JP2012047327A - Flow rate adjusting device - Google Patents

Flow rate adjusting device Download PDF

Info

Publication number
JP2012047327A
JP2012047327A JP2010192912A JP2010192912A JP2012047327A JP 2012047327 A JP2012047327 A JP 2012047327A JP 2010192912 A JP2010192912 A JP 2010192912A JP 2010192912 A JP2010192912 A JP 2010192912A JP 2012047327 A JP2012047327 A JP 2012047327A
Authority
JP
Japan
Prior art keywords
flow rate
flow
outflow
casing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010192912A
Other languages
Japanese (ja)
Inventor
Hideyuki Kondo
秀幸 近藤
Yuichi Hayashi
雄一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2010192912A priority Critical patent/JP2012047327A/en
Publication of JP2012047327A publication Critical patent/JP2012047327A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Flow Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem with a conventional flow rate adjusting device, wherein a flow resistance is increased since a flow direction of fluid is bent at about 90° in a casing, thereby a flow rate cannot be secured without enlarging an internal space of the casing, a motor for driving a flow rate adjusting mechanism is placed on the casing, and thus, there occurs such a malfunction that the flow rate adjusting device is further enlarged as a whole.SOLUTION: A rotor of the motor is arranged in the casing, gas is made to pass a porion arranged with the rotor by arranging a flow-in part and a flow-out part at positions which oppose each other with the rotor sandwiched therebetween, respectively, and a flow rate adjusting part is arranged at either the flow-in part and the flow-out part.

Description

本発明は、ガス通路の途中に介設され、ガスの流量を増減する流量調節装置に関する。   The present invention relates to a flow rate adjusting device interposed in the middle of a gas passage to increase or decrease the flow rate of gas.

従来のこの種の流量調節装置としては、たとえば冷媒の流量を調節する流量調節装置として、円筒形状のケーシングの側方に開口する流入部と、ケーシングの底部に開口する流出部とを備えると共に、ケーシングの上面にモータを載置して、このモータのロータ軸の下端をケーシング内に挿入し、ケーシング内の流量調節機構を駆動するようにしたものが知られている(例えば、特許文献1参照)。   As a conventional flow control device of this type, for example, as a flow control device for adjusting the flow rate of refrigerant, an inflow portion that opens to the side of a cylindrical casing and an outflow portion that opens to the bottom of the casing are provided. A motor is mounted on the upper surface of the casing, and the lower end of the rotor shaft of the motor is inserted into the casing to drive the flow rate adjusting mechanism in the casing (see, for example, Patent Document 1). ).

特開2003−148643号公報(図1)Japanese Patent Laid-Open No. 2003-148643 (FIG. 1)

上記従来の流量調節装置では、ケーシングの側方に設けた流入部からケーシング内に流体が流れ込むが、流出部がケーシングの底部に形成されているので、流体の流れ方向はケーシング内において略90度屈曲することになる。このように流体の流れ方向が大きく曲げられると流動抵抗が増し、そのためケーシングの内部空間を大きくしないと流量を確保できない。そのため、ケーシングが大型化するという不具合が生じる。また、流量調節機構を駆動するためのモータがケーシングの上部に載置され、ロータ軸の下端がケーシング内に挿入されているため、流量調節装置全体としてはケーシングとそのケーシングの上部に載置されたモータとの双方から構成されることになり、ケーシングが大型化する上にモータの容積も加えられ、流量調節装置が更に大型化するという不具合が生じる。   In the conventional flow rate adjusting device, fluid flows into the casing from the inflow portion provided on the side of the casing. However, since the outflow portion is formed at the bottom of the casing, the flow direction of the fluid is approximately 90 degrees in the casing. It will be bent. Thus, if the flow direction of the fluid is greatly bent, the flow resistance increases, and therefore, the flow rate cannot be secured unless the internal space of the casing is increased. Therefore, the problem that a casing enlarges arises. Further, since the motor for driving the flow rate adjusting mechanism is mounted on the upper portion of the casing and the lower end of the rotor shaft is inserted into the casing, the entire flow rate adjusting device is mounted on the casing and the upper portion of the casing. Therefore, there is a problem in that the casing is increased in size and the volume of the motor is added, and the flow control device is further increased in size.

そこで本発明は、上記の問題点に鑑み、可及的に小型化することのできる流量調節装置を提供することを課題とする。   Then, this invention makes it a subject to provide the flow volume adjustment apparatus which can be reduced in size as much as possible in view of said problem.

上記課題を解決するために本発明による流量調節装置は、ガス通路の途中に介設され、ケーシング内にガスを流入される流入部とケーシング内からガスを流出させる流出部とを備え、モータにより駆動され流出部から流出されるガスの流量を増減させる流量調節部を有する流量調節装置において、上記モータのロータをケーシング内に配設すると共に、ロータを挟んで対向する位置に上記流入部と流出部とを各々設けてガスがロータを配設した部分を通過するように構成し、上記流量調節部を流入部と流出部とのいずれか一方に設けたことを特徴とする。   In order to solve the above problems, a flow control device according to the present invention is provided in the middle of a gas passage, and includes an inflow portion through which gas is introduced into a casing and an outflow portion through which gas flows out from the casing. In the flow control device having a flow control unit that increases or decreases the flow rate of the gas that is driven and flows out from the outflow part, the rotor of the motor is disposed in the casing, and the inflow part and the outflow are located at positions facing each other across the rotor. Each of which is provided so that the gas passes through a portion where the rotor is disposed, and the flow rate adjusting portion is provided in one of the inflow portion and the outflow portion.

上記構成ではモータのロータをケーシング内に配設したことにより、ケーシングの上部に載置されていたモータの容積を省略することにより装置全体として小型化することができる。また、流入部と流出部とをロータを挟んで対向する位置に形成したことにより、流入部からケーシング内に流入したガスの流れはそのまま曲げられることなくロータを配設した部分を通過して流出部へと流れることになる。このためガスの流れ方向がケーシング内で曲げられないので流動抵抗が可及的に小さくなる。   In the above configuration, since the motor rotor is disposed in the casing, it is possible to reduce the size of the entire apparatus by omitting the volume of the motor mounted on the upper portion of the casing. Further, since the inflow portion and the outflow portion are formed at positions facing each other across the rotor, the flow of gas flowing into the casing from the inflow portion passes through the portion where the rotor is disposed without being bent as it is. Will flow to the club. For this reason, since the gas flow direction is not bent in the casing, the flow resistance becomes as small as possible.

なお、流量調節装置には必ずしも閉鎖機能を設ける必要はないが、閉鎖機能を設ける際には、上記流量調節部に閉鎖機能を設け、この閉鎖機能によって流出部からのガスの流出を停止させればよい。   The flow control device does not necessarily have a closing function. However, when the closing function is provided, the flow control unit is provided with a closing function, and the closing function can stop the outflow of gas from the outflow part. That's fine.

あるいは、上記流量調節部を流入部と流出部とのいずれか一方に設け、他方に、モータによって駆動され流出部からのガスの流出を停止させる閉鎖機構を設けてもよい。   Alternatively, the flow rate adjusting unit may be provided in one of the inflow part and the outflow part, and the other may be provided with a closing mechanism that is driven by a motor and stops the outflow of gas from the outflow part.

以上の説明から明らかなように、本発明は、モータのロータをケーシング内に配設し、かつケーシング内でのガスの流れ方向を曲げないようにしたので、流量調節装置としての大きさを従来のものより大幅に小さくすることができる。   As can be seen from the above description, the present invention has been designed so that the rotor of the motor is disposed in the casing and the flow direction of the gas in the casing is not bent. Can be significantly smaller than

流量調節装置の外観を示す斜視図Perspective view showing the appearance of the flow control device 流量調節装置の内部構造を示す断面図Sectional view showing the internal structure of the flow control device III-III断面図III-III cross section 流量調節部の作動状態を示す図The figure which shows the operation state of the flow control part 他の実施の形態における流量調節装置の内部構造を示す断面図Sectional drawing which shows the internal structure of the flow control apparatus in other embodiment. VI-VI断面図VI-VI cross section 閉鎖機構の作動状態を示す図Diagram showing the operating state of the closing mechanism

図1を参照して、1は本発明による流量調節装置であり、ガス器具のバーナへ供給されるガスの流量を増減するために用いられる。図示のごとく流量調節装置1の外形は略円柱形状をしており、図示の姿勢では底部に連結された流入管INと上部に連結された流出管OUTとに挟まれるように設置され、ガスは図において下から上に向かって流れる。   Referring to FIG. 1, reference numeral 1 denotes a flow rate adjusting device according to the present invention, which is used to increase or decrease the flow rate of gas supplied to a burner of a gas appliance. As shown in the figure, the outer shape of the flow rate adjusting device 1 has a substantially cylindrical shape, and in the posture shown in the figure, it is installed so as to be sandwiched between an inflow pipe IN connected to the bottom and an outflow pipe OUT connected to the top. In the figure, it flows from bottom to top.

図2を参照して、円筒状のケーシング本体10の底部には底板10aが取り付けられ、ケーシング本体10の上部には上板10bが取り付けられており、ケーシング本体10の内部には環状の駆動コイル21とロータ22とからなるモータが内蔵されている。なお、ケーシング本体10内には非磁性体からなるスリーブ13が取り付けられており、駆動コイル21はスリーブ13の外側に設置され、ロータ22はスリーブ13の内部に配設されている。ロータ22はロータ軸23を中心に回転するように支持されている。本モータはステッピングモータであり、駆動コイルに駆動パルスを供給すると、供給されたパルス数に応じた角度だけロータ22およびロータ軸23が回転するものである。そしてパルスの供給を停止すればロータ22およびロータ軸23は停止してその状態で自己保持し、逆位相のパルスを供給すると、パルス数に応じた角度だけ逆回転する。   Referring to FIG. 2, a bottom plate 10 a is attached to the bottom of the cylindrical casing body 10, and an upper plate 10 b is attached to the top of the casing body 10, and an annular drive coil is provided inside the casing body 10. The motor which consists of 21 and the rotor 22 is incorporated. In addition, a sleeve 13 made of a non-magnetic material is attached to the casing body 10, the drive coil 21 is installed outside the sleeve 13, and the rotor 22 is arranged inside the sleeve 13. The rotor 22 is supported so as to rotate about the rotor shaft 23. This motor is a stepping motor, and when a drive pulse is supplied to the drive coil, the rotor 22 and the rotor shaft 23 rotate by an angle corresponding to the number of supplied pulses. If the supply of pulses is stopped, the rotor 22 and the rotor shaft 23 stop and self-hold in this state, and if a pulse having an antiphase is supplied, the rotor 22 and the rotor shaft 23 rotate backward by an angle corresponding to the number of pulses.

図3に示すように、ロータ軸23を上下で回転自在に保持する軸受プレートの内の下側のプレート14には両面ストッパとして機能する突起14bが形成されており、ロータ軸23に形成された突起24がこの突起14bに当接するまで回転すると、ロータ軸23およびロータ22はそれ以上回転することができない。従って、本実施の形態ではロータ軸23は360度よりも若干狭い範囲で往復回転することになる。なお、プレート14にはガスが通過できるように貫通窓14aを形成した。   As shown in FIG. 3, a protrusion 14 b that functions as a double-sided stopper is formed on the lower plate 14 of the bearing plate that rotatably holds the rotor shaft 23 up and down, and is formed on the rotor shaft 23. When the protrusion 24 rotates until it comes into contact with the protrusion 14b, the rotor shaft 23 and the rotor 22 cannot rotate any further. Accordingly, in this embodiment, the rotor shaft 23 reciprocates in a range slightly narrower than 360 degrees. The plate 14 was formed with a through window 14a so that gas could pass.

上記底板10aには流入部11が形成されており、この流入部11からケーシング本体10内に流入したガスはロータ22の内側を通って上方に流れ、上板10bに形成した流出部12から流出する。本実施の形態ではロータ軸23の上端に流量調節部として機能する回転板3を取り付けた。   An inflow portion 11 is formed in the bottom plate 10a, and gas flowing into the casing body 10 from the inflow portion 11 flows upward through the inside of the rotor 22, and flows out from the outflow portion 12 formed in the upper plate 10b. To do. In the present embodiment, the rotating plate 3 that functions as a flow rate adjusting unit is attached to the upper end of the rotor shaft 23.

図4に示すように、この回転板3には相互に大きさの相違する5個の貫通口31が形成されている。回転板3が(a)に示す位相であれば、いずれの貫通口31も流出部12に一致していないので、流出部12は回転板3によって閉鎖され、流出部12からガスが流出しない。   As shown in FIG. 4, the rotary plate 3 is formed with five through holes 31 having different sizes. If the rotating plate 3 is in the phase shown in FIG. 5A, none of the through holes 31 coincide with the outflow portion 12, so the outflow portion 12 is closed by the rotating plate 3, and no gas flows out from the outflow portion 12.

ロータ軸23を回転させて回転板3を図において時計回りに回転させると、(b)に示す位相では一番小さな貫通口31が1個だけ流出部12に一致する。この状態が最少流量状態であり、流出部12からは最少流量のガスが流出する。更にロータ軸23を回転させると流出部12に一致する貫通口31の数が増加し、(c)に示す最大流量状態になるまで流出部12から流出するガスが段階的に増加する。(c)に示す最大流量状態になればロータ軸23をそれ以上回転させる必要はないので停止させる。そして、流出する流量を減少させる場合には回転板3を逆転させて(c)に示す状態から(b)に示す状態にし、更にガスの流出を停止させる場合には回転板3を更に逆転させて(a)に示す状態にする。なお、駆動コイル21に駆動パルスを供給する駆動ユニット(図示せず)が暴走してロータ軸23を正方向に回転させ続けた場合、ロータ軸23の突起24がプレート側の突起14bに当接して強制的にそれ以上の回転が規制される。そして、その状態では回転板3は図4の(d)に示す位相になっており、いずれの貫通口31も流出部12に一致しないので、ガスの流出は停止されることになる。   When the rotor shaft 23 is rotated and the rotating plate 3 is rotated clockwise in the figure, only one smallest through-hole 31 coincides with the outflow portion 12 in the phase shown in FIG. This state is the minimum flow rate state, and the gas with the minimum flow rate flows out from the outflow portion 12. When the rotor shaft 23 is further rotated, the number of through-holes 31 that coincide with the outflow portion 12 increases, and the gas flowing out from the outflow portion 12 increases stepwise until the maximum flow rate state shown in FIG. If the maximum flow rate state shown in (c) is reached, it is not necessary to rotate the rotor shaft 23 any further, so it is stopped. In order to reduce the flow rate of outflow, the rotating plate 3 is reversed to change the state shown in (c) to the state shown in (b), and when the outflow of gas is further stopped, the rotating plate 3 is further reversed. (A). When a drive unit (not shown) for supplying drive pulses to the drive coil 21 runs away and continues to rotate the rotor shaft 23 in the forward direction, the protrusion 24 of the rotor shaft 23 comes into contact with the protrusion 14b on the plate side. Therefore, further rotation is restricted. In this state, the rotating plate 3 is in the phase shown in FIG. 4D, and none of the through holes 31 coincides with the outflow portion 12, so that the outflow of gas is stopped.

上記図1から図4に示した実施の形態では、流量調節は回転板3に形成した複数個の貫通口31によって行うため、流量の変化が段階的に変化することになる。ガス器具の種類によってはガスの流量を段階的ではなく連続して増減させる要請がある場合がある。そのようなガス器具には図5に示す流量調節装置を用いればよい。   In the embodiment shown in FIGS. 1 to 4, the flow rate is adjusted by the plurality of through holes 31 formed in the rotating plate 3, so that the change in the flow rate changes stepwise. Depending on the type of gas appliance, there may be a request to increase or decrease the gas flow rate continuously rather than stepwise. For such a gas appliance, a flow rate adjusting device shown in FIG. 5 may be used.

図5に示すものでは、ロータ軸23の下端に流量調節部として機能するノズル5を取り付けた。このノズル5はロータ軸23の下端に形成したねじ部25に螺合している。また図6に示すように、ノズル5に固定した1対の回り止め53が溝15に係合しているので、ロータ軸23が回転するとノズル5は回転せずに図において上下方向に移動する。   In the example shown in FIG. 5, the nozzle 5 functioning as a flow rate adjusting unit is attached to the lower end of the rotor shaft 23. The nozzle 5 is screwed into a screw portion 25 formed at the lower end of the rotor shaft 23. Further, as shown in FIG. 6, since a pair of detents 53 fixed to the nozzle 5 are engaged with the groove 15, when the rotor shaft 23 rotates, the nozzle 5 does not rotate and moves in the vertical direction in the figure. .

ノズル5の先端部外周にはストレート部52が形成されており、このストレート部52は流入部11に気密に係合している。従って、ノズル5が引き上げられてストレート部52が流入部11から抜けるまでは、ストレート部52と流入部11との間を通ってガスが流れない。そして、ノズル5には最少流量を規定するためのオリフィス部51が形成されているので、ストレート部52が流入部11から抜けるまでは、ガスはこのオリフィス部51を通って最少流量のガスが一定して流れることになる。ノズル5が更に引き上げられ、ストレート部52が流入部11から抜けると、流入部11がケーシング本体10の内部に対して開口するので、流入部11とノズル5との間を通ってガスがケーシング本体10内に流入する。なお、その流入部11を通過する流量はノズル5が流入部11から離れるに従って連続して増加することになる。   A straight portion 52 is formed on the outer periphery of the tip portion of the nozzle 5, and the straight portion 52 is airtightly engaged with the inflow portion 11. Accordingly, no gas flows between the straight portion 52 and the inflow portion 11 until the nozzle 5 is pulled up and the straight portion 52 comes out of the inflow portion 11. Since the nozzle 5 is formed with an orifice 51 for defining a minimum flow rate, the gas is kept at a minimum flow rate through the orifice 51 until the straight portion 52 is removed from the inflow portion 11. Will flow. When the nozzle 5 is further lifted and the straight part 52 comes out of the inflow part 11, the inflow part 11 opens to the inside of the casing body 10, so that the gas passes between the inflow part 11 and the nozzle 5 and the casing body 10 flows in. The flow rate passing through the inflow portion 11 continuously increases as the nozzle 5 moves away from the inflow portion 11.

一方、ロータ軸23の上端には上記回転板3の代わりに開閉板4を取り付けた。この開閉板4は、図7に示すように、開閉板4の回転方向に沿った1個の長孔41が形成されている。図7の(a)に示す位相では長孔41が流出部12に一致していないので流出部12からガスが流出しない。開閉板4を図において時計方向に回転させると、すぐに長孔41が流出部12に重なるが、その状態ではまだノズル5のストレート部52は流入部11から抜けていない。従って、流出部12からはオリフィス部51を通過した最少流量のガスが流出することになある。   On the other hand, an opening / closing plate 4 was attached to the upper end of the rotor shaft 23 instead of the rotating plate 3. As shown in FIG. 7, the opening / closing plate 4 is formed with one long hole 41 along the rotation direction of the opening / closing plate 4. In the phase shown in FIG. 7A, the long hole 41 does not coincide with the outflow portion 12, so that no gas flows out from the outflow portion 12. When the opening / closing plate 4 is rotated in the clockwise direction in the drawing, the long hole 41 immediately overlaps the outflow portion 12, but in this state, the straight portion 52 of the nozzle 5 has not yet come out of the inflow portion 11. Therefore, the gas with the minimum flow rate that has passed through the orifice portion 51 flows out from the outflow portion 12.

開閉板4を更に回転させると、流出部12と長孔41とは重なったままの状態でノズル5が上昇するため、流出部12から流出するガスの流量は連続して増加する。図7の(b)は流量が最大になった状態を示す。この状態から流量を減少させる場合にはロータ軸23を逆転させればよい。従って、(b)に示した状態から(a)に示した状態に戻っていくことになる。ただし、上述のように暴走が生じてロータ軸23が正方向に回転し続ければ、開閉板4は(c)に示す位相になり、流出部12からのガスの流出は停止される。   When the opening / closing plate 4 is further rotated, the nozzle 5 rises with the outflow portion 12 and the long hole 41 being overlapped, so that the flow rate of the gas flowing out from the outflow portion 12 continuously increases. FIG. 7B shows a state where the flow rate is maximized. In order to decrease the flow rate from this state, the rotor shaft 23 may be reversed. Therefore, the state shown in (b) returns to the state shown in (a). However, if runaway occurs as described above and the rotor shaft 23 continues to rotate in the forward direction, the opening / closing plate 4 has the phase shown in (c), and the outflow of gas from the outflow portion 12 is stopped.

なお、本発明は上記した形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもかまわない。   In addition, this invention is not limited to an above-described form, You may add a various change in the range which does not deviate from the summary of this invention.

1 流量調節装置
21 駆動コイル
22 ロータ
11 流入部
12 流出部
5 ノズル
51 オリフィス部
1 Flow Control Device 21 Drive Coil 22 Rotor 11 Inflow Portion 12 Outflow Portion 5 Nozzle 51 Orifice Portion

Claims (3)

ガス通路の途中に介設され、ケーシング内にガスを流入される流入部とケーシング内からガスを流出させる流出部とを備え、モータにより駆動され流出部から流出されるガスの流量を増減させる流量調節部を有する流量調節装置において、上記モータのロータをケーシング内に配設すると共に、ロータを挟んで対向する位置に上記流入部と流出部とを各々設けてガスがロータを配設した部分を通過するように構成し、上記流量調節部を流入部と流出部とのいずれか一方に設けたことを特徴とする流量調節装置。   A flow rate that is provided in the middle of the gas passage, includes an inflow portion that allows gas to flow into the casing, and an outflow portion that causes gas to flow out from the casing, and is driven by a motor to increase or decrease the flow rate of the gas that flows out from the outflow portion. In the flow control device having an adjustment portion, the rotor of the motor is disposed in the casing, and the inflow portion and the outflow portion are provided at positions facing each other across the rotor, and the portion where the gas is disposed on the rotor is provided. A flow rate adjusting device configured to pass through, wherein the flow rate adjusting portion is provided in either the inflow portion or the outflow portion. 上記流量調節部に閉鎖機能を設け、この閉鎖機能によって流出部からのガスの流出を停止させることを特徴とする請求項1に記載の流量調節装置。   The flow control device according to claim 1, wherein the flow control unit is provided with a closing function, and the outflow of gas from the outflow unit is stopped by the closing function. 上記流量調節部を流入部と流出部とのいずれか一方に設け、他方に、モータによって駆動され流出部からのガスの流出を停止させる閉鎖機構を設けたことを特徴とする請求項1に記載の流量調節装置。   The said flow volume control part is provided in any one of an inflow part and an outflow part, and the closing mechanism which drives the motor and stops the outflow of the gas from an outflow part is provided in the other. Flow control device.
JP2010192912A 2010-08-30 2010-08-30 Flow rate adjusting device Pending JP2012047327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010192912A JP2012047327A (en) 2010-08-30 2010-08-30 Flow rate adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010192912A JP2012047327A (en) 2010-08-30 2010-08-30 Flow rate adjusting device

Publications (1)

Publication Number Publication Date
JP2012047327A true JP2012047327A (en) 2012-03-08

Family

ID=45902424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010192912A Pending JP2012047327A (en) 2010-08-30 2010-08-30 Flow rate adjusting device

Country Status (1)

Country Link
JP (1) JP2012047327A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108551A (en) * 2011-11-18 2013-06-06 Noritz Corp Valve device and hot water supply device
JP2019011910A (en) * 2017-06-30 2019-01-24 株式会社ハーマン Combustion gas amount control device
JP2019011911A (en) * 2017-06-30 2019-01-24 株式会社ハーマン Fuel gas amount control device
JP2021116897A (en) * 2020-01-28 2021-08-10 株式会社フジキン Variable orifice for pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147896A (en) * 2000-06-26 2002-05-22 Pacific Ind Co Ltd Motor flow control valve
JP2003130332A (en) * 2001-10-22 2003-05-08 Rinnai Corp Heating power controlling device
JP2004108764A (en) * 2002-08-30 2004-04-08 Daikin Ind Ltd Electric expansion valve and freezer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147896A (en) * 2000-06-26 2002-05-22 Pacific Ind Co Ltd Motor flow control valve
JP2003130332A (en) * 2001-10-22 2003-05-08 Rinnai Corp Heating power controlling device
JP2004108764A (en) * 2002-08-30 2004-04-08 Daikin Ind Ltd Electric expansion valve and freezer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108551A (en) * 2011-11-18 2013-06-06 Noritz Corp Valve device and hot water supply device
JP2019011910A (en) * 2017-06-30 2019-01-24 株式会社ハーマン Combustion gas amount control device
JP2019011911A (en) * 2017-06-30 2019-01-24 株式会社ハーマン Fuel gas amount control device
JP2021116897A (en) * 2020-01-28 2021-08-10 株式会社フジキン Variable orifice for pipe

Similar Documents

Publication Publication Date Title
JP5733492B2 (en) Faucet device
JP2012047327A (en) Flow rate adjusting device
JP6969895B2 (en) Valve device
JP6051634B2 (en) Valve device and hot water supply device
KR102584783B1 (en) Air cleaner
TWI463086B (en) Magnetic valve and fluid applied system using the same
JP2003185036A (en) Rotary orifice type control valve
JP2006223448A (en) Roller type infusion pump
JP5671827B2 (en) Faucet device
JPH111294A (en) Filling valve device
JP2002350006A (en) Motor operated valve
JP3169574U (en) Pipe opening and closing device
JP2013108551A (en) Valve device and hot water supply device
JP6955952B2 (en) Ball valve
KR101253721B1 (en) Door closing device with multi-function
JP2012122506A (en) Flow control valve
JP2011214666A (en) Valve mechanism and valve device
KR102295354B1 (en) Refrigerant valve apparatus
JP5671826B2 (en) Faucet device
KR20190018092A (en) Spring return type pintle injector
EP3926108B1 (en) Flow rate controller
KR20030096132A (en) A Control check valve
JP2024147343A (en) Valve body drive device
CN115596646A (en) Bidirectional valveless piezoelectric pump
KR20100028184A (en) Blast volume varying apparatus using flowing backward

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007