JP2012047438A - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
JP2012047438A
JP2012047438A JP2011090845A JP2011090845A JP2012047438A JP 2012047438 A JP2012047438 A JP 2012047438A JP 2011090845 A JP2011090845 A JP 2011090845A JP 2011090845 A JP2011090845 A JP 2011090845A JP 2012047438 A JP2012047438 A JP 2012047438A
Authority
JP
Japan
Prior art keywords
tube
section
refrigerant
leeward
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011090845A
Other languages
Japanese (ja)
Other versions
JP5693346B2 (en
Inventor
Osamu Kamoshita
理 鴨志田
Naohisa Higashiyama
直久 東山
基之 ▲高▼木
Motoyuki Takagi
Takashi Hirayama
貴司 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2011090845A priority Critical patent/JP5693346B2/en
Priority to US13/067,399 priority patent/US10047984B2/en
Priority to CN201110158833.7A priority patent/CN102287970B/en
Priority to CN2011201991978U priority patent/CN202188700U/en
Publication of JP2012047438A publication Critical patent/JP2012047438A/en
Application granted granted Critical
Publication of JP5693346B2 publication Critical patent/JP5693346B2/en
Priority to US15/963,998 priority patent/US10393416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an evaporator capable of improving cooling performance.SOLUTION: A leeward tube row 11 of this evaporator 1 is provided with first to third tube groups 11A, 11B, 11C, and a windward tube row 12 thereof is provided with fourth and fifth tube groups. Within a third section 17 of a leeward upper header portion 5 with which heat exchange tubes 9 of the third tube group 11C communicate, a resistance member 36 for flow division is provided so as to divide the interior of the third section 17 into a first space 38 which the heat exchange tubes 9 face, and a second space 37 which is separated from the first space 38 and into which refrigerant flows, and a plurality of refrigerant passage holes 39 are formed on the resistance member 36 for flow division. The leeward upper header portion 5 has a flow cutoff member 41 for preventing flow of the refrigerant into the first space 38 of the third section 17. The third section 17 of the leeward upper header portion 5 communicates with a fourth section of the windward upper header portion 6 via refrigerant communication passages.

Description

この発明は、たとえば自動車に搭載される冷凍サイクルであるカーエアコンに好適に使用されるエバポレータに関する。   The present invention relates to an evaporator suitably used for a car air conditioner that is a refrigeration cycle mounted on an automobile, for example.

この明細書および特許請求の範囲において、図2、図3、図10および図11の上下を上下というものとする。   In this specification and claims, the top and bottom of FIGS. 2, 3, 10 and 11 are referred to as top and bottom.

この種のエバポレータとして、上下方向にのびるとともに通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなり、かつ通風方向に並んで設けられた2列のチューブ列と、風下側チューブ列の上下両側に設けられた風下側上下両ヘッダ部と、風上側チューブ列の上下両側に設けられた風上側上下両ヘッダ部とを備えており、風下側チューブ列に、複数の熱交換チューブからなる3以上のチューブ群が設けられ、風上側チューブ列に、複数の熱交換チューブからなりかつ風下側チューブ列のチューブ群の数よりも1つ少ないチューブ群が設けられ、風下側上下両ヘッダ部に、風下側チューブ列のチューブ群の数と同数の区画が設けられるとともに、各区画に風下側チューブ列の各チューブ群の熱交換チューブが通じさせられ、風上側上下両ヘッダ部に、風上側チューブ列のチューブ群の数と同数の区画が設けられるとともに、各区画に風上側チューブ列の各チューブ群の熱交換チューブが通じさせられ、風下側上下両ヘッダ部のうちのいずれか一方のヘッダ部における一端の区画に冷媒入口が設けられ、風上側上下両ヘッダ部のうちの冷媒入口が設けられた風下側ヘッダ部と同じ側のヘッダ部における冷媒入口と同一端の区画に冷媒出口が設けられ、風下側チューブ列における冷媒入口から最も遠い位置にある最遠チューブ群の熱交換チューブ内の冷媒の流れ方向と、風上側チューブ列における冷媒出口から最も遠い位置にある最遠チューブ群の熱交換チューブ内の冷媒の流れ方向とが同一方向となっており、通風方向に並んで設けられるとともに熱交換チューブ内の冷媒の流れ方向が同一方向である上記2つの最遠チューブ群により1つのパスが構成されているエバポレータが提案されている(特許文献1参照)。   As an evaporator of this type, two rows of tube rows that are arranged in the direction of ventilation and are composed of a plurality of heat exchange tubes that extend in the vertical direction and are arranged at intervals in a direction perpendicular to the direction of ventilation; The leeward side upper and lower header sections provided on the upper and lower sides of the leeward side tube row and the leeward side upper and lower header parts provided on the upper and lower sides of the windward side tube row are provided. Three or more tube groups consisting of heat exchange tubes are provided, and a tube group consisting of a plurality of heat exchange tubes and one tube group less than the number of tube groups in the leeward tube row is provided in the leeward side tube row. The upper and lower header sections are provided with the same number of sections as the number of tube groups in the leeward tube row, and the heat exchange tubes of each tube group in the leeward tube row communicate with each section. The windward upper and lower header sections are provided with the same number of sections as the number of tube groups in the windward tube row, and the heat exchange tubes of each tube group in the windward tube row are passed through each section, The header portion on the same side as the leeward header portion provided with the refrigerant inlet in one of the header portions of the upper and lower header portions and having the refrigerant inlet of the upper and lower header portions The refrigerant outlet is provided in a section at the same end as the refrigerant inlet, and the refrigerant flow direction in the heat exchange tube of the farthest tube group located farthest from the refrigerant inlet in the leeward tube row and the refrigerant in the windward tube row The flow direction of the refrigerant in the heat exchange tube of the farthest tube group located farthest from the outlet is the same direction, and is arranged side by side in the ventilation direction and heat exchange Flow direction of the refrigerant in the cube is an evaporator in which the two single pass by the farthest tube group are configured have been proposed in the same direction (see Patent Document 1).

特許文献1記載のエバポレータによれば、スーパーヒート領域のある最終パスでの通路抵抗の増加を抑制することが可能になる。   According to the evaporator described in Patent Document 1, it is possible to suppress an increase in passage resistance in the final pass having the superheat region.

ところで、特許文献1記載の形式のエバポレータにおいては、冷却性能の向上を目的として、冷媒入口および冷媒出口から最も遠い位置にあり、かつ通風方向に並んで設けられて1つのパスを構成しているとともに熱交換チューブ内の冷媒の流れ方向が同一方向である2つのチューブ群の熱交換チューブ内を流れる冷媒量を均一化することが求められる。   By the way, in the evaporator of the type of patent document 1, in order to improve cooling performance, it is located farthest from the refrigerant inlet and the refrigerant outlet, and is provided side by side in the ventilation direction to constitute one path. At the same time, it is required to equalize the amount of refrigerant flowing in the heat exchange tubes of the two tube groups in which the flow directions of the refrigerant in the heat exchange tubes are the same.

そこで、特許文献1記載の1つのエバポレータおいては、風下側最遠区画と風上側最遠区画とが、熱交換コア部の横方向に突出するように設けられた連通手段により通じさせられている。しかしながら、この場合、連通手段が熱交換コア部の横方向に突出しているので、エバポレータを配置する際にデッドスペースが生じるという問題がある。   Therefore, in one evaporator described in Patent Document 1, the leeward farthest section and the windward furthest section are communicated by communication means provided so as to protrude in the lateral direction of the heat exchange core portion. Yes. However, in this case, since the communication means protrudes in the lateral direction of the heat exchange core part, there is a problem that a dead space is generated when the evaporator is disposed.

また、上特許文献1記載の他の1つのエバポレータにおいては、風下側最遠区画と風上側最遠区画との間に仕切壁が設けられるとともに、当該仕切壁に両最遠区画どうしを通じさせる連通穴が形成され、連通穴が、熱交換チューブにおける両最遠区画側の端部よりも上下方向外側に形成されている。しかしながら、両最遠区画が熱交換チューブの上側に位置する場合、連通穴が熱交換チューブの上端よりも上方に位置するので、風下側最遠区画内に流入した冷媒は、重力の影響によって、風下側チューブ列の最遠チューブ群の熱交換チューブ内に多量に流入する。したがって、通風方向に並んで設けられて1つのパスを構成しているとともに熱交換チューブ内の冷媒の流れ方向が同一方向である2つの最遠チューブ群の熱交換チューブ内を流れる冷媒量を均一化する効果が不十分である。一方、両最遠区画が熱交換チューブの下側に位置する場合、連通穴が熱交換チューブの下端よりも下方に位置するので、冷媒流量が変化した際に、風下側最遠区画内に流入した冷媒は、風下側チューブ列の最遠チューブ群の熱交換チューブ内に多量に流入する。したがって、通風方向に並んで設けられて1つのパスを構成しているとともに熱交換チューブ内の冷媒の流れ方向が同一方向である2つの最遠チューブ群の熱交換チューブ内を流れる冷媒量を均一化する効果が不十分である。   Further, in another evaporator described in Patent Document 1, a partition wall is provided between the leeward farthest section and the windward farthest section, and communication between the farthest sections is allowed to pass through the partition wall. A hole is formed, and the communication hole is formed on the outer side in the vertical direction with respect to the end portions on both farthest section sides of the heat exchange tube. However, when both farthest sections are located on the upper side of the heat exchange tube, since the communication hole is located above the upper end of the heat exchange tube, the refrigerant flowing into the leeward farthest section is affected by gravity. A large amount flows into the heat exchange tubes of the farthest tube group in the leeward side tube row. Accordingly, the amount of refrigerant flowing in the heat exchange tubes of the two farthest tube groups, which are provided side by side in the ventilation direction and constitute one path and the flow direction of the refrigerant in the heat exchange tubes is the same direction, is uniform. Effect is not sufficient. On the other hand, when both farthest sections are located on the lower side of the heat exchange tube, the communication hole is located below the lower end of the heat exchange tube, so when the refrigerant flow rate changes, it flows into the leeward farthest section. A large amount of the refrigerant flows into the heat exchange tubes of the farthest tube group in the leeward tube row. Accordingly, the amount of refrigerant flowing in the heat exchange tubes of the two farthest tube groups, which are provided side by side in the ventilation direction and constitute one path and the flow direction of the refrigerant in the heat exchange tubes is the same direction, is uniform. Effect is not sufficient.

特開2009−156532号公報JP 2009-156532 A

この発明の目的は、上記問題を解決し、冷媒入口および冷媒出口から最も遠い位置にあり、かつ通風方向に並んで設けられて1つのパスを構成しているとともに熱交換チューブ内の冷媒の流れ方向が同一方向である2つのチューブ群の熱交換チューブ内を流れる冷媒量を均一化して冷却性能を向上しうるエバポレータを提供することにある。   The object of the present invention is to solve the above-mentioned problem, and is located farthest from the refrigerant inlet and the refrigerant outlet and arranged side by side in the ventilation direction to constitute one path and the flow of the refrigerant in the heat exchange tube An object of the present invention is to provide an evaporator that can improve the cooling performance by uniformizing the amount of refrigerant flowing in the heat exchange tubes of two tube groups having the same direction.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)上下方向にのびるとともに通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなり、かつ通風方向に並んで設けられた2列のチューブ列と、風下側チューブ列の上下両側に設けられた風下側上下両ヘッダ部と、風上側チューブ列の上下両側に設けられた風上側上下両ヘッダ部とを備えており、両チューブ列に、それぞれ複数の熱交換チューブからなる複数のチューブ群が設けられ、風下側上下両ヘッダ部に、風下側チューブ列のチューブ群の数と同数の区画が設けられるとともに、各区画に風下側チューブ列の各チューブ群の熱交換チューブが通じさせられ、風上側上下両ヘッダ部に、風上側チューブ列のチューブ群の数と同数の区画が設けられるとともに、各区画に風上側チューブ列の各チューブ群の熱交換チューブが通じさせられ、風下側上下両ヘッダ部のうちのいずれか一方のヘッダ部における一端の区画に冷媒入口が設けられ、風上側上下両ヘッダ部のうちの冷媒入口が設けられた風下側ヘッダ部と同じ側のヘッダ部における冷媒入口と同一端の区画に冷媒出口が設けられ、風下側チューブ列における冷媒入口から最も遠い位置にある最遠チューブ群の熱交換チューブ内の冷媒の流れ方向と、風上側チューブ列における冷媒出口から最も遠い位置にある最遠チューブ群の熱交換チューブ内の冷媒の流れ方向とが同一方向となっており、通風方向に並んで設けられるとともに熱交換チューブ内の冷媒の流れ方向が同一方向である上記2つの最遠チューブ群により1つのパスが構成されているエバポレータにおいて、
風下側チューブ列の最遠チューブ群の熱交換チューブが通じさせられた冷媒流れ方向上流側の風下側最遠区画に、当該風下側最遠区画内を熱交換チューブが臨む第1空間と、第1空間から隔てられかつ風下側最遠区画の冷媒入口側に隣り合う区画から冷媒が流入する第2空間とに分ける分流用抵抗部材が設けられ、分流用抵抗部材に冷媒通過穴が形成され、風下側最遠区画の第2空間と、風上側チューブ列の最遠チューブ群の熱交換チューブが通じさせられた冷媒流れ方向上流側の風上側最遠区画とが冷媒連通路によって通じさせられているエバポレータ。
1) Two rows of tubes arranged in the direction of ventilation and arranged side by side in the direction perpendicular to the direction of ventilation, and two rows of tubes arranged side by side in the direction of ventilation The leeward side upper and lower header portions provided on the upper and lower sides of the windward side, and the windward side upper and lower header portions provided on the upper and lower sides of the windward side tube row are provided. A plurality of tube groups are provided, and the same number of sections as the number of tube groups in the leeward side tube row are provided in the leeward side upper and lower header portions, and each tube group in the leeward side tube row is provided with heat exchange tubes And the same number of sections as the number of tube groups of the windward side tube row are provided in the windward upper and lower header portions, and heat exchange of each tube group of the windward side tube row is provided in each zone. The leeward header is provided with a refrigerant inlet at one end of either one of the leeward upper and lower headers, and the refrigerant inlet of the leeward upper and lower headers. The refrigerant outlet is provided in a section at the same end as the refrigerant inlet in the header part on the same side as the part, and the flow direction of the refrigerant in the heat exchange tube of the farthest tube group located farthest from the refrigerant inlet in the leeward tube row The flow direction of the refrigerant in the heat exchange tube of the farthest tube group located farthest from the refrigerant outlet in the windward tube row is the same direction, and is provided side by side in the ventilation direction and in the heat exchange tube In the evaporator in which one path is constituted by the two farthest tube groups in which the flow direction of the refrigerant is the same direction,
A first space where the heat exchange tube faces the leeward farthest section in the leeward farthest section upstream of the refrigerant flow direction through which the heat exchange tubes of the farthest tube group of the leeward tube row are connected; A shunting resistance member is provided that divides the second space into which refrigerant flows from a section adjacent to the refrigerant inlet side of the leeward farthest section separated from one space, and a refrigerant passage hole is formed in the shunting resistance member; The second space of the leeward farthest section and the furthest furthest section on the upstream side in the refrigerant flow direction through which the heat exchange tubes of the farthest tube group of the windward tube row are communicated are connected by the refrigerant communication path. The evaporator.

2)風下側最遠区画が設けられたヘッダ部に、風下側最遠区画の第1空間への冷媒の流れを遮断する流れ遮断部材が設けられている上記1)記載のエバポレータ。   2) The evaporator according to 1) above, wherein a flow blocking member that blocks the flow of the refrigerant to the first space in the leeward farthest section is provided in the header section provided with the leeward farthest section.

3)冷媒通過穴の合計断面積をA、冷媒連通路の合計断面積をBとした場合、B>Aの関係を満たす上記1)または2)記載のエバポレータ。   3) The evaporator according to the above 1) or 2), wherein A represents the total cross-sectional area of the refrigerant passage hole and B represents the total cross-sectional area of the refrigerant communication path, and satisfies the relationship B> A.

4)風下側最遠区画の第2空間から風上側最遠区画内への冷媒の流入を促進する促進部材を備えている上記1)〜3)のうちのいずれかに記載のエバポレータ。   4) The evaporator according to any one of the above items 1) to 3), which includes an accelerating member that promotes the inflow of refrigerant from the second space of the leeward farthest section into the furthest furthest section.

5)促進部材が、風下側最遠区画が設けられたヘッダ部に設けられている上記4)記載のエバポレータ。   5) The evaporator according to 4) above, wherein the accelerating member is provided in a header portion provided with a leeward farthest section.

6)促進部材が、風下側最遠区画の第2空間内に冷媒が流入する入口部分の風下側に設けられるとともに、上記第2空間内の風下側への冷媒の流入を阻害する邪魔板からなる上記5)記載のエバポレータ。   6) The accelerating member is provided on the leeward side of the inlet portion where the refrigerant flows into the second space of the leeward farthest section, and from a baffle plate that inhibits the flow of the refrigerant to the leeward side in the second space. The evaporator according to 5) above.

7)促進部材が、風下側最遠区画の第2空間内における熱交換チューブの並び方向の中間部でかつ熱交換チューブ側の部分に設けられるとともに、上記第2空間内の熱交換チューブ側への冷媒の流入を阻害する邪魔板からなる上記4)記載のエバポレータ。   7) An accelerating member is provided in the middle portion of the heat exchange tubes in the second space of the leeward farthest section and in the heat exchange tube side, and to the heat exchange tube side in the second space. 4. The evaporator according to 4) above, comprising a baffle plate that inhibits inflow of the refrigerant.

8)風下側チューブ列に、複数の熱交換チューブからなる第1〜第3のチューブ群が、冷媒入口側の端部から他端部側に向かって並んで設けられ、風上側チューブ列に、複数の熱交換チューブからなる第4および第5のチューブ群が、冷媒出口側とは反対側の端部から冷媒出口側の端部に向かって並んで設けられ、
風下側上下両ヘッダ部に、それぞれ第1〜第3チューブ群の熱交換チューブが通じる第1〜第3区画が設けられ、風上側上下両ヘッダ部に、それぞれ第4および第5チューブ群の熱交換チューブが通じる第4および第5区画が設けられ、風下側の上下いずれかのヘッダ部の第1区画に冷媒入口が設けられるとともに、風上側の上下いずれかのうちの冷媒入口が設けられた側に位置するヘッダ部の第5区画に冷媒出口が設けられ、
第1チューブ群が、冷媒が熱交換チューブ内を、上下いずれかのうちの冷媒入口が位置する側から反対側に流れる第1パスとなり、第2チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第2パスとなり、第3および第4チューブ群が、冷媒が熱交換チューブ内を第1パスと同方向に流れる第3パスとなり、第5チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第4パスとなっており、第3パスが、熱交換チューブ内の冷媒の流れ方向が同一方向である第3および第4チューブ群が通風方向に並んで設けられることにより構成され、
風下側チューブ列の第3チューブ群が最遠チューブ群であり、風下側の上下いずれかのヘッダ部における冷媒入口が設けられた側のヘッダ部の第3区画が、第3チューブ群の熱交換チューブが通じさせられた冷媒流れ方向上流側の最遠区画であるとともに、当該第3区画に、当該第3区画内を第1空間と第2空間とに分ける分流用抵抗部材が設けられており、当該第3区画の第2空間に、冷媒入口が設けられた側のヘッダ部の第2区画から冷媒が流入するようになされている上記1)〜7)のうちのいずれかに記載のエバポレータ。
8) The first to third tube groups including a plurality of heat exchange tubes are provided in the leeward side tube row side by side from the end on the refrigerant inlet side toward the other end side, The fourth and fifth tube groups composed of a plurality of heat exchange tubes are provided side by side from the end on the opposite side to the refrigerant outlet side toward the end on the refrigerant outlet side,
The first and third sections through which the heat exchange tubes of the first to third tube groups are respectively connected to the leeward upper and lower header parts, and the heat of the fourth and fifth tube groups are respectively provided to the leeward upper and lower header parts. The fourth and fifth compartments through which the exchange tube communicates are provided, the refrigerant inlet is provided in the first compartment of either the upper or lower header part on the leeward side, and the refrigerant inlet of either the upper or lower side on the leeward side is provided. A refrigerant outlet is provided in the fifth section of the header portion located on the side,
The first tube group serves as a first path in which the refrigerant flows through the heat exchange tube from the side where the refrigerant inlet is located, to the opposite side, and the second tube group passes through the heat exchange tube. The second path flows in the opposite direction to the first path, the third and fourth tube groups become the third path in which the refrigerant flows in the same direction as the first path in the heat exchange tube, and the fifth tube group becomes the refrigerant. The fourth path flows in the direction opposite to the first path in the heat exchange tube, and the third and fourth tube groups in which the flow direction of the refrigerant in the heat exchange tube is the same direction are ventilated. It is configured by being arranged side by side,
The third tube group in the leeward tube row is the farthest tube group, and the third section of the header portion on the side where the refrigerant inlet is provided in either the upper or lower header portion on the leeward side is the heat exchange of the third tube group. The farthest section upstream of the refrigerant flow direction through which the tube is communicated, and the third section is provided with a shunting resistance member that divides the inside of the third section into a first space and a second space. The evaporator according to any one of 1) to 7), wherein the refrigerant flows into the second space of the third section from the second section of the header portion on the side where the refrigerant inlet is provided. .

9)風下側チューブ列に、複数の熱交換チューブからなる第1〜第4のチューブ群が、冷媒入口側の端部から他端部側に向かって並んで設けられ、風上側チューブ列に、複数の熱交換チューブからなる第5〜第7のチューブ群が、冷媒出口側とは反対側の端部から冷媒出口側の端部に向かって並んで設けられ、
風下側上下両ヘッダ部に、それぞれ第1〜第4チューブ群の熱交換チューブが通じる第1〜第4区画が設けられ、風上側上下両ヘッダ部に、それぞれ第5〜第7チューブ群の熱交換チューブが通じる第5〜第7区画が設けられ、風下側の上下いずれかのヘッダ部の第1区画に冷媒入口が設けられるとともに、風上側の上下いずれかのうちの冷媒入口が設けられた側に位置するヘッダ部の第7区画に冷媒出口が設けられ、
第1チューブ群が、冷媒が熱交換チューブ内を、上下いずれかのうちの冷媒入口が位置する側から反対側に流れる第1パスとなり、第2チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第2パスとなり、第3チューブ群が、冷媒が熱交換チューブ内を第1パスと同方向に流れる第3パスとなり、第4および第5チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第4パスとなり、第6チューブ群が、冷媒が熱交換チューブ内を第1パスと同方向に流れる第5パスとなり、第7チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第6パスとなっており、第4パスが、熱交換チューブ内の冷媒の流れ方向が同一方向である第4および第5チューブ群が通風方向に並んで設けられることにより構成され、
風下側チューブ列の第4チューブ群が最遠チューブ群であり、風下側の上下いずれかのヘッダ部における冷媒入口が設けられた側と反対側のヘッダ部の第4区画が、第4チューブ群の熱交換チューブが通じさせられた冷媒流れ方向上流側の最遠区画であるとともに、当該第4区画に、当該第4区画内を第1空間と第2空間とに分ける分流用抵抗部材が設けられており、当該第4区画の第2空間に、冷媒入口が設けられた側とは反対側のヘッダ部の第3区画から冷媒が流入するようになされている上記1)〜7)のうちのいずれかに記載のエバポレータ。
9) The first to fourth tube groups composed of a plurality of heat exchange tubes are provided in the leeward side tube row side by side from the end on the refrigerant inlet side toward the other end side, A fifth to seventh tube group consisting of a plurality of heat exchange tubes is provided side by side from the end on the opposite side to the refrigerant outlet side toward the end on the refrigerant outlet side,
The first and fourth sections through which the heat exchange tubes of the first to fourth tube groups are respectively connected to the leeward side upper and lower header parts, and the heat of the fifth to seventh tube groups are respectively provided to the leeward upper and lower header parts. Fifth to seventh sections through which the exchange tube communicates are provided, a refrigerant inlet is provided in the first section of the header part on either the upper or lower side of the leeward side, and a refrigerant inlet is provided on either the upper or lower side of the leeward side. A refrigerant outlet is provided in the seventh section of the header portion located on the side,
The first tube group serves as a first path in which the refrigerant flows through the heat exchange tube from the side where the refrigerant inlet is located, to the opposite side, and the second tube group passes through the heat exchange tube. The second pass flows in the opposite direction to the first pass, the third tube group becomes the third pass in which the refrigerant flows in the same direction as the first pass through the heat exchange tube, and the fourth and fifth tube groups become the refrigerant. The fourth path flows in the direction opposite to the first path in the heat exchange tube, the sixth tube group becomes the fifth path in which the refrigerant flows in the same direction as the first path in the heat exchange tube, and the seventh tube group The fourth and fifth tubes have a sixth path in which the refrigerant flows in the direction opposite to the first path in the heat exchange tube, and the fourth path has the same flow direction of the refrigerant in the heat exchange tube. Groups are arranged side by side in the ventilation direction It is more structure,
The fourth tube group in the leeward tube row is the farthest tube group, and the fourth section of the header portion on the opposite side to the side where the refrigerant inlet is provided in either the upper or lower header portion on the leeward side is the fourth tube group. In addition to the farthest section upstream in the refrigerant flow direction through which the heat exchange tube is communicated, a resistance member for shunting is provided in the fourth section to divide the fourth section into a first space and a second space. Among the above 1) to 7), the refrigerant flows into the second space of the fourth section from the third section of the header portion opposite to the side where the refrigerant inlet is provided. The evaporator as described in any one of.

10)冷媒入口が、風下側上ヘッダ部に設けられ、冷媒出口が、風上側上ヘッダ部に設けられている上記1)〜9)のうちのいずれかに記載のエバポレータ。   10) The evaporator according to any one of the above items 1) to 9), wherein the refrigerant inlet is provided in the leeward upper header portion and the refrigerant outlet is provided in the leeward upper header portion.

上記1)〜10)のエバポレータによれば、風下側チューブ列の最遠チューブ群の熱交換チューブが通じさせられた冷媒流れ方向上流側の風下側最遠区画に、当該風下側最遠区画内を熱交換チューブが臨む第1空間と、第1空間から隔てられかつ風下側最遠区画の冷媒入口側に隣り合う区画から冷媒が流入する第2空間とに分ける分流用抵抗部材が設けられ、分流用抵抗部材に冷媒通過穴が形成され、風下側最遠区画の第2空間と、風上側チューブ列の最遠チューブ群の熱交換チューブが通じさせられた冷媒流れ方向上流側の風上側最遠区画とが冷媒連通路によって通じさせられているので、エバポレータを配置する際にデッドスペースが生じるおそれはない。   According to the evaporators 1) to 10) above, the farthest leeward section on the upstream side in the refrigerant flow direction through which the heat exchange tubes of the farthest tube group of the leeward tube row are communicated, Is provided with a shunt resistance member that divides the first space into which the heat exchange tube faces and the second space that is separated from the first space and into which the refrigerant flows from a section adjacent to the refrigerant inlet side of the leeward farthest section, A refrigerant passage hole is formed in the shunting resistance member, and the second space in the furthest leeward section and the heat exchange tube of the furthest tube group in the windward tube row are connected to the upstream of the windward upstream in the refrigerant flow direction. Since the far section is communicated with the refrigerant communication path, there is no possibility that a dead space is generated when the evaporator is disposed.

また、冷媒は、風下側最遠区画の第2空間内に流入した後、冷媒連通路を通って風上側最遠区画内に流入して風上側チューブ列の最遠チューブ群の熱交換チューブ内に流入するのと同時に、分流用抵抗部材の冷媒通過穴を通って第1空間内に入った後風下側チューブ列の最遠チューブ群の熱交換チューブ内に流入する。そして、風下側最遠区画の第2空間内に流入した冷媒には、分流用抵抗部材によって第1空間内への流れに対する抵抗が付与されるので、風下側最遠区画および風上側最遠区画が熱交換チューブの上側に位置する場合には、風下側最遠区画内に流入した冷媒が、重力の影響により風下側チューブ列の最遠チューブ群の熱交換チューブに多量に流入することが抑制される。したがって、風下側チューブ列の最遠チューブ群の熱交換チューブに流入する冷媒量と、風上側チューブ列の最遠チューブ群の熱交換チューブに流入する冷媒量とが均一化される。これとは逆に、風下側最遠区画および風上側最遠区画が熱交換チューブの下側に位置する場合には、冷媒の流量が変動した際にも、風下側最遠区画に流入した冷媒が、風下側チューブ列の最遠チューブ群の熱交換チューブ内に多量に流入することが抑制される。したがって、風下側チューブ列の最遠チューブ群の熱交換チューブに流入する冷媒量と、風上側チューブ列の最遠チューブ群の熱交換チューブに流入する冷媒量とが均一化される。その結果、冷媒入口および冷媒出口から最も遠い位置にあり、かつ通風方向に並んで設けられて1つのパスを構成しているとともに熱交換チューブ内の冷媒の流れ方向が同一方向である2つの最遠チューブ群の熱交換チューブ内を流れる冷媒量を均一化することが可能になる。   In addition, the refrigerant flows into the second space of the leeward farthest section, and then flows into the windward furthest section through the refrigerant communication passage to enter the heat exchange tube of the furthest tube group in the windward tube row. At the same time, it flows into the heat exchange tube of the farthest tube group of the leeward side tube row after entering the first space through the refrigerant passage hole of the shunting resistance member. The refrigerant flowing into the second space of the leeward farthest section is given resistance to the flow into the first space by the shunt resistance member, so that the leeward furthest section and the windward furthest section Is located on the upper side of the heat exchange tube, the refrigerant flowing into the leeward farthest section is prevented from flowing in a large amount into the heat exchange tube of the farthest tube group of the leeward tube row due to the influence of gravity. Is done. Therefore, the amount of refrigerant flowing into the heat exchange tube of the farthest tube group in the leeward tube row and the amount of refrigerant flowing into the heat exchange tube of the farthest tube group in the leeward tube row are made uniform. On the contrary, when the leeward farthest section and the windward farthest section are located below the heat exchange tube, the refrigerant that has flowed into the leeward farthest section even when the flow rate of the refrigerant fluctuates. However, it is suppressed that a large amount flows into the heat exchange tubes of the farthest tube group in the leeward side tube row. Therefore, the amount of refrigerant flowing into the heat exchange tube of the farthest tube group in the leeward tube row and the amount of refrigerant flowing into the heat exchange tube of the farthest tube group in the leeward tube row are made uniform. As a result, it is located farthest from the refrigerant inlet and the refrigerant outlet and is arranged side by side in the ventilation direction to form one path, and the two flow directions of the refrigerant in the heat exchange tube are the same direction. It becomes possible to equalize the amount of refrigerant flowing in the heat exchange tubes of the far tube group.

上記3)のエバポレータによれば、冷媒入口および冷媒出口から最も遠い位置にあり、かつ通風方向に並んで設けられて1つのパスを構成しているとともに熱交換チューブ内の冷媒の流れ方向が同一方向である2つのチューブ群の熱交換チューブ内を流れる冷媒量を効果的に均一化することができる。   According to the evaporator of the above 3), they are located farthest from the refrigerant inlet and the refrigerant outlet and are arranged side by side in the ventilation direction to form one path and the flow direction of the refrigerant in the heat exchange tube is the same. It is possible to effectively equalize the amount of refrigerant flowing in the heat exchange tubes of the two tube groups in the direction.

上記4)〜7)のエバポレータによれば、風下側最遠区画の第2空間内から風上側最遠区画内への冷媒の流入を促進する促進部材を備えているので、風下側最遠区画の第2空間内から風上側最遠区画内への冷媒の流入が促進されることになり、風下側最遠区画の第2空間内と風上側最遠区画内に流入する冷媒量が均一化される。したがって、風下側最遠区画に接続された風下側チューブ列の最遠チューブ群の熱交換チューブに流入する冷媒量と、風上側最遠区画に接続された風上側チューブ列の最遠チューブ群の熱交換チューブに流入する冷媒量とが効果的に均一化される。その結果、冷媒入口および冷媒出口から最も遠い位置にあり、かつ通風方向に並んで設けられているとともに、熱交換チューブ内の冷媒の流れ方向が同一方向である2つの最遠チューブ群の熱交換チューブ内を流れる冷媒量を効果的に均一化することが可能になって、エバポレータの冷却性能がさらに向上する。   According to the evaporators 4) to 7), since the accelerating member that promotes the inflow of the refrigerant from the second space of the leeward farthest section into the windward furthest section is provided, the leeward farthest section Inflow of refrigerant from the second space into the furthest farthest section is promoted, and the amount of refrigerant flowing into the second space of the furthest furthest section and the furthest furthest section becomes uniform. Is done. Therefore, the amount of refrigerant flowing into the heat exchange tube of the farthest tube group of the leeward tube row connected to the leeward farthest section, and the farthest tube group of the windward tube row connected to the furthest farthest partition. The amount of refrigerant flowing into the heat exchange tube is effectively equalized. As a result, heat exchange between the two farthest tube groups which are located farthest from the refrigerant inlet and the refrigerant outlet and are arranged side by side in the ventilation direction and the flow direction of the refrigerant in the heat exchange tubes is the same direction. It becomes possible to effectively equalize the amount of refrigerant flowing in the tube, and the cooling performance of the evaporator is further improved.

上記6)および7)のエバポレータによれば、風下側最遠区画に流入した冷媒の風上側最遠区画内への流入を促進する促進部材を、比較的簡単に設けることができる。   According to the evaporators 6) and 7), the facilitating member that promotes the flow of the refrigerant that has flowed into the leeward farthest section into the furthest furthest section can be provided relatively easily.

この発明の実施形態1のエバポレータの全体構成を示す一部切り欠き斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway perspective view showing an overall configuration of an evaporator according to Embodiment 1 of the present invention. 一部を省略した図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 1 which abbreviate | omitted one part. 一部を省略した図1のB−B線断面図である。It is the BB sectional drawing of FIG. 1 which abbreviate | omitted one part. 図2のC−C線断面図である。It is CC sectional view taken on the line of FIG. 図2のD−D線断面図である。It is the DD sectional view taken on the line of FIG. 図1のエバポレータにおける冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the evaporator of FIG. 実施形態1のエバポレータの風下側上ヘッダ部の第1の変形例を示す部分斜視図である。It is a fragmentary perspective view which shows the 1st modification of the leeward side upper header part of the evaporator of Embodiment 1. FIG. 実施形態1のエバポレータの風下側上ヘッダ部の第2の変形例を示す部分斜視図である。It is a fragmentary perspective view which shows the 2nd modification of the leeward side upper header part of the evaporator of Embodiment 1. FIG. 実施形態1のエバポレータの風下側上ヘッダ部の第3の変形例を示す部分斜視図である。It is a fragmentary perspective view which shows the 3rd modification of the leeward side upper header part of the evaporator of Embodiment 1. FIG. この発明の実施形態2のエバポレータを示す風下側上下両ヘッダ部の部分での後方から前方を見た一部省略垂直断面図である。It is a partially-omission vertical sectional view which looked at the front from the back in the part of the leeward upper and lower header parts which shows the evaporator of Embodiment 2 of this invention. この発明の実施形態2のエバポレータを示す風上側上下両ヘッダ部の部分での後方から前方を見た一部省略垂直断面図である。It is a partially-omission vertical sectional view which looked at the front from the back in the part of the windward upper and lower both header parts which shows the evaporator of Embodiment 2 of this invention. 図10のE−E線断面図である。It is the EE sectional view taken on the line of FIG. 図10のF−F線断面図である。It is the FF sectional view taken on the line of FIG. 図10のエバポレータにおける冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the evaporator of FIG.

以下、この発明の実施形態を、図面を参照して説明する。以下に述べる実施形態は、この発明によるエバポレータをカーエアコンを構成する冷凍サイクルに適用したものである。   Embodiments of the present invention will be described below with reference to the drawings. In the embodiment described below, the evaporator according to the present invention is applied to a refrigeration cycle constituting a car air conditioner.

全図面を通じて同一部分および同一物には同一符号を付して重複する説明を省略する。   Throughout the drawings, the same parts and the same parts are denoted by the same reference numerals, and redundant description is omitted.

なお、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

また、以下の説明において、隣接する熱交換チューブどうしの間の通風間隙を流れる空気の下流側(図1、図4、図5、図12および図13に矢印Xで示す方向)を前、これと反対側を後というものとし、図2〜図5および図10〜図13の左右を左右というものとする。   In the following description, the downstream side of the air flowing in the ventilation gap between adjacent heat exchange tubes (the direction indicated by the arrow X in FIGS. 1, 4, 5, 12, and 13) The side opposite to the left side is referred to as the rear, and the left and right sides of FIGS. 2 to 5 and FIGS.

実施形態1
この実施形態は図1〜図6に示すものである。図1はエバポレータの全体構成を示し、図2〜図5はその要部の構成を示す。また、図6は図1のエバポレータにおける冷媒の流れを示す。
Embodiment 1
This embodiment is shown in FIGS. FIG. 1 shows the overall configuration of the evaporator, and FIGS. 2 to 5 show the configuration of the main part thereof. FIG. 6 shows the flow of refrigerant in the evaporator of FIG.

図1において、エバポレータ(1)は、上下方向に間隔をおいて配置されたアルミニウム製第1ヘッダタンク(2)およびアルミニウム製第2ヘッダタンク(3)と、両ヘッダタンク(2)(3)の間に設けられた熱交換コア部(4)とを備えている。   In FIG. 1, the evaporator (1) includes an aluminum first header tank (2) and an aluminum second header tank (3) which are spaced apart in the vertical direction, and both header tanks (2) (3). And a heat exchange core part (4) provided between the two.

第1ヘッダタンク(2)は、風下側(前側)に位置する風下側ヘッダ部(5)と、風上側(後側)に位置しかつ風下側ヘッダ部(5)に一体化された風上側ヘッダ部(6)とを備えている。ここでは、風下側ヘッダ部(5)と風上側ヘッダ部(6)とは、第1ヘッダタンク(2)を仕切部(2a)により前後に仕切ることによって設けられている。第2ヘッダタンク(3)は、風下側(前側)に位置する風下側ヘッダ部(7)と、風上側(後側)に位置しかつ風下側ヘッダ部(7)に一体化された風上側ヘッダ部(8)とを備えている。ここでは、風下側ヘッダ部(7)と風上側ヘッダ部(8)とは、第2ヘッダタンク(3)を仕切部(3a)により前後に仕切ることによって設けられている。   The first header tank (2) has a leeward header part (5) located on the leeward side (front side) and an upwind side located on the leeward side (rear side) and integrated with the leeward header part (5). And a header section (6). Here, the leeward header section (5) and the leeward header section (6) are provided by partitioning the first header tank (2) forward and backward by the partition section (2a). The second header tank (3) has a leeward header part (7) located on the leeward side (front side) and an upwind side located on the leeward side (rear side) and integrated with the leeward header part (7). And a header portion (8). Here, the leeward header section (7) and the leeward header section (8) are provided by dividing the second header tank (3) in the front and rear directions by the partition section (3a).

以下の説明において、第1ヘッダタンク(2)の風下側ヘッダ部(5)を風下側上ヘッダ部、第2ヘッダタンク(3)の風下側ヘッダ部(7)を風下側下ヘッダ部、第1ヘッダタンク(2)の風上側ヘッダ部(6)を風上側上ヘッダ部、第2ヘッダタンク(3)の風上側ヘッダ部(8)を風上側下ヘッダ部というものとする。   In the following description, the leeward header portion (5) of the first header tank (2) is the leeward upper header portion, the leeward header portion (7) of the second header tank (3) is the leeward lower header portion, The upwind header section (6) of the 1 header tank (2) is referred to as the upwind header section, and the upwind header section (8) of the second header tank (3) is referred to as the upwind header section.

熱交換コア部(4)は、幅方向を通風方向に向けるとともに左右方向(通風方向と直角をなす方向)に間隔をおいて配置され、かつ上下方向にのびる複数のアルミニウム製扁平状熱交換チューブ(9)からなるチューブ列(11)(12)が、前後方向に並んで2列設けられ、各チューブ列(11)(12)の隣接する熱交換チューブ(9)どうしの間の通風間隙および左右両端の熱交換チューブ(9)の外側に、それぞれ前後両チューブ列(11)(12)の熱交換チューブ(9)に跨るようにアルミニウム製コルゲートフィン(13)が配置されて熱交換チューブ(9)にろう付され、左右両端のコルゲートフィン(13)の外側にそれぞれアルミニウム製サイドプレート(14)が配置されてコルゲートフィン(13)にろう付されることにより構成されている。熱交換チューブ(9)はアルミニウム押出形材製であって、幅方向に並んだ複数の冷媒通路を有している。風下側チューブ列(11)の熱交換チューブ(9)の上下両端部は、風下側上下両ヘッダ部(5)(7)に連通状に接続され、風上側チューブ列(12)の熱交換チューブ(9)の上下両端部は、風上側上下両ヘッダ部(6)(8)に連通状に接続されている。なお、風下側チューブ列(11)の熱交換チューブ(9)の数と風上側チューブ列(12)の熱交換チューブ(9)の数とは等しくなっている。   The heat exchange core section (4) has a plurality of flat aluminum heat exchange tubes that are oriented in the width direction in the ventilation direction and spaced in the left-right direction (direction perpendicular to the ventilation direction) and extend in the vertical direction. Two tube rows (11) and (12) made up of (9) are provided side by side in the front-rear direction, and the ventilation gap between adjacent heat exchange tubes (9) of each tube row (11) and (12) and Aluminum corrugated fins (13) are arranged outside the heat exchange tubes (9) on both the left and right ends so as to straddle the heat exchange tubes (9) of the front and rear tube rows (11) and (12), respectively. 9), aluminum side plates (14) are respectively arranged on the outer sides of the corrugated fins (13) at both left and right ends, and brazed to the corrugated fins (13). The heat exchange tube (9) is made of an aluminum extruded profile and has a plurality of refrigerant passages arranged in the width direction. The upper and lower ends of the heat exchange tubes (9) of the leeward side tube row (11) are connected to the leeward side upper and lower header portions (5) and (7) in a continuous manner, and the heat exchange tubes of the leeward side tube row (12). The upper and lower end portions of (9) are connected to the windward upper and lower header portions (6) and (8) in a continuous manner. Note that the number of heat exchange tubes (9) in the leeward tube row (11) is equal to the number of heat exchange tubes (9) in the windward tube row (12).

図2〜図5に示すように、風下側チューブ列(11)には、複数の熱交換チューブ(9)からなる3つのチューブ群(11A)(11B)(11C)が、右端から左端に向かって並んで設けられ、風上側チューブ列(12)には、複数の熱交換チューブ(9)からなる第4および第5の2つ(風下側チューブ列(11)のチューブ群の数よりも1つ少ない数)のチューブ群(12A)(12B)が、左端から右端に向かって並んで設けられている。   As shown in FIGS. 2 to 5, in the leeward side tube row (11), three tube groups (11A) (11B) (11C) composed of a plurality of heat exchange tubes (9) are arranged from the right end to the left end. The upwind tube row (12) is arranged side by side, and the number of the fourth and fifth two tube groups (1) is larger than the number of tube groups of the downwind tube row (11). A small number of tube groups (12A) (12B) are provided side by side from the left end to the right end.

風下側上下両ヘッダ部(5)(7)に、それぞれ風下側チューブ列(11)のチューブ群(11A)(11B)(11C)と同数でかつ各チューブ群(11A)(11B)(11C)の熱交換チューブ(9)が通じる区画(15)(16)(17)および(18)(19)(21)が設けられている。風下側上ヘッダ部(5)における右端の区画(15)の右端部に冷媒入口(22)が設けられている。風下側チューブ列(11)の3つのチューブ群(11A)(11B)(11C)を冷媒入口(22)側端部(右端部)から他端部(左端部)に向かって第1〜第3チューブ群といい、第1〜第3チューブ群(11A)(11B)(11C)の熱交換チューブ(9)が通じる区画(15)(16)(17)および(18)(19)(21)を冷媒入口(22)側端部(右端部)から他端部(左端部)に向かって第1〜第3区画というものとする。第3チューブ群(11C)が、風下側チューブ列(11)における冷媒入口(22)から最も遠い位置にある最遠チューブ群であり、風下側上ヘッダ部(5)の第3区画(17)が、第3チューブ群(11C)の熱交換チューブ(9)が通じさせられた冷媒流れ方向上流側(上側)の風下側最遠区画である。   The same number of tube groups (11A), (11B), and (11C) in the leeward side tube row (11) and the tube groups (11A) (11B) (11C) Sections (15), (16), (17) and (18), (19), and (21) through which the heat exchange tube (9) communicates are provided. A refrigerant inlet (22) is provided at the right end of the rightmost section (15) in the leeward side upper header (5). Three tube groups (11A), (11B), and (11C) in the leeward tube row (11) are moved from the refrigerant inlet (22) side end (right end) toward the other end (left end). It is called a tube group, and the sections (15) (16) (17) and (18) (19) (21) through which the heat exchange tubes (9) of the first to third tube groups (11A), (11B), and (11C) communicate Are referred to as first to third sections from the refrigerant inlet (22) side end (right end) toward the other end (left end). The third tube group (11C) is the farthest tube group located farthest from the refrigerant inlet (22) in the leeward tube row (11), and the third section (17) of the leeward upper header portion (5). Is the leeward farthest section on the upstream side (upper side) in the refrigerant flow direction through which the heat exchange tube (9) of the third tube group (11C) is passed.

風上側上下両ヘッダ部(6)(8)に、それぞれ風上側チューブ列(12)のチューブ群(12A)(12B)と同数でかつ各チューブ群(12A)(12B)の熱交換チューブ(9)が通じる区画(23)(24)および(25)(26)が設けられている。風上側上ヘッダ部(6)における右端の区画(24)の右端部(冷媒入口(22)と同一端部)に冷媒出口(27)が設けられている。風上側チューブ列(12)の2つのチューブ群(12A)(12B)を冷媒出口(27)とは反対側の端部(左端部)から冷媒出口側(27)の端部(右端部)に向かって第4〜第5チューブ群といい、第4〜第5チューブ群(12A)(12B)の熱交換チューブ(9)が通じる区画(23)(24)および(25)(26)を冷媒出口(27)とは反対側の端部(左端部)から冷媒出口側(27)の端部(右端部)に向かって第4〜第5区画というものとする。第4チューブ群(12A)が、風上側チューブ列(12)における冷媒出口(27)から最も遠い位置にある最遠チューブ群であり、風上側上ヘッダ部(6)の第4区画(23)が、第4チューブ群(12A)が通じさせられた冷媒流れ方向上流側(上側)の風上側最遠区画である。   The same number of tube groups (12A) (12B) in the windward tube row (12) and heat exchange tubes (12A) (12B) in the upwind upper and lower header sections (6) (8) (9) ) (23) (24) and (25) (26) are provided. A refrigerant outlet (27) is provided at the right end (the same end as the refrigerant inlet (22)) of the rightmost section (24) in the upwind header section (6). Move the two tube groups (12A) and (12B) of the windward tube row (12) from the end (left end) opposite to the refrigerant outlet (27) to the end (right end) on the refrigerant outlet side (27) The fourth to fifth tube groups are called, and the compartments (23) (24) and (25) (26) through which the heat exchange tubes (9) of the fourth to fifth tube groups (12A) and (12B) communicate are refrigerant. The fourth to fifth sections are defined from the end (left end) opposite to the outlet (27) toward the end (right end) on the refrigerant outlet side (27). The fourth tube group (12A) is the farthest tube group located farthest from the refrigerant outlet (27) in the windward tube row (12), and the fourth section (23) of the windward upper header portion (6). Is the furthest windward farthest section on the upstream side (upper side) in the refrigerant flow direction through which the fourth tube group (12A) is communicated.

なお、風下側チューブ列(11)の第1および第2チューブ群(11A)(11B)を構成する熱交換チューブ(9)の合計数は、風上側チューブ列(12)の第5チューブ群(12B)を構成する熱交換チューブ(9)の数と等しくなっており、風下側チューブ列(11)の第3チューブ群(11C)を構成する熱交換チューブ(9)の数は、風上側チューブ列(12)の第4チューブ群(12A)を構成する熱交換チューブ(9)の数と等しくなっている。また、風下側上下両ヘッダ部(5)(7)における第1区画(15)(18)と第2区画(16)(19)の左右方向の合計長さは、風上側上下両ヘッダ部(6)(8)における第5区画(24)(26)の左右方向の長さと等しく、風下側上下両ヘッダ部(5)(7)における第3区画(17)(21)の左右方向の長さは、風上側上下両ヘッダ部(6)(8)における第4区画(23)(25)の左右方向の長さと等しくなっている。   The total number of heat exchange tubes (9) constituting the first and second tube groups (11A) and (11B) of the leeward tube row (11) is the fifth tube group (12) of the leeward tube row (12). 12B) is equal to the number of heat exchange tubes (9), and the number of heat exchange tubes (9) constituting the third tube group (11C) of the leeward side tube row (11) is the windward side tube. It is equal to the number of heat exchange tubes (9) constituting the fourth tube group (12A) of the row (12). The total length in the left and right direction of the first section (15) (18) and the second section (16) (19) in the leeward upper and lower header sections (5) and (7) is the leeward upper and lower header sections ( 6) The length in the left-right direction of the fifth section (24) (26) in (8) is the same as the length in the left-right direction, and the length in the left-right direction of the third section (17) (21) in the upper and lower header sections (5) (7) on the leeward side. This is equal to the length in the left-right direction of the fourth section (23) (25) in the upwind upper and lower header sections (6) (8).

風下側上ヘッダ部(5)の第1区画(15)と第2区画(16)との間には仕切壁(33)が設けられ、これにより両区画(15)(16)は非連通状態となっている。風下側上ヘッダ部(5)の風下側最遠区画である第3区画(17)内に、第3区画(17)内を熱交換チューブ(9)が臨む下側の第1空間(38)と、第1空間(38)から隔てられた上側の第2空間(37)とに分ける板状の分流用抵抗部材(36)が設けられている。風下側上ヘッダ部(5)の第2区画(16)と第3区画(17)との間には、第3区画(17)の第1空間(38)の右端開口を閉鎖し、かつ第2区画(16)から第1空間(38)への冷媒の流れを遮断する流れ遮断部材(41)が設けられている。また、第3区画(17)の第2空間(37)の右端部が全体に開口することにより、第2区画(16)と第3区画(17)の第2空間(37)とは連通状態となっており、第3区画(17)の第2空間(37)内に、第3区画(17)の冷媒入口(22)側に隣り合う第2区画(16)から冷媒が流入する。ここで、第3区画(17)の第2空間(37)の右端部の開口が、第3区画(17)の第2空間(37)内に冷媒を流入させる入口部分(45)となっている。さらに、分流用抵抗部材(36)に、左右方向に間隔をおいて複数の冷媒通過穴(39)が形成されており、これにより両空間(37)(38)が通じさせられている。   A partition wall (33) is provided between the first section (15) and the second section (16) of the leeward side upper header section (5), so that the sections (15) and (16) are not in communication with each other. It has become. In the third section (17), which is the farthest leeward section of the leeward upper header section (5), the lower first space (38) where the heat exchange tube (9) faces the third section (17). And a plate-shaped shunt resistor member (36) that is divided into an upper second space (37) separated from the first space (38). Between the second section (16) and the third section (17) of the leeward upper header section (5), the right end opening of the first space (38) of the third section (17) is closed, and the first section A flow blocking member (41) for blocking the flow of the refrigerant from the two compartments (16) to the first space (38) is provided. Further, the right end portion of the second space (37) of the third section (17) opens to the whole, so that the second section (16) and the second space (37) of the third section (17) are in communication with each other. The refrigerant flows into the second space (37) of the third section (17) from the second section (16) adjacent to the refrigerant inlet (22) side of the third section (17). Here, the opening at the right end of the second space (37) of the third section (17) serves as an inlet portion (45) through which the refrigerant flows into the second space (37) of the third section (17). Yes. Furthermore, a plurality of refrigerant passage holes (39) are formed in the shunting resistance member (36) at intervals in the left-right direction, thereby allowing both spaces (37) and (38) to communicate.

風下側下ヘッダ部(7)の第1区画(18)と第2区画(19)とは連通状態となっている。また、風下側下ヘッダ部(7)の第2区画(19)と第3区画(21)との間には仕切壁(34)が設けられ、これにより両区画(19)(21)は非連通状態となっている。   The first section (18) and the second section (19) of the leeward side lower header section (7) are in communication with each other. Further, a partition wall (34) is provided between the second section (19) and the third section (21) of the leeward side lower header section (7), so that both sections (19) and (21) are not Communication is established.

風上側上ヘッダ部(6)の第4区画(23)と第5区画(24)との間には仕切壁(35)が設けられ、これにより両区画(23)(24)は非連通状態となっている。   A partition wall (35) is provided between the fourth section (23) and the fifth section (24) of the upwind header section (6), so that the sections (23) and (24) are not in communication with each other. It has become.

風上側下ヘッダ部(8)の第5区画(26)内に、第5区画(26)内を上空間(26A)と下空間(26B)とに分ける板状の分流用抵抗部材(42)が設けられており、分流用抵抗部材(42)に、左右方向に間隔をおいて複数の冷媒通過穴(43)が形成されている。また、風上側下ヘッダ部(8)の第4区画(25)と第5区画(26)との間には、第5区画(26)の上空間(26A)の左端開口を閉鎖し、かつ第4区画(25)から第5区画(26)の下空間(26B)への冷媒の流れを促進する板状の流れ促進部材(44)が設けられている。また、第5区画(26)の下空間(26B)の左端部が全体に開口することにより、第4区画(25)と第5区画(26)の下空間(26B)とは連通状態となっており、第5区画(26)の下空間(26B)内に、第4区画(25)から冷媒が流入する。なお、第4区画(25)から第5区画(26)の下空間(26B)への冷媒の流れの促進を妨げないのであれば、流れ促進部材(44)には冷媒通過穴が形成されていてもよい。   A plate-like shunt resistance member (42) for dividing the fifth section (26) into an upper space (26A) and a lower space (26B) in the fifth section (26) of the windward lower header section (8). A plurality of refrigerant passage holes (43) are formed in the shunting resistance member (42) at intervals in the left-right direction. Further, the left end opening of the upper space (26A) of the fifth section (26) is closed between the fourth section (25) and the fifth section (26) of the windward lower header section (8), and A plate-like flow promoting member (44) that promotes the flow of the refrigerant from the fourth section (25) to the lower space (26B) of the fifth section (26) is provided. Further, the left end portion of the lower space (26B) of the fifth section (26) opens to the whole, so that the fourth section (25) and the lower space (26B) of the fifth section (26) are in communication with each other. The refrigerant flows from the fourth section (25) into the lower space (26B) of the fifth section (26). In addition, if it does not hinder the promotion of the flow of the refrigerant from the fourth section (25) to the lower space (26B) of the fifth section (26), a refrigerant passage hole is formed in the flow promotion member (44). May be.

風下側上ヘッダ部(5)の第3区画(17)の第2空間(37)と、風上側上ヘッダ部(6)の第4区画(23)とは、第1ヘッダタンク(2)の仕切部(2a)における入口部分(45)、遮断部材(41)および仕切壁(35)よりも左側の部分に左右方向に間隔をおいて設けられた貫通穴からなる複数の連通路(30)によって通じさせられている。   The second space (37) of the third section (17) of the leeward upper header section (5) and the fourth section (23) of the leeward upper header section (6) are formed by the first header tank (2). A plurality of communication passages (30) including through holes provided at left and right intervals in a portion on the left side of the entrance portion (45), the blocking member (41) and the partition wall (35) in the partition portion (2a) Is communicated by.

風下側下ヘッダ部(7)の第3区画(21)と、風上側下ヘッダ部(8)の第4区画(25)とは、第2ヘッダタンク(3)の仕切部(3a)における仕切壁(34)よりも左側の部分に設けられた連通部(40)によって通じさせられている。   The third section (21) of the leeward lower header section (7) and the fourth section (25) of the leeward lower header section (8) are partitions in the partition section (3a) of the second header tank (3). It is made to communicate by the communication part (40) provided in the left part rather than the wall (34).

ここで、分流用抵抗部材(36)に設けられた複数の冷媒通過穴(39)の合計断面積をA、風下側上ヘッダ部(5)の第3区画(17)と風上側上ヘッダ部(6)の第4区画(23)とを通じさせる複数の冷媒連通路(30)の合計断面積をBとした場合、B>Aの関係を満たしていることが好ましい。   Here, the total cross-sectional area of the plurality of refrigerant passage holes (39) provided in the shunting resistance member (36) is A, the third section (17) of the leeward upper header portion (5) and the leeward upper header portion. When the total cross-sectional area of the plurality of refrigerant communication passages (30) through the fourth section (23) of (6) is B, it is preferable that the relationship B> A is satisfied.

上述のようにして各区画(15)〜(19)(21)(23)〜(26)、冷媒入口(22)、冷媒出口(27)、冷媒通過穴(39)を有する分流用抵抗部材(36)、遮断部材(41)、第1空間(38)、第2空間(37)、冷媒通過穴(43)を有する分流用抵抗部材(42)、流れ促進部材(44)、上空間(26A)、下空間(26B)、連通路(30)および連通部(40)が設けられることによって、冷媒は、第1チューブ群(11A)、冷媒入口(22)から最も遠い位置にある第3チューブ群(11C)(風下側チューブ列(11)の最遠チューブ群)および冷媒出口(27)から最も遠い位置にある第4チューブ群(12A)(風上側チューブ列(12)の最遠チューブ群)の熱交換チューブ(9)内を、上下いずれかのうちの冷媒入口(22)が位置する側から反対側、ここでは上から下に流れることになり、これらのチューブ群(11A)(11C)(12A)が下降流チューブ群となっている。また、冷媒は、第2チューブ群(11B)および第5チューブ群(12B)の熱交換チューブ(9)内を、下から上に流れることになり、これらのチューブ群(11B)(12B)が上昇流チューブ群となっている。すなわち、風下側チューブ列(11)の第3チューブ群(11C)、および風上側チューブ列(12)の第4チューブ群(12A)の熱交換チューブ(9)における冷媒の流れ方向は同一方向になっている。第1チューブ群(11A)が、冷媒が熱交換チューブ(9)内を、上下いずれかのうちの冷媒入口(22)が位置する側から反対側、ここでは上から下に流れる第1パス(28)となり、第2チューブ群(11B)が、冷媒が熱交換チューブ(9)内を下から上(第1パス(28)とは逆方向)に流れる第2パス(29)となり、第3および第4チューブ群(11C)(12A)が、冷媒が熱交換チューブ(9)内を上から下(第1パス(28)と同方向)に流れる第3パス(31)となり、第5チューブ群(12B)が、冷媒が熱交換チューブ(9)内を下から上(第1パス(28)とは逆方向)に流れる第4パス(32)となっており、第3パス(31)が、熱交換チューブ(9)内の冷媒の流れ方向が同一方向である第3および第4チューブ群(11C)(12A)が通風方向に並んで設けられることにより構成されている。そして、冷媒入口(22)から流入した冷
媒は、以下に述べる2つの経路を通って第1〜第4パス(28)(29)(31)(32)の熱交換チューブ(9)を順々に流れ、冷媒出口(27)から流出するようになされている。第1の経路は、第1区画(15)、第1チューブ群(11A)(第1パス(28))、第1区画(18)、第2区画(19)、第2チューブ群(11B)(第2パス(29))、第2区画(16)、第3区画(17)の第2空間(37)、第4区画(23)、第4チューブ群(12A)(第3パス(31))、第4区画(25)、第5区画(26)の下空間(26B)、同上空間(26A)、第5チューブ群(12B)(第4パス(32))および第5区画(24)であり、第2の経路は、第1区画(15)、第1チューブ群(11A)(第1パス(28))、第1区画(18)、第2区画(19)、第2チューブ群(11B)(第2パス(29))、第2区画(16)、第3区画(17)の第2空間(37)、同第1空間(38)、第3チューブ群(11C)(第3パス(31))、第3区画(21)、第4区画(25)、第5区画(26)の下空間(26B)、同上空間(26A)、第5チューブ群(12B)(第4パス(32))および第5区画(24)である。
As described above, the shunt resistance member having the sections (15) to (19) (21) (23) to (26), the refrigerant inlet (22), the refrigerant outlet (27), and the refrigerant passage hole (39) ( 36), a blocking member (41), a first space (38), a second space (37), a shunting resistance member (42) having a refrigerant passage hole (43), a flow promoting member (44), an upper space (26A) ), The lower space (26B), the communication passage (30), and the communication portion (40), the refrigerant is the third tube located farthest from the first tube group (11A) and the refrigerant inlet (22). Group (11C) (the farthest tube group in the leeward tube row (11)) and the fourth tube group (12A) farthest from the refrigerant outlet (27) (the farthest tube group in the windward tube row (12)) ) In the heat exchange tube (9) from the side where the refrigerant inlet (22) is located, one of the upper and lower sides, here from the top to the bottom. These tube groups (11A) (11C ) (12A) is the downflow tube group. In addition, the refrigerant flows from the bottom to the top in the heat exchange tubes (9) of the second tube group (11B) and the fifth tube group (12B), and these tube groups (11B) (12B) It is an upflow tube group. That is, the flow direction of the refrigerant in the third tube group (11C) of the leeward tube row (11) and the heat exchange tube (9) of the fourth tube group (12A) of the leeward tube row (12) is the same direction. It has become. The first tube group (11A) has a first path (in which the refrigerant flows in the heat exchange tube (9) from the side where the refrigerant inlet (22) is positioned to the opposite side, here from the top to the bottom (in this case). 28), and the second tube group (11B) becomes the second path (29) in which the refrigerant flows from the bottom to the top (the direction opposite to the first path (28)) in the heat exchange tube (9). And the fourth tube group (11C) (12A) becomes the third path (31) in which the refrigerant flows from the top to the bottom (the same direction as the first path (28)) in the heat exchange tube (9). The group (12B) has a fourth path (32) in which the refrigerant flows in the heat exchange tube (9) from the bottom to the top (in the direction opposite to the first path (28)), and the third path (31). However, the third and fourth tube groups (11C) and (12A) having the same flow direction of the refrigerant in the heat exchange tube (9) are arranged side by side in the ventilation direction. Then, the refrigerant flowing in from the refrigerant inlet (22) passes through the following two paths and sequentially passes through the heat exchange tubes (9) of the first to fourth paths (28) (29) (31) (32). And flows out from the refrigerant outlet (27). The first path consists of the first section (15), the first tube group (11A) (first path (28)), the first section (18), the second section (19), and the second tube group (11B). (Second path (29)), second section (16), second space (37) of third section (17), fourth section (23), fourth tube group (12A) (third path (31 )), The fourth section (25), the lower space (26B), the upper space (26A), the fifth tube group (12B) (fourth path (32)) and the fifth section (24). The second path is the first section (15), the first tube group (11A) (first path (28)), the first section (18), the second section (19), and the second tube. Group (11B) (second path (29)), second section (16), second space (37) of third section (17), first space (38), third tube group (11C) ( 3rd path (31)), 3rd section (21), 4th section (25), lower space (26B) of 5th section (26), same upper space (26A), 5th tube group (12B) (first 4 passes (32)) and a fifth section (24).

上述したエバポレータ(1)は、圧縮機、冷媒冷却器としてのコンデンサおよび減圧器としての膨張弁とともに冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。カーエアコンの稼働時には、圧縮機、コンデンサおよび膨張弁を通過した気液混相の2相冷媒が、冷媒入口(22)を通って風下側上ヘッダ部(5)の第1区画(15)内に入り、上述した2つの経路を通って第1〜第4パス(28)(29)(31)(32)の熱交換チューブ(9)を順々に流れ、冷媒出口(27)から流出する。   The evaporator (1) described above constitutes a refrigeration cycle together with a compressor, a condenser as a refrigerant cooler, and an expansion valve as a decompressor, and is mounted on a vehicle, for example, an automobile, as a car air conditioner. During the operation of the car air conditioner, the gas-liquid mixed phase two-phase refrigerant that has passed through the compressor, condenser and expansion valve passes through the refrigerant inlet (22) and enters the first section (15) of the leeward upper header section (5). It enters, flows through the heat exchange tubes (9) of the first to fourth paths (28), (29), (31), and (32) sequentially through the above-described two paths, and flows out from the refrigerant outlet (27).

そして、冷媒が風下側チューブ列(11)の熱交換チューブ(9)内、および風上側チューブ列(12)の熱交換チューブ(9)内を流れる間に、熱交換コア部(4)の通風間隙を通過する空気(図1矢印X参照)と熱交換をし、空気は冷却され、冷媒は気相となって流出する。   While the refrigerant flows in the heat exchange tube (9) of the leeward tube row (11) and in the heat exchange tube (9) of the windward tube row (12), the ventilation of the heat exchange core section (4) Heat exchange is performed with air passing through the gap (see arrow X in FIG. 1), the air is cooled, and the refrigerant flows out as a gas phase.

ここで、風下側上ヘッダ部(5)の第3区画(17)内に、当該第3区画(17)内を第1空間(38)と第2空間(37)とに分ける板状の分流用抵抗部材(36)が設けられ、分流用抵抗部材(36)に、左右方向に間隔をおいて複数の冷媒通過穴(39)が形成されているので、第2空間(37)内に流入した冷媒には、分流用抵抗部材(36)によって第1空間(38)内への流れに対する抵抗が付与されることになり、重力の影響を受けたとしても、第3区画(17)の第2空間(37)内に流入した冷媒が、風下側チューブ列(11)における第3パス(31)を構成する第3チューブ群(11C)の熱交換チューブ(9)内に多量に流入することが抑制される。したがって、第1空間(38)内を経て第3チューブ群(11C)の熱交換チューブ(9)内に流入する冷媒量と、冷媒連通路(30)を通って風上側上ヘッダ部(6)の第4区画(23)に入った後風上側チューブ列(12)の第3パス(31)を構成する第4チューブ群(12A)の熱交換チューブ(9)内に流入する冷媒量とが均一化される。特に、分流用抵抗部材(36)に設けられた複数の冷媒通過穴(39)の合計断面積をA、風下側上ヘッダ部(5)の第3区画(17)の第2空間(37)と風上側上ヘッダ部(6)の第4区画(23)とを通じさせる複数の冷媒連通路(30)の合計断面積をBとした場合、B>Aの関係を満たしていると、第3チューブ群(11C)および第4チューブ群(12A)を流れる冷媒量が、効果的に均一化される。   Here, in the third section (17) of the leeward upper header section (5), the third section (17) is divided into a first space (38) and a second space (37). A diversion resistance member (36) is provided, and a plurality of refrigerant passage holes (39) are formed in the diversion resistance member (36) at intervals in the left-right direction, so that the diversion resistance member (36) flows into the second space (37). Thus, the resistance to the flow into the first space (38) is given to the refrigerant by the shunting resistance member (36), and even if it is affected by gravity, the third compartment (17) 2) A large amount of refrigerant flowing into the space (37) flows into the heat exchange tube (9) of the third tube group (11C) constituting the third path (31) in the leeward tube row (11). Is suppressed. Accordingly, the amount of refrigerant flowing into the heat exchange tube (9) of the third tube group (11C) through the first space (38) and the upwind header section (6) through the refrigerant communication passage (30). The amount of refrigerant flowing into the heat exchange tube (9) of the fourth tube group (12A) constituting the third path (31) of the upwind tube row (12) after entering the fourth section (23) of It is made uniform. In particular, the total cross-sectional area of the plurality of refrigerant passage holes (39) provided in the shunting resistance member (36) is A, and the second space (37) of the third section (17) of the leeward side upper header portion (5). And the fourth section (23) of the upwind header section (6) and the total cross-sectional area of the plurality of refrigerant communication passages (30) as B, if the relationship of B> A is satisfied, The amount of refrigerant flowing through the tube group (11C) and the fourth tube group (12A) is effectively equalized.

図7〜図9は、風下側上ヘッダ部(5)の変形例を示す。   7 to 9 show modifications of the leeward upper header section (5).

図7に示す風下側上ヘッダ部(5)の場合、風下側最遠区画である第3区画(17)における第2空間(37)の入口部分(45)の風下側に、第2空間(37)内の風下側部分への冷媒の流入を阻害する邪魔板(46)が、第2空間(37)の全高にわたって設けられている。邪魔板(46)が、第3区画(17)の第2空間(37)から風上側最遠区画である第4区画(23)内への冷媒の流入を促進する促進部材(47)となっている。   In the case of the leeward side upper header portion (5) shown in FIG. 7, the second space (on the leeward side of the entrance portion (45) of the second space (37) in the third zone (17) which is the farthest leeward side zone) 37) A baffle plate (46) that obstructs the inflow of the refrigerant to the leeward side portion is provided over the entire height of the second space (37). The baffle plate (46) serves as an accelerating member (47) that promotes the inflow of refrigerant from the second space (37) of the third section (17) into the fourth section (23) that is the furthest farthest section. ing.

図8に示す風下側上ヘッダ部(5)の場合、風下側最遠区画である第3区画(17)の第2空間(37)内における左右方向(熱交換チューブ(9)の並び方向)の中間部の下側部分(熱交換チューブ(9)側の部分)に、第2空間(37)内の熱交換チューブ(9)側部分への冷媒の流入を阻害する邪魔板(48)が、第2空間(37)の前後方向の全幅にわたって設けられている。邪魔板(48)が、第3区画(17)の第2空間(37)から風上側最遠区画である第4区画(23)内への冷媒の流入を促進する促進部材(49)となっている。   In the case of the leeward side upper header section (5) shown in FIG. 8, the left and right direction in the second space (37) of the third section (17), which is the leeward side farthest section (alignment direction of the heat exchange tubes (9)) A baffle plate (48) that obstructs the inflow of the refrigerant to the heat exchange tube (9) side portion in the second space (37) is provided on the lower part of the intermediate portion (the heat exchange tube (9) side portion). The second space (37) is provided over the entire width in the front-rear direction. The baffle plate (48) serves as an accelerating member (49) that promotes the inflow of refrigerant from the second space (37) of the third section (17) into the fourth section (23), which is the furthest farthest section. ing.

図9に示す風下側上ヘッダ部(5)の場合、風下側最遠区画である第3区画(17)の第1空間(38)の右端開口を閉鎖し、かつ風下側上ヘッダ部(5)の第2区画(16)から第1空間(38)への冷媒の流れを遮断する流れ遮断部材(41)が設けられていないことを除いては、図8に示す風下側上ヘッダ部(5)と同じである。   In the case of the leeward upper header section (5) shown in FIG. 9, the right end opening of the first space (38) of the third section (17) which is the farthest section on the leeward side is closed, and the leeward upper header section (5 ) On the leeward side upper header portion (see FIG. 8) except that the flow blocking member (41) for blocking the refrigerant flow from the second section (16) to the first space (38) is not provided. Same as 5).

なお、図9に示す風下側上ヘッダ部(5)において、第3区画(17)の第1空間(38)内における左右方向(熱交換チューブ(9)の並び方向)の中間部に、第1空間(37)内を左右方向に仕切る仕切部材が設けられていてもよい。仕切部材は、邪魔板(48)と同一位置に設けられていてもよいし、邪魔板(48)とはずれた位置に設けられていてもよい。   In addition, in the leeward side upper header portion (5) shown in FIG. 9, in the middle portion in the left-right direction (alignment direction of the heat exchange tubes (9)) in the first space (38) of the third section (17), A partition member that partitions the inside of one space (37) in the left-right direction may be provided. The partition member may be provided at the same position as the baffle plate (48) or may be provided at a position away from the baffle plate (48).

実施形態2
この実施形態は図10〜図14に示すものである。図10〜図13はエバポレータの要部の構成を示し、図14は図10のエバポレータにおける冷媒の流れを示す。
Embodiment 2
This embodiment is shown in FIGS. 10-13 shows the structure of the principal part of an evaporator, FIG. 14 shows the flow of the refrigerant | coolant in the evaporator of FIG.

図10〜図14に示すように、エバポレータ(50)の風下側チューブ列(11)には、複数の熱交換チューブ(9)からなる4つのチューブ群(11A)(11B)(11C)(11D)が、右端から左端に向かって並んで設けられ、風上側チューブ列(12)には、複数の熱交換チューブ(9)からなる3つ(風下側チューブ列(11)のチューブ群の数よりも1つ少ない数)のチューブ群(12A)(12B)(12C)が、左端から右端に向かって並んで設けられている。   As shown in FIGS. 10 to 14, the leeward tube row (11) of the evaporator (50) includes four tube groups (11A), (11B), (11C), (11D) including a plurality of heat exchange tubes (9). ) Are arranged side by side from the right end to the left end, and the windward tube row (12) includes three heat exchange tubes (9) (the number of tube groups in the leeward tube row (11)). The tube group (12A) (12B) (12C) is also provided in a line from the left end to the right end.

風下側上下両ヘッダ部(5)(7)に、それぞれ風下側チューブ列(11)のチューブ群(11A)(11B)(11C)(11D)と同数でかつ各チューブ群(11A)(11B)(11C)(11D)の熱交換チューブ(9)が通じる区画(51)(52)(53)(54)および(55)(56)(57)(58)が設けられている。風下側上ヘッダ部(5)における右端の区画(51)の右端部に冷媒入口(22)が設けられている。風下側チューブ列(11)の4つのチューブ群(11A)(11B)(11C)(11D)を冷媒入口(22)側端部から他端部に向かって第1〜第4チューブ群といい、第1〜第4チューブ群(11A)(11B)(11C)(11D)の熱交換チューブ(9)が通じる区画(51)(52)(53)(54)および(55)(56)(57)(58)を冷媒入口(22)側端部から他端部に向かって第1〜第4区画というものとする。第4チューブ群(11D)が、風下側チューブ列(11)における冷媒入口(22)から最も遠い位置にある最遠チューブ群であり、風下側上ヘッダ部(5)の第4区画(58)が、第4チューブ群(11D)の熱交換チューブ(9)が通じさせられた冷媒流れ方向上流側(上側)の風下側最遠区画である。   The same number of tube groups (11A), (11B), (11C), and (11D) in the leeward side tube row (11) and the tube groups (11A) (11B) Sections (51) (52) (53) (54) and (55) (56) (57) (58) through which the heat exchange tube (9) of (11C) (11D) communicates are provided. A refrigerant inlet (22) is provided at the right end of the rightmost section (51) in the leeward side upper header (5). The four tube groups (11A), (11B), (11C), and (11D) in the leeward tube row (11) are referred to as first to fourth tube groups from the refrigerant inlet (22) side end toward the other end, Sections (51) (52) (53) (54) and (55) (56) (57) through which the heat exchange tubes (9) of the first to fourth tube groups (11A) (11B) (11C) (11D) communicate ) (58) is referred to as first to fourth sections from the refrigerant inlet (22) side end toward the other end. The fourth tube group (11D) is the farthest tube group located farthest from the refrigerant inlet (22) in the leeward tube row (11), and the fourth section (58) of the leeward upper header portion (5). Is the leeward farthest section on the upstream side (upper side) in the refrigerant flow direction through which the heat exchange tube (9) of the fourth tube group (11D) is communicated.

風上側上下両ヘッダ部(6)(8)に、それぞれ風上側チューブ列(12)のチューブ群(12A)(12B)(12C)と同数でかつ各チューブ群(12A)(12B)(12C)の熱交換チューブ(9)が通じる区画(59)(61)(62)および(63)(64)(65)が設けられている。風上側上ヘッダ部(6)における右端の区画(64)の右端部(冷媒入口(22)と同一端部)に冷媒出口(27)が設けられている。風上側チューブ列(12)の3つのチューブ群(12A)(12B)(12C)を冷媒出口(27)とは反対側の端部から冷媒出口側(27)の端部に向かって第5〜第7チューブ群といい、第5〜第7チューブ群(12A)(12B)(12C)の熱交換チューブ(9)が通じる区画(59)(61)(62)および(63)(64)(65)を冷媒出口(27)とは反対側の端部から冷媒出口側(27)の端部に向かって第5〜第7区画というものとする。第5チューブ群(12A)が、風上側チューブ列(12)における冷媒出口(27)から最も遠い位置にある最遠チューブ群であり、風上側上ヘッダ部(6)の第5区画(63)が、第5チューブ群(12A)が通じさせられた冷媒流れ方向上流側(上側)の風上側最遠区画である。   On the upwind upper and lower header sections (6) and (8), each tube group (12A) (12B) (12C) is the same number as the tube groups (12A) (12B) (12C) in the windward tube row (12). Sections (59) (61) (62) and (63) (64) (65) through which the heat exchange tube (9) communicates are provided. A refrigerant outlet (27) is provided at the right end (the same end as the refrigerant inlet (22)) of the rightmost section (64) in the upwind header section (6). The three tube groups (12A), (12B), and (12C) in the windward tube row (12) are moved from the end opposite to the refrigerant outlet (27) toward the end on the refrigerant outlet side (27). It is called the seventh tube group, and the sections (59) (61) (62) and (63) (64) (5) to the seventh tube group (12A) (12B) (12C) through which the heat exchange tube (9) communicates. 65) is referred to as fifth to seventh sections from the end opposite to the refrigerant outlet (27) toward the end of the refrigerant outlet (27). The fifth tube group (12A) is the farthest tube group located farthest from the refrigerant outlet (27) in the windward tube row (12), and the fifth section (63) of the windward upper header portion (6). Is the farthest upwind section on the upstream side (upper side) in the refrigerant flow direction through which the fifth tube group (12A) is communicated.

なお、風下側チューブ列(11)の第1および第2チューブ群(11A)(11B)を構成する熱交換チューブ(9)の合計数は、風上側チューブ列(12)の第7チューブ群(12C)を構成する熱交換チューブ(9)の数と等しくなっており、風下側チューブ列(11)の第3チューブ群(11C)および第4チューブ群(11D)を構成する熱交換チューブ(9)の数は、それぞれ風上側チューブ列(12)の第6チューブ群(12B)および第5チューブ群(12A)を構成する熱交換チューブ(9)の数と等しくなっている。また、風下側上下両ヘッダ部(5)(7)における第1区画(51)(55)と第2区画(52)(56)の左右方向の合計長さは、風上側上下両ヘッダ部(6)(8)における第7区画(62)(65)の左右方向の長さと等しく、風下側上下両ヘッダ部(5)(7)における第3区画(53)(57)および第4区画(54)(58)の左右方向の長さは、それぞれ風上側上下両ヘッダ部(6)(8)における第6区画(61)(64)および第5区画(59)(63)の左右方向の長さと等しくなっている。   The total number of heat exchange tubes (9) constituting the first and second tube groups (11A) and (11B) of the leeward side tube row (11) is the seventh tube group (12) of the leeward side tube row (12). 12C) is equal to the number of heat exchange tubes (9), and the heat exchange tubes (9C) constituting the third tube group (11C) and the fourth tube group (11D) of the leeward tube row (11) ) Is equal to the number of heat exchange tubes (9) constituting the sixth tube group (12B) and the fifth tube group (12A) of the windward tube row (12). The total length in the left and right direction of the first section (51) (55) and the second section (52) (56) in the leeward upper and lower header sections (5) and (7) is the leeward upper and lower header sections ( 6) It is equal to the length in the left and right direction of the seventh section (62) and (65) in (8), and the third section (53) (57) and the fourth section (in the leeward upper and lower header sections (5) and (7)) The left and right lengths of 54) and 58 are the left and right lengths of the sixth section (61) (64) and the fifth section (59) (63) in the upwind upper and lower header sections (6) and (8), respectively. It is equal to the length.

風下側上ヘッダ部(5)の第1区画(51)と第2区画(52)との間、および第3区画(53)と第4区画(54)との間にはそれぞれ仕切壁(73)が設けられ、これにより第1区画(51)と第2区画(52)、および第3区画(53)と第4区画(54)とはそれぞれ非連通状態となっている。また、風下側上ヘッダ部(5)の第2区画(52)と第3区画(53)とは連通状態となっている。   Partition walls (73) are provided between the first section (51) and the second section (52) and between the third section (53) and the fourth section (54) of the leeward side upper header section (5). Thus, the first section (51) and the second section (52), and the third section (53) and the fourth section (54) are in a non-communication state. Further, the second section (52) and the third section (53) of the leeward side upper header section (5) are in communication with each other.

風下側下ヘッダ部(7)の第1区画(55)と第2区画(56)とは連通状態となっている。風下側下ヘッダ部(7)の第2区画(56)と第3区画(57)との間には仕切壁(74)が設けられ、これにより両区画(56)(57)は非連通状態となっている。また、風下側下ヘッダ部(7)の風下側最遠区画である第4区画(58)内に、第4区画(58)内を熱交換チューブ(9)が臨む上側の第1空間(82)と、第1空間(82)から隔てられた下側の第2空間(81)とに分ける分流用抵抗部材(79)が設けられている。風下側下ヘッダ部(7)の第3区画(57)と第4区画(58)との間には、第4区画(58)の第1空間(82)の右端開口を閉鎖し、かつ第3区画(57)から第1空間(82)への冷媒の流れを遮断する流れ遮断部材(84)が設けられている。また、第4区画(58)の第2空間(81)の右端部が全体に開口することにより、第3区画(57)と第4区画(58)の第2空間(81)とは連通状態となっており、第4区画(58)の第2空間(81)内に、第4区画(58)の冷媒入口(22)側に隣り合う第3区画(57)から冷媒が流入する。ここで、第4区画(58)の第2空間(81)の右端部の開口が、第4区画(58)の第2空間(81)内に冷媒を流入させる入口部分(80)となっている。さらに、分流用抵抗部材(79)に、左右方向に間隔をおいて複数の冷媒通過穴(83)が形成されており、これにより両空間(81)(82)が通じさせられている。   The first section (55) and the second section (56) of the leeward side lower header section (7) are in communication with each other. A partition wall (74) is provided between the second section (56) and the third section (57) of the leeward side lower header section (7), so that the sections (56) and (57) are not in communication with each other. It has become. Further, in the fourth section (58) which is the farthest section on the leeward side of the leeward lower header section (7), the first space (82) on the upper side where the heat exchange tube (9) faces the fourth section (58). ) And a lower second space (81) separated from the first space (82), a shunt resistance member (79) is provided. Between the third section (57) and the fourth section (58) of the leeward side lower header section (7), the right end opening of the first space (82) of the fourth section (58) is closed, and the first section A flow blocking member (84) for blocking the flow of the refrigerant from the three sections (57) to the first space (82) is provided. Further, the right end portion of the second space (81) of the fourth section (58) opens to the whole, so that the third section (57) and the second space (81) of the fourth section (58) communicate with each other. Thus, the refrigerant flows into the second space (81) of the fourth section (58) from the third section (57) adjacent to the refrigerant inlet (22) side of the fourth section (58). Here, the opening at the right end of the second space (81) of the fourth section (58) serves as an inlet portion (80) for allowing the refrigerant to flow into the second space (81) of the fourth section (58). Yes. Further, a plurality of refrigerant passage holes (83) are formed in the shunting resistance member (79) at intervals in the left-right direction, so that both spaces (81) (82) are communicated.

風上側上ヘッダ部(6)の第5区画(59)と第6区画(61)とは連通状態となっている。風上側上ヘッダ部(6)の第6区画(61)と第7区画(62)との間には仕切壁(75)が設けられ、これにより両区画(61)(62)は非連通状態となっている。   The fifth section (59) and the sixth section (61) of the windward upper header section (6) are in communication with each other. A partition wall (75) is provided between the sixth section (61) and the seventh section (62) of the windward upper header section (6), so that the sections (61) and (62) are not in communication with each other. It has become.

風上側下ヘッダ部(8)の第5区画(63)と第6区画(64)との間には仕切壁(76)が設けられ、これにより両区画(63)(64)は非連通状態となっている。風上側下ヘッダ部(8)の第7区画(65)内に、第7区画(65)内を上空間(65A)と下空間(65B)とに分ける板状の分流用抵抗部材(42)が設けられており、分流用抵抗部材(42)に、左右方向に間隔をおいて複数の冷媒通過穴(43)が形成されている。また、風上側下ヘッダ部(8)の第6区画(64)と第7区画(65)との間に、第7区画(65)の上空間(65A)の左端開口を閉鎖し、かつ第6区画(64)から第7区画(65)の下空間(65B)への冷媒の流れを促進する板状の流れ促進部材(44)が設けられている。また、第7区画(26)の下空間(65B)の左端部が全体に開口することにより、第6区画(64)と第7区画(65)の下空間(65B)とは連通状態となっており、第7区画(65)の下空間(65B)内に、第6区画(64)から冷媒が流入する。なお、流れ促進部材(44)には冷媒通過穴が形成されていてもよい。   A partition wall (76) is provided between the fifth section (63) and the sixth section (64) of the windward lower header section (8), so that the sections (63) and (64) are not in communication. It has become. A plate-like shunt resistance member (42) that divides the seventh compartment (65) into an upper space (65A) and a lower space (65B) in the seventh compartment (65) of the upwind lower header section (8) A plurality of refrigerant passage holes (43) are formed in the shunting resistance member (42) at intervals in the left-right direction. Further, the left end opening of the upper space (65A) of the seventh section (65) is closed between the sixth section (64) and the seventh section (65) of the windward lower header section (8), and A plate-like flow promoting member (44) for promoting the flow of the refrigerant from the sixth section (64) to the lower space (65B) of the seventh section (65) is provided. Further, the left end portion of the lower space (65B) of the seventh section (26) opens to the whole, so that the sixth section (64) and the lower space (65B) of the seventh section (65) are in communication with each other. The refrigerant flows from the sixth section (64) into the lower space (65B) of the seventh section (65). Note that a coolant passage hole may be formed in the flow promoting member (44).

風下側上ヘッダ部(5)の第4区画(54)と、風上側上ヘッダ部(6)の第5区画(59)とは、第1ヘッダタンク(2)の仕切部(2a)における仕切壁(73)よりも左側の部分に設けられた連通部(78)によって通じさせられている。   The fourth section (54) of the leeward upper header section (5) and the fifth section (59) of the leeward upper header section (6) are partitions in the partition section (2a) of the first header tank (2). It is made to communicate by the communication part (78) provided in the left part rather than the wall (73).

風下側下ヘッダ部(7)の第4区画(58)の第2空間(81)と、風上側下ヘッダ部(8)の第5区画(63)とは、第2ヘッダタンク(3)の仕切部(3a)における入口部分(80)、遮断部材(84)および仕切壁(76)よりも左側の部分に左右方向に間隔をおいて設けられた貫通穴からなる複数の連通路(77)によって通じさせられている。   The second space (81) of the fourth section (58) of the leeward side lower header section (7) and the fifth section (63) of the leeward side lower header section (8) are arranged in the second header tank (3). A plurality of communication passages (77) comprising through-holes spaced in the left-right direction in the left part of the entrance part (80), the blocking member (84) and the partition wall (76) in the partition part (3a) Is communicated by.

ここで、分流用抵抗部材(79)に設けられた複数の冷媒通過穴(83)の合計断面積をA、風下側下ヘッダ部(7)の第4区画(58)と風上側下ヘッダ部(8)の第5区画(63)とを通じさせる複数の冷媒連通路(77)の合計断面積をBとした場合、B>Aの関係を満たしていることが好ましい。   Here, the total cross-sectional area of the plurality of refrigerant passage holes (83) provided in the shunting resistance member (79) is A, the fourth section (58) of the leeward lower header portion (7) and the leeward lower header portion. When the total cross-sectional area of the plurality of refrigerant communication passages (77) through the fifth section (63) in (8) is B, it is preferable that the relationship B> A is satisfied.

上述のようにして各区画(51)〜(59)(61)〜(65)、冷媒入口(22)、冷媒出口(27)、冷媒通過穴(83)を有する分流用抵抗部材(79)、遮断部材(84)、第1空間(82)、第2空間(81)、冷媒通過穴(43)を有する分流用抵抗部材(42)、流れ促進部材(44)、上空間(65A)、下空間(65B)、連通路(77)および連通部(78)が設けられることによって、冷媒は、第1チューブ群(11A)、第3チューブ群(11C)および第6チューブ群(12B)の熱交換チューブ(9)内を、上下いずれかのうちの冷媒入口(22)が位置する側から反対側、ここでは上から下に流れることになり、これらのチューブ群(11A)(11C)(12B)が下降流チューブ群となっている。また、冷媒は、第2チューブ群(11B)、冷媒入口(22)から最も遠い位置にある第4チューブ群(11D)、冷媒出口(27)から最も遠い位置にある第5チューブ群(12A)および第7チューブ群(12C)の熱交換チューブ(9)内を、下から上に流れることになり、これらのチューブ群(11B)(11D)(12A)(12C)が上昇流チューブ群となっている。すなわち、風下側チューブ列(11)の第4チューブ群(11D)、および風上側チューブ列(12)の第5チューブ群(12A)の熱交換チューブ(9)における冷媒の流れ方向は同一方向になっている。第1チューブ群(11A)が、冷媒が熱交換チューブ(9)内を、上下いずれかのうちの冷媒入口(22)が位置する側から反対側、ここでは上から下に流れる第1パス(66)となり、第2チューブ群(11B)が、冷媒が熱交換チューブ(9)内を下から上(第1パス(66)とは逆方向)に流れる第2パス(67)となり、第3チューブ群(11C)が、冷媒が熱交換チューブ(9)内を上から下(第1パス(66)と同方向)に流れる第3パス(68)となり、第4および第5チューブ群(11D)(12A)が、冷媒が熱交換チューブ(9)内を下から上(第1パス(66)とは逆方向)に流れる第4パス(69)となり、第6チューブ群(12B)が、冷媒が熱交換チューブ(9)内を上から下(第1パス(66)と同方向)に流れる第5パス(71)となり、第7チューブ群(12C)が、冷媒が熱交換チューブ(9)内を下から上(第1パス(66)とは逆方向)に流れる第6パス(
72)となっており、第4パス(69)が、熱交換チューブ(9)内の冷媒の流れ方向が同一方向である第4および第5チューブ群(11D)(12A)が通風方向に並んで設けられることにより構成されている。そして、冷媒入口(22)から流入した冷媒は、以下に述べる2つの経路を通って第1〜第6パス(66)(67)(68)(69)(71)(72)の熱交換チューブ(9)を順々に流れ、冷媒出口(27)から流出するようになされている。第1の経路は、第1区画(51)、第1チューブ群(11A)(第1パス(66))、第1区画(55)、第2区画(56)、第2チューブ群(11B)(第2パス(67))、第2区画(52)、第3区画(53)、第3チューブ群(11C)(第3パス(68))、第3区画(57)、第4区画(58)の第2空間(81)、第5区画(63)、第5チューブ群(12A)(第4パス(69))、第5区画(59)、第6区画(61)、第6チューブ群(12B)(第5パス(71))、第6区画(64)、第7区画(65)の下空間(65B)、同上空間(65A)、第7チューブ群(12C)(第6パス(32))および第7区画(62)であり、第2の経路は、第1区画(51)、第1チューブ群(11A)(第1パス(66))、第1区画(55)、第2区画(56)、第2チューブ群(11B)(第2パス(67))、第2区画(52)、第3区画(53)、第3チューブ群(11C)(第3パス(68))、第3区画(57)、第4区画(58)の第2空間(81)、同第1空間(82)、第4チューブ群(11D)(第4パス(69))、第4区画(54)、第5区画(59)、第6区画(61)、第6チューブ群(12B)(第5パス(71))、第6区画(64)、第7区画(65)の下空間(65B)、同上空間(65A)、第7チューブ群(12C)(第6パス(32))および第7区画(62)である。
As described above, each of the compartments (51) to (59) (61) to (65), the refrigerant inlet (22), the refrigerant outlet (27), the shunt resistance member (79) having the refrigerant passage hole (83), The blocking member (84), the first space (82), the second space (81), the shunting resistance member (42) having the refrigerant passage hole (43), the flow promoting member (44), the upper space (65A), the lower By providing the space (65B), the communication passage (77), and the communication portion (78), the refrigerant is heated by the first tube group (11A), the third tube group (11C), and the sixth tube group (12B). In the exchange tube (9), it will flow from the side where the refrigerant inlet (22) of either the upper or lower side is located to the opposite side, here from the top to the bottom, and these tube groups (11A) (11C) (12B ) Is the downflow tube group. In addition, the refrigerant is the second tube group (11B), the fourth tube group (11D) located farthest from the refrigerant inlet (22), and the fifth tube group (12A) farthest from the refrigerant outlet (27). And the seventh tube group (12C) in the heat exchange tube (9) will flow from bottom to top, and these tube groups (11B) (11D) (12A) (12C) will be the upflow tube group ing. That is, the flow direction of the refrigerant in the fourth tube group (11D) of the leeward tube row (11) and the heat exchange tube (9) of the fifth tube group (12A) of the leeward tube row (12) is the same direction. It has become. The first tube group (11A) has a first path (in which the refrigerant flows in the heat exchange tube (9) from the side where the refrigerant inlet (22) is positioned to the opposite side, here from the top to the bottom (in this case). 66), and the second tube group (11B) becomes the second path (67) in which the refrigerant flows from the bottom to the top (opposite to the first path (66)) in the heat exchange tube (9). The tube group (11C) becomes the third path (68) in which the refrigerant flows from the top to the bottom (the same direction as the first path (66)) in the heat exchange tube (9), and the fourth and fifth tube groups (11D ) (12A) becomes the fourth path (69) in which the refrigerant flows from the bottom to the top (the direction opposite to the first path (66)) in the heat exchange tube (9), and the sixth tube group (12B) The refrigerant passes through the heat exchange tube (9) from the top to the bottom (in the same direction as the first pass (66)), the fifth path (71), and the seventh tube group (12C) is connected to the heat exchange tube (9 ) Flows from bottom to top (in the opposite direction to the first pass (66)) 6th pass (
72), and in the fourth path (69), the fourth and fifth tube groups (11D) (12A) in which the flow direction of the refrigerant in the heat exchange tube (9) is the same are arranged in the ventilation direction. It is comprised by providing. Then, the refrigerant flowing from the refrigerant inlet (22) passes through the following two paths, and the heat exchange tubes of the first to sixth paths (66) (67) (68) (69) (71) (72) It flows in order (9) and flows out from the refrigerant outlet (27). The first path consists of the first section (51), the first tube group (11A) (first path (66)), the first section (55), the second section (56), and the second tube group (11B). (Second path (67)), second section (52), third section (53), third tube group (11C) (third path (68)), third section (57), fourth section ( 58) second space (81), fifth section (63), fifth tube group (12A) (fourth path (69)), fifth section (59), sixth section (61), sixth tube Group (12B) (5th path (71)), 6th section (64), 7th section (65) lower space (65B), same space (65A), 7th tube group (12C) (6th path) (32)) and the seventh section (62), the second path is the first section (51), the first tube group (11A) (first path (66)), the first section (55), Second section (56), second tube group (11B) (second pass (67)), second section (52), third section (53), third tube group (11C) (third path (68 )), The third section (57), the second space (81) of the fourth section (58), the first space (82), the fourth section Tube group (11D) (fourth path (69)), fourth section (54), fifth section (59), sixth section (61), sixth tube group (12B) (fifth path (71)) In the sixth section (64), the lower space (65B), the upper space (65A), the seventh tube group (12C) (sixth path (32)) and the seventh section (62) in the seventh section (65) is there.

上述したエバポレータ(1)は、圧縮機、冷媒冷却器としてのコンデンサおよび減圧器としての膨張弁とともに冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。カーエアコンの稼働時には、圧縮機、コンデンサおよび膨張弁を通過した気液混相の2相冷媒が、冷媒入口(22)を通って風下側上ヘッダ部(5)の第1区画(51)内に入り、上述した2つの経路を通って第1〜第6パス(66)(67)(68)(69)(71)(72)の熱交換チューブ(9)を順々に流れ、冷媒出口(27)から流出する。   The evaporator (1) described above constitutes a refrigeration cycle together with a compressor, a condenser as a refrigerant cooler, and an expansion valve as a decompressor, and is mounted on a vehicle, for example, an automobile, as a car air conditioner. When the car air conditioner is in operation, the gas-liquid mixed phase two-phase refrigerant that has passed through the compressor, condenser and expansion valve passes through the refrigerant inlet (22) and enters the first section (51) of the leeward upper header section (5). Enters the heat exchange tubes (9) of the first to sixth paths (66), (67), (68), (69), (71), and (72) in order through the above-described two paths, and the refrigerant outlet ( It flows out from 27).

そして、冷媒が風下側チューブ列(11)の熱交換チューブ(9)内、および風上側チューブ列(12)の熱交換チューブ(9)内を流れる間に、熱交換コア部(4)の通風間隙を通過する空気(図1矢印X参照)と熱交換をし、空気は冷却され、冷媒は気相となって流出する。   While the refrigerant flows in the heat exchange tube (9) of the leeward tube row (11) and in the heat exchange tube (9) of the windward tube row (12), the ventilation of the heat exchange core section (4) Heat exchange is performed with air passing through the gap (see arrow X in FIG. 1), the air is cooled, and the refrigerant flows out as a gas phase.

ここで、風下側下ヘッダ部(7)の第4区画(58)内に、当該第4区画(58)内を第1空間(82)と第2空間(81)とに分ける板状の分流用抵抗部材(79)が設けられ、分流用抵抗部材(79)に、左右方向に間隔をおいて複数の冷媒通過穴(83)が形成されているので、第2空間(81)内に流入した冷媒には、分流用抵抗部材(79)によって第1空間(82)内への流れに対する抵抗が付与されることになり、冷媒の流量が変動したとしても、第4区画(58)の第2空間(81)内に流入した冷媒が、風下側チューブ列(11)における第4パス(69)を構成する第4チューブ群(11D)の熱交換チューブ(9)内に多量に流入することが抑制される。したがって、第1空間(82)内を経て第4チューブ群(11D)の熱交換チューブ(9)内に流入する冷媒量と、冷媒連通路(77)を通って風上側下ヘッダ部(8)の第5区画(63)に入った後風上側チューブ列(12)の第4パス(69)を構成する第5チューブ群(12A)の熱交換チューブ(9)内に流入する冷媒量とが均一化される。特に、分流用抵抗部材(79)に設けられた複数の冷媒通過穴(83)の合計断面積をA、風下側下ヘッダ部(7)の第4区画(58)の第2空間(81)と風上側下ヘッダ部(8)の第5区画(63)とを通じさせる複数の冷媒連通路(77)の合計断面積をBとした場合、B>Aの関係を満たしていると、第4チューブ群(11D)および第5チューブ群(12A)を流れる冷媒量が、効果的に均一化される。   Here, in the fourth section (58) of the leeward side lower header section (7), a plate-shaped section that divides the fourth section (58) into a first space (82) and a second space (81). The diversion resistance member (79) is provided, and the diversion resistance member (79) is formed with a plurality of refrigerant passage holes (83) at intervals in the left-right direction, so that it flows into the second space (81). Thus, resistance to the flow into the first space (82) is given to the refrigerant by the shunting resistance member (79), and even if the flow rate of the refrigerant fluctuates, the fourth compartment (58) A large amount of refrigerant flowing into the space (81) flows into the heat exchange tube (9) of the fourth tube group (11D) constituting the fourth path (69) in the leeward tube row (11). Is suppressed. Therefore, the amount of refrigerant flowing into the heat exchange tube (9) of the fourth tube group (11D) through the first space (82) and the upwind lower header portion (8) through the refrigerant communication passage (77). The amount of refrigerant flowing into the heat exchange tube (9) of the fifth tube group (12A) constituting the fourth path (69) of the upwind tube row (12) after entering the fifth section (63) of It is made uniform. In particular, the total cross-sectional area of the plurality of refrigerant passage holes (83) provided in the shunting resistance member (79) is A, and the second space (81) of the fourth section (58) of the leeward lower header portion (7). When the total cross-sectional area of the plurality of refrigerant communication passages (77) passing through the upper section and the fifth section (63) of the windward lower header portion (8) is B, The amount of refrigerant flowing through the tube group (11D) and the fifth tube group (12A) is effectively equalized.

実施形態2において、風下側下ヘッダ部(7)に、図7〜図9に示すような促進部材が設けられていてもよい。   In Embodiment 2, the leeward side lower header part (7) may be provided with a promoting member as shown in FIGS.

上記2つの実施形態を示す図面において、エバポレータの寸法や、熱交換チューブの数および熱交換チューブのピッチなどは、実際のものとは異なっている。   In the drawings showing the above two embodiments, the dimensions of the evaporator, the number of heat exchange tubes, the pitch of the heat exchange tubes, and the like are different from the actual ones.

上記2つの実施形態においては、第1パスの流れ方向上流側のヘッダ部と、同流れ方向下流側ヘッダ部とが、前者が上方に位置するように設けられているが、これに限定されるものではなく、これとは逆に、第1パスの流れ方向上流側のヘッダ部と、同流れ方向下流側ヘッダ部とが、前者が下方に位置するように設けられていてもよい。すなわち、上記実施形態とは上下逆向きに設けられていてもよい。   In the above two embodiments, the header portion on the upstream side in the flow direction of the first pass and the header portion on the downstream side in the flow direction are provided so that the former is positioned above, but the present invention is limited to this. Instead of this, on the contrary, the header portion on the upstream side in the flow direction of the first path and the header portion on the downstream side in the flow direction may be provided so that the former is positioned below. That is, it may be provided upside down from the above embodiment.

なお、この発明によるエバポレータは、1対の皿状プレートを対向させて周縁部どうしをろう付してなる複数の扁平中空体が並列状に配置されてなり、各偏平中空体に通風方向に並んだ上下方向にのびる2つの熱交換チューブ、および両熱交換チューブの上下両端に通じるヘッダ形成部が設けられるとともに、すべての扁平中空体の上下の2つのヘッダ形成部どうしがそれぞれ通じるように扁平中空体どうしがろう付されることによって、上下方向にのびるとともに通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなるチューブ列が、通風方向に並んで2列設けられるとともに、すべての扁平中空体のヘッダ形成部により、風下側および風上側のチューブ列の上下両端が通じる風下側および風上側上下両ヘッダ部が設けられた形式の所謂積層型エバポレータにも適用可能である。   In the evaporator according to the present invention, a plurality of flat hollow bodies formed by brazing the peripheral portions with a pair of plate-shaped plates facing each other are arranged in parallel, and are lined up in the ventilation direction in each flat hollow body. Two heat exchange tubes that extend in the vertical direction, and header forming parts that lead to the upper and lower ends of both heat exchange tubes are provided, and flat hollow so that the two upper and lower header forming parts of all flat hollow bodies can communicate with each other When the bodies are brazed to each other, two rows of tube rows each including a plurality of heat exchange tubes extending in the vertical direction and spaced apart in a direction perpendicular to the ventilation direction are provided side by side in the ventilation direction. In addition, both the leeward and leeward upper and lower headers where the upper and lower ends of the leeward and upper winder tube rows communicate with each other by the flat hollow body header forming portion. Is also applicable to form a so-called laminated evaporator provided.

この発明によるエバポレータは、カーエアコンを構成する冷凍サイクルに好適に用いられる。   The evaporator according to the present invention is suitably used for a refrigeration cycle constituting a car air conditioner.

(1)(50):エバポレータ
(5):第1ヘッダタンクの風下側ヘッダ部(風下側上ヘッダ部)
(6):第1ヘッダタンクの風上側ヘッダ部(風上側上ヘッダ部)
(7):第2ヘッダタンクの風下側ヘッダ部(風下側下ヘッダ部)
(8):第2ヘッダタンクの風上側ヘッダ部(風上側下ヘッダ部)
(9):熱交換チューブ
(11):風下側チューブ列
(11A)(11B)(11C):第1〜第3チューブ群
(11D):第4チューブ群
(12):風上側チューブ列
(12A)(12B):第4および第5チューブ群(第5および第6チューブ群)
(12C):第7チューブ群
(15)(16)(17):風下側上ヘッダ部の第1〜第3区画
(18)(19)(21):風下側下ヘッダ部の第1〜第3区画
(22):冷媒入口
(23)(24):風上側上ヘッダ部の第4および第5区画
(25)(26):風上側下ヘッダ部の第4および第5区画
(27):冷媒出口
(66)(29)(31)(32):第1〜第4パス
(30):冷媒連通路
(36):分流用抵抗部材
(37):第2空間
(38):第1空間
(39):冷媒通過穴
(41):流れ遮断部材
(45):入口部分
(46)(48):邪魔板
(47)(49):促進部材
(51)(52)(53)(54):風下側上ヘッダ部の第1〜第4区画
(55)(56)(57)(58):風下側下ヘッダ部の第1〜第4区画
(59)(61)(62):風上側上ヘッダ部の第5〜第7区画
(63)(64)(65):風上側下ヘッダ部の第5〜第7区画
(66)(67)(68)(69)(71)(72):第1〜第6パス
(79):分流用抵抗部材
(80):入口部分
(81):第2空間
(82):第1空間
(83):冷媒通過穴
(84):流れ遮断部材
(1) (50): Evaporator
(5): First header tank leeward header (leeward upper header)
(6): Windward header section of the first header tank (windward upper header section)
(7): The leeward header of the second header tank (leeward lower header)
(8): Windward header part of the second header tank (windward lower header part)
(9): Heat exchange tube
(11): Downward tube row
(11A) (11B) (11C): First to third tube groups
(11D): Fourth tube group
(12): Windward tube row
(12A) (12B): 4th and 5th tube groups (5th and 6th tube groups)
(12C): Seventh tube group
(15) (16) (17): First to third sections of the leeward upper header section
(18) (19) (21): First to third sections of the leeward lower header section
(22): Refrigerant inlet
(23) (24): 4th and 5th section of upwind header section
(25) (26): Fourth and fifth sections of the upwind header section
(27): Refrigerant outlet
(66) (29) (31) (32): 1st to 4th pass
(30): Refrigerant communication path
(36): Shunt resistance member
(37): Second space
(38): 1st space
(39): Refrigerant passage hole
(41): Flow blocking member
(45): Entrance
(46) (48): Baffle plate
(47) (49): Promoting member
(51) (52) (53) (54): First to fourth sections of the leeward upper header section
(55) (56) (57) (58): First to fourth sections of the leeward lower header section
(59) (61) (62): Fifth to seventh sections of the upwind header section
(63) (64) (65): Fifth to seventh sections of the upwind lower header
(66) (67) (68) (69) (71) (72): 1st to 6th pass
(79): Resistance member for shunting
(80): Entrance
(81): Second space
(82): 1st space
(83): Refrigerant passage hole
(84): Flow blocking member

Claims (10)

上下方向にのびるとともに通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなり、かつ通風方向に並んで設けられた2列のチューブ列と、風下側チューブ列の上下両側に設けられた風下側上下両ヘッダ部と、風上側チューブ列の上下両側に設けられた風上側上下両ヘッダ部とを備えており、両チューブ列に、それぞれ複数の熱交換チューブからなる複数のチューブ群が設けられ、風下側上下両ヘッダ部に、風下側チューブ列のチューブ群の数と同数の区画が設けられるとともに、各区画に風下側チューブ列の各チューブ群の熱交換チューブが通じさせられ、風上側上下両ヘッダ部に、風上側チューブ列のチューブ群の数と同数の区画が設けられるとともに、各区画に風上側チューブ列の各チューブ群の熱交換チューブが通じさせられ、風下側上下両ヘッダ部のうちのいずれか一方のヘッダ部における一端の区画に冷媒入口が設けられ、風上側上下両ヘッダ部のうちの冷媒入口が設けられた風下側ヘッダ部と同じ側のヘッダ部における冷媒入口と同一端の区画に冷媒出口が設けられ、風下側チューブ列における冷媒入口から最も遠い位置にある最遠チューブ群の熱交換チューブ内の冷媒の流れ方向と、風上側チューブ列における冷媒出口から最も遠い位置にある最遠チューブ群の熱交換チューブ内の冷媒の流れ方向とが同一方向となっており、通風方向に並んで設けられるとともに熱交換チューブ内の冷媒の流れ方向が同一方向である上記2つの最遠チューブ群により1つのパスが構成されているエバポレータにおいて、
風下側チューブ列の最遠チューブ群の熱交換チューブが通じさせられた冷媒流れ方向上流側の風下側最遠区画に、当該風下側最遠区画内を熱交換チューブが臨む第1空間と、第1空間から隔てられかつ風下側最遠区画の冷媒入口側に隣り合う区画から冷媒が流入する第2空間とに分ける分流用抵抗部材が設けられ、分流用抵抗部材に冷媒通過穴が形成され、風下側最遠区画の第2空間と、風上側チューブ列の最遠チューブ群の熱交換チューブが通じさせられた冷媒流れ方向上流側の風上側最遠区画とが冷媒連通路によって通じさせられているエバポレータ。
Two rows of tubes arranged in the direction of ventilation and arranged in the direction perpendicular to the direction of ventilation and spaced apart in the direction perpendicular to the direction of ventilation, The leeward upper and lower header sections provided on both sides and the leeward upper and lower header sections provided on the upper and lower sides of the windward tube row are provided, and each of the tube rows includes a plurality of heat exchange tubes. The same number of sections as the number of tube groups in the leeward tube row are provided in the upper and lower header sections of the leeward side, and the heat exchange tubes of each tube group in the leeward tube row communicate with each section. In the upwind upper and lower header sections, the same number of sections as the number of tube groups in the upwind tube row are provided, and the heat exchange channels of each tube group in the upwind tube row are provided in each section. Leeward side where the refrigerant inlet is provided in one of the sections of the header part of the leeward upper and lower header parts, and the refrigerant inlet of the windward upper and lower header parts is provided. The refrigerant outlet is provided in the same end section as the refrigerant inlet in the header part on the same side as the header part, and the refrigerant flow direction in the heat exchange tube of the farthest tube group located farthest from the refrigerant inlet in the leeward tube row And the flow direction of the refrigerant in the heat exchange tubes of the farthest tube group located farthest from the refrigerant outlet in the windward tube row are the same direction, and are arranged side by side in the ventilation direction and in the heat exchange tubes In an evaporator in which one path is constituted by the two farthest tube groups in which the refrigerant flows in the same direction,
A first space where the heat exchange tube faces the leeward farthest section in the leeward farthest section upstream of the refrigerant flow direction through which the heat exchange tubes of the farthest tube group of the leeward tube row are connected; A shunting resistance member is provided that divides the second space into which refrigerant flows from a section adjacent to the refrigerant inlet side of the leeward farthest section separated from one space, and a refrigerant passage hole is formed in the shunting resistance member; The second space of the leeward farthest section and the furthest furthest section on the upstream side in the refrigerant flow direction through which the heat exchange tubes of the farthest tube group of the windward tube row are communicated are connected by the refrigerant communication path. The evaporator.
風下側最遠区画が設けられたヘッダ部に、風下側最遠区画の第1空間への冷媒の流れを遮断する流れ遮断部材が設けられている請求項1記載のエバポレータ。 The evaporator according to claim 1, wherein a flow blocking member that blocks the flow of the refrigerant to the first space of the leeward farthest section is provided in the header portion provided with the leeward farthest section. 冷媒通過穴の合計断面積をA、冷媒連通路の合計断面積をBとした場合、B>Aの関係を満たす請求項1または2記載のエバポレータ。 The evaporator according to claim 1 or 2, satisfying a relationship of B> A, where A is a total cross-sectional area of the refrigerant passage holes and B is a total cross-sectional area of the refrigerant communication passage. 風下側最遠区画の第2空間から風上側最遠区画内への冷媒の流入を促進する促進部材を備えている請求項1〜3のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 1 to 3, further comprising an accelerating member that promotes the inflow of refrigerant from the second space of the leeward farthest section into the furthest furthest section. 促進部材が、風下側最遠区画が設けられたヘッダ部に設けられている請求項4記載のエバポレータ。 The evaporator according to claim 4, wherein the accelerating member is provided in a header portion in which the leeward farthest section is provided. 促進部材が、風下側最遠区画の第2空間内に冷媒が流入する入口部分の風下側に設けられるとともに、上記第2空間内の風下側への冷媒の流入を阻害する邪魔板からなる請求項5記載のエバポレータ。 The facilitating member is provided on the leeward side of the inlet portion where the refrigerant flows into the second space of the leeward farthest section, and includes a baffle plate that inhibits the flow of the refrigerant to the leeward side in the second space. Item 6. The evaporator according to Item 5. 促進部材が、風下側最遠区画の第2空間内における熱交換チューブの並び方向の中間部でかつ熱交換チューブ側の部分に設けられるとともに、上記第2空間内の熱交換チューブ側への冷媒の流入を阻害する邪魔板からなる請求項4記載のエバポレータ。 The accelerating member is provided in the middle portion of the heat exchange tubes in the second space of the leeward farthest section and in the heat exchange tube side portion, and the refrigerant to the heat exchange tube side in the second space The evaporator of Claim 4 which consists of a baffle plate which blocks | prevents inflow. 風下側チューブ列に、複数の熱交換チューブからなる第1〜第3のチューブ群が、冷媒入口側の端部から他端部側に向かって並んで設けられ、風上側チューブ列に、複数の熱交換チューブからなる第4および第5のチューブ群が、冷媒出口側とは反対側の端部から冷媒出口側の端部に向かって並んで設けられ、
風下側上下両ヘッダ部に、それぞれ第1〜第3チューブ群の熱交換チューブが通じる第1〜第3区画が設けられ、風上側上下両ヘッダ部に、それぞれ第4および第5チューブ群の熱交換チューブが通じる第4および第5区画が設けられ、風下側の上下いずれかのヘッダ部の第1区画に冷媒入口が設けられるとともに、風上側の上下いずれかのうちの冷媒入口が設けられた側に位置するヘッダ部の第5区画に冷媒出口が設けられ、
第1チューブ群が、冷媒が熱交換チューブ内を、上下いずれかのうちの冷媒入口が位置する側から反対側に流れる第1パスとなり、第2チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第2パスとなり、第3および第4チューブ群が、冷媒が熱交換チューブ内を第1パスと同方向に流れる第3パスとなり、第5チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第4パスとなっており、第3パスが、熱交換チューブ内の冷媒の流れ方向が同一方向である第3および第4チューブ群が通風方向に並んで設けられることにより構成され、
風下側チューブ列の第3チューブ群が最遠チューブ群であり、風下側の上下いずれかのヘッダ部における冷媒入口が設けられた側のヘッダ部の第3区画が、第3チューブ群の熱交換チューブが通じさせられた冷媒流れ方向上流側の最遠区画であるとともに、当該第3区画に、当該第3区画内を第1空間と第2空間とに分ける分流用抵抗部材が設けられており、当該第3区画の第2空間に、冷媒入口が設けられた側のヘッダ部の第2区画から冷媒が流入するようになされている請求項1〜7のうちのいずれかに記載のエバポレータ。
The first to third tube groups including a plurality of heat exchange tubes are provided in the leeward side tube row side by side from the end on the refrigerant inlet side toward the other end side. The fourth and fifth tube groups composed of heat exchange tubes are provided side by side from the end opposite to the refrigerant outlet side toward the end on the refrigerant outlet side,
The first and third sections through which the heat exchange tubes of the first to third tube groups are respectively connected to the leeward upper and lower header parts, and the heat of the fourth and fifth tube groups are respectively provided to the leeward upper and lower header parts. The fourth and fifth compartments through which the exchange tube communicates are provided, the refrigerant inlet is provided in the first compartment of either the upper or lower header part on the leeward side, and the refrigerant inlet of either the upper or lower side on the leeward side is provided. A refrigerant outlet is provided in the fifth section of the header portion located on the side,
The first tube group serves as a first path in which the refrigerant flows through the heat exchange tube from the side where the refrigerant inlet is located, to the opposite side, and the second tube group passes through the heat exchange tube. The second path flows in the opposite direction to the first path, the third and fourth tube groups become the third path in which the refrigerant flows in the same direction as the first path in the heat exchange tube, and the fifth tube group becomes the refrigerant. The fourth path flows in the direction opposite to the first path in the heat exchange tube, and the third and fourth tube groups in which the flow direction of the refrigerant in the heat exchange tube is the same direction are ventilated. It is configured by being arranged side by side,
The third tube group in the leeward tube row is the farthest tube group, and the third section of the header portion on the side where the refrigerant inlet is provided in either the upper or lower header portion on the leeward side is the heat exchange of the third tube group. The farthest section upstream of the refrigerant flow direction through which the tube is communicated, and the third section is provided with a shunting resistance member that divides the inside of the third section into a first space and a second space. The evaporator according to any one of claims 1 to 7, wherein the refrigerant flows into the second space of the third section from the second section of the header portion on the side where the refrigerant inlet is provided.
風下側チューブ列に、複数の熱交換チューブからなる第1〜第4のチューブ群が、冷媒入口側の端部から他端部側に向かって並んで設けられ、風上側チューブ列に、複数の熱交換チューブからなる第5〜第7のチューブ群が、冷媒出口側とは反対側の端部から冷媒出口側の端部に向かって並んで設けられ、
風下側上下両ヘッダ部に、それぞれ第1〜第4チューブ群の熱交換チューブが通じる第1〜第4区画が設けられ、風上側上下両ヘッダ部に、それぞれ第5〜第7チューブ群の熱交換チューブが通じる第5〜第7区画が設けられ、風下側の上下いずれかのヘッダ部の第1区画に冷媒入口が設けられるとともに、風上側の上下いずれかのうちの冷媒入口が設けられた側に位置するヘッダ部の第7区画に冷媒出口が設けられ、
第1チューブ群が、冷媒が熱交換チューブ内を、上下いずれかのうちの冷媒入口が位置する側から反対側に流れる第1パスとなり、第2チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第2パスとなり、第3チューブ群が、冷媒が熱交換チューブ内を第1パスと同方向に流れる第3パスとなり、第4および第5チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第4パスとなり、第6チューブ群が、冷媒が熱交換チューブ内を第1パスと同方向に流れる第5パスとなり、第7チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第6パスとなっており、第4パスが、熱交換チューブ内の冷媒の流れ方向が同一方向である第4および第5チューブ群が通風方向に並んで設けられることにより構成され、
風下側チューブ列の第4チューブ群が最遠チューブ群であり、風下側の上下いずれかのヘッダ部における冷媒入口が設けられた側と反対側のヘッダ部の第4区画が、第4チューブ群の熱交換チューブが通じさせられた冷媒流れ方向上流側の最遠区画であるとともに、当該第4区画に、当該第4区画内を第1空間と第2空間とに分ける分流用抵抗部材が設けられており、当該第4区画の第2空間に、冷媒入口が設けられた側とは反対側のヘッダ部の第3区画から冷媒が流入するようになされている請求項1〜7のうちのいずれかに記載のエバポレータ。
The first to fourth tube groups composed of a plurality of heat exchange tubes are provided in the leeward side tube row side by side from the end on the refrigerant inlet side toward the other end side. Fifth to seventh tube groups composed of heat exchange tubes are provided side by side from the end opposite to the refrigerant outlet side toward the end on the refrigerant outlet side,
The first and fourth sections through which the heat exchange tubes of the first to fourth tube groups are respectively connected to the leeward side upper and lower header parts, and the heat of the fifth to seventh tube groups are respectively provided to the leeward upper and lower header parts. Fifth to seventh sections through which the exchange tube communicates are provided, a refrigerant inlet is provided in the first section of the header part on either the upper or lower side of the leeward side, and a refrigerant inlet is provided on either the upper or lower side of the leeward side. A refrigerant outlet is provided in the seventh section of the header portion located on the side,
The first tube group serves as a first path in which the refrigerant flows through the heat exchange tube from the side where the refrigerant inlet is located, to the opposite side, and the second tube group passes through the heat exchange tube. The second pass flows in the opposite direction to the first pass, the third tube group becomes the third pass in which the refrigerant flows in the same direction as the first pass through the heat exchange tube, and the fourth and fifth tube groups become the refrigerant. The fourth path flows in the direction opposite to the first path in the heat exchange tube, the sixth tube group becomes the fifth path in which the refrigerant flows in the same direction as the first path in the heat exchange tube, and the seventh tube group The fourth and fifth tubes have a sixth path in which the refrigerant flows in the direction opposite to the first path in the heat exchange tube, and the fourth path has the same flow direction of the refrigerant in the heat exchange tube. Groups are arranged side by side in the ventilation direction It is more structure,
The fourth tube group in the leeward tube row is the farthest tube group, and the fourth section of the header portion on the opposite side to the side where the refrigerant inlet is provided in either the upper or lower header portion on the leeward side is the fourth tube group. In addition to the farthest section upstream in the refrigerant flow direction through which the heat exchange tube is communicated, a resistance member for shunting is provided in the fourth section to divide the fourth section into a first space and a second space. The refrigerant is configured to flow into the second space of the fourth section from the third section of the header portion opposite to the side where the refrigerant inlet is provided. Evaporator in any one.
冷媒入口が、風下側上ヘッダ部に設けられ、冷媒出口が、風上側上ヘッダ部に設けられている請求項1〜9のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 1 to 9, wherein the refrigerant inlet is provided in the leeward upper header portion, and the refrigerant outlet is provided in the leeward upper header portion.
JP2011090845A 2010-06-11 2011-04-15 Evaporator Active JP5693346B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011090845A JP5693346B2 (en) 2010-07-30 2011-04-15 Evaporator
US13/067,399 US10047984B2 (en) 2010-06-11 2011-05-31 Evaporator
CN201110158833.7A CN102287970B (en) 2010-06-11 2011-06-13 Evaporimeter
CN2011201991978U CN202188700U (en) 2010-06-11 2011-06-13 Evaporator
US15/963,998 US10393416B2 (en) 2010-06-11 2018-04-26 Evaporator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010172038 2010-07-30
JP2010172038 2010-07-30
JP2011090845A JP5693346B2 (en) 2010-07-30 2011-04-15 Evaporator

Publications (2)

Publication Number Publication Date
JP2012047438A true JP2012047438A (en) 2012-03-08
JP5693346B2 JP5693346B2 (en) 2015-04-01

Family

ID=45902520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090845A Active JP5693346B2 (en) 2010-06-11 2011-04-15 Evaporator

Country Status (1)

Country Link
JP (1) JP5693346B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032129A (en) * 2010-08-03 2012-02-16 Showa Denko Kk Evaporator
CN103256758A (en) * 2013-05-22 2013-08-21 浙江松信汽车空调有限公司 Five-chamber double-layer parallel flow evaporator and heat exchanging method thereof
WO2013140797A1 (en) * 2012-03-22 2013-09-26 株式会社デンソー Refrigerant evaporator
JP2014214903A (en) * 2013-04-23 2014-11-17 株式会社ケーヒン・サーマル・テクノロジー Evaporator and vehicle air conditioner using the same
JP2014214904A (en) * 2013-04-23 2014-11-17 株式会社ケーヒン・サーマル・テクノロジー Evaporator and vehicle air conditioner using the same
US20150241080A1 (en) * 2014-02-21 2015-08-27 Keihin Thermal Technology Corporation Air-conditioning apparatus for vehicle
JP2016061514A (en) * 2014-09-19 2016-04-25 株式会社ケーヒン・サーマル・テクノロジー Evaporator and air conditioning device for vehicle using the same
JP2017083101A (en) * 2015-10-30 2017-05-18 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP2017155990A (en) * 2016-02-29 2017-09-07 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner
JP2018105593A (en) * 2016-12-28 2018-07-05 株式会社ケーヒン・サーマル・テクノロジー Evaporator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032129A (en) * 2010-08-03 2012-02-16 Showa Denko Kk Evaporator
WO2013140797A1 (en) * 2012-03-22 2013-09-26 株式会社デンソー Refrigerant evaporator
JP2013195029A (en) * 2012-03-22 2013-09-30 Denso Corp Refrigerant evaporator
JP2014214904A (en) * 2013-04-23 2014-11-17 株式会社ケーヒン・サーマル・テクノロジー Evaporator and vehicle air conditioner using the same
JP2014214903A (en) * 2013-04-23 2014-11-17 株式会社ケーヒン・サーマル・テクノロジー Evaporator and vehicle air conditioner using the same
CN103256758B (en) * 2013-05-22 2015-03-11 浙江松信汽车空调有限公司 Five-chamber double-layer parallel flow evaporator and heat exchanging method thereof
CN103256758A (en) * 2013-05-22 2013-08-21 浙江松信汽车空调有限公司 Five-chamber double-layer parallel flow evaporator and heat exchanging method thereof
US20150241080A1 (en) * 2014-02-21 2015-08-27 Keihin Thermal Technology Corporation Air-conditioning apparatus for vehicle
JP2016061514A (en) * 2014-09-19 2016-04-25 株式会社ケーヒン・サーマル・テクノロジー Evaporator and air conditioning device for vehicle using the same
JP2017083101A (en) * 2015-10-30 2017-05-18 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP2017155990A (en) * 2016-02-29 2017-09-07 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner
WO2017150219A1 (en) * 2016-02-29 2017-09-08 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner
JP2018105593A (en) * 2016-12-28 2018-07-05 株式会社ケーヒン・サーマル・テクノロジー Evaporator

Also Published As

Publication number Publication date
JP5693346B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5693346B2 (en) Evaporator
JP5740134B2 (en) Evaporator
JP5486782B2 (en) Evaporator
US10393416B2 (en) Evaporator
JP5764345B2 (en) Evaporator
JP5759762B2 (en) Evaporator
JP6075956B2 (en) Evaporator
JP2012197974A5 (en)
US10408510B2 (en) Evaporator
JP5636215B2 (en) Evaporator
JP2011257111A5 (en)
JP2013024517A (en) Laminated heat exchanger
JP5990402B2 (en) Heat exchanger
JP5736164B2 (en) Evaporator
JP6785137B2 (en) Evaporator
JP5674376B2 (en) Evaporator
JP6617003B2 (en) Heat exchanger
JP2018087646A5 (en)
JP2016023815A (en) Evaporator
JP5238421B2 (en) Heat exchanger
JP2017083051A (en) Heat exchanger
JP2018119736A (en) Evaporator
JP2016057036A (en) Heat exchanger
JP2018119747A (en) Evaporator
JP2015040641A (en) Evaporator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R150 Certificate of patent or registration of utility model

Ref document number: 5693346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250