JP2012047994A - Light scanning element and method of manufacturing the same - Google Patents

Light scanning element and method of manufacturing the same Download PDF

Info

Publication number
JP2012047994A
JP2012047994A JP2010190404A JP2010190404A JP2012047994A JP 2012047994 A JP2012047994 A JP 2012047994A JP 2010190404 A JP2010190404 A JP 2010190404A JP 2010190404 A JP2010190404 A JP 2010190404A JP 2012047994 A JP2012047994 A JP 2012047994A
Authority
JP
Japan
Prior art keywords
piezoelectric film
mirror
scanning element
optical scanning
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010190404A
Other languages
Japanese (ja)
Other versions
JP5358536B2 (en
Inventor
Yoshihiro Kawakami
祥広 川上
Koichi Okamoto
幸一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010190404A priority Critical patent/JP5358536B2/en
Publication of JP2012047994A publication Critical patent/JP2012047994A/en
Application granted granted Critical
Publication of JP5358536B2 publication Critical patent/JP5358536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)
  • Facsimile Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light scanning element that can improve characteristics of a piezoelectric film formed on a metal substrate and does not impair reflection performance of a mirror, and to provide a method of manufacturing the same.SOLUTION: The light scanning element has a mirror 2, a hinge part 1 for holding the mirror 2, a metal frame 3 for holding the hinge part 1 and a vibration part for generating torsional vibration in the hinge part 1, all formed on a metal substrate. The vibration part is composed of a piezoelectric film 10 formed on a metal frame 3 apart from the hinge part 1 and an upper electrode 4, the piezoelectric film 10 being formed in a hollow 5 formed on the metal substrate. Heat treatment is performed after the piezoelectric film is formed, and then mirror polishing is performed on a surface on which the piezoelectric film is formed.

Description

本発明は、基板上に設けた圧電膜を振動源として、ミラーを保持するヒンジ部を捩り振動させることによりミラー面の角度を変化させて光を走査する光走査素子及びその製造方法に関し、特に金属基板を用いた光走査素子及びその製造方法に関する。   The present invention relates to an optical scanning element that scans light by changing the angle of a mirror surface by torsionally oscillating a hinge portion that holds a mirror using a piezoelectric film provided on a substrate as a vibration source, and a method for manufacturing the same. The present invention relates to an optical scanning element using a metal substrate and a manufacturing method thereof.

近年、レーザー光等の光ビームを走査する光走査装置(光スキャナー)は、バーコードリーダー、レーザープリンタ、レーザーディスプレイやプロジェクタ等の光学機器、あるいは赤外線カメラ等の入力デバイスの光取り入れ装置として用いられている。この種の光スキャナーとして、非特許文献1などに示されるように、シリコンのマイクロマシニング技術を用いて作製されたヒンジ部に支持された微小ミラーを、ミラーの近傍に設けた駆動手段による静電力や電磁力、またはヒンジ部の近傍に設けた圧電膜による振動により揺動させる構成の光走査素子を用いたものが開発されている。一般に、光走査素子のミラーはヒンジ部により支持されており、ヒンジ部の捩り振動を利用してミラーを揺動させる構造である。このため、ヒンジ部をシリコン単結晶のような脆性材料で作製した場合、捩り振動の振幅を大きくするとヒンジ部が破壊しやすいという課題がある。そこで、上記の光走査素子の場合、捩り振動によるミラーの光学走査角は±7°〜±12°、一般には、±20°程度で使用されている。   In recent years, an optical scanning device (optical scanner) that scans a light beam such as a laser beam has been used as an optical device such as a barcode reader, a laser printer, a laser display or a projector, or an input device such as an infrared camera. ing. As this type of optical scanner, as shown in Non-Patent Document 1, etc., an electrostatic force generated by a driving means provided in the vicinity of a mirror is provided with a micromirror supported by a hinge manufactured using silicon micromachining technology. A device using an optical scanning element that is configured to be swung by an electromagnetic force or vibration by a piezoelectric film provided near the hinge has been developed. In general, the mirror of the optical scanning element is supported by a hinge portion, and the mirror is swung using the torsional vibration of the hinge portion. For this reason, when the hinge portion is made of a brittle material such as a silicon single crystal, there is a problem that the hinge portion is easily broken when the amplitude of torsional vibration is increased. Therefore, in the case of the optical scanning element described above, the optical scanning angle of the mirror due to torsional vibration is ± 7 ° to ± 12 °, and generally about ± 20 °.

一方、ミラーとヒンジ部を駆動する圧電膜をヒンジ部から離れた基板上に配置し、圧電膜により発生させた基板の板波を利用してヒンジ部を捩り振動させる光走査素子が特許文献1および2に記載されている。図7はその従来の光走査素子の原理と構成の一例を示す斜視図である。ステンレス基板6により、金属フレーム20と、ヒンジ部21と、ヒンジ部21によって支持されたミラー22とが形成されており、ヒンジ部21から離れた金属フレーム20上に形成された圧電膜10の上下面に電圧を印加することにより圧電膜を振動させ、その振動が板波として金属フレーム20を伝播し、ヒンジ部21で支持されたミラー22を揺動させることができる。この時、金属フレーム20の構造から決まる振動とヒンジ部21に支持されたミラー22の捩り振動が共振によりその振幅が最大になるような振動モードを選択し、その共振周波数の近傍で駆動させることによりミラー22の揺動角を大きくし、大きな光学走査角での走査が可能な構成となっている。   On the other hand, Patent Document 1 discloses an optical scanning element in which a piezoelectric film for driving a mirror and a hinge part is disposed on a substrate separated from the hinge part, and the hinge part is torsionally oscillated using a plate wave generated by the piezoelectric film. And 2. FIG. 7 is a perspective view showing an example of the principle and configuration of the conventional optical scanning element. The stainless steel substrate 6 forms a metal frame 20, a hinge portion 21, and a mirror 22 supported by the hinge portion 21, and is formed on the piezoelectric film 10 formed on the metal frame 20 away from the hinge portion 21. By applying a voltage to the lower surface, the piezoelectric film is vibrated, the vibration propagates through the metal frame 20 as a plate wave, and the mirror 22 supported by the hinge portion 21 can be swung. At this time, a vibration mode is selected such that the vibration determined by the structure of the metal frame 20 and the torsional vibration of the mirror 22 supported by the hinge portion 21 have the maximum amplitude due to resonance, and are driven in the vicinity of the resonance frequency. Thus, the swinging angle of the mirror 22 is increased to enable scanning with a large optical scanning angle.

特許文献1および2に記載の技術を用い、金属基板によりヒンジ部とミラー及びフレームを構成し、エアロゾルデポジション法(AD法)により圧電膜を形成して構成された光走査素子が非特許文献2に示されている。金属は脆性材料ではないため大きな走査角でも破壊しにくく、非特許文献2の光走査素子では±80°の光学走査角が可能であることが示されている。   An optical scanning element formed by using the technique described in Patent Documents 1 and 2 and forming a hinge portion, a mirror, and a frame with a metal substrate and forming a piezoelectric film by an aerosol deposition method (AD method) 2. Since metal is not a brittle material, it is difficult to break even at a large scanning angle, and the optical scanning element of Non-Patent Document 2 shows that an optical scanning angle of ± 80 ° is possible.

特開2006−293116号公報JP 2006-293116 A 特開2010−44234号公報JP 2010-44234 A

黒田和夫/山本和久編「レーザーディスプレー」オプトロニクス社、平成22年2月18日、p261−264Kazuo Kuroda / Kazuhisa Yamamoto “Laser Display” Optronics, February 18, 2010, p261-264 「プロジェクションディスプレーなどの心臓部である光走査素子を新たに開発」、[online]、平成22年2月9日、産業技術総合研究所プレリリース、[平成22年8月18日検索]、インターネット<http://www.aist.go.jp/aist_j/press_release/pr2010/pr20100209/pr20100209.html>“Newly developed optical scanning element, which is the heart of projection displays”, [online], February 9, 2010, AIST Pre-release, [Search August 18, 2010], Internet <Http://www.aist.go.jp/aist_j/press_release/pr2010/pr20100209/pr20100209.html>

一般的に、金属基板上に化学溶液法やAD法などの方法で圧電膜を形成して構成された光走査素子では、圧電膜の結晶化や結晶性を向上させるために形成後の熱処理が必要になる。通常、この熱処理は大気中で行う必要があり、このため金属基板の表面が酸化され、ミラーの表面も酸化されてしまう。そこでミラーの表面粗さが大きくなり乱反射しやすくなるため、光スキャナーの輝度やスポットの解像度が低下してしまうという課題がある。   In general, in an optical scanning element configured by forming a piezoelectric film on a metal substrate by a method such as a chemical solution method or an AD method, a heat treatment after the formation is performed in order to improve the crystallization or crystallinity of the piezoelectric film. I need it. Usually, this heat treatment needs to be performed in the atmosphere, and therefore the surface of the metal substrate is oxidized and the surface of the mirror is also oxidized. Therefore, the surface roughness of the mirror becomes large and it becomes easy to diffusely reflect, so that there is a problem that the brightness of the optical scanner and the resolution of the spot decrease.

特に、AD法で形成した圧電膜の特性向上には800〜1000℃程度の高温での熱処理が有効であるが、上記理由から、高温での熱処理により圧電膜の特性は向上するもののミラーの反射性能を劣化させてしまうという課題があった。   In particular, heat treatment at a high temperature of about 800 to 1000 ° C. is effective for improving the characteristics of the piezoelectric film formed by the AD method. For the above reasons, although the characteristics of the piezoelectric film are improved by the heat treatment at high temperature, the reflection of the mirror is improved. There was a problem of deteriorating performance.

そこで本発明の課題は、金属基板に形成した圧電膜の特性を向上させることが可能で、かつ、ミラーの反射性能を低下させない光走査素子及びその製造方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optical scanning element that can improve the characteristics of a piezoelectric film formed on a metal substrate and that does not deteriorate the reflection performance of a mirror, and a method for manufacturing the same.

上記課題を解決するために、本発明による光走査素子は、金属基板に形成された、ミラーと、前記ミラーを保持するヒンジ部と、前記ヒンジ部に捩れ振動を生じさせる振動部とを有し、前記振動部は前記金属基板上に形成された圧電膜と電極とからなる光走査素子において、前記圧電膜は前記金属基板に形成された窪みの中に形成されていることを特徴とする。   In order to solve the above-described problems, an optical scanning element according to the present invention includes a mirror, a hinge part that holds the mirror, and a vibration part that generates torsional vibration in the hinge part. The vibrating portion is an optical scanning element comprising a piezoelectric film and an electrode formed on the metal substrate, wherein the piezoelectric film is formed in a recess formed in the metal substrate.

また、本発明による光走査素子の製造方法は、前記金属基板の一部にハーフエッチング加工により前記窪みを形成する工程と、前記窪みの中、又は前記金属基板上の全面に前記圧電膜をエアロゾルデポジション法により形成する工程と、その後、熱処理を施す工程と、さらに、前記金属基板の前記圧電膜が形成された側の面を鏡面研磨する工程とを有することを特徴とする。   The method of manufacturing an optical scanning element according to the present invention includes a step of forming the recess in a part of the metal substrate by half-etching, and an aerosol of the piezoelectric film in the recess or on the entire surface of the metal substrate. The method includes a step of forming by a deposition method, a step of performing a heat treatment, and a step of mirror polishing the surface of the metal substrate on which the piezoelectric film is formed.

上記のように、本発明の光走査素子の製造方法では、金属基板上の圧電膜を形成する場所にハーフエッチング加工などにより窪み部を形成しておく。窪み部の形成方法はハーフエッチング以外の方法としてエッチングなどで貫通孔を形成した金属箔を金属板に拡散接合や、ロウ付けなどで接合する方法により形成しても構わない。その窪みの部分に圧電膜を形成し、熱処理を行う。窪みに圧電膜を形成するため、圧電膜の形成にはAD法を用いるのが望ましい。その後、金属基板全体に鏡面研磨を施した後、ミラー部分、ヒンジ部、フレームなどの光走査素子としての構造をプレス加工やエッチング加工などにより形成する。さらに圧電膜上に電圧印加用の上部電極を形成し、ミラー部には反射膜としてアルミニウム(Al)を蒸着することで光走査素子を作製する。上部電極や反射膜の形成は外形加工前に行っても構わない。この構成は、金属基板を圧電膜を駆動するための下部電極として使用することが可能な構造であり、600℃程度の温度での熱処理まで有効である。600℃よりも高い温度で熱処理すると金属基板、特にステンレス基板では圧電膜の成分とステンレスの成分が拡散反応し圧電膜の特性が低下してしまう。   As described above, in the method for manufacturing an optical scanning element of the present invention, a depression is formed by half-etching or the like at a place where a piezoelectric film is formed on a metal substrate. As a method for forming the depression, as a method other than half-etching, a metal foil having through holes formed by etching or the like may be formed by diffusion bonding or brazing to a metal plate. A piezoelectric film is formed in the depression and heat treatment is performed. In order to form the piezoelectric film in the depression, it is desirable to use the AD method for forming the piezoelectric film. Thereafter, the entire metal substrate is mirror-polished, and then a structure as an optical scanning element such as a mirror portion, a hinge portion, and a frame is formed by pressing or etching. Further, an upper electrode for voltage application is formed on the piezoelectric film, and aluminum (Al) is deposited as a reflective film on the mirror part to produce an optical scanning element. The upper electrode and the reflective film may be formed before the outer shape processing. This configuration is a structure in which the metal substrate can be used as a lower electrode for driving the piezoelectric film, and is effective up to a heat treatment at a temperature of about 600 ° C. When heat treatment is performed at a temperature higher than 600 ° C., the piezoelectric film component and the stainless steel component diffuse and react on a metal substrate, particularly a stainless steel substrate, and the characteristics of the piezoelectric film deteriorate.

そのため、600℃よりも高温で熱処理する場合は、金属基板としてAlを含有する金属を使用することが望ましい。具体的には鉄、クロム(Cr)を主成分とし、Alを3〜8%程度含有しているステンレスを基板として用いる。この場合、上記と同様に圧電膜を形成する箇所にハーフエッチング加工などにより窪みを形成する。次にその基板を大気中にて熱処理を行い基板表面に酸化アルミニウムの皮膜を形成する。この酸化アルミニウム層が熱処理による圧電膜とステンレス基板との間の成分の拡散を防止する。また、窒化処理により窒化アルミニウム層を形成しても同様の効果を得ることができる。その窪みに形成された酸化または窒化皮膜上に下部電極層を形成し、下部電極層上の一部に圧電膜を形成し熱処理を行う。熱処理温度は600℃以上であってもよく、1100℃以下が望ましい。その後、基板全体に鏡面研磨を施し、光走査素子としての構造をプレス加工やエッチング加工などにより形成する。上部電極、ミラーの反射膜の形成も上記と同様である。   Therefore, when heat treatment is performed at a temperature higher than 600 ° C., it is desirable to use a metal containing Al as the metal substrate. Specifically, stainless steel containing iron and chromium (Cr) as main components and containing about 3 to 8% Al is used as the substrate. In this case, a recess is formed in the portion where the piezoelectric film is formed in the same manner as described above by half-etching or the like. Next, the substrate is heat-treated in the atmosphere to form an aluminum oxide film on the substrate surface. This aluminum oxide layer prevents the diffusion of components between the piezoelectric film and the stainless steel substrate due to heat treatment. Further, the same effect can be obtained even when an aluminum nitride layer is formed by nitriding treatment. A lower electrode layer is formed on the oxide or nitride film formed in the depression, a piezoelectric film is formed on a part of the lower electrode layer, and heat treatment is performed. The heat treatment temperature may be 600 ° C. or higher, and is preferably 1100 ° C. or lower. Thereafter, the entire substrate is mirror-polished, and a structure as an optical scanning element is formed by pressing or etching. The formation of the upper electrode and the reflective film of the mirror is the same as described above.

本発明では、金属基板上に形成した圧電膜の熱処理による特性改善のための熱処理温度を広い範囲で選択することが可能になり、かつミラー面の表面粗さを劣化させることがないため高性能な光走査素子を提供することができる。また、基板表面に鏡面研磨を施すことにより金属基板と圧電膜の表面の高さが揃った構造とすることにより段差のない電極配線の形成が可能になり、信頼性を向上させることができるという効果も有する。さらに、従来の製造方法のように、ミラー部分、ヒンジ部、フレームなどの光走査素子としての構造を形成した後に熱処理を施すと、基板に反りや撓みが発生し、ヒンジ部の変形などが発生しやすいが、本発明によれば、光走査素子としての構造を形成する加工をほぼ最終工程で行うことができるため、上記の問題の発生を防ぐことができる。   In the present invention, it is possible to select a heat treatment temperature in a wide range for improving the characteristics of the piezoelectric film formed on the metal substrate by heat treatment, and the surface roughness of the mirror surface is not deteriorated. An optical scanning element can be provided. In addition, by applying mirror polishing to the surface of the substrate, the metal substrate and the piezoelectric film have a uniform surface height, so that it becomes possible to form electrode wiring without a step and improve reliability. It also has an effect. In addition, if a heat treatment is applied after forming a structure as an optical scanning element such as a mirror part, hinge part, or frame as in the conventional manufacturing method, the substrate warps or bends, and the hinge part deforms. However, according to the present invention, since the processing for forming the structure as the optical scanning element can be performed in almost the final step, the occurrence of the above problem can be prevented.

以上のように、本発明によれば、金属基板に形成した圧電膜の特性を向上させることが可能で、かつ、ミラーの反射性能を低下させない光走査素子及びその製造方法が得られる。   As described above, according to the present invention, an optical scanning element that can improve the characteristics of a piezoelectric film formed on a metal substrate and that does not deteriorate the reflection performance of a mirror, and a method for manufacturing the same are obtained.

本発明による光走査素子の第1の実施の形態を示す図であり、図1(a)は平面図、図1(b)はA−A断面図。It is a figure which shows 1st Embodiment of the optical scanning element by this invention, Fig.1 (a) is a top view, FIG.1 (b) is AA sectional drawing. 本発明による光走査素子の製造方法の第1の実施の形態を説明するための製造工程図。図2(a)は、ステンレス基板を示す図。図2(b)は、ハーフエッチング加工した状態を示す図。図2(c)は、圧電膜を形成した状態を示す図。図2(d)は、熱処理を施した状態を示す図。図2(e)は、鏡面研磨した状態を示す図。図2(f)は、外形エッチング形成した状態を示す図。図2(g)は、上部電極を形成した状態を示す図。The manufacturing process figure for demonstrating 1st Embodiment of the manufacturing method of the optical scanning element by this invention. FIG. 2A shows a stainless steel substrate. FIG.2 (b) is a figure which shows the state which carried out the half etching process. FIG. 2C shows a state where a piezoelectric film is formed. FIG.2 (d) is a figure which shows the state which heat-processed. FIG.2 (e) is a figure which shows the state mirror-polished. FIG. 2 (f) is a diagram showing a state in which outer shape etching is formed. FIG. 2G is a diagram showing a state in which an upper electrode is formed. 本発明による光走査素子の第2の実施の形態を示す図であり、図3(a)は平面図、図3(b)はB−B断面図。FIGS. 3A and 3B are views showing a second embodiment of the optical scanning element according to the present invention, FIG. 3A being a plan view, and FIG. 本発明による光走査素子の製造方法の第2の実施の形態を説明するための製造工程図。図4(a)は、ステンレス基板を示す図。図4(b)は、ハーフエッチング加工した状態を示す図。図4(c)は、熱処理を施した状態を示す図。図4(d)は、下部電極を形成した状態を示す図。図4(e)は、圧電膜を形成した状態を示す図。図4(f)は、熱処理を施した状態を示す図。図4(g)は、鏡面研磨した状態を示す図。図4(h)は、外形エッチング形成した状態を示す図。図4(i)は、上部電極を形成した状態を示す図。The manufacturing process figure for demonstrating 2nd Embodiment of the manufacturing method of the optical scanning element by this invention. FIG. 4A shows a stainless steel substrate. FIG. 4B is a diagram showing a state after half etching. FIG.4 (c) is a figure which shows the state which heat-processed. FIG. 4D shows a state in which the lower electrode is formed. FIG. 4E is a diagram showing a state where a piezoelectric film is formed. FIG. 4F shows a state where heat treatment has been performed. FIG. 4G is a diagram showing a state of mirror polishing. FIG. 4H is a diagram showing a state in which outer shape etching is formed. FIG. 4I shows a state in which an upper electrode is formed. 基本的な光走査素子の外形形状を示す平面図。The top view which shows the external shape of a basic optical scanning element. 実施例の窪みの位置および形状を示す平面図。The top view which shows the position and shape of the hollow of an Example. 従来の光走査素子の原理と構成の一例を示す斜視図。The perspective view which shows an example of the principle and structure of the conventional optical scanning element.

以下、本発明の実施の形態について図面を参照して説明する。図1は本発明による光走査素子の第1の実施の形態を示す図であり、図1(a)は平面図、図1(b)は図1(a)のA−A断面図である。図1において、本実施の形態による光走査素子は従来の光走査素子と同様に、金属基板に形成された、ミラー2と、ミラー2を保持するヒンジ部1と、ヒンジ部1を保持する金属フレーム3と、ヒンジ部1に捩れ振動を生じさせる振動部とを有し、振動部はヒンジ部1から離れた金属フレーム3上に形成された圧電膜10と上部電極4とからなる。但し、本実施の形態の光走査素子においては、圧電膜10が金属基板に形成された窪み5の中に形成されていることが従来とは異なっている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a view showing a first embodiment of an optical scanning element according to the present invention, FIG. 1 (a) is a plan view, and FIG. 1 (b) is a cross-sectional view taken along line AA of FIG. 1 (a). . In FIG. 1, the optical scanning element according to the present embodiment is similar to the conventional optical scanning element, and is formed on a metal substrate with a mirror 2, a hinge part 1 that holds the mirror 2, and a metal that holds the hinge part 1. It has a frame 3 and a vibration part that generates torsional vibration in the hinge part 1, and the vibration part consists of a piezoelectric film 10 and an upper electrode 4 formed on a metal frame 3 that is separated from the hinge part 1. However, in the optical scanning element of the present embodiment, the piezoelectric film 10 is different from the conventional one in that it is formed in the recess 5 formed in the metal substrate.

図2は本発明による光走査素子の製造方法の第1の実施の形態を説明するための製造工程図である。図2(a)は、ステンレス基板を示す図、図2(b)は、ハーフエッチング加工した状態を示す図、図2(c)は、圧電膜を形成した状態を示す図、図2(d)は、熱処理を施した状態を示す図、図2(e)は、鏡面研磨した状態を示す図、図2(f)は、外形エッチング形成した状態を示す図、図2(g)は、上部電極を形成した状態を示す図である。それぞれの工程図において、上方の図が平面図、下方の図が断面図である。本実施の形態の製造方法は、図2に示すように、ステンレス基板6の一部にハーフエッチング加工により窪み5を形成する工程と、窪み5の中に圧電膜10をAD法により形成する工程と、その後、熱処理を施す工程と、その後、ステンレス基板6の圧電膜10が形成された側の面を鏡面研磨する工程とを有している。さらに、エッチング加工により、ミラー2等が所定の寸法になるように素子の形状を得る工程と、次に、圧電膜10上に上部電極4をスパッタ法等で形成する工程を有している。   FIG. 2 is a manufacturing process diagram for explaining the first embodiment of the manufacturing method of the optical scanning element according to the present invention. 2A shows a stainless steel substrate, FIG. 2B shows a half-etched state, FIG. 2C shows a state where a piezoelectric film is formed, and FIG. ) Is a diagram showing a state after heat treatment, FIG. 2 (e) is a diagram showing a mirror-polished state, FIG. 2 (f) is a diagram showing a state in which outer shape etching is formed, and FIG. It is a figure which shows the state which formed the upper electrode. In each process drawing, the upper drawing is a plan view and the lower drawing is a sectional view. As shown in FIG. 2, the manufacturing method of the present embodiment includes a step of forming a recess 5 in a part of a stainless steel substrate 6 by half etching, and a step of forming a piezoelectric film 10 in the recess 5 by an AD method. And a step of performing a heat treatment, and then a step of mirror polishing the surface of the stainless steel substrate 6 on which the piezoelectric film 10 is formed. Further, there are a step of obtaining an element shape so that the mirror 2 and the like have a predetermined size by etching, and a step of forming the upper electrode 4 on the piezoelectric film 10 by a sputtering method or the like.

図2に基づき、本実施の形態の工程の手順を説明する。先ず、図2(a)に示すように、厚さが数十〜数百μmのステンレス基板6を準備し、次に、図2(b)に示すように、振動部となる部分を含む領域に数mm×数〜十数mmの外形で深さ数〜百数十μmの窪み5をハーフエッチング加工により形成する。次に、図2(c)、図2(d)に示すように、この窪み5にチタン酸ジルコン酸鉛(PZT)系やチタン酸バリウム(BT)系などの圧電セラミック材料からなる圧電膜10をAD法によって数〜数十μmの厚さで形成する。この場合、窪みの形状や深さ、圧電膜の厚さなどは、完成後の基板およびヒンジ部の振動が共振状態となるような周波数の板波の振動を励振できるような値に設計することが望ましい。この圧電膜10を形成後、大気中で500〜600℃の温度で熱処理を行う。その後、図2(d)に示すように、ステンレス基板6全体に鏡面研磨を施した後、図2(f)に示すように、エッチング加工によりヒンジ部1、ミラー2、金属フレーム3などが所定の寸法となるように加工を施し、光走査素子の形状を得る。その後、図2(g)に示すように、圧電膜10上に上部電極4として金属膜をスパッタ法などで形成し、フォトリソグラフィなどの手段により振動部となる部分、電極引出し部分などのパターンを作製する。ミラーには反射膜としてAl膜などを蒸着する。最後に100〜200℃程度の温度でステンレス基板6を下部電極として上部電極4との間に数十Vの電圧を印加して圧電膜の分極処理を行い完成する。   Based on FIG. 2, the procedure of the process of the present embodiment will be described. First, as shown in FIG. 2A, a stainless substrate 6 having a thickness of several tens to several hundreds of μm is prepared, and next, as shown in FIG. A recess 5 having a depth of several mm × several to several tens of mm and a depth of several to several tens of μm is formed by half etching. Next, as shown in FIGS. 2C and 2D, the piezoelectric film 10 made of a piezoelectric ceramic material such as a lead zirconate titanate (PZT) system or a barium titanate (BT) system is formed in the recess 5. Are formed with a thickness of several to several tens of μm by the AD method. In this case, the shape and depth of the recess, the thickness of the piezoelectric film, etc. should be designed to values that can excite the vibration of the plate wave at such a frequency that the vibration of the substrate and the hinge part after the completion becomes a resonance state. Is desirable. After the piezoelectric film 10 is formed, heat treatment is performed at a temperature of 500 to 600 ° C. in the atmosphere. Thereafter, as shown in FIG. 2 (d), the entire stainless steel substrate 6 is mirror-polished, and then, as shown in FIG. 2 (f), the hinge portion 1, the mirror 2, the metal frame 3 and the like are predetermined by etching. Processing is performed to obtain the shape of the optical scanning element. Thereafter, as shown in FIG. 2G, a metal film is formed as the upper electrode 4 on the piezoelectric film 10 by a sputtering method or the like, and a pattern such as a portion to be a vibrating portion, an electrode lead-out portion is formed by means such as photolithography. Make it. An Al film or the like is deposited on the mirror as a reflective film. Finally, a voltage of several tens of volts is applied between the upper electrode 4 and the stainless steel substrate 6 as a lower electrode at a temperature of about 100 to 200 ° C. to complete the polarization treatment of the piezoelectric film.

図3は本発明による光走査素子の第2の実施の形態を示す図であり、図3(a)は平面図、図3(b)は図3(a)のB−B断面図である。図3において、本実施の形態による光走査素子は第1の実施の形態の光走査素子と同様に、金属基板に形成された、ミラー12と、ミラー12を保持するヒンジ部11と、ヒンジ部11を保持する金属フレーム13と、ヒンジ部11に捩れ振動を生じさせる振動部とを有し、振動部はヒンジ部11から離れた金属フレーム13上に形成された圧電膜10と上部電極14とからなる。本実施の形態の光走査素子においても、第1の実施の形態の光走査素子と同様に、圧電膜10が金属基板に形成された窪み15の中に形成されている。   3A and 3B are diagrams showing a second embodiment of the optical scanning element according to the present invention. FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along line BB in FIG. . In FIG. 3, the optical scanning element according to the present embodiment is similar to the optical scanning element according to the first embodiment. The mirror 12 is formed on a metal substrate, the hinge part 11 that holds the mirror 12, and the hinge part. 11, and a vibration part that generates torsional vibration in the hinge part 11, and the vibration part includes a piezoelectric film 10 and an upper electrode 14 formed on the metal frame 13 apart from the hinge part 11. Consists of. Also in the optical scanning element of the present embodiment, the piezoelectric film 10 is formed in the recess 15 formed in the metal substrate, similarly to the optical scanning element of the first embodiment.

但し、本実施の形態の光走査素子においては、金属基板として鉄(Fe)、Crを主成分とし、Alを3〜8%程度含有しているステンレス基板などを用い、窪み15を形成した後に、その基板を大気中にて熱処理を行うことにより基板表面に酸化アルミニウム皮膜17が形成されている。この皮膜は窒化処理により形成された窒化アルミニウム皮膜であってもよい。この酸化アルミニウムまたは窒化アルミニウムの皮膜が高温での熱処理による圧電膜10と基板との間の成分の拡散を防止する。これにより、圧電膜10の熱処理温度を600℃以上とすることができ、圧電膜の特性をより向上させることができる。窪み15に形成された酸化アルミニウム皮膜17上には下部電極18が形成されている。圧電膜の熱処理後、基板全体に鏡面研磨が施されている。   However, in the optical scanning element of the present embodiment, after forming the recess 15 using a stainless steel substrate containing iron (Fe) and Cr as main components and containing about 3 to 8% Al as a metal substrate. The aluminum oxide film 17 is formed on the substrate surface by heat-treating the substrate in the atmosphere. This film may be an aluminum nitride film formed by nitriding. This aluminum oxide or aluminum nitride film prevents diffusion of components between the piezoelectric film 10 and the substrate due to heat treatment at a high temperature. Thereby, the heat treatment temperature of the piezoelectric film 10 can be set to 600 ° C. or more, and the characteristics of the piezoelectric film can be further improved. A lower electrode 18 is formed on the aluminum oxide film 17 formed in the recess 15. After heat treatment of the piezoelectric film, the entire substrate is mirror-polished.

図4は本発明による光走査素子の製造方法の第2の実施の形態を説明するための製造工程図である。図4(a)は、ステンレス基板を示す図、図4(b)は、ハーフエッチング加工した状態を示す図、4(c)は、熱処理を施した状態を示す図、4(d)は、下部電極を形成した状態を示す図、4(e)は、圧電膜を形成した状態を示す図、4(f)は、熱処理を施した状態を示す図、4(g)は、鏡面研磨した状態を示す図、4(h)は、外形エッチング形成した状態を示す図、4(i)は、上部電極を形成した状態を示す図である。それぞれの工程図において、上方の図が平面図、下方の図が断面図である。本実施の形態の製造方法は、図4に示すように、ステンレス基板6の一部にハーフエッチング加工により窪み15を形成する工程と、窪み15の中に圧電膜10をAD法により形成する工程と、その後、熱処理を施す工程と、その後、ステンレス基板6の圧電膜10が形成された側の面を鏡面研磨する工程とを有している。さらに、エッチング加工により、ミラー等が所定の寸法になるように素子の形状を得る工程と、次に、圧電膜10上に上部電極4をスパッタ法等で形成する工程を有している。   FIG. 4 is a manufacturing process diagram for explaining a second embodiment of the method for manufacturing an optical scanning element according to the present invention. 4A is a diagram showing a stainless steel substrate, FIG. 4B is a diagram showing a half-etched state, 4C is a diagram showing a state after heat treatment, and FIG. The figure which shows the state which formed the lower electrode, 4 (e) is the figure which shows the state which formed the piezoelectric film, 4 (f) is the figure which shows the state which performed heat processing, 4 (g) is mirror-polished FIGS. 4 (h) and 4 (i) are diagrams showing the state where the outer shape is formed, and FIG. 4 (i) is a diagram showing the state where the upper electrode is formed. In each process drawing, the upper drawing is a plan view and the lower drawing is a sectional view. As shown in FIG. 4, the manufacturing method of the present embodiment includes a step of forming a recess 15 in a part of the stainless steel substrate 6 by half etching, and a step of forming the piezoelectric film 10 in the recess 15 by the AD method. And a step of performing a heat treatment, and then a step of mirror polishing the surface of the stainless steel substrate 6 on which the piezoelectric film 10 is formed. Further, there are a step of obtaining an element shape such that a mirror or the like has a predetermined dimension by etching, and a step of forming the upper electrode 4 on the piezoelectric film 10 by a sputtering method or the like.

図4に基づき、本実施の形態の工程の手順を説明する。先ず、図4(a)に示すように、百μmのステンレス基板6を準備し、次に、図4(b)示すように、振動部となる部分を含む領域に数mm×数〜十数mmの外形で深さ数〜百数十μmの窪み15をハーフエッチング加工により形成する。次に図4(c)示すように、この窪み15を形成したステンレス基板を大気中800〜1200℃で熱処理を行う。この熱処理によりステンレス基板の表面全体のAlが酸化され酸化アルミニウム皮膜17が形成される。次に、図4(d)に示すように、窪み15の酸化アルミニウム皮膜17上に下部電極として白金(Pt)などの金属膜をスパッタ法などで形成する。次に、図4(e)、図4(f)示すように、この窪み15の下部電極18の引出し部分以外の部分に圧電膜10をAD法によって数〜数十μmの厚さで形成する。この圧電膜10を形成後、大気中で600〜1100℃の温度で熱処理を行う。その後、図4(g)に示すように、ステンレス基板6全体に鏡面研磨を施した後、図4(h)に示すように、エッチング加工によりヒンジ部11、ミラー12、金属フレーム13などが所定の寸法となるように加工を施し、光走査素子の形状を得る。その後、図4(i)に示すように、圧電膜10上に上部電極14として金属膜をスパッタ法などで形成し、フォトリソグラフィなどの手段により振動部となる部分、電極引出し部分などのパターンを作製する。ミラーには反射膜としてAl膜などを蒸着する。最後に100〜200℃程度の温度で下部電極18と上部電極14との間に数十Vの電圧を印加して圧電膜の分極処理を行い完成する。   Based on FIG. 4, the procedure of the process of the present embodiment will be described. First, as shown in FIG. 4A, a stainless steel substrate 6 having a thickness of 100 μm is prepared, and then, as shown in FIG. A recess 15 having an outer shape of mm and a depth of several to several tens of μm is formed by half etching. Next, as shown in FIG.4 (c), the stainless steel substrate in which this hollow 15 was formed is heat-processed at 800-1200 degreeC in air | atmosphere. By this heat treatment, Al on the entire surface of the stainless steel substrate is oxidized and an aluminum oxide film 17 is formed. Next, as shown in FIG. 4D, a metal film such as platinum (Pt) is formed as a lower electrode on the aluminum oxide film 17 in the recess 15 by sputtering or the like. Next, as shown in FIGS. 4E and 4F, the piezoelectric film 10 is formed to a thickness of several to several tens of μm by the AD method in a portion other than the lead portion of the lower electrode 18 of the recess 15. . After the piezoelectric film 10 is formed, heat treatment is performed at a temperature of 600 to 1100 ° C. in the atmosphere. Thereafter, as shown in FIG. 4 (g), the entire stainless steel substrate 6 is mirror-polished, and then, as shown in FIG. 4 (h), the hinge portion 11, the mirror 12, the metal frame 13 and the like are predetermined by etching. Processing is performed to obtain the shape of the optical scanning element. Thereafter, as shown in FIG. 4 (i), a metal film is formed as an upper electrode 14 on the piezoelectric film 10 by a sputtering method or the like, and patterns such as a portion to be a vibrating portion and an electrode lead-out portion are formed by means such as photolithography. Make it. An Al film or the like is deposited on the mirror as a reflective film. Finally, a voltage of several tens of volts is applied between the lower electrode 18 and the upper electrode 14 at a temperature of about 100 to 200 ° C. to complete the polarization treatment of the piezoelectric film.

次に、本発明の効果を確認するため、上記の第1の実施の形態および第2の実施の形態の光走査素子の実施例、および従来の構造の光走査素子の比較例を作製し、評価を行った結果について説明する。   Next, in order to confirm the effect of the present invention, an example of the optical scanning element of the first embodiment and the second embodiment described above and a comparative example of the optical scanning element of the conventional structure are manufactured. The results of the evaluation will be described.

(実施例1)
第1の実施の形態の光走査素子の実施例を説明する。図2に示した第1の実施の形態の製造方法で作製した。金属基板の素材として厚さが50μmで、材料組成がFeを主成分としAl5%、Cr20%の比率のステンレス鋼を用いた。図5は基本的な光走査素子の外形形状を示す平面図である。図6は本実施例の窪みの位置および形状を示す平面図である。図5、図6における各部寸法は、a=4.0mm、b=3.0mm、c=4.5mm、d=2.0mm、e=0.5mm、f=0.5mm、g=0.3mm、h=1.0mmである。ステンレス基板に図6に示すような2.5mm×5.0mmの外形で深さ約10μmの窪み5をエッチング加工により形成した。この窪み5にチタン酸ジルコン酸鉛(PZT)系の圧電セラミック材料をAD法によって厚さ約10μm形成した。この圧電膜形成後、大気中600℃で熱処理を行った。その後基板全体に鏡面研磨を施し、エッチングにより図6に示す寸法となるように外形加工を施し、ヒンジ部1とミラー2、金属フレーム3を作製した。その後、圧電膜上に上部電極として金(Au)膜をスパッタ法で形成した。基板と上部電極との間に150℃で60Vの電圧を印加して圧電膜の分極処理を行い完成した。
Example 1
Examples of the optical scanning element according to the first embodiment will be described. It was manufactured by the manufacturing method of the first embodiment shown in FIG. As the metal substrate material, stainless steel having a thickness of 50 μm and a material composition of Fe as a main component and a ratio of Al 5% and Cr 20% was used. FIG. 5 is a plan view showing the outer shape of a basic optical scanning element. FIG. 6 is a plan view showing the position and shape of the recess of this embodiment. 5 and 6, the dimensions of each part are as follows: a = 4.0 mm, b = 3.0 mm, c = 4.5 mm, d = 2.0 mm, e = 0.5 mm, f = 0.5 mm, g = 0. 3 mm and h = 1.0 mm. A recess 5 having a 2.5 mm × 5.0 mm outer shape and a depth of about 10 μm as shown in FIG. 6 was formed on the stainless steel substrate by etching. In this recess 5, a lead zirconate titanate (PZT) piezoelectric ceramic material was formed to a thickness of about 10 μm by the AD method. After this piezoelectric film was formed, heat treatment was performed at 600 ° C. in the atmosphere. Thereafter, the entire substrate was mirror-polished and subjected to external processing so as to have the dimensions shown in FIG. 6 by etching, whereby the hinge part 1, the mirror 2, and the metal frame 3 were produced. Thereafter, a gold (Au) film was formed as an upper electrode on the piezoelectric film by a sputtering method. A voltage of 60 V was applied at 150 ° C. between the substrate and the upper electrode to complete the polarization treatment of the piezoelectric film.

(実施例2)
第2の実施の形態の光走査素子の実施例を説明する。図4に示した第2の実施の形態の製造工程で作製した。金属基板の素材としては、実施例1と同じ厚さおよび組成のステンレス鋼を用いた。基本的な光走査素子の外形形状も実施例1と同じ図5の形状であり、窪みの形状および位置も実施例1と同様に図6に示す形状である。次にこの窪みを形成したステンレス基板を大気中1000℃で熱処理を行った。この熱処理によりステンレス基板の表面のAlが酸化され酸化皮膜が形成された。窪みの皮膜上に図4の製造工程に示したように下部電極としてPtをスパッタ法で形成した。その下部電極上にPZT系圧電材料をAD法により厚さ約10μm形成した。この圧電膜形成後、大気中850℃で熱処理を行った。その後基板全体に鏡面研磨を施し、エッチングにより図6に示す寸法となるように外形加工を施し、ヒンジ部とミラー、金属フレームを作製した。その後、圧電膜上に上部電極としてAu膜をスパッタ法で形成した。圧電膜の下部電極と上部電極との間に150℃で60Vの電圧を印加して圧電膜の分極処理を行い、実施例2の光走査素子が完成した。
(Example 2)
An example of the optical scanning element according to the second embodiment will be described. It was manufactured in the manufacturing process of the second embodiment shown in FIG. As the material for the metal substrate, stainless steel having the same thickness and composition as in Example 1 was used. The basic outer shape of the optical scanning element is the same as that shown in FIG. 5 as in the first embodiment, and the shape and position of the recess is the same as that shown in FIG. Next, the stainless steel substrate on which this depression was formed was heat-treated at 1000 ° C. in the atmosphere. By this heat treatment, Al on the surface of the stainless steel substrate was oxidized and an oxide film was formed. As shown in the manufacturing process of FIG. 4, Pt was formed as a lower electrode on the hollow film by sputtering. A PZT piezoelectric material having a thickness of about 10 μm was formed on the lower electrode by the AD method. After forming this piezoelectric film, heat treatment was performed at 850 ° C. in the atmosphere. Thereafter, the entire substrate was mirror-polished and subjected to external processing so as to have the dimensions shown in FIG. 6 by etching to produce a hinge portion, a mirror, and a metal frame. Thereafter, an Au film was formed as an upper electrode on the piezoelectric film by a sputtering method. The piezoelectric film was polarized by applying a voltage of 60 V at 150 ° C. between the lower electrode and the upper electrode of the piezoelectric film to complete the optical scanning element of Example 2.

(実施例3)
本実施例の基本的な構造は実施例2と同じである。但し圧電膜の材料が実施例2とは異なっている。金属基板の素材としては、実施例2と同じ厚さおよび組成のステンレス鋼を用いた。基本的な光走査素子の外形形状も実施例2と同じ図5の形状であり、窪みの形状および位置も実施例2と同様に図6に示す形状である。次にこの窪みを形成したステンレス基板を実施例2と同様に大気中1000℃で熱処理を行い、この熱処理によりステンレス基板の表面のAlが酸化され酸化皮膜が形成された。窪みの酸化皮膜上に下部電極としてPtをスパッタ法で形成した。本実施例においては、その下部電極上にチタン酸バリウム(BT)系圧電セラミック材料をAD法により厚さ約10μm形成した。この圧電膜形成後、大気中1000℃で熱処理を行った。その後基板全体に鏡面研磨を施し、エッチングにより図6に示す寸法となるように外形加工を施し、ヒンジ部とミラー、金属フレームを作製した。その後、圧電膜上に上部電極としてAu膜をスパッタ法で形成した。圧電膜の下部電極と上部電極との間に180℃で60Vの電圧を印加して圧電膜の分極処理を行い、実施例3の光学走査素子が完成した。
(Example 3)
The basic structure of this embodiment is the same as that of the second embodiment. However, the material of the piezoelectric film is different from that of the second embodiment. As the material of the metal substrate, stainless steel having the same thickness and composition as in Example 2 was used. The basic outer shape of the optical scanning element is the same as that shown in FIG. 5 as in the second embodiment, and the shape and position of the recess is the same as that shown in FIG. Next, the stainless steel substrate in which this depression was formed was heat-treated at 1000 ° C. in the atmosphere in the same manner as in Example 2. By this heat treatment, Al on the surface of the stainless steel substrate was oxidized to form an oxide film. Pt was formed by sputtering as a lower electrode on the recessed oxide film. In this example, a barium titanate (BT) piezoelectric ceramic material was formed on the lower electrode by an AD method to a thickness of about 10 μm. After this piezoelectric film was formed, heat treatment was performed at 1000 ° C. in the atmosphere. Thereafter, the entire substrate was mirror-polished and subjected to external processing so as to have the dimensions shown in FIG. 6 by etching to produce a hinge portion, a mirror, and a metal frame. Thereafter, an Au film was formed as an upper electrode on the piezoelectric film by a sputtering method. The piezoelectric film was polarized by applying a voltage of 60 V at 180 ° C. between the lower electrode and the upper electrode of the piezoelectric film to complete the optical scanning element of Example 3.

(比較例1)
比較例1の光走査素子の金属基板の素材、ヒンジ部、ミラー、金属フレームの外形形状、および圧電膜の材料は実施例1と同じである。但し、本比較例においては、窪みは形成されていない。また、ステンレス基板全体に鏡面研磨を施した後、エッチングにより図6に示す寸法となるように外形加工を施し、ヒンジ部とミラー、金属フレームを作製した。その後、チタン酸ジルコン酸鉛(PZT)系の圧電セラミック材料をAD法によって厚さ約10μm形成した。この圧電膜形成後、大気中600℃で熱処理を行った。その後、実施例1と同様に圧電膜上に上部電極としてAu膜をスパッタ法で形成した。ステンレス基板を下部電極として上部電極との間に150℃で60Vの電圧を印加して圧電膜の分極処理を行い、比較例1の光走査素子を完成させた。
(Comparative Example 1)
The material of the metal substrate, hinge part, mirror, outer shape of the metal frame, and material of the piezoelectric film of the optical scanning element of Comparative Example 1 are the same as those of Example 1. However, no depression is formed in this comparative example. Further, the entire stainless steel substrate was subjected to mirror polishing, and then subjected to external processing so as to have the dimensions shown in FIG. 6 by etching to produce a hinge portion, a mirror, and a metal frame. Thereafter, a lead zirconate titanate (PZT) piezoelectric ceramic material was formed to a thickness of about 10 μm by the AD method. After this piezoelectric film was formed, heat treatment was performed at 600 ° C. in the atmosphere. Thereafter, similarly to Example 1, an Au film was formed on the piezoelectric film as an upper electrode by sputtering. The piezoelectric film was polarized by applying a voltage of 60 V at 150 ° C. between the upper electrode and a stainless steel substrate as the lower electrode, and the optical scanning element of Comparative Example 1 was completed.

(比較例2)
比較例2の光走査素子の金属基板の素材、ヒンジ部、ミラー、金属フレームの外形形状、および圧電膜の材料は実施例2と同じである。但し、本比較例においては、窪みは形成されていない。また、ステンレス基板全体に鏡面研磨を施した後、エッチングにより図6に示す寸法となるように外形加工を施し、ヒンジ部とミラー、金属フレームを作製した。その後、これを大気中1000℃で熱処理を行った。この熱処理によりステンレス基板の表面のAlが酸化され酸化皮膜が形成された。この酸化皮膜上に下部電極としてPtをスパッタ法で形成し、その下部電極上にPZT系圧電材料をAD法により厚さ約10μm形成した。この圧電膜を形成後、大気中850℃で熱処理を行った。その後、圧電膜上に上部電極としてAu膜をスパッタ法で形成した。下部電極と上部電極との間に150℃で60Vの電圧を印加して圧電膜の分極処理を行い、比較例2の光走査素子を完成させた。
(Comparative Example 2)
The material of the metal substrate, the hinge part, the mirror, the outer shape of the metal frame, and the material of the piezoelectric film of the optical scanning element of Comparative Example 2 are the same as those of Example 2. However, no depression is formed in this comparative example. Further, the entire stainless steel substrate was subjected to mirror polishing, and then subjected to external processing so as to have the dimensions shown in FIG. 6 by etching to produce a hinge portion, a mirror, and a metal frame. Then, this was heat-processed at 1000 degreeC in air | atmosphere. By this heat treatment, Al on the surface of the stainless steel substrate was oxidized and an oxide film was formed. On this oxide film, Pt was formed as a lower electrode by a sputtering method, and a PZT piezoelectric material was formed on the lower electrode by an AD method to a thickness of about 10 μm. After forming this piezoelectric film, heat treatment was performed at 850 ° C. in the atmosphere. Thereafter, an Au film was formed as an upper electrode on the piezoelectric film by a sputtering method. A voltage of 60 V was applied between the lower electrode and the upper electrode at 150 ° C. to polarize the piezoelectric film, and the optical scanning element of Comparative Example 2 was completed.

(比較例3)
比較例3の光走査素子の金属基板の素材、ヒンジ部、ミラー、金属フレームの外形形状、および圧電膜の材料は実施例3と同じである。但し、本比較例においては、窪みは形成されていない。また、ステンレス基板全体に鏡面研磨を施した後、エッチングにより図6に示す寸法となるように外形加工を施し、ヒンジ部とミラー、金属フレームを作製した。その後、これを大気中1000℃で熱処理を行った。この熱処理によりステンレス基板の表面のAlが酸化され酸化皮膜が形成された。この酸化皮膜上に下部電極としてPtをスパッタ法で形成し、その下部電極上にBT系圧電材料をAD法により厚さ約10μm形成した。この圧電膜を形成後、大気中1000℃で熱処理を行った。その後、圧電膜上に上部電極としてAu膜をスパッタ法で形成した。下部電極と上部電極との間に80℃で60Vの電圧を印加して圧電膜の分極処理を行い、比較例3の光走査素子を完成させた。
(Comparative Example 3)
The material of the metal substrate, the hinge part, the mirror, the outer shape of the metal frame, and the material of the piezoelectric film of the optical scanning element of Comparative Example 3 are the same as those of Example 3. However, no depression is formed in this comparative example. Further, the entire stainless steel substrate was subjected to mirror polishing, and then subjected to external processing so as to have the dimensions shown in FIG. 6 by etching to produce a hinge portion, a mirror, and a metal frame. Then, this was heat-processed at 1000 degreeC in air | atmosphere. By this heat treatment, Al on the surface of the stainless steel substrate was oxidized and an oxide film was formed. On this oxide film, Pt was formed as a lower electrode by sputtering, and a BT piezoelectric material was formed on the lower electrode by an AD method to a thickness of about 10 μm. After forming this piezoelectric film, heat treatment was performed at 1000 ° C. in the atmosphere. Thereafter, an Au film was formed as an upper electrode on the piezoelectric film by a sputtering method. A voltage of 60 V was applied between the lower electrode and the upper electrode at 80 ° C. to polarize the piezoelectric film, and the optical scanning element of Comparative Example 3 was completed.

上記の実施例および比較例の光走査素子の特性評価を行った。評価は圧電膜に電圧を正弦波で0−40V印加し、ミラーに照射したレーザー光の反射スポットの走査角とスポットのぼやけ具合により光走査素子の良否を判定した。この結果、比較例1では光走査素子としての動作は確認されたが反射スポットに多少ぼやけが確認された。比較例2、3では、圧電膜形成後の熱処理によりヒンジ部に撓みや変形が確認され、光走査素子としての動作が確認されない結果となった。またミラー面の表面粗さも大きくなっており光走査素子として適用が困難な状態になっていることが確認された。一方、実施例1、2、3ではいずれの素子でも光走査素子として適用可能な動作が確認された。   The characteristics of the optical scanning elements of the above examples and comparative examples were evaluated. In the evaluation, a voltage of 0 to 40 V was applied as a sine wave to the piezoelectric film, and the quality of the optical scanning element was determined based on the scanning angle of the reflected spot of the laser beam irradiated onto the mirror and the spot blurring. As a result, in Comparative Example 1, the operation as the optical scanning element was confirmed, but the reflection spot was slightly blurred. In Comparative Examples 2 and 3, the hinge part was confirmed to be bent or deformed by the heat treatment after the piezoelectric film was formed, and the operation as an optical scanning element was not confirmed. Further, it was confirmed that the surface roughness of the mirror surface was increased, making it difficult to apply as an optical scanning element. On the other hand, in Examples 1, 2, and 3, it was confirmed that any element can be applied as an optical scanning element.

以上のように、本発明により、圧電膜の特性を向上させ、かつ、ミラーの反射性能を低下させない光走査素子が得られることを確認できた。   As described above, it has been confirmed that the present invention can provide an optical scanning element that improves the characteristics of the piezoelectric film and does not deteriorate the reflection performance of the mirror.

なお、本発明は上記の実施の形態や実施例に限定されるものではないことはいうまでもなく、目的や用途に応じて設計変更可能である。例えば、ミラーやヒンジ部、金属フレームの形状、大きさ、圧電膜からなる振動部分の位置や形状、大きさ、金属基板の形状、大きさ、厚さなど、公知の光走査素子と同様に、目的とする光走査角、光スポット形状、走査速度などに応じて最適な構成とするよう設計でき、それに合わせて窪みの形状、深さ、圧電膜の厚さなどを最適に設計できる。また、本発明の製造方法においては、圧電膜は窪みの中だけでなく、金属基板の表面全体に形成して、後の鏡面研磨の時に窪み以外の部分の圧電膜を除去しても良い。   It goes without saying that the present invention is not limited to the above-described embodiments and examples, and the design can be changed according to the purpose and application. For example, like the known optical scanning element, such as the shape and size of the mirror and hinge part, the metal frame, the position and shape and size of the vibration part made of the piezoelectric film, the shape, size and thickness of the metal substrate, It can be designed to have an optimum configuration according to the target light scanning angle, light spot shape, scanning speed, etc., and the shape, depth, thickness of the piezoelectric film, etc. can be optimally designed accordingly. Further, in the manufacturing method of the present invention, the piezoelectric film may be formed not only in the recess, but on the entire surface of the metal substrate, and the piezoelectric film in portions other than the recess may be removed during the subsequent mirror polishing.

1、11、21 ヒンジ部
2、12、22 ミラー
3、13、20 金属フレーム
4、14 上部電極
5、15 窪み
6 ステンレス基板
10 圧電膜
17 酸化アルミニウム皮膜
18 下部電極
1, 11, 21 Hinge part 2, 12, 22 Mirror 3, 13, 20 Metal frame 4, 14 Upper electrode 5, 15 Recess 6 Stainless steel substrate 10 Piezoelectric film 17 Aluminum oxide film 18 Lower electrode

Claims (2)

金属基板に形成された、ミラーと、前記ミラーを保持するヒンジ部と、前記ヒンジ部に捩れ振動を生じさせる振動部とを有し、前記振動部は前記金属基板上に形成された圧電膜と電極とからなる光走査素子において、前記圧電膜は前記金属基板に形成された窪みの中に形成されていることを特徴とする光走査素子。   A mirror formed on a metal substrate; a hinge portion that holds the mirror; and a vibration portion that generates torsional vibration in the hinge portion, wherein the vibration portion includes a piezoelectric film formed on the metal substrate; An optical scanning element comprising electrodes, wherein the piezoelectric film is formed in a recess formed in the metal substrate. 前記金属基板の一部にハーフエッチング加工により前記窪みを形成する工程と、前記窪みの中、又は前記金属基板上の全面に前記圧電膜をエアロゾルデポジション法により形成する工程と、その後、熱処理を施す工程と、さらに、前記金属基板の前記圧電膜が形成された側の面を鏡面研磨する工程とを有することを特徴とする請求項1記載の光走査素子の製造方法。   A step of forming the recess by half-etching in a part of the metal substrate; a step of forming the piezoelectric film in the recess or on the entire surface of the metal substrate by an aerosol deposition method; and a heat treatment thereafter. 2. The method of manufacturing an optical scanning element according to claim 1, further comprising a step of mirror polishing the surface of the metal substrate on which the piezoelectric film is formed.
JP2010190404A 2010-08-27 2010-08-27 Optical scanning element and manufacturing method thereof Expired - Fee Related JP5358536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010190404A JP5358536B2 (en) 2010-08-27 2010-08-27 Optical scanning element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010190404A JP5358536B2 (en) 2010-08-27 2010-08-27 Optical scanning element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012047994A true JP2012047994A (en) 2012-03-08
JP5358536B2 JP5358536B2 (en) 2013-12-04

Family

ID=45902939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010190404A Expired - Fee Related JP5358536B2 (en) 2010-08-27 2010-08-27 Optical scanning element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5358536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100829A1 (en) * 2020-11-12 2022-05-19 Huawei Technologies Co., Ltd. Deflection device with a mirror for use in scanner technical field

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259196A (en) * 2005-03-17 2006-09-28 Brother Ind Ltd Optical reflection element, optical reflector, wavefront curvature modulator, and optical scanning type display apparatus
JP2009186652A (en) * 2008-02-05 2009-08-20 Brother Ind Ltd Optical scanner
JP2010044234A (en) * 2008-08-13 2010-02-25 National Institute Of Advanced Industrial & Technology Optical scanner
JP2010107572A (en) * 2008-10-28 2010-05-13 Shinano Kenshi Co Ltd Optical scanner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259196A (en) * 2005-03-17 2006-09-28 Brother Ind Ltd Optical reflection element, optical reflector, wavefront curvature modulator, and optical scanning type display apparatus
JP2009186652A (en) * 2008-02-05 2009-08-20 Brother Ind Ltd Optical scanner
JP2010044234A (en) * 2008-08-13 2010-02-25 National Institute Of Advanced Industrial & Technology Optical scanner
JP2010107572A (en) * 2008-10-28 2010-05-13 Shinano Kenshi Co Ltd Optical scanner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100829A1 (en) * 2020-11-12 2022-05-19 Huawei Technologies Co., Ltd. Deflection device with a mirror for use in scanner technical field

Also Published As

Publication number Publication date
JP5358536B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
CN102959454B (en) Optical reflection element
JP4984117B2 (en) Two-dimensional optical scanner, optical device using the same, and method for manufacturing two-dimensional optical scanner
US7394583B2 (en) Light-beam scanning device
CN112912784B (en) Micromirror device and driving method of micromirror device
JP5157499B2 (en) Optical scanner
JP2005128147A (en) Optical deflector and optical apparatus using the same
JP6451078B2 (en) Optical scanning device
JP2010148265A (en) Meander type oscillator and optical reflective element using the same
JP2009258210A (en) Optical reflection element
JP2016114798A (en) Optical deflector and manufacturing method for optical deflector
JP5358536B2 (en) Optical scanning element and manufacturing method thereof
JP2013160891A (en) Oscillation mirror element and electronic apparatus with projector function
JP5040558B2 (en) Piezoelectric conversion element, actuator, sensor, optical scanning device, and optical scanning display device
JP5045470B2 (en) Optical reflection element
JP5713444B2 (en) Lamb wave resonance piezoelectric drive type optical scanning device
JP7015411B2 (en) Piezoelectric vibration substrate and piezoelectric vibration element
JP2014142517A (en) Oscillation mirror element and electronic apparatus having projector function
JP6189766B2 (en) Piezoelectric parts, light source device and printing device
JP4620789B1 (en) Optical scanning device
WO2020218585A1 (en) Micromirror device
JP5045463B2 (en) Optical reflection element
WO2021215328A1 (en) Micromirror device
JP5045532B2 (en) Optical reflection element
JP2009244602A (en) Optical reflection element
JP2009192781A (en) Optical reflecting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees