JP2012050425A - Method for automatically weighing boiled noodles - Google Patents

Method for automatically weighing boiled noodles Download PDF

Info

Publication number
JP2012050425A
JP2012050425A JP2011032588A JP2011032588A JP2012050425A JP 2012050425 A JP2012050425 A JP 2012050425A JP 2011032588 A JP2011032588 A JP 2011032588A JP 2011032588 A JP2011032588 A JP 2011032588A JP 2012050425 A JP2012050425 A JP 2012050425A
Authority
JP
Japan
Prior art keywords
noodle
supply port
noodles
hopper
weighing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011032588A
Other languages
Japanese (ja)
Other versions
JP5561555B2 (en
Inventor
Keiji Ota
啓司 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadaya Corp
Original Assignee
Shimadaya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadaya Corp filed Critical Shimadaya Corp
Priority to JP2011032588A priority Critical patent/JP5561555B2/en
Publication of JP2012050425A publication Critical patent/JP2012050425A/en
Application granted granted Critical
Publication of JP5561555B2 publication Critical patent/JP5561555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Noodles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive displacement method for weighing boiled noodles in which small amounts boiled noodles in a hopper is supplied to a weighing container so as to increase weighing accuracy, noodle ribbons are made hardly clog, and immediately unclogging when noodle ribbons clog up.SOLUTION: The method for weighing the boiled noodles includes forming a supply port of a hopper bottom in a slit-like form, widening a passage toward a weighing container from the supply port of a slit-like form more than the supply port, producing inverted water current for boiled noodle supply from the inside of the supply port, and producing downward water current along the back wall surface of the hopper toward the supply port. Furthermore, the method includes making the supply port expandable, installing a drum above the supply port so as to make the supply port face a circumferential surface, and producing water current so as to make boiled noodles go around the outside of the circumferential surface, centering around the drum.

Description

本発明は、複数食分の生麺をまとめて茹上げて小分け計量する場合に利用する、容積式の計量方法に関する。  TECHNICAL FIELD The present invention relates to a positive displacement measuring method that is used when raw noodles for a plurality of meals are collectively pulverized and subdivided.

まとめて茹上げられた複数食分の茹麺を小分け計量する場合、一般的に容積式の自動計量が行われている。容積式の計量は、小分けする重量に見合う容積の計量容器満杯に茹麺を充填して排出するもので、方法が単純で、装置も比較的安価に入手できることから広く支持されている。茹麺の容積式の計量方法に係る発明の開示も種々あり、計量精度を優先して計量容器からはみ出た麺線を切断する場合(以下カットタイプという。)と、計量精度を犠牲にしても切断しないことを課題とする場合(以下ノンカットタイプという。)に大別できる。  In general, volumetric automatic weighing is performed when mashing multiple noodles of noodles that have been boiled together. Volumetric weighing is widely supported because it fills and discharges the noodles in a full volume of the measuring container corresponding to the weight to be subdivided, and the method is simple and the apparatus can be obtained relatively inexpensively. There are also various disclosures of the invention related to the volumetric weighing method for noodles. When the noodle strings protruding from the weighing container are cut with priority on the weighing accuracy (hereinafter referred to as the cut type), the weighing accuracy is sacrificed. This can be broadly classified into cases where cutting is not an issue (hereinafter referred to as non-cut type).

カットタイプの場合、例えば、特許文献1では、一度水と分離された茹麺を渦流状圧力水と共に計量容器に流し込み、その後、該容器の流入口をシャッターで閉じ、底板を開くことにより茹麺を排出する方法が開示されている。又、特許文献2では、ホッパー内に水と共にストックされた茹麺を、容積を規定する容器にホッパー内の水と共に流し込み、該容器を横スライドさせて茹麺を排出する装置が開示されている。そして、これらの場合、容器からはみ出る麺線が多くなると、切断による短麺が増えて製品の品位を損なう問題があった。  In the case of the cut type, for example, in Patent Document 1, the noodles once separated from water are poured into a measuring container together with swirl pressure water, and then the inlet of the container is closed with a shutter and the bottom plate is opened to open the noodles Is disclosed. Patent Document 2 discloses a device for pouring noodles stocked with water in a hopper together with water in the hopper into a container that defines the volume, and horizontally sliding the container to discharge the noodles. . In these cases, when the noodle strings protruding from the container increase, short noodles due to cutting increase and the quality of the product is impaired.

一方、ノンカットタイプの場合、例えば特許文献3によれば、ホッパー内に水と共にストックされた茹麺を、計量容器にホッパー内の水と共に流し込み、容器からはみ出た茹麺をジェット水流と共に流し出し、該ジェット水流で閉じられる間に容器内の茹麺を排出する方法が開示されている。又、特許文献4では、本願発明者らがホッパー内に水と共にストックされた茹麺を、計量容器に水と共に流し込み、計量容器を横スライドさせて排出する際に容器からはみ出た茹麺を通過させるトンネル部をホッパーと計量カゴの間に設け、はみ出た茹麺と容器内の茹麺を共に排出する方法を開示している。そして、これらの場合、容器からはみ出る麺線や引き抜かれる麺線が多くなると重量の過不足が増える問題があった。  On the other hand, in the case of the non-cut type, for example, according to Patent Document 3, the noodles stocked with water in the hopper are poured into the measuring container together with the water in the hopper, and the noodles protruding from the container are poured out along with the jet water flow. , A method for discharging the noodles in the container while being closed by the jet water flow is disclosed. Further, in Patent Document 4, the inventors of the present invention pour noodles stocked together with water into the hopper together with water and pass the noodles protruding from the container when the measuring container is slid horizontally and discharged. A method is disclosed in which a tunnel portion is provided between the hopper and the weighing basket, and both the protruding noodles and the noodles in the container are discharged together. In these cases, there is a problem that the excess and deficiency of the weight increases when the noodle strings protruding from the container and the noodle strings pulled out increase.

なお、業界では、計量容器からはみ出る茹麺を減らす為にホッパー底部の供給口をより小さい口径に狭める方法が知られる。しかし、効果の割に処理能力の低下が著しい。そこで、茹麺の供給、充填の処理能力を下げる場合に、並列処理により能力を補うホッパー構造について本願発明者が特許文献5で開示している。しかし、麺線1〜2本ずつの小出し供給を可能とする程度迄供給口を狭めると、絡んだ茹麺が詰まるトラブルの原因となる問題があった。  In the industry, a method of narrowing the supply port at the bottom of the hopper to a smaller diameter in order to reduce the noodles protruding from the measuring container is known. However, the reduction in processing capacity is remarkable for the effect. In view of this, the inventor of the present application discloses a hopper structure that supplements the capacity by parallel processing when the processing capacity for supplying and filling the noodles is lowered. However, if the supply port is narrowed to such an extent that one or two noodle strings can be dispensed, there is a problem that causes troubles that clog the tangled noodles.

特開昭49−35576号公報Japanese Patent Laid-Open No. 49-35576 実開昭51−71891号公報Japanese Utility Model Publication No. 51-71891 特開昭60−14124号公報Japanese Patent Laid-Open No. 60-14124 特開2008−111817号公報JP 2008-111817 A 実登3145906号公報Noto 3145906

以上のように、従来の容積式の計量方法では、処理能力の低減や麺が詰まるトラブルを防止しながら計量容器からはみ出る麺線の量を低減できず、混入する短麺や重量の過不足の増大を防ぐ手立てがなかった。  As described above, the conventional positive displacement weighing method cannot reduce the amount of noodle strings that protrude from the measuring container while preventing the processing capacity from being reduced and the trouble of clogging the noodles. There was no way to prevent the increase.

本発明はこの様な問題を解決しようとするもので、茹麺を充填する際に麺線を小出し供給すること。その際に麺線を詰まり難くすること。更に、麺線が詰まった場合に直ぐに詰まりを解消し、処理能力を回復させること。麺線を小出し供給する為にホッパー内で麺線が絡んだり密集したりすることなくバラけた状態を維持すること。又、計量容器からはみ出た麺線を切断しない計量方法でありながら重量の過不足をなくすことを目的とする。  The present invention is intended to solve such problems, and is to dispense and supply noodle strings when filling the noodles. Make the noodle strings difficult to clog. Furthermore, when the noodle strings are clogged, the clogging is eliminated immediately and the processing capacity is restored. Maintaining a loose state without entanglement or crowding of noodle strings in the hopper to dispense and supply the noodle strings. It is another object of the present invention to eliminate excess and deficiency in weight even though it is a weighing method that does not cut the noodle strings protruding from the weighing container.

本発明者は、従来知られるノンカットタイプの玉取機を用い、麺線長さ52cm麺線重量12gの茹うどんを計量した。その玉取り機全体の構成を図15及び図16より説明する。茹麺はホッパーA内に循環水と共に複数食分をストックしている。この茹麺を突起Iによって攪拌しつつホッパーAの底部から循環水と共に流出させ、通水性のある壁面で構成された単一の計量容器Bに充填する。充填を終えた計量容器B内の茹麺をエアシリンダーJによって横スライドし、排出口Cより下方に排出する。その際、計量容器Bの上部にはみ出た茹麺はトンネル部Fを通過させ計量容器B内の茹麺と共に排出する。計量容器は元の充填位置に戻して新たな充填を開始する。一方、循環水は回収水槽Dに貯え、揚水ポンプEによってトンネル部の水封供給G、噴き上げ供給H及びホッパーA内へ補給する。噴き上げ供給Hに補給した循環水は、円錐形の内側斜面に設けられた細孔51の群から噴上げ水流50として噴出し、底部供給口52に引き寄せられる茹麺を絶えず噴き上げることで、流出量の調整とホッパー底部の茹麺が過密にならないように疎密の調整を行っている。そして、底部供給口52を含む逆円錐状の底部は麺線の性状に合わせて自由に差し替えることができる。そこで、小出し供給する為、口径の小さい供給口、真円18mm及び真円12mm、の其々により計量したところ、12mmは18mmに比べ処理能力が大幅に低下したがその割に計量精度の指標となる重量のバラツキについては大差なく、共に満足できる状況ではなかった。  The present inventor used a conventionally known non-cut type ball-tapping machine to measure udon noodles having a noodle string length of 52 cm and a noodle string weight of 12 g. The entire configuration of the ball removing machine will be described with reference to FIGS. 15 and 16. Crab noodles are stocked in hopper A along with circulating water. The noodles are agitated by the protrusions I and are allowed to flow out from the bottom of the hopper A together with the circulating water, and are filled into a single measuring container B composed of a wall having water permeability. After the filling, the noodles in the measuring container B are horizontally slid by the air cylinder J and discharged downward from the discharge port C. At that time, the noodles protruding from the upper part of the measuring container B pass through the tunnel part F and are discharged together with the noodles in the measuring container B. The weighing container is returned to the original filling position and a new filling is started. On the other hand, the circulating water is stored in the recovered water tank D, and is supplied into the water seal supply G, squirting supply H, and hopper A in the tunnel portion by the pumping pump E. The circulating water replenished to the squirting supply H is ejected as a squirting water flow 50 from a group of pores 51 provided on the conical inner slope, and the noodles that are attracted to the bottom supply port 52 are continuously spouted, thereby causing an outflow amount. And the density adjustment so that the noodles at the bottom of the hopper do not become overly dense. The inverted conical bottom including the bottom supply port 52 can be freely replaced according to the properties of the noodle strings. Therefore, in order to supply a small amount, we measured with a small diameter supply port, a perfect circle of 18 mm and a perfect circle of 12 mm, and the processing capacity of 12 mm was significantly lower than that of 18 mm. There was no big difference in the weight variation, and both were not satisfactory.

そこで、図2及び図3に示したように、ホッパー底部を平面に底上げし、底部供給口から計量容器に向けて茹麺の流路管を設け、内径12mmの真円の供給口と開口面積が同じ細長い長円形の供給口で比較したところ、細長い長円形の供給口の方が真円の供給口より小出し供給され重量のバラツキが小さくなった。ところが、処理能力を高めようとして噴き上げ細孔の水勢を弱め茹麺の流入を増すと麺線が底部供給口で詰まりやすい。更に、真上に向けられた噴き上げ水流はホッパー内の麺線の絡みを生じさせ詰まりの一因となっていた。  Therefore, as shown in FIGS. 2 and 3, the bottom of the hopper is raised to a flat surface, and a flow path tube for crab noodles is provided from the bottom supply port to the measuring container. Compared with the same elongated oval supply port, the elongated oval supply port was supplied in a smaller amount than the perfect circle supply port, and the variation in weight was smaller. However, if the water flow in the fine pores is weakened to increase the processing capacity and the inflow of the noodles is increased, the noodle strings are likely to be clogged at the bottom supply port. Furthermore, the water jets directed directly above caused tangling of the noodle strings in the hopper and contributed to clogging.

その後、図4及び図5に示したように、底部供給口より下の隙間間隔を拡げた流路管で試したところ、底部供給口から拡げずに出口につなげた場合に比べ絡んだ麺線が詰まり難い。更に、斜面や平面の供給口周囲の噴上げ水流細孔を流路管に集中させると共に、底部供給口に向かってホッパーの後部壁面に沿った下降水流を発生させることで、底部からホッパー上方に向かう水流を無くしながらも茹麺の供給量が調整でき、底部供給口で詰まりの原因となる麺線の絡み合いを減らすことができた。  Thereafter, as shown in FIGS. 4 and 5, the noodle strings were entangled in comparison with the case where the gap pipe below the bottom supply port was expanded and connected to the outlet without expanding from the bottom supply port. It is hard to clog. In addition, the spouted water flow pores around the supply port on the slope and the plane are concentrated on the channel pipe, and the descending water flow is generated along the rear wall surface of the hopper toward the bottom supply port, so that the hopper moves upward from the bottom. The supply amount of the noodles could be adjusted while eliminating the flowing water, and the entanglement of the noodle strings that caused clogging at the bottom supply port could be reduced.

しかしながら、茹麺の性状によっては麺線が詰まり、それが一度起きると以後の計量に影響し自然に復旧しない場合があった。そこで、図6〜図8に示したような拡縮可能な供給口を設置し、スリット状に縮めた状態から1回ごとに拡げた状態にして稀に詰まる麺をその都度解消できるようにしたところ、供給口を拡げる際に茹麺の充填が大幅に速められ、その結果、処理能力を大幅に向上させることができた。  However, depending on the nature of the noodles, the noodle strings may become clogged, and once this occurs, the subsequent weighing may be affected and may not be restored naturally. Therefore, a supply port that can be expanded and contracted as shown in FIG. 6 to FIG. 8 is installed so that the noodles that are rarely clogged can be eliminated each time by expanding from the contracted state into a slit shape. When expanding the supply port, the filling of the noodles was greatly accelerated, and as a result, the processing capacity could be greatly improved.

更に、拡縮供給口の検討の中で、拡げる時間が短いと全く充填を促進できないことの逆利用によって、スリット状に縮められた供給口に詰まった麺線を有効に解消できた。  Furthermore, in the examination of the expansion / contraction supply port, the noodle strings clogged in the supply port shrunk into a slit shape could be effectively eliminated by the reverse use of the fact that the filling cannot be promoted at all when the expansion time is short.

ところが、玉取機を多列化し、隣接する底部供給口の間に隔壁を設けると、追加した茹麺がスムース補給されない。とりわけ、ごわついた性状の茹そばの場合、攪拌や噴出させる水流を強めても、麺線が返って絡み易くなって重量が揃わない。そこで、局所的な攪拌を避ける方法について検討したところ、ホッパー内の茹麺全体を絶えず流動させることで麺線は均一分布し、ドラムを中心に回転させれば麺線が回転の中心で絡むことがない。そして、底部供給口とドラムの間をくり返し通過して供給口に流入する機会を得ることで、理想的な小出し供給が可能になった。  However, if the ball takers are arranged in multiple rows and a partition is provided between the adjacent bottom supply ports, the added noodles are not replenished smoothly. In particular, when the buckwheat noodles are stiff, even if the water flow to be stirred or spouted is strengthened, the noodle strings are easily returned and entangled and the weight is not uniform. Therefore, when a method for avoiding local agitation was studied, the noodle strings were uniformly distributed by constantly flowing the whole bowl of noodles in the hopper, and if the noodle strings were rotated around the drum, the noodle strings were entangled at the center of rotation. There is no. Then, an ideal dispensing supply is made possible by obtaining the opportunity to repeatedly pass between the bottom supply port and the drum and flow into the supply port.

すなわち、麺線を小出し供給すると共に麺線を詰まり難くする為の手段は、(1)ホッパー内の水中に多食分の茹麺をストックする茹麺貯留工程と、ホッパー底部供給口より該茹麺を水と共に流出させホッパー下方に配置し通水孔を設けた計量容器に該茹麺を充填する茹麺充填工程と、該計量容器の下面開口より茹麺を落下させる茹麺排出工程と、を有する容積式の計量方法において、ホッパー底部供給口をスリット形状にすることにより茹麺を小出し供給することや、(2)茹麺充填工程において、ホッパー底部供給口のスリット形状の長辺の長さを15〜40mm、長辺二辺の隙間間隔を4〜12mmとすることや、(3)茹麺充填工程において、ホッパー底部供給口から計量容器に向けて茹麺の流路が設けられ、該流路がホッパー底部供給口より拡げられたものであることや、(4)茹麺充填工程において、茹麺の流出に逆向きの水流をホッパー底部供給口の内側から発生させると共に、ホッパー底部供給口に向かってホッパーの後部壁面に沿った下降水流を発生させることや、(6)茹麺充填工程において、ホッパー底部供給口を拡縮可能とし、一回の充填の間にスリット状に縮められた状態から瞬間拡げて再びスリット状に縮める動作を行うことである。  That is, the means for supplying the noodle strings in a small amount and making the noodle strings difficult to clog are as follows: (1) a noodle storage process for stocking a large portion of the noodles in the water in the hopper, and the noodles from the hopper bottom supply port Spilled with water, placed under the hopper and filled with the noodles in a measuring container provided with water passage holes, and a noodle discharging process for dropping the noodles from the bottom opening of the measuring container. In the positive displacement measuring method, the noodles are dispensed by supplying the hopper bottom supply port into a slit shape, or (2) the length of the long side of the slit shape of the hopper bottom supply port in the noodle filling step 15 to 40 mm, the gap between the two long sides is 4 to 12 mm, or (3) in the noodle filling process, a noodle flow path is provided from the hopper bottom supply port to the measuring container, The channel is at the bottom of the hopper (4) In the noodle filling process, a water flow opposite to the outflow of the noodles is generated from the inside of the hopper bottom supply port, and the hopper is directed toward the hopper bottom supply port. Generating a descending water flow along the rear wall surface, and (6) in the crab noodle filling process, the hopper bottom supply port can be expanded and contracted, and it is instantly expanded from a state of being contracted into a slit shape during one filling. It is to perform the operation of shrinking again into a slit shape.

又、小出し供給する為に低下した処理能力を回復させる為の手段は(5)茹麺充填工程において、ホッパー底部供給口を拡縮可能とし、茹麺充填工程の充填前期に供給口を拡げて茹麺の供給を促進することである。  In addition, the means for recovering the reduced processing capacity due to the small supply is as follows: (5) The hopper bottom supply port can be expanded and contracted in the noodle filling process, and the supply port is expanded in the first stage of filling in the noodle filling process. It is to promote the supply of noodles.

又、麺線を小出し供給する為にホッパー内で麺線が絡んだり密集したりすることなくバラけた状態を維持する手段は、(7)茹麺貯留工程において、ホッパー底部供給口の上方で、該供給口と円周面が向かい合うようにドラムを設け、該ドラムを中心に円周面外側を茹麺が周回するように水流を発生させることや、(8)前記ドラムを自転させ、該ドラムの円周面に設けられた突起により麺線を周回させることである。  Moreover, in order to keep the noodle strings in a small amount without being entangled or densely packed in the hopper, the means for maintaining the noodle strings in a separated state is (7) above the hopper bottom supply port, A drum is provided so that the supply port faces the circumferential surface, and a water flow is generated so that the noodles circulate around the outer periphery of the drum, and (8) the drum is rotated, The noodle strings are caused to circulate by protrusions provided on the circumferential surface.

又、一つの底部供給口に対応する計量容器が単一で、茹麺排出工程が計量容器を水平方向にスライドさせる方法で、計量容器を水平方向にスライドさせる際に、ホッパー底部供給口と計量容器入口を常時空間で結ぶトンネルを設けるノンカットタイプの計量に固有の麺の詰まる状況には、隣接する二つの供給口に同一麺線の両端の其々が入り込み二つの供給口を同時に狭める場合がある。これを解消する手段は、(9)隣接する二つの底部供給口の間の底面に隔壁、その上方に突起を設け、該隔壁と該突起の互いの頂部を対向して近接又は密接し、該隔壁の側面と該突起の軌道面が重なるように該突起を動作することである。  In addition, there is a single measuring container corresponding to one bottom supply port, and the noodle discharging process slides the measuring container in the horizontal direction. When the noodles inherent to non-cut type weighing are provided with a tunnel that always connects the container inlet with a space, the two noodles enter the two adjacent supply ports and the two supply ports are simultaneously narrowed. There is. (9) A partition wall is provided on the bottom surface between two adjacent bottom supply ports, and a protrusion is provided above it, and the partition wall and the top of each of the protrusions face each other in close proximity or in close contact with each other. The protrusion is operated so that the side surface of the partition wall and the track surface of the protrusion overlap.

本発明が対象とする茹麺とは、比重が1.0〜1.2であって、水の流れに応じて流動性を呈するものであれば麺の形、太さや長さ、原料、製麺や茹上の条件はなんら限定されない。そして、茹麺のこれらの特性は、スリット形状に狭めた底部供給口をスムースに通過させる為に有効に作用する。  The noodles targeted by the present invention have a specific gravity of 1.0 to 1.2 and exhibit fluidity depending on the flow of water. The noodle shape, thickness and length, raw material, There is no limitation on the conditions for noodles and rice cakes. These characteristics of the noodle noodles work effectively to smoothly pass the bottom supply port narrowed in the slit shape.

そして、本発明のスリット形状のホッパー底部供給口は、向かい合う長辺二辺により細長い隙間を形成していれば、矩形、その他の多角形や長円形でも良く、長辺二辺は直線である必要はなくU字形でもS字形を形成する曲線でも良い。又、向かい合う長辺二辺は平行でなくても良く、茹麺がスムースに通過できるように供給口の縁部をアール加工等により角を落とすと更に良い。  The slit-shaped hopper bottom supply port of the present invention may be rectangular, other polygons or oval as long as two long sides facing each other form a narrow gap, and the two long sides need to be straight. It may be a U-shaped curve or a curved line forming an S-shape. Also, the two long sides facing each other need not be parallel, and it is better to drop the corners of the supply port by rounding or the like so that the noodles can pass smoothly.

スリット形状を形成する長辺二辺の長さは其々15〜40mm、望ましくは20〜30mmが良い。又、向かい合う長辺二辺の隙間間隔は、4〜12mm、望ましくは5〜10mmが良い。このようにスリット形状の底部供給口は、麺線の絡み合いにより隙間間隔を上回るサイズの麺塊を形成した場合も、供給口の長手方向に麺塊を変形させることで通過を促す作用がある。  The lengths of the two long sides forming the slit shape are each 15 to 40 mm, preferably 20 to 30 mm. The gap between the two long sides facing each other is 4 to 12 mm, preferably 5 to 10 mm. As described above, the slit-shaped bottom supply port has an effect of promoting passage by deforming the noodle mass in the longitudinal direction of the supply port even when the noodle mass having a size exceeding the gap interval is formed by the entanglement of the noodle strings.

又、本発明の課題解決の手段として特に限定がなければ、ホッパー底部の形状は円錐状でも水平平板状でも、平板の組み合わせによる谷状でも、お椀状でも良く、供給口付近の麺線の疎密を調整する方法は、棒攪拌によるものでも、水流を発生させても良く、該水流を発生させる場所や水流を噴出させる細孔の配置についてもなんら制限されない。  If there is no particular limitation as a means for solving the problems of the present invention, the shape of the bottom of the hopper may be a conical shape, a horizontal flat plate shape, a valley shape by a combination of flat plates, or a bowl shape, and the density of the noodle strings near the supply port The method of adjusting the pressure may be by stirring with a rod or may generate a water flow, and the location where the water flow is generated and the arrangement of the pores from which the water flow is ejected are not limited at all.

課題解決の手段(3)における、ホッパー底部供給口から計量容器に向けられ、ホッパー底部供給口より拡げられた茹麺の流路は、底部供給口の狭められた通過区間を短くしてその後の流路の隙間間隔を拡げれば良い。拡げる程度は1.5倍以上、望ましくは2〜6倍に拡げれば良い。スリット形状の隙間の通過区間を短くすることは、隙間間隔を上回るサイズの麺塊が通過する際に、スリット形状長手方向への変形に加え、上下方向にも変形させて通過を促す作用がある。  In the means for solving the problem (3), the flow path of the noodles which is directed from the hopper bottom supply port to the measuring container and is expanded from the hopper bottom supply port shortens the passage section where the bottom supply port is narrowed. What is necessary is just to widen the clearance gap of a flow path. The degree of expansion may be 1.5 times or more, preferably 2 to 6 times. Shortening the passage section of the slit-shaped gap has the effect of encouraging passage by deforming in the vertical direction in addition to deformation in the slit-shaped longitudinal direction when noodle chunks having a size exceeding the gap interval pass. .

課題解決の手段(4)における、茹麺の流出に逆向きの水流は、茹麺の供給量を調整する作用がある。ホッパー底部供給口の縁辺から計量容器に向かう茹麺の流路のいずれかで発生させ、その水勢を変更できる方法であれば、噴出孔の数やサイズは自由にできる。又、ホッパー底部供給口の縁から2cm以内の底面から茹麺の流出に逆向きの水流を噴出させれば、ホッパー底部で麺線の過密化を直接防止できて良い。  In the problem solving means (4), the water flow in the direction opposite to the outflow of the noodles has the effect of adjusting the supply amount of the noodles. The number and size of the ejection holes can be freely set as long as the method can be generated in any one of the noodle flow paths from the edge of the hopper bottom supply port to the measuring container and change the water flow. Further, if a water flow in the opposite direction is ejected from the bottom surface within 2 cm from the edge of the hopper bottom supply port, the noodle strings may be prevented from becoming too dense at the bottom of the hopper.

一方、ホッパーの後部壁面に沿った下降水流は、水勢の調整によりホッパー底部に前側から補給される茹麺を適度に押し戻し、ホッパー底部で麺線の過密化を防止する作用がある。そして、茹麺の流出に逆向きの水流とホッパーの後部壁面に沿った下降水流の調整を合わせて行うことで、供給口の直上に集中する強い水勢をなくしホッパー内での麺線の絡みを防止する作用がある。  On the other hand, the descending water flow along the rear wall surface of the hopper has an action of appropriately pushing back the noodles replenished from the front side to the bottom of the hopper by adjusting the water force, and preventing the noodle strings from becoming overcrowded at the bottom of the hopper. And by adjusting the flow of water in the opposite direction to the outflow of crab noodles and the downward flow of water along the rear wall of the hopper, the strong water concentrated right above the supply port is eliminated, and the noodle strings are entangled in the hopper. There is an action to prevent.

課題解決の手段(5)のホッパー底部供給口の拡縮は、茹麺充填工程の前期に供給口を拡げることで、麺線の流入を促進する作用がある。とりわけ、供給口の拡大のタイミングは茹麺充填工程の開始と同時が良く、拡大比と拡大時間の設定は計量カゴ容量の5〜9割を充填時間の1〜4割で終え、かつ充填を終えた後に数秒の時間が残るようにするのが良い。具体的には、向かい合う長辺二辺の隙間間隔を1.5〜4倍、好ましくは2〜3倍に拡げれば良い。  The expansion / contraction of the hopper bottom supply port of the means (5) for solving the problem has the effect of promoting the inflow of the noodle strings by expanding the supply port in the first half of the bowl noodle filling step. In particular, the timing of expansion of the supply port is good at the same time as the start of the noodle filling process, and the setting of the expansion ratio and expansion time is completed by 50 to 90% of the weighing basket capacity in 10 to 40% of the filling time, and filling It is better to leave a few seconds after finishing. Specifically, the gap interval between two long sides facing each other may be increased to 1.5 to 4 times, preferably 2 to 3 times.

課題解決の手段(5)の拡縮の方法は、スリットを形成する向かい合う長辺二辺のいずれか1辺のみでも2辺共に動かす方法でもいずれでも良い。又、動かす方向は、水平でも、上下いずれかに傾斜を設けてもいずれでも良く、動力はエアシリンダーで行うのもカム等の機械式で行うのも自由にすれば良い。  The scaling method of the problem solving means (5) may be a method of moving only one side or two sides of two opposite long sides forming the slit. Further, the moving direction may be horizontal or inclined at any one of the upper and lower sides, and the power may be freely controlled by an air cylinder or a mechanical system such as a cam.

課題解決の手段(6)におけるホッパー底部供給口の拡縮は、スリット状に縮められた状態から瞬間拡げて再びスリット状に縮めるもので、麺線供給を促進することなく狭められた底部供給口に詰まった茹麺を通過除去させる作用がある。瞬間とは、拡縮の動作時間を含め1秒以下、拡大状態での時間は0.5秒以下を指す。この瞬間の動作を一回の充填の中で複数回行えば、縮められた底部供給口に稀に麺線が詰まった場合もその都度通過除去できる。  The expansion / contraction of the hopper bottom supply port in the means (6) for solving the problem is to expand from the state contracted into the slit shape and then contract again into the slit shape, and to the bottom supply port narrowed without promoting the supply of noodle strings. It has the effect of removing clogged crab noodles. The moment refers to 1 second or less including the expansion / contraction operation time, and 0.5 seconds or less in the expanded state. If the operation at this moment is performed a plurality of times in one filling, even if the noodle strings are rarely clogged in the shrunk bottom supply port, they can be removed each time.

課題解決の手段(6)をより有効に利用するには一供給口当たりの処理能力を時間当たり400食〜600食程度が良い。その場合の充填時間は5秒程度取れるから、1〜2秒間隔で5〜2回拡縮するよう脈動させておけば、常に麺線の詰まりが解消できる。常に麺線の詰まりが解消できると、スリット状の隙間を予め5mm程度に狭めて設定できるから麺線の小出し供給を徹底し計量精度を大幅に向上させることができる。  In order to use the problem solving means (6) more effectively, the processing capacity per supply port is preferably about 400 to 600 meals per hour. Since the filling time in that case can be taken about 5 seconds, the clogging of the noodle strings can always be eliminated by pulsating to expand and contract 5 to 2 times at intervals of 1 to 2 seconds. If the clogging of the noodle strings can always be resolved, the slit-shaped gap can be set in advance by narrowing it to about 5 mm, so that the noodle strings can be thoroughly dispensed and the measurement accuracy can be greatly improved.

なお、課題解決の手段(5)と課題解決の手段(6)の拡大比、拡縮の方法、方向及び動力を共通化し、動作するタイミングや時間を電気的に設定することで装置構成が簡素にできて良い。そして、両手段を組み合わせて実施する場合、共通の拡大比は向かい合う長辺二辺の隙間間隔を1.3〜4倍、好ましくは1.5〜2倍、課題解決の手段(5)における拡大時間は、拡縮の動作を含め0.5〜4秒、望ましくは1〜2秒が良い。  Note that the enlargement ratio, enlargement / reduction method, direction, and power of the problem solving means (5) and the problem solving means (6) are made common, and the operation timing and time are electrically set to simplify the apparatus configuration. You can do it. When the two means are combined, the common enlargement ratio is 1.3 to 4 times, preferably 1.5 to 2 times the gap interval between the two long sides facing each other. The time is 0.5 to 4 seconds, preferably 1 to 2 seconds, including the expansion / contraction operation.

課題解決の手段(7)は、ホッパー底部供給口の上方で、円柱体であるドラムの円周面と該供給口が向かい合うようにドラムを設け、茹麺が該ドラムを中心に円周面外側を周回するような水流を発生させるものである。課題解決の手段(7)によれば、茹麺の静置状態を回避して堆積による麺線の過密化を防止する作用がある。更に、麺の周回を後押しするように発生させる水流は麺塊の一部に限定されず全体にムラなく働きかけるから、麺線の部分的な絡みや捻じれを生じさせることがなく、茹麺全体で一定の疎密状態を維持する作用がある。  Means for solving the problem (7) is that a drum is provided above the hopper bottom supply port so that the circumferential surface of the drum, which is a cylindrical body, faces the supply port, and the noodles are outside the circumferential surface around the drum. A water stream that circulates around is generated. According to the means for solving the problem (7), there is an effect of preventing the noodle strings from being overly dense due to accumulation by avoiding the stationary state of the noodles. Furthermore, since the water flow generated to boost the circulation of the noodles is not limited to a part of the noodle mass and works evenly on the whole, the noodle strings are not entangled or twisted, and the whole noodles It has the effect of maintaining a certain density state.

課題解決の手段(7)は、とりわけ日本そばに適している。振幅タイプの攪拌手段の場合、水中に沈む麺塊は一定の堆積高や時間の超過により過密化が進む。日本そばの場合、過密化が進むと蕎麦粉の糊化特性や繊維分の影響により流動性を失い易い。そこに振幅タイプの攪拌や水流攪拌を一部で行ってもうどんのように流動性は回復せず、逆に麺線の部分的な絡みや捻じれを生じさせ、詰まりの原因を作ってしまう。本発明の課題解決の手段(7)によれば一定の疎密状態を維持する作用により日本そばの小出し供給を可能にし、計量精度を飛躍的に向上させることができる。  The problem solving means (7) is particularly suitable for Japanese soba. In the case of the amplitude type stirring means, the noodle mass submerged in the water becomes more dense due to a certain accumulation height or excessive time. In the case of Japanese buckwheat, the fluidity tends to be lost due to the gelatinization characteristics and fiber content of buckwheat flour as the density increases. Amplitude type stirring or water flow stirring is partially performed there, and fluidity does not recover like udon, conversely, partial entanglement and twisting of the noodle strings will occur, causing clogging . According to the means (7) for solving the problems of the present invention, it is possible to supply a small amount of soba noodles by the action of maintaining a constant density state, and it is possible to dramatically improve the measurement accuracy.

又、課題解決の手段(7)で並行処理を行う為に複数の底部供給口を設ける場合のドラムの配置は、全ての供給口で同一条件が望ましい。故に、底部供給口の配列に対しドラムの軸線を平行にするのが良い。更に、複数の底部供給口を隣接させれば、底部供給口上方に形成される個々の茹麺の周回流は隣接協調し、全ての底部供給口で共有する茹麺の周回流にまとめられるから、計量機のホッパー部分をコンパクトに設計できて良い。  In addition, in the case of providing a plurality of bottom supply ports in order to perform parallel processing in the problem solving means (7), it is desirable that the arrangement of the drums be the same for all the supply ports. Therefore, the drum axis should be parallel to the array of bottom supply ports. Furthermore, if a plurality of bottom supply ports are adjacent to each other, the peripheral flow of the individual noodles formed above the bottom supply port cooperates adjacently, and is combined into a circular flow of the noodles shared by all the bottom supply ports. The hopper part of the weighing machine can be designed to be compact.

ドラムの円周面とホッパー底部の間隔は、8cm以上、望ましくは10〜30cmが良い、ドラムの円周面とホッパー底部の間隔に余裕があれば、麺を多くストックできる。又、ドラムの直径は5〜20cm、望ましくは10〜15cmが良い。ドラムの直径が10〜15cmあれば麺線は絡みつくこともなく、かつホッパーの容積を占有し過ぎることもなくて良い。  The distance between the circumferential surface of the drum and the bottom of the hopper is 8 cm or more, preferably 10 to 30 cm. If there is a sufficient space between the circumferential surface of the drum and the bottom of the hopper, a large amount of noodles can be stocked. The diameter of the drum is 5 to 20 cm, preferably 10 to 15 cm. If the diameter of the drum is 10 to 15 cm, the noodle strings do not get tangled and do not occupy the volume of the hopper.

又、課題解決の手段(7)で茹麺の周回を後押しする水流の発生位置は、ドラム円周360度のいずれの配置でも良い。発生させる水流の向きは円周面に平行から円周面に向けた角度範囲が麺線の流れをまとめることができて良い。  Further, the generation position of the water flow that boosts the circulation of the noodles in the means for solving the problem (7) may be any arrangement of 360 degrees around the drum circumference. The direction of the water flow to be generated may be the angle range from parallel to the circumferential surface to the circumferential surface so that the flow of the noodle strings can be collected.

又、課題解決の手段(7)におけるホッパーの底面の縦の断面形状は、前後の斜面で構成されるV形でも良いが、ドラムを中心とした同心円でも多角形でも良い。又、ドラムの前後には、垂直面、又は垂直面よりドラム側に傾斜した壁面をホッパー底面から延長して設ければ、ドラムの周回流から外れる流れが生じなくて良い。  The vertical cross-sectional shape of the bottom surface of the hopper in the problem solving means (7) may be a V shape constituted by front and rear slopes, but may be a concentric circle or a polygon centered on the drum. In addition, if a vertical surface or a wall surface inclined toward the drum from the vertical surface is extended from the bottom surface of the hopper before and after the drum, there is no need to generate a flow deviating from the circumferential flow of the drum.

課題解決の手段(8)の自転ドラムは、円周面に設けた突起により麺線を安定的に周回させる作用がある。自転の速度は麺の流速より早過ぎると突起に麺線が掛った状態で外れ難いが、茹麺の周回を後押しする水流を併用し、自転速度が抑えれば麺線の掛りを防止できて良い。なお、自転は一定速一方向に回転させても、変速や反転を組み合わせても良い。なお、自転ドラム円周面の突起の数と配置は一つの供給口に対して1本以上、望ましくは3〜5本を円周360度中に略均等に設ければ良い。  The rotating drum of the means (8) for solving the problem has the effect of stably circulating the noodle strings by the protrusions provided on the circumferential surface. If the rotation speed is too fast than the flow speed of the noodles, it is difficult to come off with the noodle strings on the protrusions, but if you use a water flow that boosts the circulation of the noodles and reduce the rotation speed, you can prevent the noodle strings from hanging. good. Note that the rotation may be rotated in one direction at a constant speed, or may be a combination of speed change and inversion. It should be noted that the number and arrangement of protrusions on the circumferential surface of the rotating drum may be one or more, preferably 3 to 5 with respect to one supply port, and may be provided approximately evenly within 360 degrees.

課題解決の手段(8)における自転ドラム円周面の突起は、底部供給口の上方、かつ該供給口の縁辺に接する程度の長さに設けることで、該供給口からはみ出た麺線を直接取り除き計量精度を高めることができる。  The protrusion on the circumferential surface of the rotating drum in the problem solving means (8) has a length above the bottom supply port and in contact with the edge of the supply port, so that the noodle strings protruding from the supply port can be directly Removal accuracy can be improved.

又、課題解決の手段(8)の自転ドラムに対する麺線の巻き付きを防止する為、図14の48に示したように短冊状のヒレをドラムの回転軸と平行に円周面上に立てて設けると良い。又、自転ドラムの端部平面とホッパー壁面が摺接する隙間に入り込む麺線を無くす為、図14の49に示したように自転ドラムの両端には壁面に摺接するようにツバを設けると良い。なお、ツバの直径は大きい程良い。  Further, in order to prevent the noodle strings from being wound around the rotating drum of the means (8) for solving the problem, a strip-like fin is set on the circumferential surface in parallel with the rotating shaft of the drum as shown by 48 in FIG. It is good to provide. Further, in order to eliminate noodle strings entering the gap where the end plane of the rotating drum and the wall surface of the hopper are in sliding contact, it is preferable to provide flanges at both ends of the rotating drum so as to be in sliding contact with the wall surface as shown by 49 in FIG. In addition, the larger the diameter of the brim, the better.

課題解決の手段(9)は、前記した特許文献4によって本願発明者が開示したノンカットタイプの計量方法において、隣接する二つの供給口に麺線両端の其々が入り込み二つの供給口を同時に狭める状況を解消する為、間に設けた隔壁で麺線を浮かせ、上方で動作する突起で麺線を掛けて取り除く作用を有する。すなわち、課題解決の手段(9)で隔壁の上方に設ける突起の動作範囲は、突起の軌道面と、隔壁の側面が重なる範囲の隔壁頂部において、底部供給口を起点とする最遠部の距離が、計量の対象とする麺線の長さの半分以上になるように設定すれば良い。  The means for solving the problem (9) is the non-cut type measuring method disclosed by the present inventor according to the above-mentioned Patent Document 4. Each of the noodle strings is inserted into two adjacent supply ports, and the two supply ports are simultaneously formed. In order to eliminate the narrowing situation, the noodle strings are floated by the partition provided between them, and the noodle strings are hung and removed by the protrusions operating above. That is, the operating range of the protrusion provided above the partition wall by means for solving the problem (9) is the distance of the farthest portion starting from the bottom supply port at the top of the partition wall where the track surface of the protrusion overlaps the side surface of the partition wall. May be set so as to be at least half the length of the noodle strings to be weighed.

とりわけ、図9や図13のように、隔壁の頂部中央を掘り下げられた溝の内部に突起を通過させれば、隔壁の側面と突起の軌道面の重なりを最小にできて良い。又、各底部供給口で茹麺の供給を均等にするには、底部供給口からの隔壁の高さを10cm以下、望ましくは5cm以下に設ければ良い。  In particular, as shown in FIGS. 9 and 13, if the protrusion is passed through a groove that has been dug down at the center of the top of the partition wall, the overlap between the side surface of the partition wall and the track surface of the protrusion may be minimized. In addition, in order to supply the noodles uniformly at each bottom supply port, the height of the partition wall from the bottom supply port may be 10 cm or less, preferably 5 cm or less.

茹麺の容積式の計量方法でありながら、本発明によればうどん麺線であれば1〜2本ずつの小出し供給が可能となる為に計量容器からはみ出る麺線の数を最小限に抑えることができる。そして、カット方式による計量方法であれば短麺の混入率を大幅に低減でき、ノンカットタイプの計量方法であれば、重量の過不足をなくすことができる。又、麺線が詰まるトラブルを防止し処理能力を向上させることができる。故に、生麺を反転方式の茹槽で茹上げる場合等、生麺をまとめて茹で上げた場合の茹麺製品の品位を向上させると共に、生産性を向上させることができる。  Although it is a volumetric measuring method for crab noodles, according to the present invention, if udon noodle strings are used, it is possible to dispense one or two pieces at a time, so the number of noodle strings protruding from the measuring container is minimized. be able to. And if it is the measuring method by a cut system, the mixing rate of a short noodle can be reduced significantly, and if it is a non-cut type measuring method, excess and deficiency of a weight can be eliminated. Moreover, the trouble which clogs noodle strings can be prevented and the processing capability can be improved. Therefore, the quality of the noodle product can be improved and the productivity can be improved when the raw noodles are boiled together in a bowl, such as when the raw noodles are boiled in a reversing type koji tank.

実施例1〜7で基礎とした計量装置全体の略図Schematic of the entire weighing device based on Examples 1-7 実施例1のスリット形状底部供給口を設置したホッパー底部の断面図Sectional drawing of the hopper bottom part which installed the slit shape bottom part supply port of Example 1 実施例1のスリット形状底部供給口を示す平面図The top view which shows the slit shape bottom part supply port of Example 1. FIG. 実施例2のスリット形状底部供給口を設置したホッパー底部の断面図Sectional drawing of the hopper bottom part which installed the slit shape bottom part supply port of Example 2. 実施例2のスリット形状底部供給口を示す平面図The top view which shows the slit shape bottom part supply port of Example 2. FIG. 実施例3、4の拡縮可能な底部供給口を設置したホッパー底部の断面図Sectional drawing of the hopper bottom part which installed the bottom part supply port which can be expanded / contracted of Example 3, 4 実施例3、4の底部供給口がスリット形状に縮められた状態を示す平面図The top view which shows the state by which the bottom part supply port of Example 3, 4 was shortened by the slit shape 実施例3、4の底部供給口がスリット形状から拡げられた状態を示す平面図The top view which shows the state by which the bottom part supply port of Example 3, 4 was expanded from slit shape 実施例5の計量状況を示すホッパーの縦断面図Vertical sectional view of the hopper showing the weighing status of Example 5 実施例5の計量状況を示すホッパーの横断面図Cross-sectional view of a hopper showing the weighing status of Example 5 実施例6の計量状況を示すホッパーの縦断面図Vertical sectional view of the hopper showing the weighing status of Example 6 実施例6の計量状況を示すホッパーの横断面図Cross-sectional view of the hopper showing the weighing status of Example 6 実施例7の計量状況を示すホッパーの縦断面図Vertical sectional view of the hopper showing the weighing status of Example 7 実施例7の計量状況を示すホッパーの横断面図Cross-sectional view of a hopper showing the weighing status of Example 7 比較例のホッパー底部の断面を含む計量装置全体の略図Schematic of the entire weighing device including the cross section of the hopper bottom of the comparative example 比較例のホッパーの真円の底部供給口を含む平面図A plan view including a perfect circle bottom supply port of a comparative hopper

以下、本発明の実施の形態を図1〜14に基づいて説明する。以下の実施例では茹麺充填工程で計量容器からはみ出る茹麺量の増減を重量の分布より把握する為、ノンカットタイプの計量を行うが、本発明はノンカットタイプに限定されず、実施例によってなんら限定されない。又、図2〜10、図13、図14、図16では茹麺の図示を省略した。  Hereinafter, embodiments of the present invention will be described with reference to FIGS. In the following examples, in order to grasp the increase or decrease in the amount of crab noodles protruding from the measuring container in the crab noodle filling process, the non-cut type is measured, but the present invention is not limited to the non-cut type. It is not limited at all. Also, the illustration of the noodles is omitted in FIGS. 2 to 10, 13, 14, and 16.

初めに、全ての実施例、比較例に共通する玉取り機の状況を図1より説明する。複数食分の茹麺1はホッパーA内に循環水と共にストックされている。茹麺1を突起1によって攪拌しつつホッパーAの底部から循環水と共に流出させ、通水性のある壁面で構成された単一の計量容器Bに充填する。充填を終えた計量容器B内の茹麺2はエアシリンダーJによって横スライドされ、排出口Cより下方に排出される。その際、計量容器Bの上部にはみ出た茹麺はトンネル部Fを通過させ計量容器B内の茹麺と共に排出する。循環水は回収水槽Dに貯え、揚水ポンプEによってトンネル部の水封供給G、噴き上げ供給Hに圧送され、及びホッパーA内へ補給される。  First, the situation of the ball removing machine common to all the examples and comparative examples will be described with reference to FIG. A plurality of meals noodles 1 are stocked in the hopper A together with circulating water. While stirring the noodles 1 with the protrusions 1, the noodles 1 are allowed to flow out from the bottom of the hopper A together with the circulating water, and filled into a single measuring container B composed of a water-permeable wall. After the filling, the noodles 2 in the measuring container B are horizontally slid by the air cylinder J and discharged downward from the discharge port C. At that time, the noodles protruding from the upper part of the measuring container B pass through the tunnel part F and are discharged together with the noodles in the measuring container B. Circulating water is stored in the recovery water tank D, pumped by the pumping pump E to the water seal supply G and the squirt supply H of the tunnel, and replenished into the hopper A.

(茹麺の調製)
実施例1で計量した茹麺は、麺線の長さ50〜53cm、太さ3×6mm、重量11〜13gの茹うどんで、釜揚げ状態で急速凍結された冷凍麺を、沸騰水中で解凍し速やかに15〜20℃に冷却、冷却後5分〜30分を計量の対象とした。
(Preparation of crab noodles)
The noodles weighed in Example 1 were noodle strings 50-53 cm long, 3 × 6 mm thick, and 11-13 g mushroom udon. Then, it was quickly cooled to 15 to 20 ° C., and 5 to 30 minutes after cooling was used as an object of measurement.

(スリット供給口でうどんを計量)
次に、実施例1に固有のホッパー底部の状況を図2及び図3より説明する。ホッパー内の麺の攪拌は突起Iの振幅によって行っている。ホッパー底部3は平板で、底部供給口4は隙間の長さ23mm、隙間の間隔6.0〜6.5mmの長円形、底部供給口4から供給口出口5までの断面が同形同面積のストレートの流路管6を設けた。ホッパー底部3の前後には茹麺を誘導する補助版7を設置すると共に、ホッパー底部3の概ね全面から噴き上げ水流8を噴出させ、ホッパー底部の茹麺の密度を調整すると共に、8〜10秒の時間で充填が完了するようにした。調整後、1玉250g〜275gになるよう毎分5個の速度で充填、排出をくり返したところ、平均重量257.8g、標準偏差5.9g、n=58の重量データを得た。又、その間にふやけに伴う流動性の低下から供給口4で麺詰まりが1回発生した。
(Weigh udon at the slit supply port)
Next, the situation of the bottom part of the hopper unique to Example 1 will be described with reference to FIGS. The noodles in the hopper are stirred by the amplitude of the protrusion I. The hopper bottom 3 is a flat plate, the bottom supply port 4 is an ellipse having a gap length of 23 mm, a gap interval of 6.0 to 6.5 mm, and a cross section from the bottom supply port 4 to the supply port outlet 5 has the same shape and area. A straight channel tube 6 was provided. Before and after the hopper bottom 3, an auxiliary plate 7 that guides the noodles is installed, the water flow 8 is spouted from almost the entire surface of the hopper bottom 3, and the density of the noodles at the bottom of the hopper is adjusted. The filling was completed in the time. After the adjustment, filling and discharging were repeated at a rate of 5 pieces per minute so as to become 250 g to 275 g per ball, and weight data with an average weight of 257.8 g, a standard deviation of 5.9 g, and n = 58 were obtained. In the meantime, noodle clogging occurred once at the supply port 4 due to the decrease in fluidity caused by wiping.

(従来知られる真円供給口でうどんを計量)
又、実施例1と同様の茹麺を比較例として従来知られる真円供給口で計量した。比較例のホッパー底部の状況を図15及び図16より説明する。ホッパー底部は逆円錐形状で、その内側斜面に噴上げ細孔51が設けられ、真円内径12mmの底部供給口52がトンネル部Fと接するようにホッパー最深部に設けられている。円錐斜面の噴上げ細孔51から噴き上げ水流50を噴出させ、8〜10秒の時間で計量容器への充填が完了するように調整した。調整後、1玉250g〜275gになるよう毎分5個の速度充填、排出をくり返したところ、平均重量267.8g、標準偏差7.6g、n=45の重量データを得た。又、その間に麺のふやけに伴う流動性の低下から供給口で麺詰まりが1回発生した。
(Weighing udon at the conventionally known perfect circle supply port)
The same noodles as in Example 1 were weighed as a comparative example using a conventionally known perfect circle supply port. The situation of the hopper bottom part of the comparative example will be described with reference to FIGS. 15 and 16. The bottom of the hopper has an inverted conical shape, and a jetting pore 51 is provided on the inner slope, and a bottom supply port 52 having a perfect circular inner diameter of 12 mm is provided at the deepest part of the hopper so as to be in contact with the tunnel part F. The water flow 50 was spouted from the spout 51 on the conical slope, and adjustment was made so that the filling into the measuring container was completed in a time of 8 to 10 seconds. After the adjustment, the rate filling and discharging were repeated 5 times per minute so as to be 250 g to 275 g per ball, and weight data with an average weight of 267.8 g, a standard deviation of 7.6 g, and n = 45 were obtained. In the meantime, the clogging of noodles occurred once at the supply port due to the decrease in fluidity associated with the noodles.

(実施例1のまとめ)
実施例1と比較例は、計量カゴ容量が同一でありながら平均重量で10gの差があったことから、実施例1は比較例より計量カゴからはみ出た茹麺が平均で10g少なかったことを示していた。又、標準偏差の違いは、実施例1が比較例より計量カゴからはみ出た茹麺の重量の変動が小さかったかったことを示していた。そして、これらの結果は、同様の処理能力で比較した場合に、実施例1は比較例に比べ麺線をより細かく小出し供給していることを示していた。
(Summary of Example 1)
Since Example 1 and the comparative example had the same weighing basket capacity but there was a difference of 10 g in average weight, Example 1 showed that the average noodles protruding from the weighing basket was 10 g less than the comparative example. Was showing. Also, the difference in standard deviation indicated that the variation in the weight of the noodles protruding from the weighing basket in Example 1 was smaller than that in the comparative example. And when these results were compared by the same processing capacity, Example 1 showed that noodle strings were dispensed more finely than the comparative example.

(スリット供給口より下の流路の隙間間隔を拡げた場合のうどんの計量)
次に、実施例1と同様の茹麺を、ホッパー底部供給口より拡げられた流路を設けた詰まり難い形状の底部供給口で計量した。実施例2に固有のホッパー底部の状況を図4及び図5より説明する。ホッパー底部9は水平を成す平板で、底部供給口10は隙間の長さ23mm、隙間間隔6mmの矩形、底部供給口10のすぐ下から供給口出口11まで、隙間間隔を12mmに拡げた形状の流路管を設けた。噴上げ水流細孔は流路管の内側に集中させ、噴き上げ水流12を噴出させると共に、ホッパー内では底部供給口10に向かって後部壁面に沿った下降水流13を発生させ、ホッパー底部の茹麺の密度を調整すると共に8〜10秒の時間で充填が完了するようにした。調整後、1玉250g〜275gになるよう計量容器の容量の微調整を行い、毎分5個の速度で充填、排出をくり返したところ、過不足3.2%、平均重量259.5g、標準偏差5.4g(n=94)の重量分布を得た。又、計量開始から30分経過時点で、麺のふやけに伴う流動性の低下から底部供給口10で麺詰まりが発生した。
(Measurement of udon when the gap between the channels below the slit supply port is widened)
Next, the same noodles as in Example 1 were weighed at the bottom supply port having a shape that is difficult to clog, provided with a flow path expanded from the hopper bottom supply port. The situation at the bottom of the hopper unique to Example 2 will be described with reference to FIGS. The hopper bottom 9 is a horizontal flat plate, the bottom supply port 10 is a rectangle having a gap length of 23 mm and a gap interval of 6 mm, and a shape in which the gap interval is expanded to 12 mm from just below the bottom supply port 10 to the supply port outlet 11. A channel tube was provided. The spouted water flow pores are concentrated inside the channel tube to spout the spouted water flow 12 and generate a descending water flow 13 along the rear wall surface toward the bottom supply port 10 in the hopper, so that the noodles at the bottom of the hopper The density was adjusted and filling was completed in a time of 8 to 10 seconds. After adjustment, the capacity of the measuring container was finely adjusted so that it would be 250g to 275g per ball, and when filling and discharging were repeated at a rate of 5 pieces per minute, over / under 3.2%, average weight 259.5g, standard A weight distribution with a deviation of 5.4 g (n = 94) was obtained. In addition, at the time when 30 minutes had elapsed from the start of measurement, noodle clogging occurred at the bottom supply port 10 due to a decrease in fluidity caused by the noodles.

(実施例2のまとめ)
実施例2の標準偏差5.4g(n=94)と、実施例1の標準偏差5.9g(n=58)の比較から、実施例2と1は概ね同等の小出し供給が行われていた。しかし、実施例1が10分の間に麺線が詰まったのに対し、実施例2では30分間麺線が詰まらなかったことからホッパー底部供給口より下を拡げられた供給口は麺が詰まり難いことを示していた。
(Summary of Example 2)
From the comparison of the standard deviation of 5.4 g (n = 94) of Example 2 and the standard deviation of 5.9 g (n = 58) of Example 1, Examples 2 and 1 were almost equally dispensed. . However, in Example 1, the noodle strings were clogged in 10 minutes, whereas in Example 2, the noodle strings were not clogged for 30 minutes, so the supply port expanded below the hopper bottom supply port was clogged with noodles. It was difficult.

(底部供給口を拡縮させうどんを計量▲1▼)
次に、実施例3では、実施例1と同様の茹麺を、底部供給口を拡縮させて計量した。実施例3に固有のホッパー底部の状況を図6〜8より説明する。ホッパー底部は水平を成す平板で、底部供給口入口14は、縮めた状態14aの23mm×6mmから拡げた状態14bの23mm×12mmに拡げる動作を茹麺充填工程1回ごとに該工程開始のタイミングで行い、計量容器の6〜7割が充填されたら縮めた状態14aに戻して小出し供給する、拡縮可能な底部供給口とした。拡縮は、中に仕込んだ押バネと外部のエアシリンダーに結ばれた引き紐を組み合わせた機構15により行い、流路管16は隙間間隔を15mmとして、14bの拡げた状態でも茹麺がスムースに通過できるようにした。又、噴上げ水流細孔は流路の片側1面に集中し、噴き上げ水流17を噴出させると共に、底部供給口14に向かってホッパーの後部壁面に沿った下降水流18を発生させ、ホッパー底部の茹麺の密度を調整すると共に計量速度に適した時間で充填が完了するようにした。調整後、1玉250g〜275gになるよう計量容器の容量の微調整を行い、毎分5個及び毎分9個の速度で充填、排出をくり返したところ、毎分5個の速度では過不足1.7%、平均重量261.3g、標準偏差6.5g(n=60)、毎分9個の速度では過不足4.3%、平均重量261.4g、標準偏差6.6g(n=120)の重量分布を得、麺のふやけに伴う流動性の低下から単発的な充填不足が散見されたものの、計量開始から30分経過後も連続した麺の詰まりは底部供給口14で全く発生しなかった。
(Weighing udon with the bottom supply port expanded and contracted (1))
Next, in Example 3, the same noodles as in Example 1 were weighed by expanding and contracting the bottom supply port. The situation of the hopper bottom inherent to Example 3 will be described with reference to FIGS. The bottom of the hopper is a horizontal flat plate, and the bottom supply port inlet 14 starts the operation of expanding from 23 mm × 6 mm in the contracted state 14 a to 23 mm × 12 mm in the expanded state 14 b every time the noodle filling process is started. When the 60 to 70% of the measuring container is filled, the bottom supply port is expanded and contracted so that it is returned to the contracted state 14a and supplied in a small amount. Expansion and contraction is performed by a mechanism 15 that combines a push spring loaded therein and a pull string tied to an external air cylinder, and the flow path tube 16 has a gap interval of 15 mm, so that the noodles can be smoothly spread even in the expanded state of 14b. I was able to pass. Further, the spouted water flow pores are concentrated on one surface of one side of the flow path, and the spouted water flow 17 is ejected, and the descending water flow 18 along the rear wall surface of the hopper is generated toward the bottom supply port 14, The density of crab noodles was adjusted and filling was completed in a time suitable for the measuring speed. After adjustment, the capacity of the measuring container was finely adjusted so that it would be 250g to 275g per ball, and filling and discharging were repeated at 5 pieces per minute and 9 pieces per minute. 1.7%, average weight 261.3 g, standard deviation 6.5 g (n = 60), with 9 speeds per minute 4.3% over and under, average weight 261.4 g, standard deviation 6.6 g (n = 120) weight distribution, although there was a single shortage of filling due to a decrease in fluidity due to noodle wiping, continuous clogging of noodles occurred at the bottom supply port 14 even after 30 minutes from the start of measurement. I did not.

(底部供給口を拡縮させうどんを計量▲2▼)
又、実施例4では、実施例3の条件で、麺線の長さ34cm、太さ3〜5mm、重量7〜8gの標準的な長さの茹うどんについて、1玉250g〜275gの計量を毎分9個の速度で繰り返し行ったところ、過不足なし、平均重量261.9g、標準偏差4.6g(n=100)の重量分布を得た。又、底部供給口14における連続した麺の詰まりは計量開始から経過40分を経ても発生しなかった。
(Scale the udon at the bottom supply port (2))
Moreover, in Example 4, on the conditions of Example 3, weighed 250g to 275g per ball for noodles with a standard length of 34cm, a thickness of 3 to 5mm, and a weight of 7 to 8g. When repeated at 9 speeds per minute, a weight distribution with no excess or deficiency, an average weight of 261.9 g, and a standard deviation of 4.6 g (n = 100) was obtained. Moreover, the continuous clogging of noodles at the bottom supply port 14 did not occur even after 40 minutes from the start of measurement.

(実施例3、4のまとめ)
麺線の形状の違いから重量分布の差は認められるが、いずれも麺線1本多いか少ないかの範囲で重量が分布していたが、底部供給口で連続して麺線が詰まることがないため安心してスリット幅を狭め、茹麺の小出し供給による充填を行うことができた。
故に、実施例3、4を仮にカットタイプの計量方法で実施したなら、底部供給口の拡縮によりに麺線が詰まる憂いなく麺線の小出し供給を行うことができ、その結果、切断する麺線の数はわずか2〜3本で済むことを示していた。
(Summary of Examples 3 and 4)
Although there is a difference in the weight distribution due to the difference in the shape of the noodle strings, the weight was distributed in the range of one or more noodle strings, but the noodle strings could be clogged continuously at the bottom supply port. Since there was no such thing, the slit width was narrowed with ease, and filling was possible by dispensing the noodles.
Therefore, if Examples 3 and 4 are carried out by a cut-type weighing method, the noodle strings can be dispensed without worrying about the clogging of the noodle strings due to the expansion and contraction of the bottom supply port. As a result, the noodle strings to be cut It was shown that only a few were sufficient.

(茹麺の調製)
実施例5で計量した茹麺は、そば粉と強力粉を1:1で定法により製麺、茹上られた茹そばで、麺線の長さ35cm、太さ2×3mm、重量1.5〜2gで、水分60%の冷凍麺を、沸騰水中で解凍し速やかに15〜20℃に冷却、冷却後5分〜20分を計量の対象とした。
(Preparation of crab noodles)
The noodles weighed in Example 5 were noodles made with buckwheat flour and strong flour at a ratio of 1: 1, and the soba noodles were baked, and the length of the noodle strings was 35 cm, the thickness was 2 × 3 mm, and the weight was 1.5 to 2 g of frozen noodles with a water content of 60% were thawed in boiling water and quickly cooled to 15 to 20 ° C., and 5 to 20 minutes were measured after cooling.

(底部供給口を拡縮させ3列で日本そばを計量)
実施例5では実施例3及び4の玉取機を3列に変更し、底部供給口を拡縮させて日本そばを計量した。実施例5に固有のホッパーの状況を図9及び10より説明する。図9は底部供給口に重なる縦断面図、図10は図9の切断線19における横断面図である。
隣接する底部供給口の間隔ピッチ20を10cmとして隔壁21を設けた。隔壁側面22と重なる軌道23を描く突起24は、隔壁21の頂部の掘り下げられた溝部25の内部を壁面に接しない様に振幅させた。加えて、底部供給口の上方でも縦方向に突起26を振幅させ攪拌を行った。噴上げ水流28は、底部供給口27の縁部27aに設けた口径2.5mmの5つの細孔から噴出させる、底部供給口に向かってホッパーの後部壁面に沿った下降水流29を発生させ、ホッパー底部茹麺の疎密を調整した。
充填速度は毎分9個、予め供給口拡縮時の開度を其々23×16mmと23×12mmに設定し、1玉170g前後で充填、排出をくり返したところ、散発的に麺補給が間に合わない場合があって、平均重量179.7g、標準偏差17.8g(n=119)の重量分布を得た。
(The bottom supply port is expanded and reduced to measure Japanese soba in 3 rows)
In Example 5, the ball takers of Examples 3 and 4 were changed to three rows, and the bottom supply port was expanded and reduced to measure Japanese soba. The situation of the hopper unique to the fifth embodiment will be described with reference to FIGS. 9 is a longitudinal sectional view overlapping the bottom supply port, and FIG. 10 is a transverse sectional view taken along the cutting line 19 in FIG.
A partition wall 21 was provided with an interval pitch 20 between adjacent bottom supply ports of 10 cm. The protrusion 24 that describes the track 23 that overlaps with the partition wall side surface 22 swings so that the inside of the groove portion 25 dug down at the top of the partition wall 21 does not contact the wall surface. In addition, the protrusions 26 were vibrated in the vertical direction even above the bottom supply port and agitated. The squirting water stream 28 generates a descending water stream 29 along the rear wall surface of the hopper toward the bottom supply port, which is ejected from five pores having a diameter of 2.5 mm provided at the edge 27a of the bottom supply port 27. The density of the hopper bottom noodles was adjusted.
The filling speed is 9 per minute, the opening at the time of expansion / contraction of the supply port is set to 23 × 16 mm and 23 × 12 mm, respectively. When filling and discharging are repeated at around 170 g per ball, the supply of noodles is sporadically in time. In some cases, a weight distribution with an average weight of 179.7 g and a standard deviation of 17.8 g (n = 119) was obtained.

(実施例5のまとめ)
追加した麺線がホッパー内でスムースに補給されず充填不足が増える傾向があった。又、絡んだ麺線は供給口を縮めた際の詰まり原因となって、拡縮供給口の開度を実施例3及び4のように小さく設定することができず、その結果、計量精度を高めることができなかった。
(Summary of Example 5)
There was a tendency that the added noodle strings were not replenished smoothly in the hopper and the filling shortage increased. In addition, the entangled noodle strings cause clogging when the supply port is shortened, and the opening degree of the expansion / contraction supply port cannot be set as small as in Examples 3 and 4, and as a result, the measurement accuracy is increased. I couldn't.

(スリット供給口を拡縮させ、2列、固定ドラムで日本そばを計量)
実施例6では、実施例5の玉取機の中央の供給口を塞いで2列に変更し、実施例5と同じ日本そばを計量した。実施例6に固有のホッパーの状況を図11及び図12より説明する。図11は底部供給口に重なる縦断面図、図12は図11の切断線30における横断面図である。実施例6では、実施例5の隔壁と攪拌突起を撤去し、固定ドラム31を設置した。ホッパーの後部壁面に沿った下降水流32と、噴き上げ水流33と補助水流34と、垂直壁35により、固定ドラム31の周囲を回転する流れを形成し、矢印37の方向に麺線36を周回させた。充填の速度は毎分9個、予め供給口拡縮時の開度を其々23×14mmと23×9.5mmに設定し、1玉160g前後で充填、排出をくり返し、充填開始と同時に供給口を1秒間14mmに拡げ7割程度充填を済ませ、その後9.5mmの開度に縮め1秒間隔で瞬間的14mmに拡げる脈動を継続して麺の詰まりを解消したところ、平均重量158g、標準偏差5.3g(n=245)の重量分布を得て、麺の詰まりは認めなかった。
(The slit supply port is expanded and contracted, and the soba noodles are weighed with two rows and a fixed drum.)
In Example 6, the central supply port of the ball taker of Example 5 was closed and changed to two rows, and the same Japanese soba as in Example 5 was weighed. The situation of the hopper unique to the sixth embodiment will be described with reference to FIGS. 11 is a longitudinal sectional view overlapping the bottom supply port, and FIG. 12 is a transverse sectional view taken along the cutting line 30 in FIG. In Example 6, the partition wall and the stirring protrusion of Example 5 were removed, and the fixed drum 31 was installed. The descending water flow 32 along the rear wall surface of the hopper, the squirting water flow 33, the auxiliary water flow 34, and the vertical wall 35 form a flow rotating around the fixed drum 31, and the noodle strings 36 are circulated in the direction of the arrow 37. It was. The filling speed is 9 pieces per minute, the opening at the time of expansion / contraction of the supply port is set to 23 × 14 mm and 23 × 9.5 mm, respectively. Was expanded to 14 mm for 1 second, filled with about 70%, and then reduced to 9.5 mm opening and continuously pulsating to 14 mm at 1 second intervals to eliminate clogging of noodles. Average weight 158 g, standard deviation A weight distribution of 5.3 g (n = 245) was obtained and no clogging of the noodles was observed.

(スリット供給口を拡縮させ、3列、自転ドラムで日本そばを計量)
実施例7では、3列に戻し実施例5と同じ日本そばを計量した。実施例7に固有のホッパーの状況を図13及び14より説明する。図13は底部供給口に重なる縦断面図、図14は図13の切断線38における横断面図である。
実施例7では、実施例6の固定ドラムを自転ドラム39に置き換えた。自転ドラム39は回転軸40によって外部から動力を得て矢印41の方向に毎分15回転の速度で自転させた。又、底部供給口は実施例5と同じように、3つの底部供給口を間隔ピッチ10cmで隣接させ間には頂部中央を掘り下げた溝を有する隔壁43を設けた。
自転ドラム39の円周面には、供給口上を通過する突起42と、隔壁43の内部を非接触状態で通過する突起44が立設され、隔壁43に跨る麺線を通過ごとに取り除いた。
更に、ホッパーの後部壁面に沿った下降水流45と、噴き上げ水流46と垂直壁47により、固定ドラムの周囲を回転する流れを形成し、ドラムの回転と協調して麺線の周回を後押しした。又、自転ドラム39の円周面には、ドラムに巻き付き密着する麺線をなくす為、短冊状のヒレ48を回転軸40と平行、かつ円周面に垂直に取り付けた。
供給口拡縮時の開度は、其々23×10mmと23×5mmに設定し、毎分9個の速度で充填、排出をくり返し、充填開始と同時に供給口を1.5秒間10mmに拡げ7割程度充填を済ませ、その後5mmの開度に縮め1秒間隔で瞬間的に10mmに拡げる脈動を継続して麺の詰まりを解消したところ、平均重量156g、標準偏差3.9g(n=118)の重量分布を得て麺の詰まりは認めなかった。
(The slit supply port is expanded and contracted, and 3 rows, measuring the soba noodles with a rotating drum)
In Example 7, the same Japanese soba as in Example 5 was weighed by returning to the third row. The situation of the hopper unique to Example 7 will be described with reference to FIGS. 13 is a longitudinal sectional view overlapping the bottom supply port, and FIG. 14 is a transverse sectional view taken along the cutting line 38 in FIG.
In Example 7, the fixed drum of Example 6 was replaced with the rotating drum 39. The rotating drum 39 obtained power from the outside by the rotating shaft 40 and rotated in the direction of the arrow 41 at a speed of 15 rotations per minute. Further, as in the fifth embodiment, the bottom supply port was provided with a partition wall 43 having a groove in which the three bottom supply ports were adjacent to each other with an interval pitch of 10 cm and the center of the top was dug.
On the circumferential surface of the rotating drum 39, a protrusion 42 that passes over the supply port and a protrusion 44 that passes through the partition wall 43 in a non-contact state are erected, and the noodle strings straddling the partition wall 43 are removed every time the passage is passed.
Further, the descending water flow 45 along the rear wall surface of the hopper, the spouted water flow 46 and the vertical wall 47 formed a flow rotating around the fixed drum, and boosted the circulation of the noodle strings in cooperation with the rotation of the drum. Further, a strip-like fin 48 was attached to the circumferential surface of the rotating drum 39 in parallel to the rotating shaft 40 and perpendicular to the circumferential surface in order to eliminate the noodle strings wound around the drum.
The opening at the time of expansion and contraction of the supply port is set to 23 × 10 mm and 23 × 5 mm, respectively, and filling and discharging are repeated at a rate of 9 pieces per minute, and simultaneously with the start of filling, the supply port is expanded to 10 mm for 1.5 seconds 7 After filling up about 30% and then reducing the opening to 5 mm and continuing the pulsation that instantaneously expands to 10 mm at 1 second intervals to eliminate clogging of noodles, the average weight 156 g, standard deviation 3.9 g (n = 118) No clogging of the noodles was observed.

(実施例6、7のまとめ)
実施例6の場合、ホッパー内に茹そばを多く入れると底部に麺線が滞留し始める傾向があって、その都度、回転流動の維持するための水勢を強める必要があった。実施例7では安定して回転流動が維持可能で、茹そばの疎密も投入量に概ね比例し安定していた。その結果、供給口の開度を隙間5mmに設定しても詰まることがなく、計量精度を飛躍的に高めることができた。故に、実施例7を仮にカットタイプの計量方法で実施したなら、切断する麺線の量は極めて僅かで済むことを示していた。
(Summary of Examples 6 and 7)
In the case of Example 6, there was a tendency for noodle strings to start to stay at the bottom when a large amount of soba noodles was placed in the hopper, and in each case, it was necessary to strengthen the water force to maintain the rotational flow. In Example 7, the rotational flow could be stably maintained, and the density of the buckwheat soba was generally proportional to the input amount and stable. As a result, even when the opening of the supply port was set to a clearance of 5 mm, clogging did not occur and the measurement accuracy could be greatly improved. Therefore, if Example 7 was implemented with the cut type measuring method, the amount of noodle strings to be cut was very small.

〔図1〜16で共通する符号〕
A ホッパー
B 単一の計量カゴ
C 茹麺排出口
D 循環水回収水槽
E 水流を発生させる揚水ポンプ
F ノンカットを行う為のトンネル部
G トンネル部で茹麺の流出を防ぐ水流
H 噴上げ水流を発生させる水流
I ホッパー内で振幅によって麺の攪拌を行う突起
J 計量カゴをスライドさせる往復駆動のエアシリンダー
〔図1の符号〕
1 ホッパー内にストックされた茹麺
2 計量容器に充填された茹麺
〔図2、3の符号〕
3 実施例1で使用した平板状のホッパー底部
4 実施例1で使用した長円形の底部供給口
5 実施例1で使用した長円形の供給口出口
6 底部供給口4と供給口出口5をつなぐ、断面が長円形の流路
7 実施例1で使用したホッパー内麺誘導補助壁
8 ホッパー底部3の概ね全面から噴出する噴上げ水流
〔図4、5の符号〕
9 実施例2で使用した平板状のホッパー底部
10 実施例2で使用した23×6mmの矩形の底部供給口
11 実施例2で使用した23×12mmの矩形の供給口出口
12 実施例2で使用した噴き上げ水流
13 ホッパー後部上方から底部供給口10に向かう下降水流
〔図6〜8の符号〕
14 実施例3、4で使用した拡縮する底部供給口
14a 底部供給口14が23×6mmのスリット状に縮んだ状態
14b 底部供給口14を23×12mmに拡げた状態
15 押しばねと引きひもによる底部供給口14の拡縮機構
16 実施例3、4で使用した断面23×15mmの角型流路
17 実施例3、4で使用した玉取機の噴上げ水流
18 ホッパー後部上方から底部供給口14に向かう下降水流
〔図9〜10の符号〕
19 図9において、図10の位置を示す切断線
20 実施例5で隣接する底部供給口の間隔ピッチ
21 実施例5で隣接する底部供給口の間に設けた隔壁
22 隔壁21の側面
23 隔壁側面22と重なる軌道
24 隔壁側面22と重なる軌道23を描く突起
25 隔壁の頂部を掘り下げられた溝
26 底部供給口の上方で縦方向に振幅させる突起
27 実施例5で使用した拡縮する底部供給口
27a 細孔を設けた底部供給口27の縁部
28 噴き上げ水流
29 実施例5でホッパーの後部壁面に沿った下降水流
〔図11〜12の符号〕
30 図11において、図12の位置を示す切断線
31 実施例6で使用した固定ドラム
32 実施例6で使用したホッパーの後部壁面に沿った下降水流
33 実施例6で使用した噴き上げ水流
34 実施例6で使用した補助水流
35 実施例6でホッパーに設けた垂直壁
36 実施例6で固定ドラムを中心に回転流動させた麺線
37 実施例6で麺線36の周回方向を示す矢印
〔図13〜14の符号〕
38 図13において、図14の位置を示す切断線
39 実施例7で使用した自転ドラム
40 自転ドラム39の回転軸
41 自転ドラム39の自転方向を示す矢印
42 自転ドラム39の円周面に植設され底部供給口上を通過する突起
43 実施例7で隣接する底部供給口の間に設けた隔壁
44 隔壁43の頂部溝中を非接触状態で通過する突起
45 実施例7で使用したホッパーの後部壁面に沿った下降水流
46 実施例7で使用した噴き上げ水流
47 実施例7でホッパーに設けた垂直壁
48 自転ドラム39の麺線巻き付き防止のヒレ
49 自転ドラム39の端部のツバ
〔図15〜16の符号〕
50 比較例で使用した円錐内面からの噴上げ水流
51 噴上げ水流50の噴出細孔
52 比較例で使用した真円の底部供給口
[References common to FIGS. 1 to 16]
A Hopper B Single weighing basket C Noodle discharge port D Circulating water recovery water tank E Pump for generating water flow F Tunnel part for non-cutting Water stream H to prevent the noodles from flowing out at the tunnel part H Generated water flow I Protrusions that stir noodles with amplitude in the hopper J Reciprocating air cylinder that slides the weighing basket [reference numeral in FIG. 1]
1 Crab noodles stocked in a hopper 2 Crab noodles filled in a measuring container [reference numerals of FIGS. 2 and 3]
3 Flat hopper bottom used in Example 1 4 Oval bottom supply port used in Example 1 5 Oval supply port outlet used in Example 1 6 Connecting bottom supply port 4 and supply port outlet 5 , A flow path having an oval cross section 7 Noodle guide auxiliary wall used in Example 1 8 Spouting water flow ejected from almost the entire surface of the hopper bottom 3 [reference numerals of FIGS. 4 and 5]
9 Flat hopper bottom portion 10 used in Example 2 Rectangular bottom supply port of 23 × 6 mm used in Example 2 Rectangular supply port outlet of 23 × 12 mm used in Example 2 Used in Example 2 Spouted water flow 13 Downward water flow from the upper part of the rear part of the hopper toward the bottom supply port 10 (reference numerals in FIGS. 6 to 8)
14 The bottom supply port 14a which expands / contracts used in Examples 3 and 4 The state where the bottom supply port 14 is contracted into a slit of 23 × 6 mm 14b The state where the bottom supply port 14 is expanded to 23 × 12 mm 15 Expansion / contraction mechanism 16 of bottom supply port 14 Square flow channel 17 having a cross section of 23 × 15 mm used in Examples 3 and 4 Blow-up water flow 18 of the ball taker used in Examples 3 and 4 Bottom supply port 14 from above the rear of the hopper Downward water flow (signs of FIGS. 9 to 10)
In FIG. 9, the cutting line 20 which shows the position of FIG. 10 The space | interval pitch 21 of the bottom part supply port which adjoins in Example 5. The partition wall 22 provided between the bottom part supply ports adjacent in Example 5. The side surface 23 of the partition wall. A track 25 that overlaps 22 A projection 25 that draws a track 23 that overlaps the side wall 22 A groove 26 in which the top of the partition is dug down A projection 27 that vertically swings above the bottom supply port 27 A bottom supply port 27a that expands and contracts as used in the fifth embodiment Edge 28 of bottom supply port 27 provided with pores Spouted water flow 29 In Example 5, descending water flow along the rear wall surface of the hopper [reference numerals of FIGS. 11 to 12]
In FIG. 11, the cutting line 31 which shows the position of FIG. 12 The fixed drum 32 used in Example 6 The descending water stream 33 along the rear wall surface of the hopper used in Example 6 The spouted water stream used in Example 6 34 Example Auxiliary water flow 35 used in 6 Vertical wall 36 provided in the hopper in Example 6 Noodle strings 37 rotated and flowed around a fixed drum in Example 6 Arrows indicating the direction of rotation of the noodle strings 36 in Example 6 [FIG. -14 symbols]
38, the cutting line 39 indicating the position of FIG. 14 is the rotation drum 40 used in the seventh embodiment. The rotation shaft 41 of the rotation drum 39 is an arrow 42 indicating the rotation direction of the rotation drum 39. The rotation drum 39 is implanted on the circumferential surface of the rotation drum 39. Protrusions 43 that pass over the bottom supply port Separation wall 44 provided between the bottom supply ports adjacent in Example 7 Protrusion 45 that passes through the top groove of the partition wall 43 in a non-contact state Rear wall surface of the hopper used in Example 7 Descending water flow 46 The spouted water flow 47 used in the seventh embodiment The vertical wall 48 provided on the hopper in the seventh embodiment Fins 49 for preventing the noodle strings from winding around the rotating drum 39 The flanges of the end of the rotating drum 39 [FIGS. Sign)
50 Spouted water flow 51 from the conical inner surface used in the comparative example 51 Spouted pores 52 of the spouted water flow 50 Full circle bottom supply port used in the comparative example

Claims (9)

ホッパー内の水中に多食分の茹麺をストックする茹麺貯留工程と、ホッパー底部供給口より該茹麺を水と共に流出させホッパー下方に配置し通水孔を設けた計量容器に該茹麺を充填する茹麺充填工程と、該計量容器の下面開口より茹麺を落下させる茹麺排出工程と、を有する容積式の計量方法において、
ホッパー底部供給口をスリット形状にすることにより茹麺を小出し供給することを特徴とする茹麺自動計量方法。
The noodle storage process for stocking a large portion of the noodles in the water in the hopper, and the noodles are discharged together with water from the hopper bottom supply port and placed under the hopper, and the noodles are placed in a measuring container having a water passage hole. In a positive displacement weighing method comprising: filling a bowl noodle filling process; and a bowl noodle discharging process for dropping the bowl noodle from the lower surface opening of the weighing container.
An automatic noodle noodle weighing method characterized in that the noodles are dispensed in a small amount by making the hopper bottom supply port into a slit shape.
前記茹麺充填工程において、ホッパー底部供給口のスリット形状の長辺の長さを15〜40mm、長辺二辺の隙間間隔を4〜12mmとする、請求項1に記載の茹麺自動計量方法。  The said noodle noodle filling process WHEREIN: The length of the slit-shaped long side of a hopper bottom part supply port is 15-40 mm, and the clearance gap between two long sides is 4-12 mm, The noodles automatic weighing | measuring method of Claim 1 . 前記茹麺充填工程において、ホッパー底部供給口から計量容器に向けて茹麺の流路が設けられ、該流路がホッパー底部供給口より拡げられたものであることを特徴とする、請求項1又は2に記載の茹麺自動計量方法。  The said noodle filling process WHEREIN: The flow path of the noodle noodle is provided toward the measurement container from the hopper bottom part supply port, This flow path is what was expanded from the hopper bottom part supply port, The said 1st aspect is characterized by the above-mentioned. Or the crab noodle automatic weighing method according to 2. 前記茹麺充填工程において、茹麺の流出に逆向きの水流をホッパー底部供給口の内側から発生させると共に、ホッパー底部供給口に向かってホッパーの後部壁面に沿った下降水流を発生させることを特徴とする、請求項1〜3のいずれかに記載の茹麺自動計量方法。  In the noodle filling step, a water flow opposite to the outflow of the noodles is generated from the inside of the hopper bottom supply port, and a descending water flow is generated along the rear wall surface of the hopper toward the hopper bottom supply port. The automatic noodle noodle weighing method according to any one of claims 1 to 3. 前記茹麺充填工程において、ホッパー底部供給口を拡縮可能とし、茹麺充填工程の充填前期に供給口を拡げて茹麺の供給を促進することを特徴とする、請求項1〜4のいずれかに記載の茹麺自動計量方法。  In the said noodle filling step, the hopper bottom supply port can be expanded and contracted, and the supply port is expanded in the first stage of filling in the noodle filling step to promote the supply of noodle noodles. 2. The automatic noodle noodle weighing method according to 1. 1回の茹麺充填工程において、ホッパー底部供給口を拡縮可能とし、スリット状に縮めた状態から瞬間拡げて再びスリット状に縮める動作を複数回行うことを特徴とする、請求項1〜5のいずれかに記載の茹麺自動計量方法。  In one noodle filling step, the hopper bottom supply port can be expanded and contracted, and the operation of instantaneously expanding from the state contracted into a slit shape and contracting again into a slit shape is performed a plurality of times. The automatic noodle noodle weighing method according to any one of the above. 前記茹麺貯留工程において、ホッパー底部供給口の上方で、ホッパー底部供給口と円周面が向かい合うようにドラムを設け、該ドラムを中心に円周面外側を茹麺が周回するように水流を発生させることを特徴とする、請求項1〜6のいずれかに記載の茹麺自動計量方法。  In the noodle storage step, a drum is provided above the hopper bottom supply port so that the hopper bottom supply port faces the circumferential surface, and the water flow is performed so that the noodles circulate around the outer periphery of the drum. The automatic noodle noodle weighing method according to any one of claims 1 to 6, characterized in that it is generated. 前記ドラムを自転させ、該ドラムの円周面に設けられた突起により麺線を周回させることを特徴とする、請求項7に記載の茹麺自動計量方法。  The automatic noodle noodle weighing method according to claim 7, wherein the drum is rotated, and the noodle strings are circulated by protrusions provided on a circumferential surface of the drum. 一つの底部供給口に対応する計量容器が単一で、茹麺排出工程が計量容器を水平方向にスライドさせる方法で、計量容器を水平方向にスライドさせる際に、ホッパー底部供給口と計量容器入口を常時空間で結ぶトンネルを設けるノンカットタイプの計量方法において、隣接する二つの底部供給口の間の底面に隔壁、その上方に突起を設け、該隔壁と該突起の互いの頂部を対向して近接又は密接し、該隔壁の側面と該突起の軌道面が重なるように該突起を動作することを特徴とする、請求項1〜8のいずれかに記載の茹麺自動計量方法。  There is a single weighing container corresponding to one bottom supply port, and when the noodle discharging process slides the measurement container horizontally, the hopper bottom supply port and the measurement container inlet In a non-cut type weighing method in which a tunnel is always connected in space, a partition is provided on the bottom surface between two adjacent bottom supply ports, a protrusion is provided above the partition, and the top of the partition and the protrusion are opposed to each other. The method for automatically measuring crab noodles according to any one of claims 1 to 8, wherein the projection is operated so that the side surface of the partition wall and the track surface of the projection overlap each other in close proximity or close to each other.
JP2011032588A 2010-08-02 2011-01-31 Automatic weighing method for crab noodles Active JP5561555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032588A JP5561555B2 (en) 2010-08-02 2011-01-31 Automatic weighing method for crab noodles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010183463 2010-08-02
JP2010183463 2010-08-02
JP2011032588A JP5561555B2 (en) 2010-08-02 2011-01-31 Automatic weighing method for crab noodles

Publications (2)

Publication Number Publication Date
JP2012050425A true JP2012050425A (en) 2012-03-15
JP5561555B2 JP5561555B2 (en) 2014-07-30

Family

ID=45904581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032588A Active JP5561555B2 (en) 2010-08-02 2011-01-31 Automatic weighing method for crab noodles

Country Status (1)

Country Link
JP (1) JP5561555B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129296A1 (en) * 2015-02-12 2016-08-18 日清フーズ株式会社 Apparatus for performing automated weighing of boiled noodles, and boiled noodles
KR20200145668A (en) * 2019-06-21 2020-12-30 가부시키가이샤 소딕 Measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716255B1 (en) * 2014-03-03 2015-05-13 細田工業株式会社 Food weighing equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS488477Y1 (en) * 1969-02-20 1973-03-05
JPS4935576A (en) * 1972-11-25 1974-04-02
JPS5171891U (en) * 1974-12-03 1976-06-07
JPS6014124A (en) * 1983-07-05 1985-01-24 Tadakatsu Nagao Automatic measuring method of noodle
JP3054430U (en) * 1998-05-28 1998-12-04 株式会社長尾鉄工所 Food weighing equipment
JP2008111817A (en) * 2006-10-05 2008-05-15 Shimadaya Corp Automatic weighing method of boiled noodle and its system
JP3145906U (en) * 2008-01-25 2008-10-30 シマダヤ株式会社 Hopper for automatic noodle weighing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS488477Y1 (en) * 1969-02-20 1973-03-05
JPS4935576A (en) * 1972-11-25 1974-04-02
JPS5171891U (en) * 1974-12-03 1976-06-07
JPS6014124A (en) * 1983-07-05 1985-01-24 Tadakatsu Nagao Automatic measuring method of noodle
JP3054430U (en) * 1998-05-28 1998-12-04 株式会社長尾鉄工所 Food weighing equipment
JP2008111817A (en) * 2006-10-05 2008-05-15 Shimadaya Corp Automatic weighing method of boiled noodle and its system
JP3145906U (en) * 2008-01-25 2008-10-30 シマダヤ株式会社 Hopper for automatic noodle weighing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129296A1 (en) * 2015-02-12 2016-08-18 日清フーズ株式会社 Apparatus for performing automated weighing of boiled noodles, and boiled noodles
JPWO2016129296A1 (en) * 2015-02-12 2017-11-24 日清フーズ株式会社 Automatic measuring device for crab noodles and crab noodles
KR20200145668A (en) * 2019-06-21 2020-12-30 가부시키가이샤 소딕 Measuring device
TWI744871B (en) * 2019-06-21 2021-11-01 日商沙迪克股份有限公司 Metering device
KR102399119B1 (en) * 2019-06-21 2022-05-17 가부시키가이샤 소딕 Measuring device
US11353351B2 (en) 2019-06-21 2022-06-07 Sodick Co., Ltd. Metering device

Also Published As

Publication number Publication date
JP5561555B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5561555B2 (en) Automatic weighing method for crab noodles
CN104853892B (en) Mixing and blending machine, mixing method and light-duty gypsum board production method
JP6603244B2 (en) Automatic measuring device for crab noodles and method for producing subdivided crab noodles
JP5205740B2 (en) Automatic noodle measuring method and apparatus
US8506273B2 (en) Seamless capsule manufacturing apparatus
CN103084557A (en) Centrifugal casting air discharging method for squirrel cage rotor and centrifugal casting die for implementing method
CN105233522B (en) A kind of freezing and crystallizing device
JP2016176726A (en) Food weighing apparatus and method for producing frozen foods
CN213078405U (en) Synthetic feed liquid flow stabilizer and synthetic feed liquid system
JP2018102264A (en) Tofu continuous production device and method for producing the same
JPS6152736B2 (en)
JP3145906U (en) Hopper for automatic noodle weighing device
EP2312242B1 (en) Water spray pipe for downflow type ice making machine
CN206843409U (en) A kind of camellia seed oil production process winterization device
JPS63276473A (en) Capsule maker
JP5049989B2 (en) Soy products coagulation equipment
CS199507B2 (en) Equipment for dosing,supply and eventually mixing of liquid or/and solid ingredients
CN209035453U (en) A kind of powder hopper
JPH024803A (en) Apparatus for continuous bulk polymerization
US2991050A (en) Method and apparatus for mixing articles
TWI568358B (en) Frozen dessert making device
CN204837818U (en) A device that it is blue or green that is used for tealeaves to scald
CN208711100U (en) A kind of production of chloroacetic acid crystallization kettle
CN208554864U (en) Glue coating slot
RU2694946C1 (en) Capsular products production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140528

R150 Certificate of patent or registration of utility model

Ref document number: 5561555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250