JP2012049363A - Method of manufacturing printed wiring board and printed wiring board - Google Patents

Method of manufacturing printed wiring board and printed wiring board Download PDF

Info

Publication number
JP2012049363A
JP2012049363A JP2010190744A JP2010190744A JP2012049363A JP 2012049363 A JP2012049363 A JP 2012049363A JP 2010190744 A JP2010190744 A JP 2010190744A JP 2010190744 A JP2010190744 A JP 2010190744A JP 2012049363 A JP2012049363 A JP 2012049363A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
copper plating
hole
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010190744A
Other languages
Japanese (ja)
Inventor
Naoki Nishimura
尚樹 西村
Satoru Yonetake
哲 米竹
Shinichi Sato
真一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010190744A priority Critical patent/JP2012049363A/en
Publication of JP2012049363A publication Critical patent/JP2012049363A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To limit occurrence of troubles such as deficient copper plating due to insufficient supply of process liquid by supplying the process liquid to miniaturized through holes and non-penetrating via holes in surface treatment such as cleaning and electroless copper plating.SOLUTION: In surface treatment such as cleaning and electroless copper plating, a vertical system performing surface treatment such as cleaning and electroless copper plating at a low device cost is used. In order to supply process liquid to miniaturized through holes and non-penetrating via holes, copper clad laminates and detachable current plates for control of process liquid are arranged in a cage.

Description

本発明は、プリント配線板の製造方法およびプリント配線板に係り、特に銅張り積層基板に表裏および内層を接続する微細貫通スルーホール、非貫通スルーホールを形成し、その後めっき形成および回路パターン形成を行なうプリント配線板の製造方法およびプリント配線板に関する。   The present invention relates to a method of manufacturing a printed wiring board and a printed wiring board, and in particular, forms fine through-holes and non-through-holes that connect the front and back and inner layers to a copper-clad laminate, and then forms plating and circuit patterns. The present invention relates to a printed wiring board manufacturing method and a printed wiring board.

近年、電子機器において、高性能化、高機能化、小型化の要求から、高密度多層プリント配線板が使用されている。この高密度多層プリント配線板は、LSI、ICおよび抵抗などの電子部品を実装する。このため、高密度多層プリント基板は、表層、裏層、内層を電気的に接続する貫通スルーホール、非貫通スルーホールおよび電子回路の配線パターンが必要である。高密度多層プリント配線板の製造工程を、図1を用いて説明する。ここで、図1は、高密度多層プリント配線板の製造工程図である。   In recent years, high-density multilayer printed wiring boards have been used in electronic devices due to demands for higher performance, higher functionality, and smaller size. This high-density multilayer printed wiring board mounts electronic components such as LSI, IC, and resistor. For this reason, the high-density multilayer printed circuit board requires through through holes, non-through through holes, and wiring patterns for electronic circuits that electrically connect the surface layer, the back layer, and the inner layer. A manufacturing process of the high-density multilayer printed wiring board will be described with reference to FIG. Here, FIG. 1 is a manufacturing process diagram of a high-density multilayer printed wiring board.

図1(a)において、内層配線パターン1を形成し積層プレスを行なった銅張り積層板2に、図1(b)に示すように、貫通スルーホール3および非貫通スルーホール4をドリルまたはレーザーにて穴明け加工を行なう。図1(c)において、貫通スルーホール3、非貫通スルーホール4の洗浄および内壁の導電化を行なうめっき触媒化を行なったのちに、無電解銅めっき法にて銅膜5を形成する。このめっき銅膜5の厚みは使用されるプロセスにより相違し、0.2μm〜25μm形成する。この後必要に応じ電解銅めっきを行ない、図1(d)に示すように外層配線パターン6の形成およびソルダーレジスト7を形成し、高密度多層プリント配線板8が完成する。   As shown in FIG. 1B, a through-hole 3 and a non-through-hole 4 are drilled or lasered on a copper-clad laminate 2 formed with an inner layer wiring pattern 1 and subjected to lamination press in FIG. Drill holes with. In FIG. 1C, after the plating catalyst for cleaning the through-hole 3 and the non-through-hole 4 and making the inner wall conductive is formed, a copper film 5 is formed by an electroless copper plating method. The thickness of the plated copper film 5 varies depending on the process used, and is 0.2 μm to 25 μm. Thereafter, electrolytic copper plating is performed as necessary to form the outer layer wiring pattern 6 and the solder resist 7 as shown in FIG. 1D, thereby completing the high-density multilayer printed wiring board 8.

図2を参照して、微細貫通スルーホールめっき時のめっき欠損メカニズムを説明する。図2において、部品の狭ピッチ化、高密度化に伴って、高密度多層プリント配線板は、図2(a)に示すように微細な貫通スルーホール9、微細な非貫通スルーホール10を形成する。次に洗浄、無電解銅めっき工程では、穴明けした銅張り積層板11を図2(b)に示すように処理液12に浸して、処理液12の撹拌になどにより処理液の流れ(矢印A)を利用し、貫通スルーホール、非貫通スルーホール内部に液供給14を行ない、それぞれの処理を行なっている。しかし、微細な貫通スルーホール9、微細な非貫通スルーホール10では、図2(b)に示すように処理液の供給量が著しく少なくなる(矢印B)。このため、図2(c)に示すようなめっき欠損15を起こし、貫通スルーホール、非貫通スルーホールの接続不良発生率が高くなる。   With reference to FIG. 2, the plating defect mechanism at the time of fine through-hole plating will be described. In FIG. 2, as the pitch of the parts is reduced and the density is increased, the high-density multilayer printed wiring board forms fine through holes 9 and fine non-through holes 10 as shown in FIG. To do. Next, in the cleaning and electroless copper plating step, the perforated copper-clad laminate 11 is immersed in the treatment liquid 12 as shown in FIG. Using A), the liquid supply 14 is performed inside the through-hole and the non-through-hole, and the respective processes are performed. However, in the fine through-hole 9 and the fine non-through-hole 10, the supply amount of the processing liquid is remarkably reduced as shown in FIG. 2B (arrow B). For this reason, the plating defect 15 as shown in FIG. 2C is caused, and the incidence of defective connection between the through-hole and the non-through-hole is increased.

この対策として、洗浄および無電解銅めっきなどの表面処理工程を行なう際に、銅張り積層板を水平に搬送して、処理液をスプレーにて吹き付けて貫通スルーホール、非貫通スルーホールへ強制的に供給する水平搬送方式がある。しかし、水平搬送方式は、装置コストが高く、処理液の濃度管理が難しい。さらに、水平搬送方式は、無電解銅めっきにおいて、めっき厚を厚くするため長時間の処理が必要となる。このため、水平搬送方式は、無電解銅めっきが、事実上できない。   As a countermeasure, when performing surface treatment processes such as cleaning and electroless copper plating, the copper-clad laminate is transported horizontally, and the treatment liquid is sprayed to spray through holes and non-through holes. There is a horizontal conveyance system to supply to. However, the horizontal conveyance method has a high apparatus cost and it is difficult to manage the concentration of the processing liquid. Furthermore, the horizontal conveyance method requires long-time processing in order to increase the plating thickness in electroless copper plating. For this reason, electroless copper plating is practically impossible with the horizontal conveyance method.

一方、バーチカル処理方式は、図3A(a)に示すような貫通スルーホール、非貫通スルーホールを穴開けした銅張り積層板11を複数枚カゴ(籠)16のスリットに挿入し、図3A(b)のように処理液12の入った槽に浸し、一括して洗浄および無電解銅めっきなどの表面処理を行なう。バーチカル処理方式は、装置構成がシンプルでコストが安い。また、バーチカル処理方式は、処理液濃度管理が容易で、複数枚同時加工可能で生産性が高い。   On the other hand, in the vertical processing method, a copper-clad laminate 11 having through-holes and non-through-holes as shown in FIG. As in b), the substrate is immersed in a bath containing the treatment liquid 12 and subjected to surface treatment such as cleaning and electroless copper plating. The vertical processing method has a simple device configuration and is inexpensive. In addition, the vertical processing method is easy to manage the concentration of the processing solution, and can process a plurality of sheets simultaneously and has high productivity.

しかし、図3Bの平面図で示すように、カゴ16の外側に配置した穴開けした銅張り積層板11では、処理液の流れが多い。一方、カゴ16内側の銅張り積層板は、中心部ほど少ない処理液の流れが少ない。このため、カゴ16内側の銅張り積層板は、前述したように、貫通スルーホール、非貫通スルーホールに供給される処理液が不足する可能性が高い。   However, as shown in the plan view of FIG. 3B, in the copper-clad laminate 11 with holes formed outside the cage 16, the flow of the treatment liquid is large. On the other hand, the copper-clad laminate on the inner side of the cage 16 has less processing liquid flow toward the center. For this reason, as described above, the copper-clad laminate on the inside of the cage 16 is highly likely to be short of the processing liquid supplied to the through through hole and the non-through through hole.

処理液供給不足の対策として、処理液内の撹拌を強化し、処理液の流れを促進する方法として、銅張り積層板を挿入したカゴ16に直接力を加え撹拌する方法と、製造設備で処理液自体を撹拌する方法の2つが採用されている。前者は、図3Bに示したように、カゴを一定周期で往復運動(矢印C)する方式、シリンダまたはバイブレータにより衝撃を与える方式などである。しかし、力をかけすぎるとカゴの破損や、可動部から異物が発生し不良を引き起こす可能性がある。後者は、処理液に振動を与え撹拌する方式や、エアーバブリングの径や強さを変化して撹拌する方式などである。しかし、装置コスト増加や、振動、撹拌部からの異物の発生など課題が多い。
両者の利点を生かしているカゴの形状で処理液の流れを改善する方式も採用されている。しかし、カゴの初期投資増大、基板の充填量の減少などが考えられる。
As a measure against supply shortage of treatment liquid, as a method of strengthening the agitation in the treatment liquid and promoting the flow of the treatment liquid, a method of directly applying a force to the cage 16 in which the copper clad laminate is inserted, and a treatment with a manufacturing facility Two methods of stirring the liquid itself are employed. As shown in FIG. 3B, the former includes a method in which the cage is reciprocated at a constant cycle (arrow C), and a method in which an impact is applied by a cylinder or a vibrator. However, if too much force is applied, there is a possibility that the cage will be damaged, or foreign matter may be generated from the movable part, causing a defect. The latter includes a method in which the treatment liquid is vibrated and agitated, and a method in which the diameter and strength of the air bubbling are changed and agitated. However, there are many problems such as an increase in apparatus cost, vibration, and generation of foreign matter from the stirring unit.
A method of improving the flow of the processing liquid in the shape of a cage that takes advantage of both is also employed. However, it is conceivable that the initial investment of the basket is increased and the filling amount of the substrate is decreased.

特許文献1は、本発明ではバーチカル処理でカゴ揺動にて発生する液を整流板により液供給を促進するプリント基板の微小孔処理方法を開示する。特許文献2は、バーチカル処理におけるカゴ揺動にて発生する液を整流板により液供給を促進するプリント配線板の無電解めっき方法を開示する。特許文献3は、バーチカル処理におけるカゴ揺動にて発生する液を整流板により液供給を促進する液体の攪拌方法を開示する。   Patent Document 1 discloses a method for processing micro-holes in a printed circuit board in which liquid supply generated by swinging a basket in vertical processing is promoted by a rectifying plate in the present invention. Patent Document 2 discloses an electroless plating method for a printed wiring board in which liquid generated by swinging a basket in vertical processing is promoted by a current plate. Patent Document 3 discloses a liquid stirring method that promotes liquid supply by a baffle plate using liquid that is generated by swinging a basket in vertical processing.

特開平03−050792号公報Japanese Patent Laid-Open No. 03-050792 特開2009−076553号公報JP 2009-077653 特開平03−275130号公報Japanese Unexamined Patent Publication No. 03-275130

本発明は、洗浄および無電解銅めっき液などの表面処理において、微細化した貫通スルーホールおよび非貫通バイアホールに処理液を供給し処理液の供給不足による銅めっき欠損などの不具合発生を抑えることを目的とする。   The present invention suppresses the occurrence of defects such as copper plating defects due to insufficient supply of processing liquid by supplying the processing liquid to fine through holes and non-through via holes in surface treatment such as cleaning and electroless copper plating liquid. With the goal.

上述した課題は、スルーホールに無電解銅めっきを施す工程からなるプリント配線板の製造方法において、プリント配線板を保持する籠のスリットの前後のスリットに取り付けおよび取り外し可能な整流板を取り付けるステップと、籠に往復運動を与えながら無電解銅めっき処理液に浸漬するステップと、からなり、整流板は、その外形がプリント配線板と同じ、かつ無電解銅めっき処理液の流速を増加させる複数の羽が形成されているプリント配線板の製造方法により、達成できる。   The above-described problem is a method of manufacturing a printed wiring board including a step of electroless copper plating on a through hole, and a step of attaching a removable rectifying plate to slits before and after a slit of a cage that holds the printed wiring board; A step of immersing in the electroless copper plating solution while reciprocating the ridge, and the rectifying plate has the same outer shape as the printed wiring board and increases the flow rate of the electroless copper plating solution. This can be achieved by a method for manufacturing a printed wiring board on which wings are formed.

本発明によれば、処理液の供給不足による銅めっき欠損などの不具合発生を抑えることができる。   According to the present invention, it is possible to suppress the occurrence of defects such as copper plating defects due to insufficient supply of processing liquid.

高密度多層プリント配線板の製造工程図である。It is a manufacturing-process figure of a high-density multilayer printed wiring board. 微細貫通スルーホールめっき時のめっき欠損メカニズムを説明する図である。It is a figure explaining the plating defect mechanism at the time of fine penetration through hole plating. バーチカル処理式表面処理を説明する斜視図である。It is a perspective view explaining a vertical processing type surface treatment. バーチカル処理式表面処理を説明する平面図である。It is a top view explaining vertical processing type surface treatment. 銅めっき付きまわり率検討におけるめっき厚測定位置を説明する断面図である。It is sectional drawing explaining the plating-thickness measurement position in the copper plating coverage ratio examination. 整流板構造を説明する斜視図である。It is a perspective view explaining a current plate structure. 整流板使用時の処理液の流れを説明する平面図である。It is a top view explaining the flow of the process liquid at the time of use of a baffle plate. 整流板による貫通スルーホールへの処理液供給状態を説明する断面図である。It is sectional drawing explaining the process liquid supply state to the penetration through hole by a baffle plate. 整流板の角度を説明する断面図である。It is sectional drawing explaining the angle of a baffle plate.

以下、本発明の実施の形態について、実施例を用い図面を参照しながら詳細に説明する。なお、実質同一部位には同じ参照番号を振り、説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings using examples. The same reference numerals are assigned to substantially the same parts, and the description will not be repeated.

まず、銅めっき付きまわり率について、説明する。発明者等は、処理液の供給不足を判定する尺度として、貫通スルーホール部の銅めっき付きまわり率の評価を行なった。銅めっきの付きまわり率は、図4の貫通スルーホール部の銅めっき後の断面図で示した数値により、式1で求める。   First, the copper plating coverage will be described. Inventors etc. evaluated the through-hole through-hole part with copper plating as a scale which determines the supply shortage of a process liquid. The coverage ratio of the copper plating is obtained by Equation 1 based on the numerical values shown in the cross-sectional view after copper plating of the through through hole portion of FIG.

銅めっき付きまわり率
=((a+b)/2))÷((c+d+e+f)/4))×100 …(式1)
ここで、a:図4のスルーホール中心左側のめっき厚
b:スルーホール中心右側のめっき厚
c:スルーホール入口左上側のめっき厚
d:スルーホール入口右上側のめっき厚
e:スルーホール入口左下側のめっき厚
f:スルーホール入口右下側のめっき厚
すなわち、銅めっき付きまわり率は、スルーホール入口のめっき厚さに対するスルーホール中心のめっき厚さの比である。スルーホール中心のめっき厚さは、処理液の供給不足があると薄くなるので、銅めっき付きまわり率が大きいほど、処理液が供給されていることを意味する。
Circumference ratio with copper plating = ((a + b) / 2)) / ((c + d + e + f) / 4)) × 100 (Equation 1)
Where, a: plating thickness on the left side of the through-hole center in FIG.
b: Plating thickness on the right side of the through hole center
c: Plating thickness on the upper left side of the through hole entrance
d: Plating thickness on the upper right side of the through hole entrance
e: Plating thickness at the lower left side of the through hole entrance
f: Plating thickness at the lower right side of the through hole entrance That is, the copper plating coverage ratio is a ratio of the plating thickness at the center of the through hole to the plating thickness at the through hole entrance. Since the plating thickness at the center of the through hole becomes thin if there is insufficient supply of the processing liquid, it means that the processing liquid is supplied as the coating ratio with copper plating increases.

高多層プリント配線板の内層材料として、MCL−E−67、ガラスエポキシ樹脂銅張り積層板および接着剤としてプリプレグGEA−67を用いて、内層材料に所定の配線パターンを形成し、層間および上下面にプリプレグを配置したのち、表層に0.018mmの銅箔を重ね、加熱プレスで積層接着して厚み2.4mmの銅張り積層板11を製作した。   Using MCL-E-67, glass epoxy resin copper-clad laminate and prepreg GEA-67 as the adhesive as the inner layer material of the high multilayer printed wiring board, a predetermined wiring pattern is formed on the inner layer material, and the interlayer and upper and lower surfaces After the prepreg was placed on the surface, 0.018 mm copper foil was stacked on the surface layer and laminated and adhered by a hot press to produce a copper-clad laminate 11 having a thickness of 2.4 mm.

銅張り積層板11にNC穴あけ機にて穴径0.15、0.20、0.30mmの貫通スルーホールを加工し、銅張り積層板表裏のバリを研磨したのち、貫通スルーホール内の異物を完全に除去するため10MPaの高圧水洗にて洗浄を行なった。   After machining through-holes with hole diameters of 0.15, 0.20, and 0.30 mm in the copper-clad laminate 11 with an NC drilling machine and polishing burrs on the front and back of the copper-clad laminate, foreign matter in the through-holes In order to completely remove water, washing was performed by high pressure water washing at 10 MPa.

一方、図5Aに示す洗浄および無電解銅めっきなどの表面処理液に耐えうる材料を選定し、長さ30mm、角度45度に曲がった形状のハネ(羽)24と開口部とを加工した整流板25を用意した。整流板25の外形は、銅張り積層板11と同一である。無電解銅めっきは、高温、高アルカリであるため、これら条件に耐えうる材料として、SUS304にて整流板25を作成した。   On the other hand, a material that can withstand a surface treatment solution such as cleaning and electroless copper plating shown in FIG. 5A is selected, and rectification is made by processing a wing 24 and an opening that are bent at a length of 30 mm and an angle of 45 degrees. A plate 25 was prepared. The outer shape of the rectifying plate 25 is the same as that of the copper-clad laminate 11. Since the electroless copper plating is high temperature and high alkali, the rectifying plate 25 is made of SUS304 as a material that can withstand these conditions.

次に、図5B(a)に示すように、整流板25と、穴明けした銅張り積層板11を交互にカゴ16に挿入する。なお、整流板25の枚数は、積層板11の枚数+1として、整流板25で銅張り積層板11を囲んだ。整流板25、穴明けした銅張り積層板11を交互に配置したカゴ16にて、NC穴あけ時に貫通スルーホール内壁に溶着した樹脂(スミア)を除去するデスミア処理と、スルーホール内壁を導電化するめっき触媒化処理を行なった。   Next, as shown in FIG. 5B (a), the current plate 25 and the perforated copper-clad laminate 11 are alternately inserted into the cage 16. Note that the number of the rectifying plates 25 is the number of the laminated plates 11 +1, and the copper-clad laminated plate 11 is surrounded by the rectifying plates 25. With the cage 16 in which the rectifying plate 25 and the perforated copper-clad laminate 11 are alternately arranged, the desmear process for removing the resin (smear) welded to the inner wall of the through hole at the time of NC drilling and the inner wall of the through hole are made conductive. A plating catalyst treatment was performed.

続いて、カゴ16を用いて無電解銅めっき法で貫通スルーホールおよび表面に25μm成膜を行なった。無電解銅めっき処理は、図5B(b)に示すように処理液12に浸し、カゴ16を一定周期で板厚方向に往復動作させた。整流板25のハネによって処理液が押されることで、穴明けした銅張り積層板11に対して斜め方向の液流れ(矢印D)が発生する。   Subsequently, a film having a thickness of 25 μm was formed on the through-through hole and the surface by an electroless copper plating method using the cage 16. As shown in FIG. 5B (b), the electroless copper plating treatment was immersed in the treatment liquid 12, and the cage 16 was reciprocated in the plate thickness direction at a constant cycle. When the treatment liquid is pushed by the splash of the rectifying plate 25, a liquid flow (arrow D) in an oblique direction is generated with respect to the perforated copper-clad laminate 11.

図6(a)に示す整流板により発生した斜め方向の液流れは、穴明けした銅張り積層板11と整流板25にぶつかることで乱流となり、貫通スルーホールに供給される流量(矢印E)が増加する。このため、図6(b)に示したように、めっき欠損のない貫通スルーホール28が形成される。   The liquid flow in the oblique direction generated by the rectifying plate shown in FIG. 6A becomes a turbulent flow by hitting the perforated copper-clad laminate 11 and the rectifying plate 25, and the flow rate (arrow E) supplied to the through-through hole. ) Will increase. For this reason, as shown in FIG.6 (b), the through through-hole 28 without a plating defect is formed.

次いで、銅めっきした基板に外層配線パターン形成およびソルダーレジストを形成し、完成した多層プリント配線板の貫通スルーホールの銅めっき付きまわり性を、貫通スルーホールの断面観察を行ない銅めっき厚測定により判定した。   Next, outer layer wiring pattern formation and solder resist are formed on the copper-plated substrate, and the through-holes with copper plating in the through-holes of the completed multilayer printed wiring board are observed by cross-sectional observation of the through-through holes and determined by measuring the copper plating thickness did.

比較として従来の作業条件である整流板を挿入せず無電解銅めっきを行なった基板の銅めっき付きまわり性を含めて評価結果を表1に示す。
As a comparison, Table 1 shows the evaluation results including the copper plating coverage of the substrate subjected to electroless copper plating without inserting a rectifying plate, which is a conventional working condition.

表1 銅めっき付きまわり性評価結果
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
整流板あり 整流板なし
貫通スルーホール径(mm) 長さ30mm
角度45度
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0.30mm 100% 100%
0.20mm 100% 95%
0.15mm 95% 85%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

表1より、整流板を用いることにより、貫通スルーホールへの良好な銅めっき付きまわり性を得ることがわかる。また、同様に非貫通スルーホールにおいても、供給される液量の増加により付きまわり改善効果がある。
Table 1 Results of evaluation of throwing power with copper plating
---------------------------------
With rectifier plate Without rectifier plate Through-hole diameter (mm) Length 30mm
45 degree angle
---------------------------------
0.30mm 100% 100%
0.20mm 100% 95%
0.15mm 95% 85%
---------------------------------

From Table 1, it can be seen that by using the rectifying plate, good throwing ability with copper plating to the through-through hole is obtained. Similarly, in the non-through hole, there is an effect of improving the throwing power by increasing the amount of liquid supplied.

整流板のハネ角度について、図7に示すハネ角度θを15度、30度、60度として、作成した整流板を用いて、同様に無電解銅めっき法にて、貫通スルーホールおよび基板表面に25μmの銅めっきを行なった。次に、銅めっきした基板に外層配線パターン形成およびソルダーレジストを形成した。完成した多層プリント配線板の貫通スルーホールの銅めっき付きまわり性を、貫通スルーホールの断面観察を行ない銅めっき厚測定により判定した。評価結果を表2に示す



表2 銅めっき付きまわり性評価結果
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
貫通スルーホール径(mm) 整流板 整流板 整流板 整流板
角度15度 角度30度 角度45度 角度60度
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0.30mm 100% 100% 100% 100%
0.20mm 95% 100% 100% 95%
0.15mm 90% 95% 95% 95%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

表2より、整流板25のハネ角度θは、30度ないし45度の範囲において、貫通スルーホールへの良好な銅めっき付きまわり性を得ることができることがわかった。
なお、カゴ16の往復動作は、板厚方向に垂直方向(図5B(b)の左右方向)でもよい。貫通スルーホールおよび非貫通スルーホールは、ともにスルーホールである。
With respect to the divergence angle of the rectifying plate, the divergence angle θ shown in FIG. Copper plating of 25 μm was performed. Next, an outer layer wiring pattern formation and a solder resist were formed on the copper plated substrate. Crossability of the through hole of the completed multilayer printed wiring board with copper plating was determined by observing the cross section of the through hole and measuring the thickness of the copper plating. The evaluation results are shown in Table 2.



Table 2 Evaluation results of wrapping performance with copper plating
--------------------------------------
Through-hole diameter (mm) Current plate Current plate Current plate Current plate
Angle 15 degrees Angle 30 degrees Angle 45 degrees Angle 60 degrees ------------------------------------ −
0.30mm 100% 100% 100% 100%
0.20mm 95% 100% 100% 95%
0.15mm 90% 95% 95% 95%
--------------------------------------

From Table 2, it was found that good wrapping property with copper plating to the through-through hole can be obtained when the honeycomb angle θ of the rectifying plate 25 is in the range of 30 to 45 degrees.
The reciprocating motion of the cage 16 may be in a direction perpendicular to the thickness direction (the left-right direction in FIG. 5B (b)). Both the through hole and the non-through hole are through holes.

本実施例によれば、バーチカル方式において、微細貫通スルーホール、非貫通スルーホールに液を供給するために、処理液の流れを制御する目的の整流板を取付け、取外し可能なので、一般品との混流生産が可能で、構造がシンプルで安価に生産できる。   According to the present embodiment, in the vertical method, in order to supply the liquid to the fine through hole and the non-through hole, the current plate for controlling the flow of the processing liquid can be attached and removed. Mixed flow production is possible, and the structure is simple and inexpensive.

1…内層パターン、2…銅張り積層板、3…貫通スルーホール、4…非貫通スルーホール、5…銅めっき、6…外層パターン、7…ソルダーレジスト、8…多層プリント配線板、9…微細な貫通スルーホール、10…微細な非貫通スルーホール、11…穴あけした銅張り積層板、12…処理液、15…銅めっき欠損、16…カゴ(籠)、24…ハネ(羽)、25…整流板、28…めっき欠損のない貫通スルーホール。   DESCRIPTION OF SYMBOLS 1 ... Inner layer pattern, 2 ... Copper-clad laminate, 3 ... Through-through hole, 4 ... Non-through-through hole, 5 ... Copper plating, 6 ... Outer layer pattern, 7 ... Solder resist, 8 ... Multilayer printed wiring board, 9 ... Fine Through holes, 10 ... fine non-through holes, 11 ... perforated copper-clad laminate, 12 ... treatment liquid, 15 ... deficient copper plating, 16 ... basket (ゴ), 24 ... honey (wings), 25 ... Current plate, 28 ... Through-through hole without plating defects.

Claims (4)

スルーホールに無電解銅めっきを施す工程からなるプリント配線板の製造方法において、
前記プリント配線板を保持する籠のスリットの前後のスリットに取り付けおよび取り外し可能な整流板を取り付けるステップと、
籠に往復運動を与えながら無電解銅めっき処理液に浸漬するステップと、からなり、
前記整流板は、その外形が前記プリント配線板と同じ、かつ前記無電解銅めっき処理液の流速を増加させる複数の羽が形成されていることを特徴とするプリント配線板の製造方法。
In the method for producing a printed wiring board comprising a step of electroless copper plating on the through hole,
Attaching a rectifying plate that can be attached to and detached from the slits before and after the slit of the bag that holds the printed wiring board; and
Dipping in the electroless copper plating solution while giving reciprocating motion to the reed, and
The method of manufacturing a printed wiring board, wherein the rectifying plate has the same outer shape as the printed wiring board and has a plurality of wings that increase a flow rate of the electroless copper plating solution.
請求項1に記載のプリント配線板の製造方法であって、
前記羽は、前記整流板の本体の一部を板金加工して折り曲げて形成されていることを特徴とするプリント配線板の製造方法。
It is a manufacturing method of the printed wiring board according to claim 1,
The method of manufacturing a printed wiring board, wherein the wing is formed by sheet metal processing and bending a part of the main body of the current plate.
請求項2に記載のプリント配線板の製造方法であって、
前記羽の折り曲げ角は、30度ないし45度の範囲にあることを特徴とする記載のプリント配線板の製造方法。
It is a manufacturing method of the printed wiring board according to claim 2,
The method of manufacturing a printed wiring board according to claim 1, wherein a bending angle of the wing is in a range of 30 degrees to 45 degrees.
請求項1ないし請求項3に記載のプリント配線板の製造方法により、製造されたプリント配線板。   A printed wiring board manufactured by the method for manufacturing a printed wiring board according to claim 1.
JP2010190744A 2010-08-27 2010-08-27 Method of manufacturing printed wiring board and printed wiring board Pending JP2012049363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010190744A JP2012049363A (en) 2010-08-27 2010-08-27 Method of manufacturing printed wiring board and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010190744A JP2012049363A (en) 2010-08-27 2010-08-27 Method of manufacturing printed wiring board and printed wiring board

Publications (1)

Publication Number Publication Date
JP2012049363A true JP2012049363A (en) 2012-03-08

Family

ID=45903895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010190744A Pending JP2012049363A (en) 2010-08-27 2010-08-27 Method of manufacturing printed wiring board and printed wiring board

Country Status (1)

Country Link
JP (1) JP2012049363A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147972A (en) * 2018-02-26 2019-09-05 三菱電機株式会社 Apparatus for manufacturing semiconductor and method for manufacturing semiconductor device
KR20220046958A (en) * 2020-10-08 2022-04-15 한국생산기술연구원 Electroless plating method of printed circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147972A (en) * 2018-02-26 2019-09-05 三菱電機株式会社 Apparatus for manufacturing semiconductor and method for manufacturing semiconductor device
JP7005381B2 (en) 2018-02-26 2022-01-21 三菱電機株式会社 Semiconductor manufacturing equipment and methods for manufacturing semiconductor equipment
KR20220046958A (en) * 2020-10-08 2022-04-15 한국생산기술연구원 Electroless plating method of printed circuit board
KR102435955B1 (en) * 2020-10-08 2022-08-24 한국생산기술연구원 Electroless plating method of printed circuit board

Similar Documents

Publication Publication Date Title
US8890000B2 (en) Printed wiring board having through-hole and a method of production thereof
JP4955263B2 (en) Printed wiring board
TWI387424B (en) Multilayer printed wiring board
JP4126038B2 (en) BGA package substrate and manufacturing method thereof
US20060046481A1 (en) Manufacturing methods and electroless plating apparatus for manufacturing wiring circuit boards
CN110505770B (en) Production method of multilayer sandwich metal-based circuit board
JP2012216575A (en) Component built-in printed circuit board and manufacturing method thereof
JP2012049363A (en) Method of manufacturing printed wiring board and printed wiring board
JP2004186354A (en) Method of manufacturing multilayer wiring board
CN115379653A (en) Method for manufacturing circuit board by laser drilling and coarsening insulating base material by using pattern track
JP5432228B2 (en) Printed wiring board and manufacturing method thereof
JPWO2014024754A1 (en) Circuit board for semiconductor package and manufacturing method thereof
JP4377641B2 (en) Wiring board manufacturing method
JP4686913B2 (en) Printed wiring board manufacturing method and plating apparatus
JP4366632B2 (en) Metal-clad laminate with inner layer circuit, multilayer printed wiring board, and manufacturing method thereof
KR100645642B1 (en) High density BGA package board and method for manufacturing thereof
JPS63311797A (en) Manufacture of multilayered printed interconnection board
KR100651341B1 (en) Printed circuit board manufacturing method where fine pattern can be formed
KR101619068B1 (en) Method for forming electrode circuit
JP2007142259A (en) Printed wiring board, and method of washing thereof
JP2002225182A (en) Method for manufacturing insulating resin with copper foil
JP2005277288A (en) Manufacturing method of board circuit and board circuit