JP2017083051A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2017083051A
JP2017083051A JP2015210389A JP2015210389A JP2017083051A JP 2017083051 A JP2017083051 A JP 2017083051A JP 2015210389 A JP2015210389 A JP 2015210389A JP 2015210389 A JP2015210389 A JP 2015210389A JP 2017083051 A JP2017083051 A JP 2017083051A
Authority
JP
Japan
Prior art keywords
section
refrigerant
tube
heat exchange
tube group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015210389A
Other languages
Japanese (ja)
Inventor
直久 東山
Naohisa Higashiyama
直久 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2015210389A priority Critical patent/JP2017083051A/en
Publication of JP2017083051A publication Critical patent/JP2017083051A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger capable of preventing drift of a liquid-phase refrigerant in a lower flow-dividing section.SOLUTION: An evaporator 1 to which a heat exchanger is applied, includes a leeward-side tube row 3 and a windward-side tube row 4 composed of a plurality of heat exchange tubes 2, and upper and lower both header portions 5, 6, 7, 8 to which the heat exchange tubes 2 of both tube rows 3, 4 are connected. Two tube groups 13, 14 and 15, 16 are respectively disposed on both tube rows 3, 4, and all header portions 5, 6, 7, 8 are provided with sections 20-27 to which the heat exchange tubes 2 of the tube groups 13-16 are connected. A communication passage 32 is disposed between the second section 21 of the leeward-side lower header portion 6 and a seventh-section 26 of the windward-side lower header portion 8 so that the refrigerant flows toward an upstream side in the refrigerant flowing direction in the seventh section 26 from the second section 21 to the seventh section 26. The communication passage 32 is composed of a through hole 33 formed on a partitioning portion 18a between both lower header portions 6, 8, and a guide portion 34 formed on a part around the communication hole 33 of a face facing the seventh section 26 side of the partitioning portion 18a.SELECTED DRAWING: Figure 2

Description

この発明は、たとえば車両用空調装置のエバポレータとして用いられる熱交換器に関する。   The present invention relates to a heat exchanger used as an evaporator of a vehicle air conditioner, for example.

この明細書および特許請求の範囲において、図1〜図4の上下、左右を上下、左右というものとする。   In this specification and claims, the top and bottom, left and right in FIGS.

たとえば、自動車に搭載される冷凍サイクルであるカーエアコンに用いられるエバポレータとして、長手方向を上下方向に向けた状態で左右方向に間隔をおいて配置された複数の熱交換チューブからなり、かつ通風方向に並んだ2つのチューブ列と、各チューブ列の熱交換チューブの上下両側に長手方向を左右方向に向けて配置され、かつ各チューブ列の全熱交換チューブが接続された上ヘッダ部および下ヘッダ部とを備えており、両チューブ列に、連続して並んだ複数の熱交換チューブからなる2つのチューブ群が設けられ、上下ヘッダ部に、それぞれチューブ列のチューブ群と同数の2つの区画が長手方向に並んで設けられるとともに、各区画に1つのチューブ群の熱交換チューブが通じさせられ、風下側チューブ列の一方のチューブ群が、冷媒が上から下に流れる下降流チューブ群であるとともに、同他方のチューブ群が、冷媒が下から上に流れる上昇流チューブ群であり、風上側チューブ列における風下側チューブ列の下降流チューブ群の風上側に位置するチューブ群が、冷媒が下から上に流れる上昇流チューブ群であるとともに、風上側チューブ列における風下側チューブ列の上昇流チューブ群の風上側に位置するチューブ群が、冷媒が上から下に流れる下降流チューブ群であり、風下側上ヘッダ部における下降流チューブ群の熱交換チューブが通じる区画が冷媒が流入する入口区画であるとともに、風上側上ヘッダ部における上昇流チューブ群の熱交換チューブが通じる区画が冷媒が流出する出口区画であり、残りの区画が中間区画であり、入口区画に流入した冷媒が、各チューブ群毎に同方向に流れて全熱交換チューブおよび全中間区画を通過して出口区画内に入り、出口区画から流出するようになされたものが周知である。   For example, as an evaporator used in a car air conditioner that is a refrigeration cycle mounted on an automobile, it is composed of a plurality of heat exchange tubes arranged at intervals in the left-right direction with the longitudinal direction oriented in the vertical direction, and the ventilation direction The upper header section and the lower header, which are arranged in two tube rows, and are arranged with the longitudinal direction facing the left and right sides on the upper and lower sides of the heat exchange tubes of each tube row, and to which all the heat exchange tubes of each tube row are connected And two tube groups comprising a plurality of heat exchange tubes arranged in succession in both tube rows, and the upper and lower header portions each have two compartments of the same number as the tube groups of the tube rows. It is provided side by side in the longitudinal direction, and the heat exchange tubes of one tube group are passed through each section, and one tube group of the leeward side tube row The downflow tube group in which the refrigerant flows from top to bottom and the other tube group is the upflow tube group in which the refrigerant flows from bottom to top, and the downflow tube of the leeward tube row in the windward tube row The tube group located on the windward side of the group is an upflow tube group in which the refrigerant flows from bottom to top, and the tube group located on the windward side of the upflow tube group of the leeward tube row in the windward tube row is The downflow tube group in which the refrigerant flows from the top to the bottom, and the section through which the heat exchange tubes of the downflow tube group in the leeward upper header section are the inlet section into which the refrigerant flows, and the upward flow in the leeward upper header section The section through which the heat exchange tubes of the tube group communicate is the outlet section from which the refrigerant flows out, the remaining section is the intermediate section, and the refrigerant flowing into the inlet section Each tube group flows in the same direction through the total heat exchanger tubes and the entire intermediate section enters the outlet compartment, is well known has been made to flow out from the outlet compartment.

上述した周知エバポレータにおいて、風上側下ヘッダ部における上昇流チューブ群の熱交換チューブが通じる区画が、冷媒をその長手方向に流すとともに当該上昇流チューブ群の熱交換チューブに冷媒を分流させる下側分流区画であり、当該下側分流区画の冷媒流れ方向下流端部が閉鎖され、風上側下ヘッダ部における下降流チューブ群の熱交換チューブに通じる区画が、当該下降流チューブ群の熱交換チューブから流出した冷媒を合流させるとともに、冷媒を当該区画の長手方向に流す下側合流区画であり、当該下側合流区画が、冷媒を前記一方の下ヘッダ部の下側分流区画と同方向に流すとともに冷媒流れ方向上流端部が閉鎖され、前記下降流チューブ群の熱交換チューブから流出した冷媒が、下側合流区画内をを流れて下側分流区画内に入り、下側分流区画内を長手方向に流れながら上昇流チューブ群の熱交換チューブに分流するようになっている。   In the above-described well-known evaporator, the section where the heat exchange tube of the upflow tube group in the upwind lower header portion communicates the refrigerant in the longitudinal direction, and also separates the refrigerant into the heat exchange tube of the upflow tube group The downstream end portion in the refrigerant flow direction of the lower branch section is closed, and the section communicating with the heat exchange tube of the downflow tube group in the upwind lower header section flows out of the heat exchange tube of the downflow tube group A lower merging section that causes the refrigerant to merge and flow the refrigerant in the longitudinal direction of the section, and the lower merging section causes the refrigerant to flow in the same direction as the lower branch section of the one lower header portion. The upstream end in the flow direction is closed, and the refrigerant that has flowed out of the heat exchange tubes of the downflow tube group flows in the lower merging section and flows into the lower branch section. It enters, so as to divert the heat exchange tubes of the upflow tube group while flowing the lower shunt compartment in the longitudinal direction.

しかしながら、上述した周知エバポレータの場合、次のような問題が生じる。すなわち、気液2相冷媒が、下側合流区画から下側分流区画に流入する際に、液相冷媒が、慣性力により下側分流区画の冷媒流れ方向下流側に偏流することになり、風上側上昇流チューブ群の全熱交換チューブを流れる液相冷媒量が風下側下ヘッダ部の長手方向に不均一になる。したがって、これらの熱交換チューブ間の通風間隙を通過してきた吹き出し空気の温度である吐気温が風上側下ヘッダ部の長手方向に不均一になる。   However, in the case of the known evaporator described above, the following problems occur. That is, when the gas-liquid two-phase refrigerant flows from the lower merge section into the lower branch section, the liquid phase refrigerant drifts to the downstream side in the refrigerant flow direction of the lower branch section due to inertial force. The amount of liquid-phase refrigerant flowing through the total heat exchange tubes of the upper upward flow tube group becomes uneven in the longitudinal direction of the leeward lower header portion. Therefore, the discharged air temperature, which is the temperature of the blown air that has passed through the ventilation gap between the heat exchange tubes, becomes uneven in the longitudinal direction of the upwind lower header portion.

そこで、このような問題を解決したエバポレータとして、下側分流区画内に絞り穴を有する複数の絞り板が配置されたものが提案されている(特許文献1参照)。   In view of this, an evaporator that solves such a problem has been proposed in which a plurality of restrictor plates having restrictor holes are arranged in the lower diversion section (see Patent Document 1).

しかしながら、特許文献1記載のエバポレータによれば、絞り穴を通過した冷媒の流速が速くなり、却って下側分流区画内の冷媒流れ方向下流側に偏流する冷媒量が増大するおそれがある。また、下側分流区画内の冷媒流れ方向下流側に偏流する冷媒量の増大を抑制するために絞り穴を小さくすると、下側分流区画内の通路抵抗が増大し、冷媒循環量が減少して熱交換性能が低下する。   However, according to the evaporator described in Patent Document 1, the flow rate of the refrigerant that has passed through the throttle hole is increased, and the amount of refrigerant that drifts downstream in the refrigerant flow direction in the lower branch section may increase. In addition, if the throttle hole is made small in order to suppress an increase in the amount of refrigerant that drifts downstream in the refrigerant flow direction in the lower branch section, the passage resistance in the lower branch section increases and the refrigerant circulation amount decreases. Heat exchange performance is reduced.

特開2001−74388号公報JP 2001-74388 A

この発明の目的は、上記問題を解決し、下側分流区画内での液相冷媒の偏流を防止することができ、しかも通路抵抗の増大を防止しうる熱交換器を提供することにある。   An object of the present invention is to provide a heat exchanger that solves the above-described problems, can prevent the liquid-phase refrigerant from drifting in the lower branching section, and can prevent passage resistance from increasing.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)長手方向を上下方向に向けた状態で左右方向に間隔をおいて配置された複数の熱交換チューブからなり、かつ通風方向に並んで設けられた2つのチューブ列と、各チューブ列の熱交換チューブの上下両側に長手方向を左右方向に向けて配置され、かつ各チューブ列の全熱交換チューブの上下両端部が接続された上ヘッダ部および下ヘッダ部とを備えており、各チューブ列に、連続して並んだ複数の熱交換チューブからなる2以上のチューブ群が設けられ、各下ヘッダ部に、チューブ列のチューブ群と同数の区画が設けられるとともに、各区画に1つのチューブ群の熱交換チューブが通じさせられ、一方の下ヘッダ部に設けられた区画と他方の下ヘッダ部に設けられた区画とが通風方向に並んでおり、一方の下ヘッダ部の全区画のうち少なくとも1つの区画に通じる熱交換チューブからなるチューブ群が、冷媒が下から上に流れる上昇流チューブ群であり、当該上昇流チューブ群の熱交換チューブが通じる下ヘッダ部の区画が、冷媒を当該区画の長手方向に流しながら前記上昇流チューブ群の熱交換チューブに冷媒を分流させる下側分流区画であるとともに、当該下側分流区画の冷媒流れ方向下流端部が閉鎖され、他方の下ヘッダ部の全区画のうち前記下側分流区画と通風方向に並んだ区画に通じる熱交換チューブからなるチューブ群が、冷媒が上から下に流れる下降流チューブ群であり、当該下降流チューブ群の熱交換チューブが通じる下ヘッダ部の区画が、当該下降流チューブ群の熱交換チューブから流出した冷媒を当該区画の長手方向でかつ前記下側分流区画とは逆方向となるように流しながら合流させる下側合流区画であるとともに、当該下側合流区画の冷媒流れ方向上流端部が閉鎖されている熱交換器であって、
通風方向に並んだ前記下側分流区画と前記下側合流区画との間に、冷媒を、下側合流区画内から下側分流区画内に、下側分流区画での冷媒流れ方向上流側に向かって流入させる連通路が設けられている熱交換器。
1) Two tube rows composed of a plurality of heat exchange tubes arranged at intervals in the left-right direction with the longitudinal direction facing up and down, and arranged in the ventilation direction, and the heat of each tube row Each tube row is provided with an upper header portion and a lower header portion that are arranged on both upper and lower sides of the exchange tube with the longitudinal direction being directed in the left-right direction, and to which both upper and lower ends of the total heat exchange tubes of each tube row are connected. Are provided with two or more tube groups composed of a plurality of heat exchange tubes arranged in succession, and each lower header portion is provided with the same number of sections as the tube groups of the tube row, and one tube group for each section The heat exchanging tube is made to pass, and the section provided in the one lower header part and the section provided in the other lower header part are arranged in the ventilation direction. The tube group consisting of the heat exchange tubes that lead to one compartment is the upward flow tube group in which the refrigerant flows from the bottom to the top, and the compartment in the lower header part that the heat exchange tube of the upward flow tube group leads to the refrigerant. A lower branch section that divides the refrigerant into the heat exchange tubes of the upward flow tube group while flowing in the longitudinal direction of the section, and the downstream end portion in the refrigerant flow direction of the lower branch section is closed, and the other lower header section The tube group consisting of the heat exchange tubes that lead to the lower branch flow compartments and the compartments arranged in the ventilation direction among all of the compartments is a downflow tube group in which the refrigerant flows from top to bottom, and heat exchange of the downflow tube group The section of the lower header section through which the tube communicates is the longitudinal direction of the section of the refrigerant flowing out from the heat exchange tube of the downflow tube group and the direction opposite to the lower branch section. A heat exchanger in which the upstream merging section of the lower merging section is closed at the upstream end in the refrigerant flow direction,
Between the lower diversion section and the lower merging section, which are aligned in the ventilation direction, the refrigerant is directed from the lower merging section to the lower diversion section toward the upstream in the refrigerant flow direction in the lower diversion section. The heat exchanger is provided with a communication passage that allows it to flow in.

2)連通路が、下側合流区画における冷媒流れ方向下流端寄りの部分と、下側分流区画における冷媒流れ方向上流端寄りの部分との間に設けられている上記1)記載の熱交換器。   2) The heat exchanger according to 1), wherein the communication path is provided between a portion near the downstream end in the refrigerant flow direction in the lower merge section and a portion near the upstream end in the refrigerant flow direction in the lower branch section. .

3)2つの下ヘッダ部が、1つのヘッダタンク内を左右方向にのびる仕切部により通風方向に2つの空間に分割することにより形成され、連通路が、仕切部に形成された貫通穴と、仕切部の下側分流区画側を向いた面における連通穴の周りの部分に形成され、かつ貫通穴を通って下側合流区画から下側分流区画に流入した冷媒を、下側分流区画内での冷媒流れ方向上流側に案内するガイド部とからなる上記1)または2)記載の熱交換器。   3) The two lower header portions are formed by dividing the inside of one header tank into two spaces in the ventilation direction by a partition portion extending in the left-right direction, and the communication path includes a through hole formed in the partition portion; The refrigerant that is formed in the portion around the communication hole on the surface facing the lower diversion compartment side of the partition and that flows into the lower diversion compartment from the lower merge compartment through the through hole The heat exchanger as described in 1) or 2) above, which comprises a guide portion that guides upstream in the refrigerant flow direction.

4)ガイド部が、貫通穴を通って下側合流区画から下側分流区画に流入した冷媒を、下側分流区画内での冷媒流れ方向上流側に向かって仕切部から離れる方向に案内する上記3)記載の熱交換器。   4) The guide unit guides the refrigerant that has flowed from the lower merging section into the lower branch section through the through hole in the direction away from the partition toward the upstream side in the refrigerant flow direction in the lower branch section. 3) The heat exchanger described.

5)各上ヘッダ部に、チューブ列のチューブ群と同数の区画が設けられるとともに、各区画に1つのチューブ群の熱交換チューブが通じさせられ、前記上昇流チューブ群の熱交換チューブが通じる上ヘッダ部の区画が、前記上昇流チューブ群の熱交換チューブから流出した冷媒を合流させるとともに、冷媒を当該区画の長手方向に流す上側合流区画であり、当該上側合流区画が、冷媒を前記下側分流区画とは逆方向に流すとともに冷媒流れ方向上流端部が閉鎖され、前記下降流チューブ群の熱交換チューブが通じる上ヘッダ部の区画が、冷媒を当該区画の長手方向に流しながら前記下降流チューブ群の熱交換チューブに冷媒を分流させる上側分流区画であるとともに、当該上側分流区画の冷媒流れ方向下流端部が閉鎖され、前記上側合流区画における冷媒流れ方向下流端部に冷媒出口が設けられるとともに、前記上側分流区画における冷媒流れ方向上流端部に冷媒入口が設けられている上記1)〜4)のうちのいずれかに記載の熱交換器。   5) Each upper header section is provided with the same number of sections as the tube groups of the tube row, and the heat exchange tubes of one tube group are connected to each section, and the heat exchange tubes of the upward flow tube group are connected. The header section is an upper merging section that causes the refrigerant that has flowed out of the heat exchange tubes of the upward flow tube group to merge and that causes the refrigerant to flow in the longitudinal direction of the section, and the upper merging section that passes the refrigerant to the lower side The upstream flow section in the direction of the refrigerant flow is closed in the direction opposite to that of the flow dividing section and the upstream end of the downflow tube group communicates with the heat exchange tube. The upper diversion section for diverting the refrigerant to the heat exchange tubes of the tube group, and the downstream end portion in the refrigerant flow direction of the upper diversion section is closed, and the upper merge section The heat exchange according to any one of 1) to 4) above, wherein a refrigerant outlet is provided at a downstream end portion in the refrigerant flow direction and a refrigerant inlet is provided at an upstream end portion in the refrigerant flow direction in the upper branching section. vessel.

上記1)〜5)の熱交換器によれば、通風方向に並んだ前記下側分流区画と前記下側合流区画との間に、冷媒を、下側合流区画内から下側分流区画内に、下側分流区画での冷媒流れ方向上流側に向かって流入させる連通路が設けられているので、下側合流区画内をその長手方向に流れる冷媒の一部が、連通路を通って下側分流区画内に、下側分流区画での冷媒流れ方向上流側に向かって流入することになり、下側分流区画内を流れながら上昇流チューブ群の熱交換チューブに分流する冷媒の流れに抵抗が付与される。したがって、当該熱交換器を適用したエバポレータにおいては、下側分流区画内に流入した気液2相冷媒中の液相冷媒が、慣性力により下側分流区画の冷媒流れ方向下流側に偏流することが防止され、上昇流チューブ群の全熱交換チューブを流れる液相冷媒量が均一化される。その結果、熱交換チューブ間の通風間隙を通過してきた吹き出し空気の温度である吐気温が、下ヘッダ部の長手方向に均一化される。しかも、絞り穴を有する複数の絞り板が配置された特許文献1記載の熱交換器に比較して通路抵抗は小さくなり、性能低下が防止される。   According to the heat exchangers of the above 1) to 5), the refrigerant is transferred from the lower merging section to the lower divergence section between the lower branch section and the lower junction section arranged in the ventilation direction. Since the communication passage is provided to flow toward the upstream side in the refrigerant flow direction in the lower branch section, a part of the refrigerant flowing in the longitudinal direction in the lower merge section passes through the communication path to the lower side. The refrigerant flows into the shunting section toward the upstream side in the refrigerant flow direction in the lower shunting section, and there is resistance to the flow of the refrigerant that is shunted to the heat exchange tubes of the upflow tube group while flowing in the lower shunting section. Is granted. Therefore, in the evaporator to which the heat exchanger is applied, the liquid-phase refrigerant in the gas-liquid two-phase refrigerant that has flowed into the lower branching compartment flows to the downstream side in the refrigerant flow direction of the lower branching compartment due to inertial force. Is prevented, and the amount of liquid-phase refrigerant flowing through the total heat exchange tubes of the upflow tube group is made uniform. As a result, the discharged air temperature, which is the temperature of the blown air that has passed through the ventilation gap between the heat exchange tubes, is made uniform in the longitudinal direction of the lower header portion. In addition, the passage resistance is reduced as compared with the heat exchanger described in Patent Document 1 in which a plurality of throttle plates having throttle holes are arranged, and performance degradation is prevented.

上記3)および4)の熱交換器を適用したエバポレータにおいては、連通路を通って下側分流区画内に流入した冷媒によって、下側分流区画内を流れながら上昇流チューブ群の熱交換チューブに分流する冷媒の流れに、効果的に抵抗が付与される。   In the evaporator to which the heat exchanger of 3) and 4) above is applied, the refrigerant flowing into the lower branch section through the communication path is used as a heat exchange tube of the upward flow tube group while flowing in the lower branch section. Resistance is effectively given to the flow of the refrigerant to be divided.

上記5)の熱交換器を適用したエバポレータにおいては、冷媒入口から上側分流区画および下降流チューブ群を経て下側合流区画に流入した比較的乾き度の低い冷媒が、冷媒出口が設けられている上側合流区画に通じる上昇流チューブ群に冷媒が流入する下側分流区画内に送り込まれるので、当該上昇流チューブ群を冷媒が流れる際の熱交換効率が向上する。   In the evaporator to which the heat exchanger of the above 5) is applied, a refrigerant having a relatively low dryness flowing from the refrigerant inlet to the lower merging section through the upper branching section and the downflow tube group is provided with a refrigerant outlet. Since the refrigerant flows into the upflow tube group communicating with the upper merging section, the refrigerant flows into the lower branch section, so that the heat exchange efficiency when the refrigerant flows through the upflow tube group is improved.

この発明の熱交換器を適用したエバポレータの全体構成を示す一部分を省略した斜視図である。It is the perspective view which abbreviate | omitted one part which shows the whole structure of the evaporator to which the heat exchanger of this invention is applied. 図1のエバポレータにおける冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the evaporator of FIG. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 図1のB−B線断面図である。It is the BB sectional view taken on the line of FIG. 図4のC−C線断面図である。It is CC sectional view taken on the line of FIG. 連通路が設けられた下ヘッダタンクの仕切部を示す一部切り欠き斜視図である。It is a partially cutaway perspective view showing a partition portion of a lower header tank provided with a communication path.

以下、この発明の実施形態を、図面を参照して説明する。この実施形態は、この発明による熱交換器をカーエアコンのエバポレータに適用したものであり、当該エバポレータにおいては、空気は図1、図2および図5に矢印Xで示す方向に流れるようになっている。   Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, the heat exchanger according to the present invention is applied to an evaporator of a car air conditioner. In the evaporator, air flows in a direction indicated by an arrow X in FIGS. 1, 2, and 5. Yes.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

図1はこの発明による熱交換器を適用したエバポレータの全体構成を示し、図2は図1のエバポレータにおける冷媒の流れを示す。また、図3〜図6は図1のエバポレータの要部の構成を示す。   FIG. 1 shows an overall configuration of an evaporator to which a heat exchanger according to the present invention is applied, and FIG. 2 shows a refrigerant flow in the evaporator of FIG. 3 to 6 show the structure of the main part of the evaporator shown in FIG.

図1〜図4において、エバポレータ(1)は、幅方向を図1、図2および図5に矢印Xで示す通風方向に向けるとともに長手方向を上下方向に向けた状態で左右方向に等間隔で配置された複数のアルミニウム製熱交換チューブ(2)からなる風下側チューブ列(3)および風上側チューブ列(4)と、風下側チューブ列(3)の熱交換チューブ(2)の上下両側に長手方向を左右方向に向けて配置され、かつ風下側チューブ列(3)の全熱交換チューブ(2)が接続されたアルミニウム製風下側上ヘッダ部(5)およびアルミニウム製風下側下ヘッダ部(6)と、風上側チューブ列(4)の熱交換チューブ(2)の上下両側に長手方向を左右方向に向けて配置され、かつ風上側チューブ列(4)の全熱交換チューブ(2)が接続されたアルミニウム製風上側上ヘッダ部(7)および風上側下ヘッダ部(8)とを備えている。風下側チューブ列(3)および風上側チューブ列(4)における熱交換チューブ(2)の数と、隣り合う熱交換チューブ(2)間の間隔は等しくなっている。   1 to 4, the evaporator (1) is arranged at equal intervals in the left-right direction with the width direction directed to the ventilation direction indicated by the arrow X in FIGS. 1, 2, and 5 and the longitudinal direction directed to the vertical direction. On the upper and lower sides of the heat exchange tubes (2) of the leeward side tube row (3) and the leeward side tube row (4) consisting of a plurality of aluminum heat exchange tubes (2) arranged An aluminum leeward upper header section (5) and an aluminum leeward lower header section (5) connected to the total heat exchange tube (2) of the leeward side tube row (3), with the longitudinal direction being directed in the left-right direction ( 6) and the heat exchange tubes (2) of the windward tube row (4) are arranged on both upper and lower sides with the longitudinal direction facing left and right, and the total heat exchange tube (2) of the windward tube row (4) Provided with an aluminum upwind header (7) and downwind header (8) To have. The number of heat exchange tubes (2) in the leeward side tube row (3) and the windward side tube row (4) is equal to the interval between the adjacent heat exchange tubes (2).

両チューブ列(3)(4)の隣接する熱交換チューブ(2)どうしの間の通風間隙(9)および左右両端の熱交換チューブ(2)の外側に、それぞれ両チューブ列(3)(4)の熱交換チューブ(2)に跨って共有されるようにアルミニウム製コルゲートフィン(11)が配置されて両熱交換チューブ(2)にろう付され、左右両端のコルゲートフィン(11)の外側にそれぞれアルミニウム製サイドプレート(12)が配置されてコルゲートフィン(11)にろう付されている。左右両端の熱交換チューブ(2)とサイドプレート(12)との間も通風間隙(9)となっている。両チューブ列(3)(4)の隣接する熱交換チューブ(2)どうしの間の通風間隙(9)を通過した空気は、車両用空調装置が搭載されている車両の車室内に送り込まれる。   Both tube rows (3) (4) are placed outside the ventilation gap (9) between adjacent heat exchange tubes (2) of both tube rows (3) and (4) and outside the heat exchange tubes (2) on both left and right ends. The aluminum corrugated fins (11) are placed so as to be shared across the heat exchange tubes (2) and brazed to both heat exchange tubes (2), and the outer sides of the corrugated fins (11) at the left and right ends. Aluminum side plates (12) are respectively disposed and brazed to the corrugated fins (11). A ventilation gap (9) is also formed between the heat exchange tubes (2) at the left and right ends and the side plates (12). The air that has passed through the ventilation gap (9) between the adjacent heat exchange tubes (2) in the tube rows (3) and (4) is sent into the vehicle compartment of the vehicle in which the vehicle air conditioner is mounted.

風下側チューブ列(3)に、連続して並んだ複数の熱交換チューブ(2)からなる2以上、ここでは第1〜第2の2つのチューブ群(13)(14)が設けられ、風上側チューブ列(4)に、連続して並んだ複数の熱交換チューブ(2)からなりかつ風下側チューブ列(3)のチューブ群(13)(14)と同数の第3〜第4のチューブ群(15)(16)が設けられている。   The leeward side tube row (3) is provided with two or more, in this case, first and second two tube groups (13) and (14), each of which is composed of a plurality of heat exchange tubes (2) arranged in series. The upper tube row (4) comprises a plurality of heat exchange tubes (2) arranged in succession, and the same number of third to fourth tubes as the tube group (13) (14) of the leeward tube row (3) Groups (15) and (16) are provided.

風下側チューブ列(3)においては、第1および第2チューブ群(13)(14)は右端部から順に並んで設けられ、風上側チューブ列(4)においては、第3および第4チューブ群(15)(16)は左端部から順に並んで設けられている。第1チューブ群(13)および第4チューブ群(16)の左右方向の幅と、両チューブ群(13)(16)に含まれる熱交換チューブ(2)の数とは同一であることが好ましく、第2チューブ群(14)および第3チューブ群(15)の左右方向の幅と、両チューブ群(14)(15)に含まれる熱交換チューブ(2)の数とは同一であることが好ましい。   In the leeward side tube row (3), the first and second tube groups (13) and (14) are arranged in order from the right end, and in the leeward side tube row (4), the third and fourth tube groups are arranged. (15) and (16) are arranged in order from the left end. The horizontal width of the first tube group (13) and the fourth tube group (16) is preferably the same as the number of heat exchange tubes (2) included in both the tube groups (13) and (16). The horizontal width of the second tube group (14) and the third tube group (15) and the number of heat exchange tubes (2) included in both the tube groups (14) and (15) may be the same. preferable.

風下側上ヘッダ部(5)と風上側上ヘッダ部(7)、および風下側下ヘッダ部(6)と風上側下ヘッダ部(8)とは、たとえば1つのアルミニウム製ヘッダタンク(17)(18)内を左右方向にのびる垂直板状のアルミニウム製仕切部(17a)(18a)により通風方向に2つの空間に分割することにより設けられている。   The leeward upper header portion (5) and the windward upper header portion (7), and the leeward lower header portion (6) and the windward lower header portion (8) are, for example, one aluminum header tank (17) ( 18) It is provided by dividing the interior into two spaces in the ventilation direction by vertical plate-shaped aluminum partitions (17a) (18a) extending in the left-right direction.

風下側の上下両ヘッダ部(5)(6)に風下側チューブ列(3)のチューブ群(13)(14)と同数の区画(20)(23)および(21)(22)が左右方向に並んで設けられ、風上側の上下両ヘッダ部(7)(8)に風上側チューブ列(4)のチューブ群と同数の区画(24)(27)および(25)(26)が左右方向に並んで設けられている。風下側上ヘッダ部(5)の右側の第1区画(20)および風下側下ヘッダ部(6)の右側の第2区画(21)に風下側チューブ列(3)の第1チューブ群(13)の熱交換チューブ(2)が通じ、風下側下ヘッダ部(6)の左側の第3区画(22)および風下側上ヘッダ部(5)の左側の第4区画(23)に風下側チューブ列(3)の第2チューブ群(14)の熱交換チューブ(2)が通じ、風上側上ヘッダ部(7)の左側の第5区画(24)および風上側下ヘッダ部(8)の左側の第6区画(25)に風上側チューブ列(4)の第3チューブ群(15)の熱交換チューブ(2)が通じ、風上側下ヘッダ部(8)の右側の第7区画(26)および風上側上ヘッダ部(7)の右側の第8区画(27)に風上側チューブ列(4)の第4チューブ群(16)の熱交換チューブ(2)が通じている。第1区画(20)の右端部に冷媒入口(28)が設けられ、第8区画(27)の右端部に冷媒出口(29)が設けられている。また、第4区画(23)と第5区画(24)とが、仕切部(17a)に設けられた連通部(31)を介して通じさせられている。さらに、第2区画(21)の左端部と第3区画(22)の右端部とが通じ、第6区画(25)の右端部と第7区画(26)の左端部とが通じている。   The same number of compartments (20) (23) and (21) (22) as the tube group (13) (14) in the leeward tube row (3) are placed in the left and right header sections (5) and (6) on the leeward side The upper and lower header sections (7) and (8) on the windward side have the same number of sections (24) (27) and (25) and (26) as the tube group of the windward tube row (4) in the left-right direction. It is provided side by side. The first tube group (13) of the leeward side tube row (3) is placed in the first compartment (20) on the right side of the leeward upper header portion (5) and the second compartment (21) on the right side of the leeward lower header portion (6). ) Through the heat exchanger tube (2), the leeward side tube in the third section (22) on the left side of the leeward lower header section (6) and the fourth section (23) on the left side of the leeward upper header section (5) The heat exchange tube (2) of the second tube group (14) in the row (3) is connected, and the left side of the fifth section (24) on the left side of the upwind header section (7) and the left side of the upwind header section (8) The heat exchange tube (2) of the third tube group (15) of the windward side tube row (4) is connected to the sixth section (25) of the windward side, and the seventh section (26) on the right side of the windward lower header part (8). Further, the heat exchange tube (2) of the fourth tube group (16) of the windward side tube row (4) communicates with the eighth section (27) on the right side of the upstream side header portion (7). A refrigerant inlet (28) is provided at the right end of the first section (20), and a refrigerant outlet (29) is provided at the right end of the eighth section (27). Moreover, the 4th division (23) and the 5th division (24) are connected through the communication part (31) provided in the partition part (17a). Furthermore, the left end of the second section (21) and the right end of the third section (22) communicate with each other, and the right end of the sixth section (25) and the left end of the seventh section (26) communicate with each other.

上述したようにして第1〜第4チューブ群(13)(14)(15)(16)、第1〜第8区画(20)〜(27)、冷媒入口(28)、冷媒出口(29)および連通部(31)が設けられることによって、第1チューブ群(13)および第3チューブ群(15)が、熱交換チューブ(2)内を冷媒が上から下に流れる下降流チューブ群となっているとともに、第2チューブ群(14)および第4チューブ群(16)が、熱交換チューブ(2)内を冷媒が下から上に流れる上昇流チューブ群となっている。   As described above, the first to fourth tube groups (13), (14), (15) and (16), the first to eighth sections (20) to (27), the refrigerant inlet (28), and the refrigerant outlet (29) By providing the communication portion (31), the first tube group (13) and the third tube group (15) become a downflow tube group in which the refrigerant flows from top to bottom in the heat exchange tube (2). In addition, the second tube group (14) and the fourth tube group (16) are an upflow tube group in which the refrigerant flows from the bottom to the top in the heat exchange tube (2).

したがって、風下側上ヘッダ部(5)の第1区画(20)が、冷媒を右から左に第1区画(20)の長手方向に流しながら下降流チューブ群である第1チューブ群(13)の熱交換チューブ(2)に冷媒を分流させる上側分流区画であり、第1区画(20)の冷媒流れ方向下流端部、すなわち左端部は閉鎖されている。第2区画(21)が、下降流チューブ群である第1チューブ群(13)の熱交換チューブ(2)から流出した冷媒を合流させるとともに、冷媒を右から左に第2区画(21)の長手方向に流す下側合流区画であり、第2区画(21)の冷媒流れ方向上流端部、すなわち右端部は閉鎖されるとともに左端部が第3区画(22)に通じている。第3区画(22)が、冷媒を右から左に第3区画(22)の長手方向に流しながら上昇流チューブ群である第2チューブ群(14)の熱交換チューブ(2)に分流させる下側分流区画であり、第3区画(22)の冷媒流れ方向下流端部、すなわち左端部は閉鎖されているとともに右端部が第2区画(21)に通じている。第4区画(23)が、上昇流チューブ群である第2チューブ群(14)の熱交換チューブ(2)から流出した冷媒を合流させる上側合流区画である。第5区画(24)が、連通部(31)を通って第4区画(23)から流入した冷媒を、下降流チューブ群である第3チューブ群(15)の熱交換チューブ(2)に分流させる上側分流区画である。第6区画(25)が、下降流チューブ群である第3チューブ群(15)の熱交換チューブ(2)から流出した冷媒を合流させるとともに、冷媒を左から右に第6区画(25)の長手方向に流す下側合流区画であり、第6区画(25)の冷媒流れ方向上流端部、すなわち左端部は閉鎖されているとともに右端部は第7区画(26)に通じている。第7区画(26)が、冷媒を左から右に第7区画(26)の長手方向に流しながら上昇流チューブ群である第4チューブ群(16)の熱交換チューブ(2)に冷媒を分流させる下側分流区画であり、第7区画(26)の冷媒流れ方向下流端部、すなわち右端部は閉鎖されているとともに左端部は第6区画(25)に通じている。第8区画(27)が、上昇流チューブ群である第4チューブ群(16)の熱交換チューブ(2)から流出した冷媒を合流させるとともに、冷媒を左から右に第8区画(27)の長手方向に流す上側合流区画であり、第8区画(27)の冷媒流れ方向上流端部、すなわち左端部は閉鎖されている。   Therefore, the first section (20) of the first section (20) of the leeward side upper header section (5) is a downflow tube group while flowing the refrigerant from the right to the left in the longitudinal direction of the first section (20). This is an upper flow dividing section for dividing the refrigerant into the heat exchange tube (2), and the downstream end in the refrigerant flow direction of the first section (20), that is, the left end is closed. The second section (21) joins the refrigerant that has flowed out of the heat exchange tubes (2) of the first tube group (13), which is the downflow tube group, and the refrigerant flows from the right to the left in the second section (21). It is a lower merging section that flows in the longitudinal direction, and the upstream end, that is, the right end of the second section (21) in the refrigerant flow direction is closed and the left end communicates with the third section (22). The third section (22) separates the refrigerant from the right to the left while flowing in the longitudinal direction of the third section (22) to the heat exchange tube (2) of the second tube group (14), which is the upflow tube group. It is a side branching section, the downstream end in the refrigerant flow direction of the third section (22), that is, the left end is closed, and the right end communicates with the second section (21). A 4th division (23) is an upper side merge division which joins the refrigerant | coolant which flowed out from the heat exchange tube (2) of the 2nd tube group (14) which is an upflow tube group. The fifth section (24) diverts the refrigerant flowing from the fourth section (23) through the communication section (31) to the heat exchange tube (2) of the third tube group (15) which is the downflow tube group. This is the upper branch section. The sixth section (25) joins the refrigerant that has flowed out of the heat exchange tubes (2) of the third tube group (15), which is the downflow tube group, and the refrigerant flows from the left to the right in the sixth section (25). It is a lower side merging section that flows in the longitudinal direction. The upstream end, that is, the left end of the sixth section (25) in the refrigerant flow direction is closed, and the right end communicates with the seventh section (26). The seventh section (26) distributes the refrigerant to the heat exchange tube (2) of the fourth tube group (16), which is the upflow tube group, while flowing the refrigerant from left to right in the longitudinal direction of the seventh section (26). The downstream branching section to be made is closed at the downstream end in the refrigerant flow direction of the seventh section (26), that is, the right end, and the left end communicates with the sixth section (25). The eighth section (27) joins the refrigerant that has flowed out of the heat exchange tubes (2) of the fourth tube group (16), which is the upflow tube group, and the refrigerant flows from the left to the right in the eighth section (27). It is an upper merge section that flows in the longitudinal direction, and the upstream end, that is, the left end of the eighth section (27) in the refrigerant flow direction is closed.

通風方向に並んだ下側分流区画である第7区画(26)と下側合流区画である第2区画(21)との間に、冷媒を、第2区画(21)内から第7区画(26)内に、第7区画(26)での冷媒流れ方向上流側(左側)に向かって流入させる連通路(32)が設けられている。連通路(32)は、第2区画(21)における冷媒流れ方向下流端寄り(左端部寄り)の部分と、第7区画(26)における冷媒流れ方向上流端寄り(左端部寄り)の部分との間に設けられている。連通路(32)は、下ヘッダタンク(18)の仕切部(18a)に形成された貫通穴(33)と、仕切部(18a)の第7区画(26)側を向いた面における貫通穴(33)の周りの部分に形成され、かつ貫通穴(33)を通って第2区画(21)内から第7区画(26)内に流入した冷媒を、第7区画(26)内での冷媒流れ方向上流側(左側)に向かって仕切部(18a)から離れる方向(風上側)に案内するガイド部(34)とからなる。   Between the seventh section (26), which is the lower branch section aligned in the ventilation direction, and the second section (21), which is the lower junction section, the refrigerant is supplied from the second section (21) to the seventh section (21). 26) is provided with a communication path (32) for flowing in toward the upstream side (left side) in the refrigerant flow direction in the seventh section (26). The communication path (32) includes a portion near the downstream end in the refrigerant flow direction (close to the left end) in the second section (21) and a portion near the upstream end (close to the left end) in the refrigerant flow direction in the seventh section (26). It is provided between. The communication path (32) includes a through hole (33) formed in the partition portion (18a) of the lower header tank (18) and a through hole in a surface facing the seventh section (26) side of the partition portion (18a). (33) is formed around the portion, and the refrigerant flowing into the seventh compartment (26) from the second compartment (21) through the through-hole (33) is allowed to pass through the seventh compartment (26). And a guide portion (34) for guiding in a direction (windward side) away from the partition portion (18a) toward the upstream side (left side) in the refrigerant flow direction.

上述したエバポレータ(1)は、圧縮機、冷媒冷却器としてのコンデンサおよび減圧器としての膨張弁とともに冷凍サイクルを構成し、車両用空調装置として車両、たとえば自動車に搭載される。   The evaporator (1) described above constitutes a refrigeration cycle together with a compressor, a condenser as a refrigerant cooler, and an expansion valve as a decompressor, and is mounted on a vehicle, for example, an automobile, as a vehicle air conditioner.

圧縮機のオン時には、圧縮機、コンデンサおよび膨張弁を通過した冷媒が、冷媒入口(28)から風下側上ヘッダ部(5)の第1区画(20)に流入し、第1区画(20)内を左方に流れながら第1チューブ群(13)の熱交換チューブ(2)に分流し、当該熱交換チューブ(2)内を下方に流れて第2区画(21)に入って合流した後、第2区画(21)内を左方に流れて第3区画(22)内に入る。第3区画(22)内に入った冷媒は、第3区画(22)内を左方に流れながら第2チューブ群(14)の熱交換チューブ(2)に分流し、当該熱交換チューブ(2)内を上方に流れて第4区画(23)に入って合流する。第4区画(23)内に入った冷媒は、連通部(31)を通って風上側上ヘッダ部(7)の第5区画(24)内に入り、第3チューブ群(15)の熱交換チューブ(2)に分流して当該熱交換チューブ(2)内を下方に流れて第6区画(25)内に入って合流した後、第6区画(25)内を右方に流れて第7区画(26)内に入る。第7区画(26)内に入った冷媒は、第7区画(26)内を右方に流れながら第4チューブ群(16)の熱交換チューブ(2)に分流し、当該熱交換チューブ(2)内を上方に流れて第8区画(27)に入って合流した後、第8区画(27)内を右方に流れて冷媒出口(29)から流出する。   When the compressor is on, the refrigerant that has passed through the compressor, the condenser, and the expansion valve flows into the first section (20) of the leeward upper header section (5) from the refrigerant inlet (28), and the first section (20). After flowing in the left direction, it is diverted to the heat exchange tube (2) of the first tube group (13), then flows downward in the heat exchange tube (2) and enters the second section (21) to join. Then, it flows in the second section (21) to the left and enters the third section (22). The refrigerant that has entered the third compartment (22) flows to the left in the third compartment (22) and is divided into the heat exchange tubes (2) of the second tube group (14). ) Flows upward and enters the fourth section (23) to join. The refrigerant that has entered the fourth section (23) passes through the communication section (31), enters the fifth section (24) of the upwind header section (7), and performs heat exchange of the third tube group (15). After diverting to the tube (2), flowing downward in the heat exchange tube (2), entering the sixth section (25) and joining, then flowing to the right in the sixth section (25), the seventh Enter compartment (26). The refrigerant that has entered the seventh section (26) flows to the right in the seventh section (26) and is divided into the heat exchange tubes (2) of the fourth tube group (16). ) Flows upward, enters the eighth section (27) and joins, then flows to the right in the eighth section (27), and flows out from the refrigerant outlet (29).

冷媒が第2区画(21)内を左方に流れる際に、第2区画(21)の冷媒流れ方向下流端寄りの部分から第7区画(26)の冷媒流れ方向上流端寄りの部分に、第7区画(26)内での冷媒流れ方向上流側(左側)に向かって仕切部(18a)から離れる方向(風上側)に流入するので、第7区画(26)を右方に流れる冷媒のうち仕切部(18a)の近くを流れる冷媒の流れに比較的大きな抵抗が付与される。したがって、第7区画(26)を右方に流れる冷媒のうち仕切部(18a)の近くを流れる冷媒が、上昇流チューブ群である第4チューブ群(16)における左側(第7区画(26)における冷媒流れ方向上流側)に配置されている熱交換チューブ(2)に多く流入して当該熱交換チューブ(2)内を上昇し(図2および図4の符号16A参照)、残りの冷媒は第4チューブ群(16)の他の熱交換チューブ(2)に流入して当該熱交換チューブ(2)内を上昇する(図2および図4の符号16B参照)。したがって、エバポレータ(1)においては、第6区画(25)から第7区画(26)内に流入した気液2相冷媒中の液相冷媒が、慣性力により第7区画(26)の冷媒流れ方向下流側(右側)に偏流することが防止され、第4チューブ群(16)の全熱交換チューブ(2)を流れる液相冷媒量が均一化される。その結果、第4チューブ群(16)の熱交換チューブ(2)間の通風間隙を通過してきた吹き出し空気の温度である吐気温が、風上側下ヘッダ部(8)の長手方向(左右方向)に均一化される。   When the refrigerant flows to the left in the second compartment (21), the portion of the second compartment (21) near the downstream end of the refrigerant flow direction to the portion of the seventh compartment (26) near the upstream end of the refrigerant flow direction, Since the refrigerant flows in the direction away from the partition (18a) (upward) toward the upstream side (left side) in the refrigerant flow direction in the seventh compartment (26), the refrigerant flowing rightward in the seventh compartment (26) Among them, a relatively large resistance is given to the flow of the refrigerant flowing near the partition portion (18a). Accordingly, among the refrigerant flowing in the right direction through the seventh section (26), the refrigerant flowing near the partition portion (18a) is left on the left side (the seventh section (26)) in the fourth tube group (16) which is the upward flow tube group. A large amount of gas flows into the heat exchange tube (2) arranged upstream of the refrigerant flow direction in (2) and rises in the heat exchange tube (2) (see 16A in FIGS. 2 and 4). It flows into the other heat exchange tube (2) of the fourth tube group (16) and rises in the heat exchange tube (2) (see reference numeral 16B in FIGS. 2 and 4). Therefore, in the evaporator (1), the liquid-phase refrigerant in the gas-liquid two-phase refrigerant that has flowed into the seventh compartment (26) from the sixth compartment (25) flows into the seventh compartment (26) due to inertial force. It is prevented from drifting downstream in the direction (right side), and the amount of liquid refrigerant flowing through the total heat exchange tube (2) of the fourth tube group (16) is made uniform. As a result, the temperature of the blown air that has passed through the ventilation gap between the heat exchange tubes (2) of the fourth tube group (16) is the longitudinal direction (left-right direction) of the windward lower header section (8). To be homogenized.

この発明による熱交換器は、車両用空調装置を構成する冷凍サイクルのエバポレータに好適に用いられる。   The heat exchanger according to the present invention is suitably used for an evaporator of a refrigeration cycle constituting a vehicle air conditioner.

(1):エバポレータ
(2):熱交換チューブ
(3):風下側チューブ列
(4):風上側チューブ列
(5):風下側上ヘッダ部
(6):風下側下ヘッダ部
(7):風上側上ヘッダ部
(8):風上側下ヘッダ部
(13)(14)(15)(16):チューブ群
(17)(18):ヘッダタンク
(17a)(18a):仕切部
(20)(21)(22)(23)(24)(25)(26)(27):区画
(32):連通路
(33):貫通穴
(34):ガイド
(1): Evaporator
(2): Heat exchange tube
(3): Downward tube row
(4): Windward tube row
(5): Upper header on the leeward side
(6): Lower header on the leeward side
(7): Upwind header
(8): Upwind lower header
(13) (14) (15) (16): Tube group
(17) (18): Header tank
(17a) (18a): Partition
(20) (21) (22) (23) (24) (25) (26) (27): Section
(32): Communication passage
(33): Through hole
(34): Guide

Claims (5)

長手方向を上下方向に向けた状態で左右方向に間隔をおいて配置された複数の熱交換チューブからなり、かつ通風方向に並んで設けられた2つのチューブ列と、各チューブ列の熱交換チューブの上下両側に長手方向を左右方向に向けて配置され、かつ各チューブ列の全熱交換チューブの上下両端部が接続された上ヘッダ部および下ヘッダ部とを備えており、各チューブ列に、連続して並んだ複数の熱交換チューブからなる2以上のチューブ群が設けられ、各下ヘッダ部に、チューブ列のチューブ群と同数の区画が設けられるとともに、各区画に1つのチューブ群の熱交換チューブが通じさせられ、一方の下ヘッダ部に設けられた区画と他方の下ヘッダ部に設けられた区画とが通風方向に並んでおり、一方の下ヘッダ部の全区画のうち少なくとも1つの区画に通じる熱交換チューブからなるチューブ群が、冷媒が下から上に流れる上昇流チューブ群であり、当該上昇流チューブ群の熱交換チューブが通じる下ヘッダ部の区画が、冷媒を当該区画の長手方向に流しながら前記上昇流チューブ群の熱交換チューブに冷媒を分流させる下側分流区画であるとともに、当該下側分流区画の冷媒流れ方向下流端部が閉鎖され、他方の下ヘッダ部の全区画のうち前記下側分流区画と通風方向に並んだ区画に通じる熱交換チューブからなるチューブ群が、冷媒が上から下に流れる下降流チューブ群であり、当該下降流チューブ群の熱交換チューブが通じる下ヘッダ部の区画が、当該下降流チューブ群の熱交換チューブから流出した冷媒を当該区画の長手方向でかつ前記下側分流区画とは逆方向となるように流しながら合流させる下側合流区画であるとともに、当該下側合流区画の冷媒流れ方向上流端部が閉鎖されている熱交換器であって、
通風方向に並んだ前記下側分流区画と前記下側合流区画との間に、冷媒を、下側合流区画内から下側分流区画内に、下側分流区画での冷媒流れ方向上流側に向かって流入させる連通路が設けられている熱交換器。
Two tube rows comprising a plurality of heat exchange tubes arranged at intervals in the left-right direction with the longitudinal direction oriented in the up-down direction, and arranged in the ventilation direction, and the heat exchange tubes of each tube row The upper and lower header parts are arranged on both upper and lower sides with the longitudinal direction being arranged in the left and right direction, and the upper and lower end parts of the total heat exchange tubes of each tube row are connected to each tube row, Two or more tube groups consisting of a plurality of heat exchange tubes arranged in series are provided, and the same number of sections as the tube groups in the tube row are provided in each lower header portion, and the heat of one tube group is provided in each section. The exchange tube is communicated, and the compartment provided in the one lower header part and the compartment provided in the other lower header part are arranged in the ventilation direction, and at least of all the compartments of the one lower header part A tube group composed of heat exchange tubes that lead to one compartment is an upward flow tube group in which the refrigerant flows from the bottom to the top, and a compartment in the lower header section that communicates with the heat exchange tube of the upward flow tube group A lower branch section that divides the refrigerant into the heat exchange tubes of the upflow tube group while flowing in the longitudinal direction of the upper flow tube group, and the downstream end portion in the refrigerant flow direction of the lower branch section is closed, and the other lower header section The tube group consisting of the heat exchange tubes communicating with the lower branch flow compartment and the compartments arranged in the ventilation direction among all the compartments is a downward flow tube group in which the refrigerant flows from the top to the bottom, and the heat exchange tube of the downward flow tube group The section of the lower header section that communicates with the refrigerant flows out of the heat exchange tubes of the downflow tube group in the longitudinal direction of the section and in the opposite direction to the lower branch section. With a lower converging section for combining while flowing in earthenware pots, a heat exchanger refrigerant flow direction upstream end of the lower merging section is closed,
Between the lower diversion section and the lower merging section, which are aligned in the ventilation direction, the refrigerant is directed from the lower merging section to the lower diversion section toward the upstream in the refrigerant flow direction in the lower diversion section. The heat exchanger is provided with a communication passage that allows it to flow in.
連通路が、下側合流区画における冷媒流れ方向下流端寄りの部分と、下側分流区画における冷媒流れ方向上流端寄りの部分との間に設けられている請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein the communication path is provided between a portion near the downstream end in the refrigerant flow direction in the lower merging section and a portion near the upstream end in the refrigerant flow direction in the lower branch section. 2つの下ヘッダ部が、1つのヘッダタンク内を左右方向にのびる仕切部により通風方向に2つの空間に分割することにより形成され、連通路が、仕切部に形成された貫通穴と、仕切部の下側分流区画側を向いた面における連通穴の周りの部分に形成され、かつ貫通穴を通って下側合流区画から下側分流区画に流入した冷媒を、下側分流区画内での冷媒流れ方向上流側に案内するガイド部とからなる請求項1または2記載の熱交換器。 Two lower header portions are formed by dividing the inside of one header tank into two spaces in the ventilation direction by a partition portion extending in the left-right direction, and a communication path is formed with a through hole formed in the partition portion, and a partition portion The refrigerant that is formed in the portion around the communication hole on the surface facing the lower branching compartment side and that flows into the lower branching compartment from the lower joining compartment through the through hole is used as the refrigerant in the lower branching compartment. The heat exchanger according to claim 1, further comprising a guide portion that guides the flow direction upstream side. ガイド部が、貫通穴を通って下側合流区画から下側分流区画に流入した冷媒を、下側分流区画内での冷媒流れ方向上流側に向かって仕切部から離れる方向に案内する請求項3記載の熱交換器。 The guide part guides the refrigerant that has flowed into the lower branching section from the lower joining section through the through hole toward the upstream side in the coolant flow direction in the lower branching section in a direction away from the partition section. The described heat exchanger. 各上ヘッダ部に、チューブ列のチューブ群と同数の区画が設けられるとともに、各区画に1つのチューブ群の熱交換チューブが通じさせられ、前記上昇流チューブ群の熱交換チューブが通じる上ヘッダ部の区画が、前記上昇流チューブ群の熱交換チューブから流出した冷媒を合流させるとともに、冷媒を当該区画の長手方向に流す上側合流区画であり、当該上側合流区画が、冷媒を前記下側分流区画とは逆方向に流すとともに冷媒流れ方向上流端部が閉鎖され、前記下降流チューブ群の熱交換チューブが通じる上ヘッダ部の区画が、冷媒を当該区画の長手方向に流しながら前記下降流チューブ群の熱交換チューブに冷媒を分流させる上側分流区画であるとともに、当該上側分流区画の冷媒流れ方向下流端部が閉鎖され、前記上側合流区画における冷媒流れ方向下流端部に冷媒出口が設けられるとともに、前記上側分流区画における冷媒流れ方向上流端部に冷媒入口が設けられている請求項1〜4のうちのいずれかに記載の熱交換器。 Each upper header portion is provided with the same number of compartments as the tube group of the tube row, and the upper header portion through which the heat exchange tubes of one tube group are communicated with each compartment and the heat exchange tubes of the upward flow tube group are communicated. Is an upper merging section that causes the refrigerant that has flowed out of the heat exchange tubes of the upflow tube group to merge and that causes the refrigerant to flow in the longitudinal direction of the section, and the upper merging section is configured to pass the refrigerant to the lower branching section. The section of the upper header section through which the upstream end portion in the refrigerant flow direction is closed and the heat exchange tube of the downflow tube group is communicated is passed through the downflow tube group while flowing the refrigerant in the longitudinal direction of the section. And the downstream end of the upper branch flow section in the refrigerant flow direction is closed, and the upper branch section is closed. The heat exchanger according to any one of claims 1 to 4, wherein a refrigerant outlet is provided at a downstream end portion in the refrigerant flow direction and a refrigerant inlet is provided at an upstream end portion in the refrigerant flow direction in the upper branching section. .
JP2015210389A 2015-10-27 2015-10-27 Heat exchanger Pending JP2017083051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015210389A JP2017083051A (en) 2015-10-27 2015-10-27 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015210389A JP2017083051A (en) 2015-10-27 2015-10-27 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2017083051A true JP2017083051A (en) 2017-05-18

Family

ID=58712930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015210389A Pending JP2017083051A (en) 2015-10-27 2015-10-27 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2017083051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018834A1 (en) * 2022-07-20 2024-01-25 サンデン株式会社 Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018834A1 (en) * 2022-07-20 2024-01-25 サンデン株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
JP5740134B2 (en) Evaporator
JP2010038447A (en) Heat exchanger
JP5693346B2 (en) Evaporator
JP5764345B2 (en) Evaporator
JP2006105581A (en) Laminated heat exchanger
US10408510B2 (en) Evaporator
JP2014055736A (en) Heat exchanger
JP2012197974A5 (en)
JP5636215B2 (en) Evaporator
KR102202418B1 (en) Evaporator of air conditioner for vehicle
JP2015034670A (en) Evaporator
JP2011257111A5 (en)
JP6617003B2 (en) Heat exchanger
JP6486223B2 (en) Evaporator
CN108120120B (en) Evaporator with a heat exchanger
JP2021143775A (en) Heat exchanger
JP2017083051A (en) Heat exchanger
JP5674376B2 (en) Evaporator
JP5736164B2 (en) Evaporator
JP2018087646A5 (en)
JP4547205B2 (en) Evaporator
JP2010038448A (en) Heat exchanger
JP2017067361A (en) Heat exchanger
JP2016023815A (en) Evaporator
JP2014238235A (en) Evaporator