクト比形状フィラーとを攪拌装置により攪拌して前記高アスペクト比形状フィラーを一定方向に配向させてなる異方性高熱伝導材を生成する生成工程と、
前記生成された異方性高熱伝導材を、前記高アスペクト比形状フィラーの配向方向が、少なくとも内視鏡長手方向と直交する面内方向と一致するように、前記撮像モジュールと前記金属製筒状体との間の内部空間に充填する充填工程と、
を含むことを特徴とする電子内視鏡の製造方法。
In the manufacturing method of the electronic endoscope which manufactures the electronic endoscope in any one of Claim 1 to 7,
A production process for producing an anisotropic high thermal conductive material obtained by stirring the adhesive and the high aspect ratio shape filler with a stirring device and orienting the high aspect ratio shape filler in a certain direction;
The imaging module and the metallic cylindrical shape of the generated anisotropic high thermal conductive material so that the orientation direction of the high aspect ratio shape filler matches at least an in-plane direction orthogonal to the endoscope longitudinal direction. A filling step for filling the internal space between the body,
The manufacturing method of the electronic endoscope characterized by including.
前記充填工程は、前記生成された異方性高熱伝導材を、前記撮像モジュールの周囲に前記高アスペクト比形状フィラーの配向を崩さないように塗布する工程と、前記異方性高熱伝導材が塗布された撮像モジュールを、前記内視鏡先端部の金属製筒状体内に挿入する工程と、を含むことを特徴とする請求項8に記載の電子内視鏡の製造方法。   The filling step includes a step of applying the generated anisotropic high thermal conductive material around the imaging module so as not to destroy the orientation of the high aspect ratio shape filler, and the anisotropic high thermal conductive material is applied. The method of manufacturing an electronic endoscope according to claim 8, further comprising a step of inserting the obtained imaging module into a metal cylindrical body at the distal end portion of the endoscope.
JP2010195942A 2010-09-01 2010-09-01 Electronic endoscope and manufacturing method thereof Expired - Fee Related JP5414640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010195942A JP5414640B2 (en) 2010-09-01 2010-09-01 Electronic endoscope and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010195942A JP5414640B2 (en) 2010-09-01 2010-09-01 Electronic endoscope and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2012050704A true JP2012050704A (en) 2012-03-15
JP2012050704A5 JP2012050704A5 (en) 2013-03-14
JP5414640B2 JP5414640B2 (en) 2014-02-12

Family

ID=45904771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010195942A Expired - Fee Related JP5414640B2 (en) 2010-09-01 2010-09-01 Electronic endoscope and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5414640B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000294A (en) * 2012-06-20 2014-01-09 Hoya Corp Endoscope apparatus
DE102015219215A1 (en) 2014-10-14 2016-04-14 Panasonic Intellectual Property Management Co., Ltd. endoscope
WO2016185554A1 (en) * 2015-05-19 2016-11-24 オリンパス株式会社 Image pickup unit and endoscope
CN108140627A (en) * 2015-10-09 2018-06-08 雷声公司 Anisotropy heat pipe
EP3818922A1 (en) * 2019-11-05 2021-05-12 Karl Storz SE & Co. KG Cooling device for an endoscope or exoscope
JP7528015B2 (en) 2021-03-30 2024-08-05 Hoya株式会社 Endoscope equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228105A (en) * 1992-02-25 1993-09-07 Olympus Optical Co Ltd Endoscope device
JPH06327626A (en) * 1993-05-21 1994-11-29 Olympus Optical Co Ltd Endoscope
JP2009201683A (en) * 2008-02-27 2009-09-10 Olympus Medical Systems Corp Endoscope
JP2009247620A (en) * 2008-04-07 2009-10-29 Olympus Corp Endoscope apparatus and adapter
JP2010022815A (en) * 2008-06-18 2010-02-04 Olympus Corp Endoscope apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228105A (en) * 1992-02-25 1993-09-07 Olympus Optical Co Ltd Endoscope device
JPH06327626A (en) * 1993-05-21 1994-11-29 Olympus Optical Co Ltd Endoscope
JP2009201683A (en) * 2008-02-27 2009-09-10 Olympus Medical Systems Corp Endoscope
JP2009247620A (en) * 2008-04-07 2009-10-29 Olympus Corp Endoscope apparatus and adapter
JP2010022815A (en) * 2008-06-18 2010-02-04 Olympus Corp Endoscope apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000294A (en) * 2012-06-20 2014-01-09 Hoya Corp Endoscope apparatus
US10213097B2 (en) 2014-10-14 2019-02-26 Panasonic Intellectual Property Management Co., Ltd. Endoscope
DE102015219215A1 (en) 2014-10-14 2016-04-14 Panasonic Intellectual Property Management Co., Ltd. endoscope
US10555664B2 (en) 2014-10-14 2020-02-11 Panasonic I-Pro Sensing Solutions Co., Ltd. Endoscope
JPWO2016185554A1 (en) * 2015-05-19 2018-03-08 オリンパス株式会社 Imaging unit and endoscope
WO2016185554A1 (en) * 2015-05-19 2016-11-24 オリンパス株式会社 Image pickup unit and endoscope
CN108140627A (en) * 2015-10-09 2018-06-08 雷声公司 Anisotropy heat pipe
KR20200040915A (en) * 2015-10-09 2020-04-20 레이던 컴퍼니 Anisotropic thermal conduit
CN108140627B (en) * 2015-10-09 2021-01-22 雷声公司 Anisotropic heat pipe
KR102411853B1 (en) * 2015-10-09 2022-06-22 레이던 컴퍼니 Anisotropic thermal conduit
EP3818922A1 (en) * 2019-11-05 2021-05-12 Karl Storz SE & Co. KG Cooling device for an endoscope or exoscope
US11644660B2 (en) 2019-11-05 2023-05-09 Karl Storz Se & Co. Kg Cooling device for an endoscope or an exoscope
JP7528015B2 (en) 2021-03-30 2024-08-05 Hoya株式会社 Endoscope equipment

Also Published As

Publication number Publication date
JP5414640B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5414640B2 (en) Electronic endoscope and manufacturing method thereof
WO2017199406A1 (en) Cable connection board, image pickup device, endoscope, and method for manufacturing image pickup device
JP5083761B2 (en) Endoscope
US20160028926A1 (en) Endoscope apparatus
JP2010069217A (en) Imaging apparatus for electronic endoscope and electronic endoscope
JP6571870B2 (en) Ultrasound endoscope
JP6625746B2 (en) Ultrasound endoscope and method of manufacturing the same
WO2018003242A1 (en) Ultrasonic endoscope
US20160278737A1 (en) Ultrasound endoscope
JP2011200398A (en) Endoscope
JP2010057960A (en) Endoscope
US10278569B2 (en) Medical camera head and medical camera apparatus including a heat transfer member
JP5587104B2 (en) Imaging apparatus and electronic endoscope apparatus
US11076838B2 (en) Ultrasonic endoscope
JP2011200401A (en) Endoscope
JP2008029597A (en) Endoscope apparatus
JP2012055489A (en) Imaging device for electronic endoscope and manufacturing method of imaging device
JP2012050651A (en) Imaging device and endoscope apparatus
US20220330807A1 (en) A device for visualization of internal tissue of a patient
JP2012061255A (en) Imaging device, electronic endoscope apparatus, and manufacturing method of imaging device
WO2017072862A1 (en) Image pickup unit and endoscope
JP2010172577A (en) Endoscope apparatus
JP6596158B2 (en) Ultrasound endoscope
JP6512522B2 (en) Endoscope
JPWO2016185554A1 (en) Imaging unit and endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

R150 Certificate of patent or registration of utility model

Ref document number: 5414640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees