JP2012049535A - Etchant composition for multiple film and etching method for the same - Google Patents

Etchant composition for multiple film and etching method for the same Download PDF

Info

Publication number
JP2012049535A
JP2012049535A JP2011181947A JP2011181947A JP2012049535A JP 2012049535 A JP2012049535 A JP 2012049535A JP 2011181947 A JP2011181947 A JP 2011181947A JP 2011181947 A JP2011181947 A JP 2011181947A JP 2012049535 A JP2012049535 A JP 2012049535A
Authority
JP
Japan
Prior art keywords
film
copper
molybdenum
etching
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011181947A
Other languages
Japanese (ja)
Other versions
JP5841772B2 (en
Inventor
Jun-Hyun Seo
ジョンヒュン セオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Publication of JP2012049535A publication Critical patent/JP2012049535A/en
Application granted granted Critical
Publication of JP5841772B2 publication Critical patent/JP5841772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/26Acidic compositions for etching refractory metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Weting (AREA)
  • Thin Film Transistor (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an etchant composition which can efficiently, excellently, simultaneously and collectively etch a multiple film including a copper layer comprises one or more layers of copper or copper alloy such as a Cu/Mo laminated metal film, a Cu/Mo alloy laminated metal film and a Cu alloy/Mo alloy laminated metal film, and a molybdenum layer comprises one or more layers of molybdenum or molybdenum alloy, and to provide a etching method for the multiple film using the same.SOLUTION: The etchant composition contains 50-80 wt.% of phosphoric acid, 0.5-10 wt.% of nitric acid, 5-30 wt.% of acetic acid, 0.01-5 wt.% of imidazole with respect to the total weight, and the balance water. The imidazole as an additive functions as a copper/molybdenum galvanic reaction controller.

Description

本発明は、特にフラットパネルディスプレイのTFT(Thin Film Transistor)又はタッチセンサパネル(Touch Sensor Panel)に使われる導電膜(conductive layer)のパターニング(patterning)のためのエッチング液に関する。より詳しくは、銅(Cu)又は銅合金(Cu合金)の1層以上の銅層と、モリブデン(Mo)又はモリブデン合金(Mo合金)の1層以上のモリブデン層とを含む多重膜をエッチングするためのエッチング液に関し、特にCu/Moの二重膜を一括してエッチングするためのエッチング液に関する。また、本発明は、このようなエッチング液を用いる多重膜のエッチング方法に関する。   The present invention relates to an etching solution for patterning a conductive layer used in a TFT (Thin Film Transistor) or a touch sensor panel of a flat panel display. More specifically, a multilayer film including one or more copper layers of copper (Cu) or a copper alloy (Cu alloy) and one or more molybdenum layers of molybdenum (Mo) or a molybdenum alloy (Mo alloy) is etched. In particular, the present invention relates to an etching solution for collectively etching a Cu / Mo double film. The present invention also relates to a method for etching a multilayer using such an etchant.

従来、低抵抗金属電極として銅(Cu)の単一膜を使うことができず、銅の下部に拡散防止膜としてモリブデン(Mo)又はチタン(Ti)膜を形成した後、その上部に純銅(Cu)を形成することでCu/Mo又はCu/Tiの二重膜でTFTゲート電極、ソース/ドレイン電極を形成している。   Conventionally, a single film of copper (Cu) cannot be used as a low-resistance metal electrode, and after forming a molybdenum (Mo) or titanium (Ti) film as a diffusion prevention film on the lower part of copper, pure copper ( By forming Cu), a TFT gate electrode and a source / drain electrode are formed by a Cu / Mo or Cu / Ti double film.

前記のような二重膜のエッチング液は、従来のリン酸系混合酸を使う場合、TFTの条件を満たす所望のパターンの形成が不可能であり、過酸化水素系(不安定で廃液量が多いし、純水使用量が多い問題点を有する。)であって、フッ素イオンが少量含まれた混合酸をエッチング液として使用する場合、その量があまり多ければ、基板として使われるガラスをエッチングさせる問題点があった。   When a conventional phosphoric acid-based mixed acid is used for the double-film etching solution as described above, it is impossible to form a desired pattern that satisfies the conditions of TFT, and a hydrogen peroxide-based (unstable and waste liquid amount is low). However, if mixed acid containing a small amount of fluorine ions is used as an etchant, if the amount is too large, the glass used as the substrate will be etched. There was a problem to make.

また、従来の混酸系アルミニウムエッチング液であるリン酸+硝酸+酢酸+水の組成物を使う場合、エッチング速度が非常に速いため、所望のTFTパターンの形成が難しい問題点があった。よって、Cuエッチング速度を制御する(低める)ための調節剤(control agent)、つまりCuエッチング速度調節剤が必要であった。   In addition, when a composition of phosphoric acid + nitric acid + acetic acid + water, which is a conventional mixed acid aluminum etching solution, is used, there is a problem that it is difficult to form a desired TFT pattern because the etching rate is very high. Therefore, a control agent for controlling (lowering) the Cu etching rate, that is, a Cu etching rate controlling agent is required.

また、特許文献1には、Cu/Mo積層金属膜(又はCu合金/Mo合金積層金属膜)を一括してエッチングすることができる過酸化水素を含むエッチング液が開示されている。前記過酸化水素混合液の場合、経時によって濃度変化が発生する欠点があり、特にエッチング液の安全性に問題が生じる。   Patent Document 1 discloses an etching solution containing hydrogen peroxide capable of collectively etching a Cu / Mo laminated metal film (or Cu alloy / Mo alloy laminated metal film). In the case of the hydrogen peroxide mixed solution, there is a drawback that the concentration changes with time, and in particular, there is a problem in the safety of the etching solution.

最近では、過酸化水素混合液がエッチング液として注目されているが、一般的に過酸化水素に金属が含まれると、金属によって過酸化水素の分解反応が引き起こされ、不安定な状態になる。より具体的に説明すれば、急激な過酸化水素の分解反応はエッチング工程の経過、つまり経時によって濃度変化が発生し、エッチング液温度の急激な上昇、爆発の危険性、さらに付帯設備が必要となり、製造コストの上昇などの問題があるため、過酸化水素混合液をエッチング液として使うのには問題点が多い。   Recently, a hydrogen peroxide mixed solution has attracted attention as an etching solution. However, when a metal is generally contained in hydrogen peroxide, a decomposition reaction of hydrogen peroxide is caused by the metal, resulting in an unstable state. More specifically, the rapid decomposition reaction of hydrogen peroxide causes a change in concentration over the course of the etching process, that is, over time, and the temperature of the etching solution rises rapidly, there is a risk of explosion, and additional equipment is required. Since there are problems such as an increase in manufacturing cost, there are many problems in using a hydrogen peroxide mixture as an etching solution.

このように既存の過酸化水素系エッチング液は、爆発性(廃水処理問題の発生など、薬液の安全性)及び短寿命が問題となる。特に、Cu/Moの二重膜の場合、Mo残渣を除去するために、含フッ素化合物(フッ素化合物)をエッチング液に添加しなければならないが、これはガラス基板に損傷を与えてしまう。   As described above, the existing hydrogen peroxide-based etching solution has a problem of explosiveness (chemical solution safety such as generation of wastewater treatment problems) and short life. In particular, in the case of a Cu / Mo double film, a fluorine-containing compound (fluorine compound) must be added to the etching solution in order to remove the Mo residue, which damages the glass substrate.

したがって、前述した問題点を解決するために、Cu/Mo多重膜を同時に一括してエッチングすることができる非過酸化水素/非フッ素化合物系(Non-hydrogen peroxide(H)/Non-fluorine compound based)の新規のエッチング液組成物の開発が要求されている。 Therefore, in order to solve the above-mentioned problems, a non-hydrogen peroxide / non-fluorine compound system (Non-hydrogen peroxide (H 2 O 2 ) / Non—) capable of simultaneously etching a Cu / Mo multilayer film simultaneously. There is a demand for the development of a new etching composition based on fluorine compound.

リン酸、硝酸、酢酸及びその他の添加剤を含む銅エッチングは、特許文献2及び3などに提案されているが、Cu/Mo多重膜構造に対する具体的な適用結果は明かにされておらず、過酸化水素(廃液量が多い)のような環境有害物質、エッチング寿命を縮める不安定な成分、又は基板のガラスを腐食させるフッ素系化合物などを含まなくてもCu/Mo多重膜に対して1回の湿式エッチング工程だけで優れたエッチングプロファイルを得ることができる新規のエッチング液組成物の開発が要求されている。   Copper etching including phosphoric acid, nitric acid, acetic acid and other additives has been proposed in Patent Documents 2 and 3, etc., but the specific application results for the Cu / Mo multilayer structure have not been clarified, 1 for Cu / Mo multi-layered film even without environmental harmful substances such as hydrogen peroxide (a large amount of waste liquid), unstable components that shorten the etching life, or fluorine compounds that corrode the glass of the substrate. Development of a novel etchant composition capable of obtaining an excellent etching profile by only one wet etching process is required.

ところで、Cu/Mo多重膜のような異種金属間では、ガルバニック反応が発生することが知られている。ガルバニック反応(Galvanic reaction)とは、溶液又は大気中で互いに異なる金属を接触させたときに発生する現象である。異種金属間の電解質内の電気化学的起電力の差によってエッチング速度が著しく変化する現象をいう。2種金属の酸化及び還元反応の速度は、2種金属の溶液内の相対電位差によって決定される。一般に、溶液内の2種金属の中で電気化学的電位が高いほど(noble)陰極(cathode)として作用して還元反応が優勢になり、単一膜の場合に比べてエッチング速度が遅くなる。電位が相対的に低い(active)金属は陽極(anode)として作用して酸化反応がさらに促進され、エッチング速度が単一膜の場合に比べて速くなる。   By the way, it is known that a galvanic reaction occurs between different kinds of metals such as a Cu / Mo multilayer film. A galvanic reaction is a phenomenon that occurs when different metals are brought into contact with each other in solution or in the atmosphere. This is a phenomenon in which the etching rate changes significantly due to the difference in electrochemical electromotive force in the electrolyte between different kinds of metals. The rate of oxidation and reduction reaction of the two metals is determined by the relative potential difference in the solution of the two metals. In general, the higher the electrochemical potential of the two metals in the solution, the more noble acts as a cathode and the reduction reaction becomes more dominant, and the etching rate is slower than in the case of a single film. The relatively low potential metal acts as an anode, further promoting the oxidation reaction and increasing the etching rate compared to a single film.

これらの研究によってリン酸系のエッチング液として、硝酸の添加の有無によって銅とモリブデンの電位が大きく変わることを確認した。硝酸添加の前には、銅がモリブデンより高い電位を有することにより陰極(cathode)として作用した。しかし、酸化剤として硝酸を添加後、銅がモリブデンより低い電位を有することにより、陽極(anode)として作用して過エッチング現象が発生した。すなわち、同じエッチング液内で銅とモリブデンが異なるエッチング速度を有することにより、モリブデンがエッチングされる前に銅が過エッチングされて直進性が低下し、全配線の抵抗を増加させる欠点が発生する。   These studies confirmed that the potential of copper and molybdenum changes greatly depending on whether or not nitric acid is added as a phosphoric acid-based etching solution. Prior to nitric acid addition, copper acted as a cathode by having a higher potential than molybdenum. However, after adding nitric acid as an oxidant, copper has a lower potential than molybdenum, thereby acting as an anode and causing an over-etching phenomenon. That is, when copper and molybdenum have different etching rates in the same etching solution, copper is over-etched before the molybdenum is etched, so that straightness is lowered and the resistance of all wirings is increased.

このような問題点を補うために、銅及び下部配線(Mo及びTi)のそれぞれに対して互いに異なる組成を有する2種以上のエッチング液を使う場合、全エッチング工程が複雑になり、製造コスト及び時間が増加して製品の生産性が低下する問題点がある。工程の簡素化及び製造コストの節減のためには、Cu/Moの二重配線のような多重膜を一度にエッチングすることができるエッチング液が必要である。   In order to make up for such problems, when two or more kinds of etchants having different compositions for copper and lower wiring (Mo and Ti) are used, the entire etching process becomes complicated, and the manufacturing cost and There is a problem that the productivity increases with time. In order to simplify the process and reduce the manufacturing cost, an etching solution capable of etching a multilayer film such as a Cu / Mo double wiring at a time is required.

また、現在の薄膜トランジスタ配線工程は製造コストの節減のために金属配線のパターニング工程の簡素化が進み、大面積基板に適用されるため、エッチングの際、多層膜を成す物質に構わずに均一なエッチング特性を示す新規のエッチング液組成物の開発が要求されている。   In addition, the current thin film transistor wiring process is applied to a large area substrate in order to simplify the metal wiring patterning process in order to reduce the manufacturing cost. Therefore, the etching process is uniform regardless of the material forming the multilayer film. There is a need for the development of new etchant compositions that exhibit etching characteristics.

さらに、特許文献4及び5に提案されたように、金属導電多重薄膜も(投影型)静電容量方式又は抵抗式(抵抗膜方式)タッチセンサ構造((projected) capacitive or resistive touch sensor structures)のために必要である。タッチセンサ構造は、例えばTFT−LCDのカラーフィルタ基板(color filter substrate)の内部又は外部に、若しくはディスプレイの前方に配置される追加の基板に形成される。   In addition, as proposed in Patent Documents 4 and 5, metal conductive multiple thin films are also of (projected) capacitive or resistive touch sensor structures. Is necessary for. The touch sensor structure is formed, for example, inside or outside a color filter substrate of a TFT-LCD, or on an additional substrate disposed in front of the display.

小型タッチセンサは、単一層のモリブデン(Mo)、MoTa、又はMoTa合金などで回路が形成され、また、透明導電膜、例えば、酸化インジウムスズ(Indium tin oxide;ITO)が取り付けられ、センサ構造を有する。また、導電膜として、Al/Mo、AlNd/Mo、AlNd/Mo合金のような多重膜も使われている。しかし、大型タッチスクリーンには、低抵抗金属化の必要性が発生するため、結果としてCu/Mo又はCu/Mo合金の多重膜が使われる。   The small touch sensor has a circuit formed of a single layer of molybdenum (Mo), MoTa, or MoTa alloy, and a transparent conductive film, for example, indium tin oxide (ITO), is attached to the sensor structure. Have. In addition, multiple films such as Al / Mo, AlNd / Mo, and AlNd / Mo alloys are also used as the conductive film. However, since a large resistance touch screen needs to be made of a low resistance metal, a Cu / Mo or Cu / Mo alloy multilayer film is used as a result.

金属配線のパターニングは、好ましくは湿式エッチングによって達成され、タッチセンサに対するこれら金属多重膜のパターニングの問題は、薄膜トランジスタ(thin film transistor)に関連した問題と同様である。   The patterning of the metal wiring is preferably accomplished by wet etching, and the patterning problems of these metal multilayers for the touch sensor are similar to those associated with thin film transistors.

国際公開第2009/038063号International Publication No. 2009/038063 韓国公開特許第10−2009−0095408号公報Korean Published Patent No. 10-2009-0095408 韓国公開特許第10−2006−0082270号公報Korean Published Patent No. 10-2006-0082270 米国特許出願公開第2009/0160824号明細書US Patent Application Publication No. 2009/0160824 米国特許出願公開第2009/0096759号明細書US Patent Application Publication No. 2009/0096759

前記のような従来技術の問題点を解決するために、本発明は、Cu/Mo積層金属膜、Cu/Mo合金積層金属膜、Cu合金/Mo合金積層金属膜を含む、銅又は銅合金の1層以上の銅層とモリブデン又はモリブデン合金の1層以上のモリブデン層を含む多重膜を同時に一括してエッチングして製造工程を簡素化し、これにより製造コストと時間を節減するだけでなく、優れたプロファイル及びエッチング特性を有し、工程上の薬液の安全性に優れたエッチング液組成物及びこれを用いた多重膜のエッチング方法を提供することを目的とする。   In order to solve the problems of the prior art as described above, the present invention provides a copper or copper alloy including a Cu / Mo laminated metal film, a Cu / Mo alloy laminated metal film, and a Cu alloy / Mo alloy laminated metal film. Multiple layers including one or more copper layers and one or more molybdenum layers of molybdenum or molybdenum alloy are simultaneously etched to simplify the manufacturing process, which not only saves manufacturing costs and time, but also It is an object of the present invention to provide an etching solution composition having an excellent profile and etching characteristics, and excellent in chemical safety in the process, and a method for etching a multilayer film using the same.

前記の目的を達成するために、本発明に係る多重膜のエッチング液組成物は、組成物の総重量に対して、50〜80wt%のリン酸と、0.5〜10wt%の硝酸と、5〜30wt%の酢酸と、0.01〜5wt%のイミダゾールとを含むことを特徴とする。   To achieve the above object, the multilayer film etching solution composition according to the present invention comprises 50 to 80 wt% phosphoric acid, 0.5 to 10 wt% nitric acid, and the total weight of the composition. It contains 5 to 30 wt% acetic acid and 0.01 to 5 wt% imidazole.

また、本発明に係るエッチング方法は、基板上に少なくともモリブデン又はモリブデン合金膜と、銅又は銅合金膜とを含む多重膜を蒸着するステップと、前記多重膜に所定のパターンを持つフォトレジスト膜を形成するステップと、前記フォトレジスト膜をマスクとして使い、組成物の総重量に対して、50〜80wt%のリン酸と、0.5〜10wt%の硝酸と、5〜30wt%の酢酸と、0.01〜5wt%のイミダゾールとを含むエッチング液組成物を使って前記多重膜をエッチングして金属配線を形成するステップと、前記フォトレジスト膜を除去するステップと脱イオン水で金属配線を洗浄し乾燥するステップとを含むことを特徴とする。   The etching method according to the present invention includes a step of depositing a multilayer film including at least molybdenum or a molybdenum alloy film and copper or a copper alloy film on a substrate, and a photoresist film having a predetermined pattern on the multilayer film. Forming, using the photoresist film as a mask, 50 to 80 wt% phosphoric acid, 0.5 to 10 wt% nitric acid, and 5 to 30 wt% acetic acid based on the total weight of the composition; Etching the multilayer film using an etchant composition containing 0.01 to 5 wt% imidazole, forming a metal wiring, removing the photoresist film, and cleaning the metal wiring with deionized water And drying.

本発明は、Cu/Mo積層金属膜、Cu/Mo合金積層金属膜、Cu合金/Mo合金積層金属膜を含む、銅又は銅合金の1層以上の銅層とモリブデン又はモリブデン合金の1層以上のモリブデン層とを含む多重膜を、同時に一括してエッチングすることができる。このため、製造工程及びコストを最小化することができ、また、装備の損傷がないので優れた生産性を提供することができる。   The present invention includes a Cu / Mo laminated metal film, a Cu / Mo alloy laminated metal film, a Cu alloy / Mo alloy laminated metal film, one or more copper layers of copper or copper alloy, and one or more layers of molybdenum or molybdenum alloy. A multilayer film including the molybdenum layer can be etched simultaneously. For this reason, the manufacturing process and cost can be minimized, and excellent productivity can be provided because there is no damage to the equipment.

従来技術(特許文献3)の一実施例で提案されたリン酸+硝酸+酢酸+添加剤含有エッチング液(比較例)を用いてCu/Moの二重膜をエッチングしたときに現れるステップ長さ(step length)を示す平面SEM写真である。Step length that appears when a Cu / Mo double film is etched using the phosphoric acid + nitric acid + acetic acid + additive etchant (Comparative Example) proposed in one example of the prior art (Patent Document 3) It is a plane SEM photograph which shows (step length). 比較例のエッチング液組成物でエッチングした断面SEM写真である。It is a cross-sectional SEM photograph etched with the etching liquid composition of a comparative example. 実施例のリン酸、硝酸、酢酸、添加剤イミダゾール(imidazole)及び水を含むエッチング液を用いてCu/Moの二重膜をエッチングしたときの平面写真である。It is a plane photograph when etching the double film of Cu / Mo using the etching liquid containing phosphoric acid, nitric acid, acetic acid, additive imidazole (imidazole), and water of an example. 実施例のエッチング液組成物でエッチングした断面SEM写真である。It is a cross-sectional SEM photograph etched with the etching liquid composition of an Example. イミダゾール(C)の添加によるCu/Mo層のエッチング特性の変化を示すグラフである。Is a graph showing changes in etching properties of Cu / Mo layer by the addition of imidazole (C 3 H 4 N 2) . アミノテトラゾール(CH)の添加すによるCu/Mo層のエッチング特性の変化を示すグラフである。Is a graph showing changes in etching properties of Cu / Mo layer by addition to the aminotetrazole (CH 3 N 5). イミダゾールとアミノテトラゾールのステップ長さ(step length)の効果を比較するCu/Mo層のエッチング特性の変化を示すグラフである。6 is a graph showing changes in etching characteristics of a Cu / Mo layer comparing the effects of step lengths of imidazole and aminotetrazole.

本発明の一実施の形態に係るエッチング液組成物(以下、本エッチング液ともいう。)は、非過酸化水素/非フッ素化合物のリン酸系エッチング液であって、エッチングプロファイルを改善(ステップ長さ(step length)及びCD(cut dimension) Skewの減少)するために、添加剤としてイミダゾールを含むものである。   An etching solution composition according to an embodiment of the present invention (hereinafter also referred to as the present etching solution) is a non-hydrogen peroxide / non-fluorine compound phosphoric acid-based etching solution that improves an etching profile (step length). In order to reduce (step length) and CD (cut dimension) skew, imidazole is included as an additive.

リン酸系エッチング液(phosphoric acid based etchant)は、過酸化水素系に比べて安定している。本発明者の研究によれば、リン酸系エッチング液は、過酸化水素系エッチング液とは異なり、Mo残渣の問題がほとんど発生しないので、本エッチング液は、Mo残渣の除去のために大部分のエッチング液に含まれる成分であるフッ素化合物も不要となる。   The phosphoric acid based etchant is more stable than the hydrogen peroxide type. According to the inventor's research, since the phosphoric acid-based etching solution is unlike the hydrogen peroxide-based etching solution, the problem of Mo residue hardly occurs, so this etching solution is mostly used for removing Mo residue. The fluorine compound, which is a component contained in the etching solution, is also unnecessary.

また、本エッチング液は、安定したリン酸系エッチング液(リン酸+硝酸+酢酸+水)にイミダゾールを添加したものである。すなわち、本エッチング液は、リン酸(HPO)、硝酸(HNO)、酢酸(CHCOOH)、イミダゾール(imidazole)(C)及び水(HO)を含む。 In addition, this etching solution is obtained by adding imidazole to a stable phosphoric acid etching solution (phosphoric acid + nitric acid + acetic acid + water). That is, this etching solution contains phosphoric acid (H 3 PO 4 ), nitric acid (HNO 3 ), acetic acid (CH 3 COOH), imidazole (C 3 H 4 N 2 ), and water (H 2 O). .

好ましくは、本エッチング液は、組成物の総重量に対して、リン酸(HPO)を50〜80wt%、硝酸(HNO)を0.5〜10wt%、酢酸(CHCOOH)を5〜30wt%、添加剤としてイミダゾール(C)を0.01〜5wt%、及び残量の水を含む。 Preferably, the etching solution is 50 to 80 wt% phosphoric acid (H 3 PO 4 ), 0.5 to 10 wt% nitric acid (HNO 3 ), and acetic acid (CH 3 COOH) based on the total weight of the composition. 5 to 30 wt%, imidazole (C 3 H 4 N 2 ) as an additive, 0.01 to 5 wt%, and the remaining amount of water.

より好ましくは、エッチング液組成物は、組成物の総重量に対して、リン酸を50〜75wt%、硝酸を1〜9wt%、酢酸を14〜20wt%、添加剤としてイミダゾール(C)を0.1〜0.3wt%、及び残量の水を含む。 More preferably, the etching solution composition is 50 to 75 wt% phosphoric acid, 1 to 9 wt% nitric acid, 14 to 20 wt% acetic acid, and imidazole (C 3 H 4 as an additive) with respect to the total weight of the composition. N 2) the 0.1 to 0.3%, and water of the remaining amount.

本エッチング液は、銅又は銅合金の1層以上の銅層と、モリブデン又はモリブデン合金の1層以上のモリブデン層とを含む多重膜を湿式エッチングする場合に使用される。好ましくは、これらの多重膜を同時に一括してエッチングする場合に使用される。   This etching solution is used when wet etching a multilayer film including one or more copper layers of copper or copper alloy and one or more molybdenum layers of molybdenum or molybdenum alloy. Preferably, it is used when etching these multiple films simultaneously.

前記多重膜としては、例えばCu/Mo積層金属膜、Cu/Mo合金積層金属膜、Cu合金/Mo合金積層金属膜などが挙げられ、本エッチング液は、特にCu/Moの二重膜を一括してエッチングするためのエッチング液として使用することができる。   Examples of the multilayer film include a Cu / Mo laminated metal film, a Cu / Mo alloy laminated metal film, a Cu alloy / Mo alloy laminated metal film, and the like. Then, it can be used as an etching solution for etching.

また、本エッチング液は、特にCu/Moの二重膜のためのエッチング液であって、リン酸系(リン酸、硝酸、酢酸)を基本組成とし、ガルバニック効果を減少させるためにイミダゾールを添加剤としてさらに含む。すなわち、イミダゾール(imidazole)は、銅/モリブデンガルバニック反応調節剤(Cu/Mo galvanic reaction controller)として機能する。   In addition, this etchant is an etchant for Cu / Mo bilayer film, which is based on phosphoric acid (phosphoric acid, nitric acid, acetic acid), and imidazole is added to reduce the galvanic effect. Further included as an agent. That is, imidazole functions as a copper / molybdenum galvanic reaction controller.

また、本エッチング液は、非過酸化水素/非フッ素化合物溶液であって、構成成分として過酸化水素及び/又はフッ素化合物を含まないことを特徴とする。本エッチング液は、過酸化水素に比べて安定したリン酸を基本としているため、効率的に多重膜、特にCu(又はCu合金)/Mo(又はMo合金)多重膜を同時にエッチングすることができる。   Further, the present etching solution is a non-hydrogen peroxide / non-fluorine compound solution, and does not contain hydrogen peroxide and / or a fluorine compound as a constituent component. Since this etching solution is based on phosphoric acid which is more stable than hydrogen peroxide, it is possible to efficiently etch multiple films, particularly Cu (or Cu alloy) / Mo (or Mo alloy) multiple films simultaneously. .

水は、銅酸化剤として機能し、好ましくは本エッチング液に残量として含まれる。一般に、エッチング液に過量の水が含まれる場合、銅のエッチング速度が促進し、銅とモリブデンのガルバニック現象が促進することにより、エッチングによる銅とモリブデン配線幅の差(step length)が大きくなる。   Water functions as a copper oxidant and is preferably included as a remaining amount in the etching solution. In general, when an excessive amount of water is included in the etching solution, the etching rate of copper is accelerated, and the galvanic phenomenon between copper and molybdenum is promoted, so that the difference between copper and molybdenum wiring width (step length) due to etching becomes large.

リン酸(HPO)は、基本酸化剤として機能し、組成物の総重量に対して50〜80wt%含まれることが好ましい。リン酸が50wt%未満の場合には、水の含量が多くなって過エッチング現象が発生し、80wt%超過の場合にも過エッチング及び不均一エッチングが発生する。純リン酸の割合は、高いほど良い。 Phosphoric acid (H 3 PO 4 ) functions as a basic oxidant and is preferably contained in an amount of 50 to 80 wt% based on the total weight of the composition. When phosphoric acid is less than 50 wt%, the water content increases and an overetching phenomenon occurs, and when it exceeds 80 wt%, overetching and non-uniform etching occur. The higher the proportion of pure phosphoric acid, the better.

硝酸(HNO)は、銅酸化剤として機能し、組成物の総重量に対して0.5〜10wt%含まれることが好ましい。硝酸が0.5wt%未満である場合には、銅のエッチング速度が遅くなり、硝酸が10wt%を超える場合には、銅とモリブデンのガルバニック現象が促進されてステップ長さ(step length)が急激に増加し、銅のエッチング速度も急激に速くなる。 Nitric acid (HNO 3 ) functions as a copper oxidant and is preferably contained in an amount of 0.5 to 10 wt% based on the total weight of the composition. When nitric acid is less than 0.5 wt%, the etching rate of copper is slow, and when nitric acid exceeds 10 wt%, the galvanic phenomenon of copper and molybdenum is promoted and the step length is abrupt. The etching rate of copper increases rapidly.

酢酸(CHCOOH)は、銅とモリブデンのガルバニック現象の調節液として機能し、組成物の総重量に対して5〜30wt%含まれることが好ましい。酢酸が5wt%未満である場合には、銅とモリブデンのガルバニック現象が発生し、ステップ長さ(step length)が大きくなり、銅エッチング速度が速くて過エッチングが発生する。また、酢酸が30wt%を超過する場合には、パターンの直進性が低下する。 Acetic acid (CH 3 COOH) functions as a regulating liquid for the galvanic phenomenon of copper and molybdenum, and is preferably contained in an amount of 5 to 30 wt% based on the total weight of the composition. When acetic acid is less than 5 wt%, a galvanic phenomenon of copper and molybdenum occurs, the step length increases, the copper etching rate is high, and overetching occurs. In addition, when acetic acid exceeds 30 wt%, the straightness of the pattern decreases.

酢酸を添加する場合、リン酸溶液内の銅表面に形成された酸化被膜(CuO)が溶けるので、銅のエッチング速度は速くなる。本研究では、リン酸溶液内に酢酸を添加した場合、モリブデンの表面にモリブデン酸化膜(MoO)が成長するため、モリブデンのエッチング速度が一層遅くなることを確認した。また、リン酸内の酢酸含有量が増加するほど、前述した作用によって全ガルバニック反応が変わり、ステップ長さ(step length)及びCD(cut dimension) Skewは減少する効果をもたらすことを確認した。 When acetic acid is added, since the oxide film (CuO 2 ) formed on the copper surface in the phosphoric acid solution is dissolved, the etching rate of copper is increased. In this study, it was confirmed that when acetic acid was added to the phosphoric acid solution, a molybdenum oxide film (MoO 2 ) grew on the surface of the molybdenum, so that the etching rate of molybdenum was further reduced. Further, it was confirmed that as the acetic acid content in phosphoric acid increases, the total galvanic reaction is changed by the above-described action, and the step length and CD (cut dimension) Skew are reduced.

本エッチング液においては、このようなガルバニック効果を減少させるために、リン酸、硝酸及び酢酸に、添加剤としてイミダゾールをさらに含む。リン酸におけるイミダゾールの正確な機構は知られていないが、イミダゾールのような添加剤は、銅やモリブデンの表面に吸着されるか、エッチングされた銅イオン及びモリブデンイオンと錯化物を形成して表面に積層することにより、後続の銅/モリブデンエッチング速度を調節するものと考えられる。イミダゾールが一定含量以上含有する場合は、銅のエッチング速度が抑制されるため、むしろエッチングの不均一性を引き起こす。   In order to reduce such a galvanic effect, this etching solution further contains imidazole as an additive in phosphoric acid, nitric acid and acetic acid. The exact mechanism of imidazole in phosphoric acid is not known, but additives such as imidazole are adsorbed on the surface of copper or molybdenum, or complexed with etched copper and molybdenum ions to form a surface. It is believed that the subsequent copper / molybdenum etch rate is adjusted by laminating to. When the imidazole is contained in a certain amount or more, the etching rate of copper is suppressed, so that etching non-uniformity is rather caused.

したがって、本エッチング液においては、イミダゾール(imidazole)は、銅/モリブデンガルバニックの反応調節剤(Cu/Mo galvanic reaction controller)の機能をする添加剤であり、組成物の総重量に対して0.01〜5wt%含まれることが好ましい。より好ましくは、イミダゾールは、少なくとも0.1wt%以上、特に好ましくは0.1〜0.3wt%含まれる。イミダゾールが0.01wt%未満の場合には、銅とモリブデンのガルバニック現象の発生が多くなって、銅とモリブデンの配線幅の差であるステップ長さ(step length)(エッチングの後、銅とモリブデン配線幅の差を“step length”という。)が大きくなり、5wt%を超えて含まれる場合には、銅のエッチング速度が急激に遅くなる。   Therefore, in the present etching solution, imidazole is an additive functioning as a copper / molybdenum galvanic reaction controller, and is 0.01% relative to the total weight of the composition. It is preferable that -5 wt% is contained. More preferably, imidazole is contained at least 0.1 wt% or more, particularly preferably 0.1 to 0.3 wt%. When imidazole is less than 0.01 wt%, the occurrence of galvanic phenomenon between copper and molybdenum increases, and the step length, which is the difference in wiring width between copper and molybdenum (after etching, copper and molybdenum) The difference in wiring width is referred to as “step length”), and when it exceeds 5 wt%, the etching rate of copper decreases rapidly.

本エッチング液を使用する際の溶液温度は、30℃〜60℃、特に約40℃が好ましい。溶液温度30℃未満では、CD(cut dimension) Skew及びステップ長さ(step length)の不均一性が発生し、60℃超過では過エッチング現象が観察された。   The solution temperature when using this etching solution is preferably 30 ° C. to 60 ° C., particularly about 40 ° C. When the solution temperature was less than 30 ° C., CD (cut dimension) skew and step length non-uniformity occurred, and when it exceeded 60 ° C., an over-etching phenomenon was observed.

また、本エッチング液が適用される多重膜の銅層とモリブデン層の厚さ比は、30:1以上であることが好ましく、それ未満の場合は、ガルバニック反応が大きくなってステップ長さ(step length)が大きくなる。銅層とモリブデン層との厚さ比が30:1以上の場合、ガルバニック現象が減少してステップ長さ(step length)が減少することになる。Moの最適の厚さは100オングストローム、また、Cuの最適の厚さは3000オングストロームであることが好ましい。   Further, the thickness ratio of the copper layer and the molybdenum layer of the multilayer film to which the present etching solution is applied is preferably 30: 1 or more, and if it is less than that, the galvanic reaction becomes large and the step length (step length) is increased. When the thickness ratio between the copper layer and the molybdenum layer is 30: 1 or more, the galvanic phenomenon is reduced and the step length is reduced. The optimum thickness of Mo is preferably 100 angstroms, and the optimum thickness of Cu is preferably 3000 angstroms.

前記モリブデン膜又はモリブデン合金膜の残留応力(residual stress)は、引張応力(tensile stress)であることが好ましい。モリブデン蒸着膜の場合、アルゴン圧力が高い工程条件で蒸着すると、銅とのガルバニック現象が減少してテーパアングル(taper angle)の形成に有利である。   The residual stress of the molybdenum film or molybdenum alloy film is preferably a tensile stress. In the case of a molybdenum vapor-deposited film, vapor deposition under process conditions with high argon pressure reduces the galvanic phenomenon with copper and is advantageous for forming a taper angle.

前記銅膜又は銅合金膜は、蒸着後、100℃〜300℃の温度で10分〜1時間アニーリングすることが好ましい。   The copper film or copper alloy film is preferably annealed at a temperature of 100 ° C. to 300 ° C. for 10 minutes to 1 hour after vapor deposition.

本エッチング液は、フラットパネルディスプレイのTFT、アクティブマトリックスOLED又はタッチセンサパネルの製造に有利に使用可能である。   This etchant can be advantageously used in the manufacture of flat panel display TFTs, active matrix OLEDs or touch sensor panels.

また、本エッチング液組成物は、例えば界面活性剤、エッチング調節剤のような通常の添加剤をさらに含むことができ、目的とするエッチング特性と必要によって公知の他の添加剤をさらに添加することができる。   In addition, the present etching solution composition may further contain usual additives such as a surfactant and an etching regulator, for example, and may further add other known additives as required for the intended etching characteristics. Can do.

モルリブデン膜の特性によって小粒子状の残渣(residue)が形成され、これがガラス基板又は下部膜に残るとピクセル不良を引き起こす原因となる。残渣を除去するために、大部分のエッチング液にはフッ素化合物が含まれる。フッ素化合物は、残渣除去の効果はあるが、ガラス基板に損傷を与える欠点を有する。   Due to the characteristics of the morribden film, a small particle residue is formed, and if it remains on the glass substrate or the lower film, it causes pixel defects. In order to remove the residue, most of the etching liquid contains a fluorine compound. Fluorine compounds have the effect of removing residues, but have the disadvantage of damaging the glass substrate.

一方、本エッチング液は、Moの残渣除去のために添加されるフッ素化合物を含まない。その理由は、過酸化水素系エッチング液とは異なり、本エッチング液のようなリン酸系エッチング液では、Mo残渣の問題がほとんど発生しないため、フッ素化合物をエッチング液に添加する必要がない。したがって、フッ素化合物添加剤によってガラス基板に損傷(glass damage)を与える欠点を解消することができる。   On the other hand, this etching liquid does not contain the fluorine compound added for the residue removal of Mo. The reason for this is that unlike a hydrogen peroxide-based etchant, a phosphoric acid-based etchant such as the present etchant hardly causes a problem of Mo residue, so that it is not necessary to add a fluorine compound to the etchant. Accordingly, it is possible to eliminate the defect that the glass substrate is damaged by the fluorine compound additive.

また、本エッチング液を用いるエッチング方法(以下、本エッチング方法ともいう。)は、基板上に少なくともモリブデン又はモリブデン合金膜と銅又は銅合金膜を含む多重膜を蒸着するステップと、前記多重膜に所定のパターンを有するフォトレジスト膜を形成するステップと、前記フォトレジスト膜をマスクとして使用し、組成物の総重量に対して、50〜80wt%のリン酸と、0.5〜10wt%の硝酸と、5〜30wt%の酢酸と、0.01〜5wt%のイミダゾールとを含むエッチング液を使って前記多重膜をエッチングすることで金属配線を形成するステップと、前記フォトレジスト膜を除去するステップと、脱イオン水で金属配線を洗浄して乾燥するステップとを含む。   An etching method using the present etching solution (hereinafter also referred to as the present etching method) includes a step of depositing a multilayer film including at least molybdenum or a molybdenum alloy film and a copper or copper alloy film on a substrate, Forming a photoresist film having a predetermined pattern; and using the photoresist film as a mask, 50 to 80 wt% phosphoric acid and 0.5 to 10 wt% nitric acid based on the total weight of the composition Forming a metal wiring by etching the multilayer film using an etchant containing 5-30 wt% acetic acid and 0.01-5 wt% imidazole; and removing the photoresist film And washing and drying the metal wiring with deionized water.

好ましくは、前記多重膜は、例えばCu/Mo積層金属膜、Cu/Mo合金積層金属膜、Cu合金/Mo合金積層金属膜などのような、銅又は銅合金の1層以上の銅層と、モリブデン又はモリブデン合金の1層以上のモリブデン層とを含む。   Preferably, the multiple film includes one or more copper layers of copper or copper alloy, such as a Cu / Mo laminated metal film, a Cu / Mo alloy laminated metal film, a Cu alloy / Mo alloy laminated metal film, and the like. And one or more molybdenum layers of molybdenum or a molybdenum alloy.

本エッチング方法においては、モリブデン又はモリブデン合金膜が基板上に蒸着され、銅又は銅合金膜が前記モリブデン又はモリブデン合金膜上に蒸着され、そして、フォトレジスト膜が前記銅又は銅合金膜上に形成された積層体に好ましく適用される。   In this etching method, a molybdenum or molybdenum alloy film is deposited on the substrate, a copper or copper alloy film is deposited on the molybdenum or molybdenum alloy film, and a photoresist film is formed on the copper or copper alloy film. It is preferably applied to the laminated body.

前記モリブデン合金は、モリブデンと、好ましくはタングステン、チタン、タンタル及びニオビウムから選択される少なくとも1種の元素とを含む。また、前記銅合金は、銅と、好ましくはマグネシウム、モリブデン及びマンガンから選択される少なくとも1種の元素とを含む。   The molybdenum alloy contains molybdenum and preferably at least one element selected from tungsten, titanium, tantalum and niobium. The copper alloy contains copper and preferably at least one element selected from magnesium, molybdenum and manganese.

好ましくは、前記モリブデン又はモリブデン合金膜は、100〜500オングストロームの厚さを有し、銅又は銅合金膜は、1000〜20000オングストロームの厚さを有し、この範囲で効率的なエッチングが可能である。   Preferably, the molybdenum or molybdenum alloy film has a thickness of 100 to 500 angstroms, and the copper or copper alloy film has a thickness of 1000 to 20000 angstroms. In this range, efficient etching is possible. is there.

また、本エッチング方法は、30℃〜60℃、好ましくは約40℃の温度で行うことができる。本エッチング液を使う場合、好ましくはスプレー法(噴霧法)(spray method)によって30秒〜150秒間、エッチング液を基板上に噴霧することで金属配線を形成することができる。また、前記銅又は銅合金膜は、好ましくはソース/ドレイン電極として形成することができる。   Moreover, this etching method can be performed at the temperature of 30 to 60 degreeC, Preferably it is about 40 degreeC. When this etching solution is used, the metal wiring can be formed by spraying the etching solution on the substrate preferably by a spray method (spray method) for 30 seconds to 150 seconds. The copper or copper alloy film can be preferably formed as a source / drain electrode.

前記基板は、好ましくはTFT LCD用ガラス基板、フレキシブルディスプレイ用金属薄膜基板又はプラスチック基板であり、前記基板は、TFT LCD、アクティブマトリックスOLED又はタッチセンサパネル用に使うことができる。   The substrate is preferably a glass substrate for a TFT LCD, a metal thin film substrate for a flexible display, or a plastic substrate, and the substrate can be used for a TFT LCD, an active matrix OLED, or a touch sensor panel.

以下、実施例及び比較例に基づいて本発明を詳細に説明する。なお、以下に示す実施例は、本発明を詳細に説明するためのものであり、本発明の範囲を限定するものではない。   Hereinafter, the present invention will be described in detail based on examples and comparative examples. In addition, the Example shown below is for describing this invention in detail, and does not limit the scope of the present invention.

ここでは、実施例及び比較例のエッチング液組成物を製造し、そのエッチング特性を評価した。エッチング特性の評価は、次のような実験例によって行った。   Here, the etching liquid compositions of Examples and Comparative Examples were produced, and the etching characteristics were evaluated. The evaluation of the etching characteristics was performed by the following experimental example.

[実験例]
基板上にCu/Moの二重膜が蒸着された試片を準備し、噴射式エッチング方式の実験装備(FNS Tech社製)内に実施例又は比較例のエッチング液を入れ、温度を40℃に設定して加温し、温度が40±0.1℃に到逹したとき、前記基板のエッチング工程を実行した。
[Experimental example]
Prepare a specimen in which a Cu / Mo double film was deposited on the substrate, put the etching solution of Example or Comparative Example in the experimental equipment of the jet etching system (manufactured by FNS Tech), and set the temperature to 40 ° C. When the temperature reached 40 ± 0.1 ° C., the substrate etching process was performed.

総エッチング時間は、終末点探知機(EPD: End Point Detector)によって検出された時間を基準として、50%超過させたオーバエッチングを行った。エッチングの終了後、基板を取り出して脱イオン水で洗浄した後、熱風乾燥装置で乾燥させた。また、フォトレジスト(PR)剥離器(stripper)でフォトレジストを除去した。   The total etching time was overetched by 50% over the time detected by an end point detector (EPD). After completion of the etching, the substrate was taken out, washed with deionized water, and then dried with a hot air dryer. Further, the photoresist was removed with a photoresist (PR) stripper.

電子走査顕微鏡(SEM、TESCAN社製)を用いて、フォトレジスト末端と銅末端との間の距離を示すCD skew(Cut dimension skew)、銅とモリブデン配線幅の差であるステップ長さ(step length)、エッチング残留物などを観察し、評価した。   Using an electron scanning microscope (SEM, manufactured by TESCAN), CD skew (Cut dimension skew) indicating the distance between the photoresist end and the copper end, and the step length (step length) which is the difference between the copper and molybdenum wiring width ), Etching residue, etc. were observed and evaluated.

[比較例1]
背景技術で言及したように、リン酸、硝酸、酢酸及びその他の添加剤を含む銅エッチング液は、特許文献2及び3などで提案されているものの、Cu/Moの二重構造に対する具体的な適用結果は明かされていない。従来技術である特許文献3に記載の技術は、フラットパネルディスプレイの薄膜トランジスタ形成のための金属電極用エッチング液組成物であり、従来のアルミニウムエッチング液であるリン酸+硝酸+酢酸+水の組成物にエッチング速度調整剤をさらに添加することにより、所望のパターンが形成できるようにしたものである。
[Comparative Example 1]
As mentioned in the background art, a copper etching solution containing phosphoric acid, nitric acid, acetic acid and other additives has been proposed in Patent Documents 2 and 3, etc., but is specific to the Cu / Mo dual structure. The application results are not disclosed. The technique described in Patent Document 3 as a conventional technique is an etching solution composition for metal electrodes for forming thin film transistors for flat panel displays, and is a composition of phosphoric acid + nitric acid + acetic acid + water, which is a conventional aluminum etching solution. Further, an etching rate adjusting agent is further added to form a desired pattern.

そこで、比較例1として特許文献3に記載された実施例1のエッチング液組成物を製造した。比較例1のエッチング液組成物の組成は、以下の通りである。
PO 55wt%
HNO 8wt%
CHCOOH 10wt%
(NHHPO 2wt%
CHCOONH 2wt%
O 残量
Then, the etching liquid composition of Example 1 described in patent document 3 as the comparative example 1 was manufactured. The composition of the etching solution composition of Comparative Example 1 is as follows.
H 3 PO 4 55 wt%
HNO 3 8wt%
CH 3 COOH 10wt%
(NH 4 ) 2 HPO 4 2 wt%
CH 3 COONH 4 2wt%
H 2 O remaining

前記組成を有する比較例1のエッチング液組成物のエッチング特性について、前記実験例によって評価した。   The etching characteristics of the etching solution composition of Comparative Example 1 having the composition were evaluated by the experimental example.

図1は、比較例として従来技術(特許文献3)に提案されたリン酸、硝酸、酢酸組成及び添加剤を含むエッチング液のCu/Moの二重膜に対する具体的な適用結果を示す平面写真である。   FIG. 1 is a plan view showing a specific application result for a Cu / Mo double film of an etching solution containing phosphoric acid, nitric acid, acetic acid composition and additives proposed in the prior art (Patent Document 3) as a comparative example. It is.

図1に示すように、Cu/Moの二重構造にリン酸系のエッチング液を適用する場合、下部膜であるモリブデンはほとんど溶けないが、2種金属のエッチング速度差及びガルバニック腐食現象によって上部膜の銅が過エッチングされる現象が発生した。このときに発生する銅とモリブデン配線幅の差をステップ長さ(step length)とした(図1参照)。図1によれば、比較例1のエッチング液でCu/Moの二重膜をエッチングする場合、かなり大きいステップ長さが発生することから、エッチングプロファイルが不良であることが分かる。   As shown in FIG. 1, when a phosphoric acid-based etching solution is applied to a Cu / Mo dual structure, molybdenum, which is a lower film, hardly dissolves, but the upper part is caused by a difference in etching rate between two kinds of metals and a galvanic corrosion phenomenon. The phenomenon that the copper of the film was over-etched occurred. The difference between the copper and molybdenum wiring width generated at this time was defined as a step length (see FIG. 1). According to FIG. 1, when etching a Cu / Mo double film with the etching solution of Comparative Example 1, a considerably large step length is generated, which indicates that the etching profile is poor.

図2は、比較例1のエッチング液組成物でエッチングした断面SEM写真である。図2に示すように、フォトレジスト末端と銅末端との間の距離を示すCD skew(Cut dimension skew)が大きくなる問題点が発生した(エッチング不良)。段差がなく均一なテーパエッチングを行うためには、この距離(CD skew)は適切な範囲内でなければならない。   FIG. 2 is a cross-sectional SEM photograph etched with the etchant composition of Comparative Example 1. As shown in FIG. 2, there was a problem that CD skew (Cut dimension skew) indicating the distance between the photoresist end and the copper end was increased (etching failure). In order to perform uniform taper etching without a step, this distance (CD skew) must be within an appropriate range.

[実施例1]
PO 70wt%
+HNO 2wt%
CHCOOH 15wt%
(imidazole) 0.1wt%
O 12.9wt%
[Example 1]
H 3 PO 4 70 wt%
+ HNO 3 2wt%
CH 3 COOH 15wt%
C 3 H 4 N 2 (imidazole) 0.1 wt%
H 2 O 12.9 wt%

実施例1として、前記組成比を有するエッチング液組成物を製造し、そのエッチング特性を前記実験例によって評価した。   As Example 1, an etching solution composition having the above composition ratio was manufactured, and the etching characteristics were evaluated by the above experimental example.

図3は、実施例1によって製造されたリン酸、硝酸、酢酸、添加剤イミダゾール(imidazole)及び水を含むエッチング液を用いてCu/Moの二重膜をエッチングしたときの平面写真を示し、図4は、実施例1のエッチング液組成物でエッチングした断面SEM写真である。   FIG. 3 shows a plan view of a Cu / Mo bilayer etched using an etchant containing phosphoric acid, nitric acid, acetic acid, an additive imidazole and water prepared according to Example 1; FIG. 4 is a cross-sectional SEM photograph etched with the etchant composition of Example 1.

図3及び図4を参照すると、Cu/Moの二重膜のガルバニック現象が減少して、CD skew及びステップ長さ(step length)が大幅に改善されることから、パターンのプロファイルとエッチング特性が優れていることが分かる。つまり、図1と図3とを比較すると、本発明のエッチング液を使う場合、従来技術のエッチング液を使う場合よりステップ長さ(step length)が大幅に改善することが分かる。また、図2と図4とを比較すると、本発明のエッチング液を使う場合、従来技術のエッチング液を使う場合よりCD skewが大幅に改善することが分かる。   Referring to FIGS. 3 and 4, since the galvanic phenomenon of the Cu / Mo bilayer is reduced and the CD skew and step length are greatly improved, the pattern profile and etching characteristics are improved. It turns out that it is excellent. In other words, comparing FIG. 1 with FIG. 3, it can be seen that when the etching solution of the present invention is used, the step length is significantly improved as compared with the case of using the etching solution of the prior art. Also, comparing FIG. 2 and FIG. 4, it can be seen that the CD skew is greatly improved when the etching solution of the present invention is used, compared with the case where the etching solution of the prior art is used.

本発明者は、他の組成比のエッチング液でもエッチング特性が改善することを確認した結果、下記実施例2〜4の組成比を有するエッチング液組成物は、図2及び図3に示す実施例1の組成比のエッチング液によるエッチング特性とほぼ類似の改善効果を示した。   As a result of confirming that the etching characteristics are improved even with an etching solution having another composition ratio, the inventors have found that the etching solution compositions having the composition ratios of the following Examples 2 to 4 are the examples shown in FIGS. The improvement effect was almost similar to the etching characteristics of the etching solution having the composition ratio of 1.

[実施例2]
PO 70wt%
HNO 2wt%
CHCOOH 15wt%
(imidazole) 0.1〜0.3wt%
残りは蒸溜水
[Example 2]
H 3 PO 4 70 wt%
HNO 3 2wt%
CH 3 COOH 15wt%
C 3 H 4 N 2 (imidazole ) 0.1~0.3wt%
The rest is distilled water

[実施例3]
PO 58wt%
HNO 2wt%
CHCOOH 20wt%
(imidazole) 0.1〜0.3wt%
残りは蒸溜水
[Example 3]
H 3 PO 4 58 wt%
HNO 3 2wt%
CH 3 COOH 20wt%
C 3 H 4 N 2 (imidazole ) 0.1~0.3wt%
The rest is distilled water

[実施例4]
PO 52wt%
HNO 8wt%
CHCOOH 20wt%
(imidazole) 0.1〜0.3wt%
残りは蒸溜水
[Example 4]
H 3 PO 4 52 wt%
HNO 3 8wt%
CH 3 COOH 20wt%
C 3 H 4 N 2 (imidazole ) 0.1~0.3wt%
The rest is distilled water

[イミダゾールの添加量によるエッチング特性]
図5は、本実施例によるエッチング液において、イミダゾール(imidazole)(C)の添加によるCu/Mo層のエッチング様相の変化を示す。
[Etching characteristics depending on the amount of imidazole added]
FIG. 5 shows the change in the etching aspect of the Cu / Mo layer by the addition of imidazole (C 3 H 4 N 2 ) in the etching solution according to this example.

イミダゾールは、銅/モリブデンガルバニック反応調節剤(Cu/Mo galvanic reaction controller)として機能する添加剤であることが分かる。   It can be seen that imidazole is an additive that functions as a Cu / Mo galvanic reaction controller.

効果的なCu/Moのエッチングのためには、CD Skewは、0.5μm以下、かつCuとMoの間のエッチング速度差によって発生するステップ長さ(step length=width of copper−width of molybdenum(つまり、エッチング後の銅とモリブデン配線幅の差))が最小にならなければならない。   For effective Cu / Mo etching, CD Skew is 0.5 μm or less and the step length generated by the difference in etching rate between Cu and Mo (step length = width of copper-width of molybdenum ( That is, the difference between the copper and molybdenum wiring width after etching)) must be minimized.

図5に示すように、リン酸、硝酸、酢酸溶液にイミダゾールを添加することによってステップ長さ(step length)が最小になる濃度が存在することが分かる。図5はイミダゾール濃度が0.02Mの場合に最良の効果を示すことが分かる。   As shown in FIG. 5, it can be seen that there is a concentration at which the step length is minimized by adding imidazole to the phosphoric acid, nitric acid, and acetic acid solutions. FIG. 5 shows that the best effect is obtained when the imidazole concentration is 0.02M.

[他の添加剤によるエッチング特性]
本発明者は、イミダゾール(C)以外にもガルバニック反応を減少させる添加剤を見つけるために、イミダゾールのような複素環アミン化合物であるアミノテトラゾール(Aminotetrazole)(CH)を添加剤として用いて実験した(図6参照)。また、アスコルビン酸(Ascorbic acid)(C)、リン酸二水素ナトリウム(Sodium dihydrogen phosphate)(NaHPO)、アミノアセト酢酸(Aminodiacetic acid)(CNO)、リン酸一水素二ナトリウム(Disodium hydrogen phosphate)(NaHPO)などの多くの添加剤を対象として実験を行ったが、イミダゾールよりガルバニック反応を減少させてCD skew及びステップ長さ(step length)を同時に著しく改善した添加剤は発見されなかった。
[Etching characteristics with other additives]
In order to find an additive that reduces the galvanic reaction in addition to imidazole (C 3 H 4 N 2 ), the present inventor, aminotetrazole (CH 3 N 5 ), which is a heterocyclic amine compound such as imidazole. Was used as an additive (see FIG. 6). Also, ascorbic acid (C 6 H 8 O 6 ), sodium dihydrogen phosphate (NaH 2 PO 4 ), aminoacetoacetic acid (C 4 H 7 NO 4 ), phosphorus Experiments were conducted with a number of additives such as disodium hydrogen phosphate (Na 2 HPO 4 ), but the galvanic reaction was reduced from imidazole and CD skew and step length were reduced. At the same time, no significant improvement was found.

例えば、図6に、イミダゾールのような複素環アミン化合物に属するアミノテトラゾール(CH)の添加によるCu/Mo層のエッチング特性の変化を示す。図6に示すように、アミノテトラゾールは、イミダゾールよりステップ長さ(step length)を著しく改善することはできないことが分かる。 For example, FIG. 6 shows changes in the etching characteristics of the Cu / Mo layer due to the addition of aminotetrazole (CH 3 N 5 ) belonging to a heterocyclic amine compound such as imidazole. As shown in FIG. 6, it can be seen that aminotetrazole cannot significantly improve the step length over imidazole.

また、図7に、図5に示すイミダゾールのステップ長さ(step length)の効果と、図6に示すアミノテトラゾールのステップ長さ(step length)の効果とを比較するために、両者のCu/Mo層のエッチング特性の変化を示す。   FIG. 7 shows a comparison between the effect of the step length of imidazole shown in FIG. 5 and the effect of the step length of aminotetrazole shown in FIG. The change of the etching characteristic of Mo layer is shown.

以上、本発明者の研究によれば、イミダゾールは、過酸化水素系エッチング液においてはエッチング速度に大きく影響を及ぼすが、リン酸系エッチング液においてはエッチング速度にあまり影響を及ぼさないという事実を見出した。   As described above, according to the study by the present inventors, the fact that imidazole greatly affects the etching rate in the hydrogen peroxide-based etching solution, but does not significantly affect the etching rate in the phosphoric acid-based etching solution. It was.

本発明は、フラットパネルディスプレイのTFT又はタッチセンサパネルに使われる導電膜のパターニングに適用可能である。   The present invention can be applied to patterning of a conductive film used for a TFT of a flat panel display or a touch sensor panel.

Claims (21)

組成物の総重量に対して、
50〜80wt%のリン酸と、
0.5〜10wt%の硝酸と、
5〜30wt%の酢酸と、
0.01〜5wt%のイミダゾールと
を含む多重膜のエッチング液組成物。
With respect to the total weight of the composition,
50-80 wt% phosphoric acid,
0.5-10 wt% nitric acid,
5-30 wt% acetic acid,
A multi-film etching solution composition comprising 0.01 to 5 wt% imidazole.
前記イミダゾールが0.1〜0.3wt%含まれる請求項1に記載のエッチング液組成物。   The etching liquid composition according to claim 1, wherein the imidazole is contained in an amount of 0.1 to 0.3 wt%. 組成物の総重量に対して、
前記リン酸が50〜75wt%、
前期硝酸が1〜9wt%、
前記酢酸が14〜20wt%、及び
前記イミダゾールが0.1〜0.3wt%
含まれることを特徴とする請求項1又は2に記載のエッチング液組成物。
With respect to the total weight of the composition,
50-75 wt% of the phosphoric acid,
1-9 wt% nitric acid in the previous period,
14-20 wt% of acetic acid, and 0.1-0.3 wt% of imidazole
The etching solution composition according to claim 1, wherein the etching solution composition is contained.
前記多重膜は、Cu/Mo積層金属膜、Cu/Mo合金積層金属膜、Cu合金/Mo合金積層金属膜を含む、銅又は銅合金の1層以上の銅層と、モリブデン又はモリブデン合金の1層以上のモリブデン層とを含むことを特徴とする請求項1に記載のエッチング液組成物。   The multilayer film includes one or more copper layers of copper or copper alloy, including Cu / Mo laminated metal film, Cu / Mo alloy laminated metal film, Cu alloy / Mo alloy laminated metal film, and one of molybdenum or molybdenum alloy. The etching solution composition according to claim 1, further comprising a molybdenum layer equal to or more than one layer. 前記多重膜は、Cu/Moの二重膜であることを特徴とする請求項4に記載のエッチング液組成物。   The etching solution composition according to claim 4, wherein the multiple film is a Cu / Mo double film. 使用温度が30℃〜60℃であることを特徴とする請求項1に記載のエッチング液組成物。   The etching temperature composition according to claim 1, wherein the operating temperature is 30 ° C. to 60 ° C. 前記銅層とモリブデン層との厚さの比は、30:1以上であることを特徴とする請求項4に記載のエッチング液組成物。   5. The etching solution composition according to claim 4, wherein the thickness ratio of the copper layer to the molybdenum layer is 30: 1 or more. 前記モリブデン膜又はモリブデン合金膜の残留応力は、引張応力であることを特徴とする請求項4に記載のエッチング液組成物。   The etching solution composition according to claim 4, wherein the residual stress of the molybdenum film or the molybdenum alloy film is a tensile stress. 前記銅膜又は銅合金膜は、蒸着後に100℃〜300℃の温度で10分〜1時間アニーリングされることを特徴とする請求項4に記載のエッチング液組成物。   5. The etching solution composition according to claim 4, wherein the copper film or the copper alloy film is annealed at a temperature of 100 ° C. to 300 ° C. for 10 minutes to 1 hour after deposition. 構成成分として過酸化水素及び/又はフッ素化合物を含まないことを特徴とする請求項1に記載のエッチング液組成物。   2. The etching solution composition according to claim 1, which does not contain hydrogen peroxide and / or a fluorine compound as a constituent component. フラットパネルディスプレイのTFT、アクティブマトリックスOLED又はタッチセンサパネルの製造に使われる請求項1に記載のエッチング液組成物。   The etching solution composition according to claim 1, which is used for manufacturing a TFT, an active matrix OLED or a touch sensor panel of a flat panel display. 基板上に少なくともモリブデン又はモリブデン合金膜と、銅又は銅合金膜とを含む多重膜を蒸着するステップと、
前記多重膜に所定のパターンを持つフォトレジスト膜を形成するステップと、
前記フォトレジスト膜をマスクとして使い、組成物の総重量に対して、50〜80wt%のリン酸と、0.5〜10wt%の硝酸と、5〜30wt%の酢酸と、0.01〜5wt%のイミダゾールとを含むエッチング液組成物を使って前記多重膜をエッチングして金属配線を形成するステップと、
前記フォトレジスト膜を除去するステップと、
脱イオン水で金属配線を洗浄し乾燥するステップと
を含む多重膜のエッチング方法。
Depositing a multilayer film including at least molybdenum or molybdenum alloy film and copper or copper alloy film on a substrate;
Forming a photoresist film having a predetermined pattern on the multiple film;
Using the photoresist film as a mask, 50-80 wt% phosphoric acid, 0.5-10 wt% nitric acid, 5-30 wt% acetic acid, 0.01-5 wt% with respect to the total weight of the composition Etching the multi-layer using an etchant composition comprising 1% imidazole to form metal wiring;
Removing the photoresist film;
Cleaning the metal wiring with deionized water and drying.
前記多重膜は、Cu/Mo積層金属膜、Cu/Mo合金積層金属膜、Cu合金/Mo合金積層金属膜を含む、銅又は銅合金の1層以上の銅層とモリブデン又はモリブデン合金の1層以上のモリブデン層とを含むことを特徴とする請求項12に記載のエッチング方法。   The multilayer film includes one or more copper layers of copper or copper alloy and one layer of molybdenum or molybdenum alloy, including a Cu / Mo laminated metal film, a Cu / Mo alloy laminated metal film, and a Cu alloy / Mo alloy laminated metal film. The etching method according to claim 12, comprising the above molybdenum layer. モリブデン又はモリブデン合金膜を基板上に蒸着し、銅又は銅合金膜を前記モリブデン又はモリブデン合金膜上に蒸着し、フォトレジスト膜を前記銅又は銅合金膜上に形成することを特徴とする請求項12に記載のエッチング方法。   The molybdenum or molybdenum alloy film is deposited on the substrate, the copper or copper alloy film is deposited on the molybdenum or molybdenum alloy film, and a photoresist film is formed on the copper or copper alloy film. The etching method according to 12. 前記モリブデン合金は、モリブデンと、タングステン、チタン、タンタル及びニオビウムから選択される少なくとも1種の元素とを含むことを特徴とする請求項13に記載のエッチング方法。   The etching method according to claim 13, wherein the molybdenum alloy contains molybdenum and at least one element selected from tungsten, titanium, tantalum, and niobium. 前記銅合金は、銅と、マグネシウム、モリブデン及びマンガンから選択される少なくとも1種の元素とを含むことを特徴とする請求項13に記載のエッチング方法。   The etching method according to claim 13, wherein the copper alloy includes copper and at least one element selected from magnesium, molybdenum, and manganese. 前記モリブデン又はモリブデン合金膜は、100〜500オングストロームの厚さを有し、銅又は銅合金膜は、1000〜20000オングストロームの厚さを有することを特徴とする請求項13に記載のエッチング方法。   14. The etching method of claim 13, wherein the molybdenum or molybdenum alloy film has a thickness of 100 to 500 angstroms, and the copper or copper alloy film has a thickness of 1000 to 20000 angstroms. 前記エッチングは、30℃〜60℃の温度で行われることを特徴とする請求項12に記載のエッチング方法。   The etching method according to claim 12, wherein the etching is performed at a temperature of 30 ° C. to 60 ° C. 前記エッチング液組成物が、30秒〜150秒の間スプレー法(噴霧法)によって基板に噴霧されることを特徴とする請求項12に記載のエッチング方法。   13. The etching method according to claim 12, wherein the etching solution composition is sprayed on the substrate by a spray method (a spray method) for 30 seconds to 150 seconds. 前記銅又は銅合金膜は、ソース/ドレイン電極であることを特徴とする請求項13に記載のエッチング方法。   The etching method according to claim 13, wherein the copper or copper alloy film is a source / drain electrode. 前記基板は、TFT LCD用ガラス基板、フレキシブルディスプレイ用金属薄膜基板又はプラスチック基板であり、前記基板は、TFT LCD、アクティブマトリックスOLED又はタッチセンサパネル用に使われることを特徴とする請求項12に記載のエッチング方法。   The substrate is a glass substrate for a TFT LCD, a metal thin film substrate for a flexible display, or a plastic substrate, and the substrate is used for a TFT LCD, an active matrix OLED, or a touch sensor panel. Etching method.
JP2011181947A 2010-08-25 2011-08-23 Multi-layer etching solution composition and etching method thereof Expired - Fee Related JP5841772B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0082460 2010-08-25
KR1020100082460A KR101256276B1 (en) 2010-08-25 2010-08-25 Etchant composition for etching a conductive multi-layer film and etching method using the same

Publications (2)

Publication Number Publication Date
JP2012049535A true JP2012049535A (en) 2012-03-08
JP5841772B2 JP5841772B2 (en) 2016-01-13

Family

ID=45903998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181947A Expired - Fee Related JP5841772B2 (en) 2010-08-25 2011-08-23 Multi-layer etching solution composition and etching method thereof

Country Status (4)

Country Link
JP (1) JP5841772B2 (en)
KR (1) KR101256276B1 (en)
CN (1) CN102409342B (en)
TW (1) TWI532881B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10096486B2 (en) 2016-02-02 2018-10-09 Toshiba Memory Corporation Substrate processing apparatus, substrate processing method and substrate processing liquid
WO2022190448A1 (en) * 2021-03-10 2022-09-15 花王株式会社 Etchant composition

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101404511B1 (en) * 2012-07-24 2014-06-09 플란제 에스이 Etchant composition, and method for etching a multi-layered metal film
KR101593110B1 (en) * 2013-11-21 2016-02-11 주식회사 익스톨 Etchant composition with stabilizer for touch screen panel
KR102150507B1 (en) * 2014-03-19 2020-09-01 동우 화인켐 주식회사 Multi-layer etching solution composition for formation of metal line
KR102368376B1 (en) * 2015-09-22 2022-02-28 동우 화인켐 주식회사 Etchant composition for metal layer and preparing method of an array substrate for liquid crystal display using same
CN106531286B (en) * 2016-12-26 2019-01-29 浙江晶科能源有限公司 A kind of etching slurry and lithographic method
KR102362460B1 (en) * 2017-05-19 2022-02-14 동우 화인켐 주식회사 Etchant composition
CN109087852B (en) * 2018-08-10 2020-09-08 深圳市华星光电技术有限公司 Method for manufacturing transistor metal electrode structure
CN109136931A (en) * 2018-08-31 2019-01-04 深圳市华星光电技术有限公司 A kind of high-efficiency copper molybdenum etching liquid and engraving method
CN110571276A (en) * 2019-08-05 2019-12-13 深圳市华星光电技术有限公司 Thin film transistor and preparation method thereof
CN111074278A (en) * 2020-01-03 2020-04-28 深圳市华星光电半导体显示技术有限公司 Etching solution composition and etching method of copper-molybdenum film layer
CN113774382B (en) * 2021-08-30 2024-01-16 漳州思美科新材料有限公司 CuNi-Al-Mo etching solution
CN115261859B (en) * 2022-08-11 2023-06-20 李祥庆 Copper etching liquid composition and preparation method thereof
CN116023946B (en) * 2022-12-28 2024-06-07 浙江奥首材料科技有限公司 Silicon nitride mask layer etching solution, preparation method, application and etching method
CN115799077B (en) * 2023-02-08 2023-04-18 四川富乐华半导体科技有限公司 Copper-clad ceramic substrate step etching method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766423A (en) * 1993-08-31 1995-03-10 Toshiba Corp Array substrate for liquid crystal display device
JP2004163901A (en) * 2002-11-08 2004-06-10 Lg Philips Lcd Co Ltd Array substrate for liquid crystal display device and its manufacture method
JP2005217088A (en) * 2004-01-29 2005-08-11 Chi Mei Electronics Corp Wiring on circuit board and wiring forming method
JP2005350708A (en) * 2004-06-09 2005-12-22 Okuno Chem Ind Co Ltd Composition for etching
JP2008227508A (en) * 2007-03-15 2008-09-25 Dongjin Semichem Co Ltd Etching liquid composition of thin film transistor liquid crystal display
JP2009004518A (en) * 2007-06-20 2009-01-08 Kobe Steel Ltd Thin film transistor substrate and display device
JP2009076910A (en) * 2007-09-18 2009-04-09 Dongjin Semichem Co Ltd Etching fluid composition for metal wiring formation for tft-lcd
WO2009119804A1 (en) * 2008-03-28 2009-10-01 日立金属株式会社 Thin film interconnect for electronic component, and sputtering target material for formation of thin film interconnect
JP2009224705A (en) * 2008-03-18 2009-10-01 Toshiba Mobile Display Co Ltd Wiring forming method
JP2010114415A (en) * 2008-11-07 2010-05-20 Samsung Electronics Co Ltd Etchant composition, method of forming metal pattern using the same, and method of manufacturing thin-film transistor display panel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100505328B1 (en) * 2002-12-12 2005-07-29 엘지.필립스 엘시디 주식회사 ETCHING SOLUTIONS AND METHOD TO REMOVE MOLYBDENUM RESIDUE FOR Cu MOLYBDENUM MULTILAYERS
KR101230817B1 (en) * 2004-12-13 2013-02-07 동우 화인켐 주식회사 ETCHANT COMPOSITION FOR Al-Ni-metal ALLOY LAYER
KR100718529B1 (en) * 2005-01-12 2007-05-16 테크노세미켐 주식회사 Etchant Composition for making metal electrodes of TFT in FPD
CN100510187C (en) * 2005-11-17 2009-07-08 乐金显示有限公司 Composition for etching metal layer and method for forming metal pattern by using same
KR101346917B1 (en) * 2008-02-04 2014-01-03 동우 화인켐 주식회사 Fabrication method of thin film transistor, etching solution composition used the method
KR101495683B1 (en) * 2008-09-26 2015-02-26 솔브레인 주식회사 Cu or Cu/Mo or Cu/Mo alloy electrode etching liquid in Liquid Crystal Display system
KR20110046992A (en) * 2009-10-29 2011-05-06 동우 화인켐 주식회사 An etching solution composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766423A (en) * 1993-08-31 1995-03-10 Toshiba Corp Array substrate for liquid crystal display device
JP2004163901A (en) * 2002-11-08 2004-06-10 Lg Philips Lcd Co Ltd Array substrate for liquid crystal display device and its manufacture method
JP2005217088A (en) * 2004-01-29 2005-08-11 Chi Mei Electronics Corp Wiring on circuit board and wiring forming method
JP2005350708A (en) * 2004-06-09 2005-12-22 Okuno Chem Ind Co Ltd Composition for etching
JP2008227508A (en) * 2007-03-15 2008-09-25 Dongjin Semichem Co Ltd Etching liquid composition of thin film transistor liquid crystal display
JP2009004518A (en) * 2007-06-20 2009-01-08 Kobe Steel Ltd Thin film transistor substrate and display device
JP2009076910A (en) * 2007-09-18 2009-04-09 Dongjin Semichem Co Ltd Etching fluid composition for metal wiring formation for tft-lcd
JP2009224705A (en) * 2008-03-18 2009-10-01 Toshiba Mobile Display Co Ltd Wiring forming method
WO2009119804A1 (en) * 2008-03-28 2009-10-01 日立金属株式会社 Thin film interconnect for electronic component, and sputtering target material for formation of thin film interconnect
JP2010114415A (en) * 2008-11-07 2010-05-20 Samsung Electronics Co Ltd Etchant composition, method of forming metal pattern using the same, and method of manufacturing thin-film transistor display panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10096486B2 (en) 2016-02-02 2018-10-09 Toshiba Memory Corporation Substrate processing apparatus, substrate processing method and substrate processing liquid
WO2022190448A1 (en) * 2021-03-10 2022-09-15 花王株式会社 Etchant composition

Also Published As

Publication number Publication date
CN102409342B (en) 2016-01-13
JP5841772B2 (en) 2016-01-13
TW201213614A (en) 2012-04-01
KR20120019196A (en) 2012-03-06
CN102409342A (en) 2012-04-11
KR101256276B1 (en) 2013-04-18
TWI532881B (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5841772B2 (en) Multi-layer etching solution composition and etching method thereof
KR101905195B1 (en) Etchant composition for Ag thin layer and method for fabricating metal pattern using the same
JP5867930B2 (en) Etching solution composition and method for etching multiple metal film {ETCHANTCOMPOSITION, ANDMETHODFORETCHINGAMULTI-LAYEDREDMETALFILM}
KR101391603B1 (en) Echant for silver pattern
KR101845083B1 (en) Manufacturing method of an array substrate for liquid crystal display
KR101951045B1 (en) Manufacturing method of an array substrate for liquid crystal display
KR101693383B1 (en) Etching solution composition for metal layer comprising copper and titanium
KR101394469B1 (en) Etchant composition, and method for etching a multi-layered metal film
KR102603630B1 (en) Manufacturing method of an array substrate for a display divice
KR102546796B1 (en) Etchant composition
KR102505196B1 (en) Etchant composition for copper-containing metal layer and preparing method of an array substrate for liquid crystal display using same
CN110359050B (en) Silver-containing thin film etching solution composition, array substrate for display device manufactured by using same, and manufacturing method thereof
KR102459685B1 (en) Etchant for cupper-based metat layer, manufacturing method of an array substrate for display using the same and an array substrate for display
KR20160112471A (en) Etchant composition and manufacturing method of an array for liquid crystal display
KR20130018531A (en) Manufacturing method of an array substrate for liquid crystal display
KR102269325B1 (en) Etching solution composition for molybdenum-containing layer and manufacturing method of an array substrate for liquid crystal display using the same
KR101636572B1 (en) Manufacturing method of an array substrate for liquid crystal display
KR102310094B1 (en) Manufacturing method of an array substrate for liquid crystal display
KR102368028B1 (en) Etchant composition for etching multi-layered structure of different metals and method of forming wiring using the same
KR20180086622A (en) Etching solution composition and manufacturing method of an array substrate for display device using the same
KR20090081937A (en) Etchant composition for an Indium based oxide layer and method for fabricating metal pattern
KR101939841B1 (en) Method for forming metal line
KR102265897B1 (en) Etching solution composition for molybdenum-containing layer and manufacturing method of an array substrate for liquid crystal display using the same
KR101951044B1 (en) Manufacturing method of an array substrate for liquid crystal display
KR20160112472A (en) Etchant composition and manufacturing method of an array for liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150714

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151116

R150 Certificate of patent or registration of utility model

Ref document number: 5841772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees