JP2012046458A - New oxylipin compound and flower bud formation-inducing agent - Google Patents

New oxylipin compound and flower bud formation-inducing agent Download PDF

Info

Publication number
JP2012046458A
JP2012046458A JP2010191454A JP2010191454A JP2012046458A JP 2012046458 A JP2012046458 A JP 2012046458A JP 2010191454 A JP2010191454 A JP 2010191454A JP 2010191454 A JP2010191454 A JP 2010191454A JP 2012046458 A JP2012046458 A JP 2012046458A
Authority
JP
Japan
Prior art keywords
plant
flower bud
family
bud formation
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2010191454A
Other languages
Japanese (ja)
Inventor
Shuji Watanabe
修治 渡辺
Ayata Akaike
綾太 赤池
Ariaki Murata
有明 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP2010191454A priority Critical patent/JP2012046458A/en
Publication of JP2012046458A publication Critical patent/JP2012046458A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an easily synthesizable compound having a structure simpler than KODA and FNs, and activities for singly inducing flower bud formation, and to provide a flower bud formation-inducing agent.SOLUTION: The new oxylipin compound is represented by formula (I) or (II). The flower bud formation-inducing agent contains at least one thereof as an active ingredient.

Description

本発明は、新規オキシリピン化合物及び花芽形成誘導剤に関する。   The present invention relates to a novel oxylipin compound and a flower bud formation inducer.

植物の花芽形成誘導技術は、果樹、とりわけミカン、リンゴ、ナシ等での花芽着生制御のため、また、園芸植物や穀物植物の供給性向上に不可欠であって、果実生産市場をはじめとする農作物生産市場において大いに期待されている。   Plant flower bud formation induction technology is essential for controlling flower bud formation in fruit trees, especially mandarin oranges, apples, pears, etc., and for improving the supply of horticultural plants and cereal plants. It is highly expected in the crop production market.

従来から、植物の花芽形成過程のメカニズムを明確にした上で、花芽形成誘導剤、花芽着生促進剤等を適用することにより、開花時期を人為的に調節する試みがなされてきた。植物の花芽形成を決める因子としては、日長、低温、植物の老化などが知られているが、中でも日長が決定的な影響を有する。植物において日長に感応する部分は葉身であり、葉身から葉柄や茎を通って、花芽形成が起こる生長点に何らかの信号が送られて、この花芽形成が開始されることが知られている。   Conventionally, attempts have been made to artificially adjust the flowering time by applying a flower bud formation inducer, a flower bud formation promoter and the like after clarifying the mechanism of the flower bud formation process of a plant. As factors that determine flower bud formation of plants, day length, low temperature, plant aging and the like are known, and among them, day length has a decisive influence. The part of the plant that is sensitive to day length is the leaf blades, and it is known that some kind of signal is sent from the leaf blades through the petiole and stem to the growth point where flower bud formation occurs, and this flower bud formation starts. Yes.

花芽形成誘導剤としては、(12Z,15Z)−9−ヒドロキシ−10−オキソ−12,15−オクタデカジエン酸(以下、KODAと称する)などのα-ケトール不飽和脂肪酸を有効成分とする花芽形成誘導剤が知られている(特許文献1及び2参照)。このKODAは、植物体内の代謝経路にてノルエピネフリンなどのカテコールアミンを取り込み、FN1又はFN2(以下、FNsと称する)と呼ばれる活性型となり、花芽形成誘導活性を示すことがわかっている(非特許文献1)。また、植物の生長の調整の一部として花芽形成を誘導可能とするα−ケトール不飽和脂肪酸誘導体、不飽和ケト脂肪酸誘導体、及びα−ケトール配糖体を含む植物生長調整剤が知られている(例えば特許文献3、特許文献4、特許文献5及び特許文献6)。これらの化合物はいずれも化学合成又は植物体を利用することによって得ている。   As flower bud formation inducers, flower buds containing α-ketol unsaturated fatty acids such as (12Z, 15Z) -9-hydroxy-10-oxo-12,15-octadecadienoic acid (hereinafter referred to as KODA) as an active ingredient Formation inducers are known (see Patent Documents 1 and 2). This KODA has been found to take in catecholamines such as norepinephrine through a metabolic pathway in the plant body, become an active form called FN1 or FN2 (hereinafter referred to as FNs), and exhibit flower bud formation inducing activity (Non-patent Document 1). ). Also known is a plant growth regulator comprising an α-ketol unsaturated fatty acid derivative, an unsaturated keto fatty acid derivative, and an α-ketol glycoside capable of inducing flower bud formation as part of the regulation of plant growth. (For example, patent document 3, patent document 4, patent document 5, and patent document 6). All of these compounds are obtained by using chemical synthesis or plants.

植物の花芽着生に関する機構は未だに不明な点が多く、花芽着生促進の解明を進める上で、これらの化合物が利用されている。   There are still many unclear points regarding the mechanisms related to flower bud formation in plants, and these compounds are used in elucidating the promotion of flower bud formation.

特開平9−295908号公報Japanese Patent Laid-Open No. 9-295908 特開平11−29410号公報JP-A-11-29410 特開2005−104901号公報JP 2005-104901 A 特開2001−342191号公報JP 2001-342191 A 特開2009−209054号公報JP 2009-209054 A 特開2009−209053号公報JP 2009-209053 A

Shoko Yamaguchi, Mineyuki Yokoyama, Toshii Iida, Mika Okai, Osamu Tanaka, and Atsushi Takimoto “Identification of a Component that Induces Flowering of Lemna among the Reaction Products of α-Ketol Linolenic Acid (FIF) and Norepinephrine」Plant Cell Physiol., Nov 2001,42,1201 - 1209.Shoko Yamaguchi, Mineyuki Yokoyama, Toshii Iida, Mika Okai, Osamu Tanaka, and Atsushi Takimoto “Identification of a Component that Induces Flowering of Lemna among the Reaction Products of α-Ketol Linolenic Acid (FIF) and Norepinephrine” Plant Cell Physiol., Nov 2001,42,1201-1209.

しかしながら、KODAはエピネフリン、ノルエピネフリンと共に用いないと花芽誘導活性を有さず、かつ構造的に不安定である。さらに、一方、活性型のFNsは単独で活性を有するが、構造が複雑であるため、こちらも人工的な大量合成ができない。このため、単独で活性を有し、構造的に安定であり、かつ人工合成可能な単純な構造を有する花芽形成誘導剤が求められていた。
従って、本発明は単独で花芽形成誘導効果を有し、構造的に安定かつ構造が単純な新規化合物及び花芽形成誘導剤を提供することを目的とする。
However, KODA has no flower bud-inducing activity and is structurally unstable unless used with epinephrine and norepinephrine. On the other hand, active FNs are active alone, but because of their complex structure, they cannot be synthesized in large quantities. For this reason, there has been a demand for a flower bud formation inducing agent having a simple structure that has activity alone, is structurally stable, and can be artificially synthesized.
Accordingly, an object of the present invention is to provide a novel compound and a flower bud formation inducer that have a flower bud formation induction effect alone, are structurally stable and have a simple structure.

本発明のオキシリピン化合物は、下記式(I)又は(II)で示されるものである。
また、本発明の花芽形成誘導剤は、下記式(I)で示されるオキシリピン化合物及び下記式(II)で示されるオキシリピン化合物の少なくとも一方を有効成分とするものである。
The oxylipin compound of the present invention is represented by the following formula (I) or (II).
The flower bud formation inducing agent of the present invention comprises at least one of an oxylipin compound represented by the following formula (I) and an oxylipin compound represented by the following formula (II) as an active ingredient.

本発明によれば、単独で花芽形成誘導効果を有し、構造的に安定かつ構造が単純な新規化合物及び花芽形成誘導剤を提供することができる。   According to the present invention, it is possible to provide a novel compound and a flower bud formation inducer which have a flower bud formation induction effect alone, are structurally stable and have a simple structure.

実施例1にかかるアオウキクサの抽出処理を説明するチャートである。It is a chart explaining the extraction process of duckweed concerning Example 1. 実施例1にかかるアオウキクサの乾燥処理時間と、アオウキクサ抽出物の花芽形成誘導率を示すグラフである。It is a graph which shows the drying process time of the duckweed concerning Example 1, and the flower bud formation induction rate of the duckweed extract. 実施例3にかかるアオウキクサの乾燥処理の有無(A:乾燥処理なし、B:乾燥処理あり)による、高速液体クロマトグラフィーの結果を示す。The result of the high performance liquid chromatography by the presence or absence (A: no drying process, B: with a drying process) of the duckweed concerning Example 3 is shown. 実施例3にかかる高速液体クロマトグラフィーにより分画したアオウキクサ抽出物(乾燥処理なし)の花芽誘導活性を示すグラフである。It is a graph which shows the flower bud induction | guidance | derivation activity of the duckweed extract (no drying process) fractionated by the high performance liquid chromatography concerning Example 3. 実施例3にかかる高速液体クロマトグラフィーにより分画したアオウキクサ抽出物(乾燥処理あり)の花芽誘導活性を示すグラフである。It is a graph which shows the flower bud induction | guidance | derivation activity of the duckweed extract (with a dry process) fractionated by the high performance liquid chromatography concerning Example 3. 実施例4にかかるアオウキクサの乾燥処理時間とLDS1内生量の変化を示すグラフである。It is a graph which shows the drying process time of the duckweed concerning Example 4, and the change of LDS1 endogenous amount. 実施例5にかかるアオウキクサから単離した新規オキシリピン化合物(LDS1〜3)とFN1、FN2との花芽誘導活性の比較結果を示すグラフである。It is a graph which shows the comparison result of the flower bud induction | guidance | derivation activity of the novel oxylipin compound (LDS1-3) isolated from the duckweed concerning Example 5, and FN1, FN2.

[1]オキシリピン化合物
本発明のオキシリピン化合物は、下記式(I)又は(II)で表される新規なオキシリピン化合物である。これら2種のオキシリピン化合物は、いずれも単独で花芽形成誘導活性が認められるので、花芽形成誘導剤として使用することができる。また、これらの化合物はいずれも構造的に安定であり、構造が単純であるため、人工合成が容易であると考えられる。
[1] Oxylipin Compound The oxylipin compound of the present invention is a novel oxylipin compound represented by the following formula (I) or (II). These two types of oxylipin compounds can be used as flower bud formation inducers because both have flower bud formation induction activity. In addition, all of these compounds are structurally stable and simple in structure, and thus are considered to be easily synthesized.

本発明のオキシリピン化合物は、アオウキクサ等から公知の方法に従って単離してもよく、合成によって得てもよい。
合成する場合には、上記の化合物はいずれもα-リノレン酸より、13−あるいは9−リポキシゲナーゼおよび、アレンオキシドシンターゼの処理により酵素合成の可能性がある。また、上記式(II)で表されるオキシピリン化合物は、酵素合成して得られるα-ケトールを、NaBHを用いて還元することで得られる。
上記式(I)で表わされるオキシピリン化合物はKODAに見られる不安定構造の原因であるβ,γ−不飽和ケトールの代わりに、より安定なα,β−不飽和ケトール構造を有することから、KODAに比べて安定である。また、上記式(II)で表わされるオキシピリン化合物は、共役トリエン構造を有しているため、酸化に対して良い基質となるため、上記式(I)で表わされるオキシピリン化合物に比べて不安定であるが、KODAよりは安定であると考えられる。
The oxylipin compound of the present invention may be isolated from duckweed or the like according to a known method, or may be obtained by synthesis.
In the case of synthesis, any of the above compounds may be enzymatically synthesized from α-linolenic acid by treatment with 13- or 9-lipoxygenase and allene oxide synthase. The oxypyrine compound represented by the above formula (II) can be obtained by reducing α-ketol obtained by enzymatic synthesis using NaBH 4 .
Since the oxypyrine compound represented by the above formula (I) has a more stable α, β-unsaturated ketol structure instead of β, γ-unsaturated ketol which is the cause of the unstable structure found in KODA, KODA Is more stable than Moreover, since the oxypyrine compound represented by the above formula (II) has a conjugated triene structure and is a good substrate for oxidation, it is unstable compared to the oxypyrine compound represented by the above formula (I). However, it is considered more stable than KODA.

[2]花芽形成誘導剤
本発明の花芽形成誘導剤は、上記式(I)で示されるオキシリピン化合物及び上記式(II)で示されるオキシリピン化合物の少なくとも一方を有効成分として含有するものである。上述したように本発明の新規オキシリピン化合物はいずれも単独で花芽形成誘導効果を有するので、これらの化合物を含む花芽形成誘導剤を得ることができる。本発明の花芽形成誘導剤は、上記化合物のいずれかを単独で含むものであってもよく、2種を組み合わせて含むものであってもよい。
[2] Flower Bud Formation Inducing Agent The flower bud formation inducing agent of the present invention contains at least one of the oxylipin compound represented by the above formula (I) and the oxylipin compound represented by the above formula (II) as an active ingredient. As described above, any of the novel oxylipin compounds of the present invention alone has a flower bud formation inducing effect, so that a flower bud formation inducing agent containing these compounds can be obtained. The flower bud formation inducing agent of the present invention may contain any of the above compounds alone, or may contain two types in combination.

以下、本発明において、「有効成分」とは上述した新規オキシリピン化合物であり、花芽形成誘導剤中に含有される1種又は2種の化合物全体を指す。
本発明の花芽形成誘導剤は、有効成分のみを精製物としてそのまま用いてもよいが、植物に適用可能な所望の剤形、例えば液剤、固形剤、粉剤、乳剤、底床添加剤等の剤形に応じて、製剤学上許容可能な担体と配合してもよい。
Hereinafter, in the present invention, the “active ingredient” is the above-described novel oxylipin compound, and refers to the whole of one or two kinds of compounds contained in the flower bud formation inducing agent.
The flower bud formation inducing agent of the present invention may be used as it is as an active ingredient alone as a purified product, but it can be used as a desired dosage form applicable to plants, for example, a liquid agent, a solid agent, a powder agent, an emulsion, an additive for a bottom floor, Depending on the form, it may be blended with a pharmaceutically acceptable carrier.

例えば、本発明の花芽形成誘導剤が底床添加剤又は固形剤である場合には、概ねタルク、クレー、バーミキュライト、珪藻土、カオリン、炭酸カルシウム、水酸化カルシウム、白土、シリカゲル等の無機質;小麦粉、澱粉等の個体担体を、単独で又は2種以上を組み合わせて、上記の担体成分として用いられるが、これらに限定されない。
また、本発明の花芽形成誘導剤が液剤である場合には、概ね水;キシレン等の芳香族炭化水素類;エタノール、エチレングリコール等のアルコール類;アセトン等のケトン類;ジオキサン、テトラヒドロフラン等のエーテル類;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル等の液体担体を、単独で又は2種以上を組み合わせて上記の担体成分として用いられるが、これらに限定されない。
これらの担体は、上記本発明の所期の効果を損なわない限度で適宜配合することができる。
For example, when the flower bud formation inducing agent of the present invention is a bottom floor additive or a solid agent, inorganic substances such as talc, clay, vermiculite, diatomaceous earth, kaolin, calcium carbonate, calcium hydroxide, white clay, silica gel; An individual carrier such as starch can be used as the carrier component alone or in combination of two or more, but is not limited thereto.
In addition, when the flower bud formation inducing agent of the present invention is a liquid, it is generally water; aromatic hydrocarbons such as xylene; alcohols such as ethanol and ethylene glycol; ketones such as acetone; ethers such as dioxane and tetrahydrofuran. A liquid carrier such as dimethylformamide, dimethyl sulfoxide, acetonitrile or the like may be used alone or in combination of two or more thereof as the above carrier component, but is not limited thereto.
These carriers can be appropriately blended as long as the desired effects of the present invention are not impaired.

また本発明の花芽形成誘導剤には、上記本発明の所期の効果を損なわない限度において、製剤用補助剤を配合してもよい。製剤用補助剤としては、例えば、アルキル硫酸エステル類、アルキルスルホン酸塩、アルキルアリールスルホン酸塩、ジアルキルスルホコハク酸塩等の陰イオン界面活性剤;高級脂肪族アミンの塩類等の陽イオン界面活性剤;ポリオキシエチレングリコールアルキルエーテル、ポリオキシエチレングリコールアシルエステル、ポリオキシエチレングリコール多価アルコールアシルエステル、セルロース誘導体等の非イオン界面活性剤;ゼラチン、カゼイン、アラビアゴム等の増粘剤、増量剤、結合剤等を適宜配合することができる。これらは単独で又は2種以上を組み合わせ用いられる。
さらに必要に応じて、植物生長調整剤、例えば安息香酸、ニコチン酸、ニコチン酸アミド、ピペコリン酸等を、上記本発明の所期の効果を損なわない限度において、本発明の花芽形成誘導剤中に配合することもできる。
Moreover, you may mix | blend the adjuvant for a formulation with the flower bud formation inducer of this invention in the limit which does not impair the effect of the said this invention. Examples of the formulation adjuvant include anionic surfactants such as alkyl sulfates, alkyl sulfonates, alkyl aryl sulfonates, dialkyl sulfosuccinates; and cationic surfactants such as salts of higher aliphatic amines. Nonionic surfactants such as polyoxyethylene glycol alkyl ether, polyoxyethylene glycol acyl ester, polyoxyethylene glycol polyhydric alcohol acyl ester, and cellulose derivatives; thickeners such as gelatin, casein, and gum arabic; A binder or the like can be appropriately blended. These may be used alone or in combination of two or more.
Further, if necessary, plant growth regulators such as benzoic acid, nicotinic acid, nicotinic acid amide, pipecolic acid and the like are added to the flower bud formation inducing agent of the present invention to the extent that the intended effect of the present invention is not impaired. It can also be blended.

上記本発明の花芽形成誘導剤は、その剤形に応じた方法で種々の植物に用いられる。例えば、本発明においては、開花を図る植物の生長点のみならず、茎、葉をはじめとする植物体の一部又は全体に、液剤や乳剤として散布、滴下、塗布等することや、固形剤や粉剤として地中から根に吸収させること等が可能である。また、開花を図る植物がウキクサ等の水草の場合には、底床添加剤として根から吸収させたり、固形剤を水中で除々に溶解させること等も可能である。   The flower bud formation inducing agent of the present invention is used for various plants by a method according to the dosage form. For example, in the present invention, not only the growth point of a plant to be flowered, but also spraying, dripping, coating, etc. as a liquid or emulsion on a part or the whole of a plant body including stems and leaves, solid agent It can be absorbed into the roots from the ground as a powder. Further, when the plant to be flowered is a duckweed such as duckweed, it can be absorbed from the root as a bottom floor additive, or the solid agent can be gradually dissolved in water.

また、本発明の花芽形成誘導剤を適用可能な植物の種類は特に限定されず、双子葉植物、単子葉植物の両者に対して本発明花芽形成誘導剤は有効である。   Moreover, the kind of plant which can apply the flower bud formation inducer of this invention is not specifically limited, The flower bud formation inducer of this invention is effective with respect to both a dicotyledonous plant and a monocotyledonous plant.

双子葉植物としては、例えばアサガオ属植物(アサガオ)、ヒルガオ属植物(ヒルガオ、コヒルガオ、ハマヒルガオ)、サツマイモ属植物(グンバイヒルガオ、サツマイモ)、ネナシカズラ属植物(ネナシカズラ、マメダオシ)が含まれるひるがお科植物、ナデシコ属植物(カーネーション等)、ハコベ属植物、タカネツメクサ属植物、ミミナグサ属植物、ツメクサ属植物、ノミノツヅリ属植物、オオヤマフスマ属植物、ワチガイソウ属植物、ハマハコベ属植物、オオツメクサ属植物、シオツメクサ属植物、マンテマ属植物、センノウ属植物、フシグロ属植物、ナンバンハコベ属植物が含まれるなでしこ科植物、もくまもう科植物、どくだみ科植物、こしょう科植物、せんりょう科植物、やなぎ科植物、やまもも科植物、くるみ科植物、かばのき科植物、ぶな科植物、にれ科植物、くわ科植物、いらくさ科植物、かわごけそう科植物、やまもがし科植物、ぼろぼろのき科植物、びゃくだん科植物、やどりぎ科植物、うまのすずくさ科植物、やっこそう科植物、つちとりもち科植物、たで科植物、あかざ科植物、ひゆ科植物、おしろいばな科植物、やまとぐさ科植物、やまごぼう科植物、つるな科植物、すべりひゆ科植物、もくれん科植物、やまぐるま科植物、かつら科植物、すいれん科植物、まつも科植物、きんぽうげ科植物、あけび科植物、めぎ科植物、つづらふじ科植物、ろうばい科植物、くすのき科植物、けし科植物、ふうちょうそう科植物、あぶらな科植物、もうせんごけ科植物、うつぼかずら科植物、べんけいそう科植物、ゆきのした科植物、とべら科植物、まんさく科植物、すずかけのき科植物、ばら科植物、まめ科植物、かたばみ科植物、ふうろそう科植物、あま科植物、はまびし科植物、みかん科植物、にがき科植物、せんだん科植物、ひめはぎ科植物、とうだいぐさ科植物、あわごけ科植物、つげ科植物、がんこうらん科植物、どくうつぎ科植物、うるし科植物、もちのき科植物、にしきぎ科植物、みつばうつぎ科植物、くろたきかずら科植物、かえで科植物、とちのき科植物、むくろじ科植物、あわぶき科植物、つりふねそう科植物、くろうめもどき科植物、ぶどう科植物、ほるとのき科植物、しなのき科植物、あおい科植物、あおぎり科植物、さるなし科植物、つばき科植物、おとぎりそう科植物、みぞはこべ科植物、ぎょりゅう科植物、すみれ科植物、いいぎり科植物、きぶし科植物、とけいそう科植物、しゅうかいどう科植物、さぼてん科植物、じんちょうげ科植物、ぐみ科植物、みそはぎ科植物、ざくろ科植物、ひるぎ科植物、うりのき科植物、のぼたん科植物、ひし科植物、あかばな科植物、ありのとうぐさ科植物、すぎなも科植物、うこぎ科植物、せり科植物、みずき科植物、いわうめ科植物、りょうぶ科植物、いちやくそう科植物、つつじ科植物、やぶこうじ科植物、さくらそう科植物、いそまつ科植物、かきのき科植物、はいのき科植物、えごのき科植物、もくせい科植物、ふじうつぎ科植物、りんどう科植物、きょうちくとう科植物、ががいも科植物、はなしのぶ科植物、むらさき科植物、くまつづら科植物、しそ科植物、なす科植物、ごまのはぐさ科植物、のうぜんかずら科植物、ごま科植物、はまうつぼ科植物、いわたばこ科植物、たぬきも科植物、きつねのまご科植物、はまじんちょう科植物、はえどくそう科植物、おおばこ科植物、あかね科植物、すいかずら科植物、れんぷくそう科植物、おみなえし科植物、まつむしそう科植物、うり科植物、ききょう科植物、きく科植物等を例示することができる。   Examples of dicotyledonous plants include morning glory genus plants (morning glory), convolvulus genus plants (convolvulaceae, convolvulus, marine moth moth), sweet potato genus plants (Gumbai convolvulus, sweet potato), and genus quail plants (Neonashizura, Mamedaoashi), Nadesico genus plant (carnation etc.), Jacobe genus plant, Takanado genus genus plant, Eminentia genus plant, Citrus genus plant, Nominotsutsuri genus plant, Oyafusuma genus plant, Waigaiso genus plant, Hamakusa genus plant, Otsumexa genus plant, Shiotsumexa genus plant, Mandema plant, genus plant, Fusiglo genus plant, Nanbanjakobe plant, anthracnose family plant, arachnaceae plant, camellia family plant, pepper family plant, rhododendron plant, rape family plant, yam family plant, Walnut plant, bag Mushroom plant, Buna family plant, Bungaceae plant, Nectaceae plant, Iranaceae plant, Dendrobaceae plant, Yamagashi family plant, Shabby mushroom plant, Bakada family plant, Yadogi family plant , Horse suzusaku plant, scabbard family plant, echidaceae plant, scallop plant, red plant plant, hiyari plant plant, white-spotted plant plant, Yamatobusa plant plant, Yamagoboshi plant plant, vine Plant, slippery plant, creek family, mountain bear plant, wig family plant, crocodile plant, pine family plant, cyperaceae plant, aceae plant, forage plant, tsuji fuji Family plant, waxy family plant, duckweed family plant, poppy plant, daffodil plant, oilseed family plant, another genus plant family, urchinaceae plant, beetle family plant, cynoaceae plant, Laveraceae plant, Mansaceae Suzukake family, rose family plant, legume plant, beetle family plant, durumaceae plant, linaceae plant, habaceae plant, mandarin family plant, ginger family plant, genus family plant , Himehagi, Todaigusa, Agaricaceae, Boxwood, Ganoderma, Dokugaku, Plant, Urushi, Mochinoki, Nishiki, Mitsuba Plant, Kurodaki Kazura family plant, Maple family plant, Tochino family plant, Muroraceae plant, Amaranthaceae plant, Azalea family plant, Kurome Mado family plant, Vine family plant, Horonodaceae family Plants, Shinanoceae plants, Aoiaceae plants, Papilioceae plants, Monkeysaceae plants, Camellia plants, Fairy solitary plants, Mizohakobe plant, Gyoryaceae plants, Violetae plants, Iriaceae plants, Combaceae, Tokeisou , Plant, scabaceae, urchinaceae, gummy plant, misoaceae plant, pomegranate plant, asteraceae plant, cucurbitaceae plant, papaveraceae plant, rhinoceros plant , Akabana family, Arinoto Usagi family plant, Suginomo family plant, Urchinaceae plant, Rariaceae plant, Mizuki family plant, Iwume family plant, Ryoaceae plant, Ichikuza family plant, Azalea family Plants, Bambooceae Plants, Sakurasaceae Plants, Isomatsuae Plants, Oyster Family Plants, Oyster Family Plants, Erynoceae Plants, Mosaceae Plants, Fuji next Family Plants, Glyceae Plants , Asteraceae plant, garaceae plant, peony plant, murasaceae plant, kumazatsu family plant, solatry plant, eggplant family plant, sesame plant family plant, sesame plant family plant, sesame family plant , Hama cruciferous plant, Iwa Tobacco, Tanukimata, Kitsunegogaku, Hamanchou, Tobacco, Tobacco, Tobacco, Tobacco, Tobacco, Tobacco Examples thereof include pine family plants, cucurbitaceae plants, asteraceae plants, asteraceae plants, and the like.

単子葉植物としては、例えばウキクサ属植物(ウキクサ)及びアオウキクサ属植物(アオウキクサ、ヒンジモ)が含まれる、うきくさ科植物、カトレア属植物、 シンビジウム属植物、デンドロビューム属植物、ファレノプシス属植物、バンダ属植物、パフィオペディラム属植物、オンシジウム属植物等が含まれる、らん科植物、がま科植物、みくり科植物、ひるむしろ科植物、いばらも科植物、ほろむいそう科植物、おもだか科植物、とちかがみ科植物、ほんごうそう科植物、いね科植物、かやつりぐさ科植物、やし科植物、さといも科植物、ほしぐさ科植物、つゆくさ科植物、みずあおい科植物、いぐさ科植物、びゃくぶ科植物、ゆり科植物、ひがんばな科植物、やまのいも科植物、あやめ科植物、ばしょう科植物、しょうが科植物、かんな科植物、ひなのしゃくじょう科植物等を例示することができる。   Examples of monocotyledonous plants include duckweed plants (duckweeds) and duckweed plants (duckweeds, hinokimo), duckweed plants, cattleya plants, cymbidium plants, dendrobium plants, phalaenopsis plants, banda plants , Paphiopedilum plants, Oncidium plants, etc., orchidaceae plants, urchinaceae plants, citrus family plants, hiru rather family plants, thorny family plants, spider family plants, main family plants, and Chigamine family plant, Japanese genus family plant, rice family plant, Papaver family plant, palm family plant, sweet potato family plant, Japanese family plant family, Japanese family plant family, Mizuaoi family plant, rush family plant, Glycaceae plant, Lily family plant, Higanbana family plant, Yamano potato family plant, Ayame family plant, Ganoderma plant, Ginger family plant, Kan Examples of such plants include the plants belonging to the family and the chicks of the family Hina.

本発明の花芽形成誘導剤の植物に対する投与量の下限は、植物個体の種類や大きさにより異なるが、目安としては1つの植物個体に対して一回の投与当り、有効成分10nM程度以上である。また、本発明の花芽形成誘導剤の使用濃度は、生理活性の観点から好ましくは100nM〜1μMとすることができる。   The lower limit of the dose of the flower bud formation inducing agent of the present invention to a plant varies depending on the type and size of the plant individual, but as a guideline, it is about 10 nM or more of the active ingredient per administration for one plant individual. . Moreover, the use concentration of the flower bud formation inducing agent of the present invention is preferably 100 nM to 1 μM from the viewpoint of physiological activity.

なお、本発明の花芽形成誘導剤が製剤学的に許容可能な担体を含むものである場合には、その製造方法としては、有効成分と製剤学上許容可能な担体とを混合する工程を含むものであってもよい。混合は、花芽形成誘導剤の使用態様又は、選択された担体の種類などによって、当業界で既知の方法を適用すればよく、特に制限されない。   When the flower bud formation inducing agent of the present invention contains a pharmaceutically acceptable carrier, the production method includes a step of mixing an active ingredient and a pharmaceutically acceptable carrier. There may be. The mixing is not particularly limited, and a method known in the art may be applied depending on the use mode of the flower bud formation inducing agent or the type of the selected carrier.

また本発明は、有効成分を含む花芽形成誘導剤を用いた花芽形成方法も包含する。この花芽形成方法は、上述した対象植物に、有効量の本花芽形成誘導剤を接触させることを含む。本方法によれば、対象植物の花芽形成を本花芽形成誘導剤によって誘導されて、所望の時期に対象植物の花芽を形成させることができる。   Moreover, this invention also includes the flower bud formation method using the flower bud formation inducer containing an active ingredient. This flower bud formation method includes bringing an effective amount of the present flower bud formation inducing agent into contact with the target plant described above. According to this method, the flower bud formation of the target plant can be induced by the present flower bud formation inducer, and the flower bud of the target plant can be formed at a desired time.

本発明の新規オキシリピン化合物は、花芽形成誘導活性を有するものであるので、花芽形成や花芽形成誘導活性といった植物における種々の生理活性を解明するためのツールとして使用することができる。このようなツールとしての使用形態には、例えば、本発明のオキシリピン化合物に対して結合可能な物質(レセプタ、抗体など)の探索や、本お気しピリン化合物により活性化される花芽形成誘導活性関連酵素の探索、活性中心の特定を目的とする各種誘導体の作製等を挙げることができる。   Since the novel oxylipin compound of the present invention has flower bud formation inducing activity, it can be used as a tool for elucidating various physiological activities in plants such as flower bud formation and flower bud formation induction activity. Examples of such usage as a tool include the search for substances (receptors, antibodies, etc.) that can bind to the oxylipin compound of the present invention, and the flower bud formation-inducing activity that is activated by the present pilin compound. Examples include the search for enzymes and the production of various derivatives for the purpose of specifying active centers.

以下、実施例により本発明を説明する。以下の実施例において「%」は特に断らない限り質量基準である。また本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described by way of examples. In the following examples, “%” is based on mass unless otherwise specified. The present invention is not limited to these examples.

[実施例1]
<乾燥処理によるアオウキクサ抽出物と花芽誘導活性の変化>
アオウキクサをろ紙上で0〜180分間放置することにより乾燥ストレスを与え、図1の手順に従い抽出液を調製した。得られた抽出液を、オートクレーヴ滅菌した1/10E培地20ml中に3mg fw eq/5μl 添加し、継代後7日目のアオウキクサを1個体移植した。その後、通常では花芽を形成しない連続明条件下、25℃で10日間増殖後、顕微鏡下で花芽数をカウントした。全フロンドに対する着花フロンドの割合を着花率とし、花芽誘導活性を評価した。結果を図2に示す。
[Example 1]
<Changes in Duckweed extract and flower bud induction activity by drying treatment>
The duckweed was left on the filter paper for 0 to 180 minutes to give a drying stress, and an extract was prepared according to the procedure of FIG. 3 mg fw eq / 5 μl of the obtained extract was added to 20 ml of 1 / 10E medium sterilized by autoclave, and one duckweed planted 7 days after passage. After that, the number of flower buds was counted under a microscope after growing for 10 days at 25 ° C. under continuous bright conditions where normally no flower buds were formed. The ratio of the flowering front to the total front was taken as the flowering rate, and the flower bud induction activity was evaluated. The results are shown in FIG.

図2に示されるように、乾燥時間が長くなるに従って抽出液の花芽誘導活性が上昇した。
そこで次に、120分の乾燥処理を与えたアオウキクサの抽出液を、下記の条件によるLC−MSにより分析した。
<HPLC>
カラム: CAPCELL PAK C18 2.0×150 mm
移動相: A. MeCN B. H2O (0.05%HCOOH)
A. 25%--10 min--100%
流速: 0.2 ml/min
温度: 40℃
注入量:5μl(アオウキクサ 20 mg fw eq/5 μl)
<MS>
イオン化: ESI (negative)
検出:scan, SIM m/z 325, m/z 309
As shown in FIG. 2, the flower bud induction activity of the extract increased as the drying time increased.
Then, the extract of Duckweed that had been dried for 120 minutes was analyzed by LC-MS under the following conditions.
<HPLC>
Column: CAPCELL PAK C18 2.0 × 150 mm
Mobile phase: A. MeCN B. H 2 O (0.05% HCOOH)
A. 25%-10 min--100%
Flow rate: 0.2 ml / min
Temperature: 40 ℃
Injection volume: 5 μl (Duckweed 20 mg fw eq / 5 μl)
<MS>
Ionization: ESI (negative)
Detection: scan, SIM m / z 325, m / z 309

その結果、未乾燥時と比較して、KODA以外に複数のピークが増大していることを確認した(図3参照)。乾燥処理により顕著に増加した化合物を、保持時間の短い順にそれぞれLDS1、LDS2、LDS3と名付けた。   As a result, it was confirmed that a plurality of peaks increased in addition to KODA as compared with the undried state (see FIG. 3). The compounds significantly increased by the drying treatment were named LDS1, LDS2, and LDS3, respectively, in order of decreasing retention time.

[実施例2]
<分画したアオウキクサ抽出物の花芽誘導活性>
アオウキクサの乾燥処理によって生成する花芽形成誘導物質の単離を目的として、まず未乾燥のアオウキクサと120分乾燥処理後のアオウキクサ抽出液を、それぞれ、上記と同様の条件のHPLCによりフラクション1から8まで分画した。得られたそれぞれの画分を、実施例1と同様のアオウキクサに対する花芽誘導活性試験に供した。結果を図4A及び図4Bに示す。
図4Bに示されるように、120分の乾燥処理を与えたアオウキクサ抽出液のフラクション6が高い活性を示した。未乾燥のアオウキクサ抽出液のフラクション6ではほとんど活性が見られないことから(図4A参照)、乾燥処理によって生成する花芽形成誘導物質がフラクション6に存在することが示された。
[Example 2]
<Flower bud induction activity of fractionated Duckweed extract>
For the purpose of isolating the flower bud formation-inducing substance produced by the drying treatment of duckweed, first, the dried duckweed and the duckweed extract after 120 minutes of drying are separated into fractions 1 to 8 by HPLC under the same conditions as above. Fractionated. Each of the obtained fractions was subjected to the same flower bud induction activity test against duckweed as in Example 1. The results are shown in FIGS. 4A and 4B.
As shown in FIG. 4B, fraction 6 of the duckweed extract that had been subjected to a drying treatment for 120 minutes showed high activity. Since almost no activity was observed in fraction 6 of the undried duckweed extract (see FIG. 4A), it was shown that the flower bud formation inducer produced by the drying treatment is present in fraction 6.

[実施例3]
<LDS1〜3の単離・構造決定>
乾燥処理によって誘導される化合物LDS1〜3の構造決定を目的として、アオウキクサからこれらの化合物を抽出、精製、単離した。
アオウキクサ約1500g fw(新鮮重) に120〜180分の乾燥処理後、表1の手順に従い抽出液を調製した。抽出液を各種クロマトグラフィーに供し精製した結果、LDS1(2.4mg)、LDS2(2.0mg)、LDS3(2.4mg)を得た。
[Example 3]
<Isolation and structure determination of LDS 1-3>
These compounds were extracted, purified and isolated from duckweed for the purpose of determining the structures of the compounds LDS1 to LDS3 induced by the drying treatment.
After about 120 to 180 minutes of drying treatment with about 1500 g fw (fresh weight) of duckweed, an extract was prepared according to the procedure shown in Table 1. As a result of subjecting the extract to various chromatography and purification, LDS1 (2.4 mg), LDS2 (2.0 mg) and LDS3 (2.4 mg) were obtained.

LDS1はHR-ESI--TOF-MSにおいて、m/z 325.17989[M−H](calcd for C1829, Δ-0.65 mmu)を示し、分子式 C1829を得た。表1に示したH−NMR、13C−NMR の測定結果、および各種二次元NMRスペクトルの解析結果より、LDS1はKODAと同様なα-リノレン酸誘導体であること、3つの交換性Hを有し、内1つがカルボキシ基に帰属されることから分子内に2つの水酸基の存在が示唆された。δ77.0(C9)、δ71.9(C13)の存在により2つのオキシメチンを決定した。さらにδ203.2(C10)、δ124.7(C11)、δ151.0(C12)の存在、およびλmax235nmよりαβ−不飽和カルボニルの存在が示唆された。また、H−H cosyにより18−Hから11−Hまで、および9−Hと8−Hのクロスピークを確認した。C11−12、C15−16の幾何異性体は、JH11,12=15.8Hz、JH15,16=10.7Hzを基にそれぞれE、Zであると決定した。上記のデータおよび分子式に基づきLDS1の平面構造を決定した。LDS2及びLDS3についても同様な構造解析の結果、構造を決定した。LDS1〜LDS3の構造は、それぞれ下記の式(I)〜(III)であった。これらのことから、LDS1およびLDS2はα−リノレン酸を由来とした新規オキシリピン化合物であることがわかった。 LDS1 shows m / z 325.17989 [M−H] (calcd for C 18 H 29 O 5 , Δ−0.65 mmu) in HR-ESI -TOF-MS, and has the molecular formula C 18 H 29 O. 5 was obtained. From the measurement results of 1 H-NMR and 13 C-NMR shown in Table 1 and the analysis results of various two-dimensional NMR spectra, LDS1 is an α-linolenic acid derivative similar to KODA. And one of them is attributed to a carboxy group, suggesting the presence of two hydroxyl groups in the molecule. Two oxymethines were determined by the presence of δ77.0 (C9) and δ71.9 (C13). Further δ203.2 (C10), δ124.7 (C11 ), the presence of δ151.0 (C12), and αβ- presence of unsaturated carbonyl than lambda max 235 nm was suggested. Also, the 18-H 3 to 11-H by 1 H- 1 H cozy, and 9-H and confirmed cross peak of 8-H 2. Geometric isomers of C11-12 and C15-16 were determined to be E and Z based on JH 11,12 = 15.8 Hz and JH 15,16 = 10.7 Hz, respectively. The planar structure of LDS1 was determined based on the above data and molecular formula. The structures of LDS2 and LDS3 were determined as a result of similar structural analysis. The structures of LDS1 to LDS3 were the following formulas (I) to (III), respectively. From these, it was found that LDS1 and LDS2 are novel oxylipin compounds derived from α-linolenic acid.

[実施例4]
<乾燥処理に伴うLDS1〜3内生量の変動>
アオウキクサの乾燥処理によって誘導されるLDS1〜3の内生量を、[U−13C]KODA(0.45% 12C−KODA含有)を内部標準物質として、LC−MSにより定量した。180分間の乾燥処理の過程で30分ごとにサンプリング後、抽出液を調製し、実施例1と同様の条件によりLC−MS分析に供した。MS Chromatogram(LDS1: m/z 325 [M−H]、LDS2及びLDS3:m/z 309 [M−H]) におけるピークエリア面積を基に各試料中のLDS1〜3を定量した。結果を図5に示す。なお、図5において黒丸実線はLDS1、白丸実線はLDS2及び、黒丸破線はLDS3を示す。
その結果、LDS1〜3内生量は、乾燥時間が長くなるに伴い増加し、120〜150分の乾燥処理時に最大となることが確認できた(図5参照)。未乾燥試料ではLDS1:n.d.(0.46nmol未満)、LDS2:1.1nmol、LDS3:n.d.(0.46nmol未満)であることから、LDS1〜3の内生量は乾燥処理によっておよそ200〜450倍に増加することが明らかになった。
[Example 4]
<Fluctuation of LDS1 to 3 endogenous amount due to drying process>
Endogenous amounts of LDS1 to LDS3 induced by duckweed drying treatment were quantified by LC-MS using [U- 13 C] KODA (containing 0.45% 12 C-KODA) as an internal standard substance. After sampling every 30 minutes during the drying process for 180 minutes, an extract was prepared and subjected to LC-MS analysis under the same conditions as in Example 1. Based on the peak area area in MS Chromatogram (LDS1: m / z 325 [M−H] , LDS2 and LDS3: m / z 309 [M−H] ), LDS1 to LDS3 in each sample were quantified. The results are shown in FIG. In FIG. 5, the solid black line represents LDS1, the solid white solid line represents LDS2, and the solid black dotted line represents LDS3.
As a result, it was confirmed that the LDS1 to 3 endogenous amount increased as the drying time increased, and was maximized during the drying process of 120 to 150 minutes (see FIG. 5). In the undried sample, LDS1: nd (less than 0.46 nmol), LDS2: 1.1 nmol, LDS3: n. d. (Less than 0.46 nmol), it was revealed that the endogenous amount of LDS1 to LDS3 increased approximately 200 to 450 times by the drying treatment.

[実施例5]
<LDS1〜3とFN1、FN2の花芽誘導活性測定>
LDS1〜3とFN1及びFN2をアオウキクサに対する花芽誘導活性試験に供した。本試験で用いられたFN1及びFN2は、α-リノレン酸より既報の酵素合成法により得たKODAを、ノルエピネフリンと接触させて得た。α-リノレン酸は、市販(Sigma社)のものを用いた。FN1及びFN2の構造を以下に示す。
[Example 5]
<Measurement of flower bud induction activity of LDS1 to 3 and FN1, FN2>
LDS 1-3 and FN1 and FN2 were subjected to a flower bud induction activity test against duckweed. FN1 and FN2 used in this test were obtained by contacting KODA obtained from α-linolenic acid by a previously reported enzyme synthesis method with norepinephrine. As α-linolenic acid, a commercially available product (Sigma) was used. The structures of FN1 and FN2 are shown below.

各化合物を、それぞれ100pM、1nM、10nM、100nM及び1μMの濃度になるよう培養液に添加し、実施例1と同様の条件で10日間増殖後、花芽誘導活性を評価した。結果を図6に示す。なお、図6において黒丸実線はLDS1、黒四角実線はLDS2、白丸実線はLDS3、黒丸破線はFN1及び白丸破線はFN2を示す。
図6に示されるように、LDS1は10nMで有意な花芽誘導活性を示し、100nM以上ではFN1及びFN2と同程度の高い活性を有した。それに対してLDS3は著しく低い活性しか示さなかった。LDS2は1μMでLDS1の半分程度の活性を示した。LDS1とLDS3においてその活性に大きな差があることから、9位水酸基が花芽誘導活性に重要な役割を果たしていると考えられる。
Each compound was added to the culture solution so as to have a concentration of 100 pM, 1 nM, 10 nM, 100 nM and 1 μM, respectively, and after 10 days growth under the same conditions as in Example 1, flower bud induction activity was evaluated. The results are shown in FIG. In FIG. 6, the black circle solid line indicates LDS1, the black square solid line indicates LDS2, the white circle solid line indicates LDS3, the black circle broken line indicates FN1, and the white circle broken line indicates FN2.
As shown in FIG. 6, LDS1 showed significant flower bud induction activity at 10 nM, and high activity comparable to FN1 and FN2 at 100 nM or more. In contrast, LDS3 showed significantly lower activity. LDS2 was 1 μM and showed about half the activity of LDS1. Since there is a large difference in the activity between LDS1 and LDS3, it is considered that the hydroxyl group at position 9 plays an important role in flower bud induction activity.

従って、LDS1及びLDS2は単独の処理により花芽形成誘導効果を得ることが出来る。特にLDS1の花芽形成誘導活性はKODAの10倍以上、またFNsに匹敵する。また、KODA及びFNsと比較して構造は単純であり、非常に安定な物質である。これらのことから、従来よりも簡便かつ有効な花芽形成誘導剤となりうる。   Therefore, LDS1 and LDS2 can obtain a flower bud formation inducing effect by a single treatment. In particular, the flower bud formation inducing activity of LDS1 is more than 10 times that of KODA and comparable to FNs. In addition, the structure is simple compared to KODA and FNs, and it is a very stable substance. From these things, it can be a simpler and more effective flower bud formation inducer than before.

このように本発明によれば、単独で花芽形成誘導効果を有し、構造的に安定かつ構造が単純な新規化合物、即ち、LDS1及びLDS2を提供することができ、また、これらを含む花芽形成誘導剤を提供することができる。   As described above, according to the present invention, it is possible to provide novel compounds having an effect of inducing flower bud formation alone, structurally stable and simple in structure, that is, LDS1 and LDS2, and flower bud formation containing them. An inducer can be provided.

Claims (3)

下記化学式(I)で示されるオキシリピン化合物。
An oxylipin compound represented by the following chemical formula (I):
下記化学式(II)で示されるオキシリピン化合物。
An oxylipin compound represented by the following chemical formula (II).
下記式(I)で示されるオキシリピン化合物及び下記式(II)で示されるオキシリピン化合物の少なくとも一方を有効成分とする花芽形成誘導剤。
A flower bud formation inducer comprising at least one of an oxylipin compound represented by the following formula (I) and an oxylipin compound represented by the following formula (II) as an active ingredient.
JP2010191454A 2010-08-27 2010-08-27 New oxylipin compound and flower bud formation-inducing agent Ceased JP2012046458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191454A JP2012046458A (en) 2010-08-27 2010-08-27 New oxylipin compound and flower bud formation-inducing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010191454A JP2012046458A (en) 2010-08-27 2010-08-27 New oxylipin compound and flower bud formation-inducing agent

Publications (1)

Publication Number Publication Date
JP2012046458A true JP2012046458A (en) 2012-03-08

Family

ID=45901765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191454A Ceased JP2012046458A (en) 2010-08-27 2010-08-27 New oxylipin compound and flower bud formation-inducing agent

Country Status (1)

Country Link
JP (1) JP2012046458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026575A1 (en) * 2017-08-04 2019-02-07 国立大学法人名古屋大学 Flowering time regulator, agrochemical composition, and method for regulating flowering time of plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295908A (en) * 1996-03-04 1997-11-18 Shiseido Co Ltd Flower budding induction agent and kit for flower budding induction
JPH1129410A (en) * 1997-03-04 1999-02-02 Shiseido Co Ltd Flower bud formation-inducing agent and flower bud formation-inducing kit
JP2004002228A (en) * 2002-05-31 2004-01-08 Kumiai Chem Ind Co Ltd Composition for retaining freshness of plant with cut root part or the like and method for producing the same
JP2010047514A (en) * 2008-08-21 2010-03-04 Shiseido Co Ltd Spontaneous dormancy breaker and spontaneous dormancy awakening method for deciduous fruit tree

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295908A (en) * 1996-03-04 1997-11-18 Shiseido Co Ltd Flower budding induction agent and kit for flower budding induction
JPH1129410A (en) * 1997-03-04 1999-02-02 Shiseido Co Ltd Flower bud formation-inducing agent and flower bud formation-inducing kit
JP2004002228A (en) * 2002-05-31 2004-01-08 Kumiai Chem Ind Co Ltd Composition for retaining freshness of plant with cut root part or the like and method for producing the same
JP2010047514A (en) * 2008-08-21 2010-03-04 Shiseido Co Ltd Spontaneous dormancy breaker and spontaneous dormancy awakening method for deciduous fruit tree

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014034989; TETRAHEDRON V64, 2008, P6760-6769 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026575A1 (en) * 2017-08-04 2019-02-07 国立大学法人名古屋大学 Flowering time regulator, agrochemical composition, and method for regulating flowering time of plant

Similar Documents

Publication Publication Date Title
Sembdner et al. The biochemistry and the physiological and molecular actions of jasmonates
Baskar et al. Engineering glucosinolates in plants: current knowledge and potential uses
Hildmann et al. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding.
Staswick Jasmonate, genes, and fragrant signals
Light et al. Butenolides from plant-derived smoke: natural plant-growth regulators with antagonistic actions on seed germination
Farmer Fatty acid signalling in plants and their associated microorganisms
Salzman et al. Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape
Deluc et al. Water deficit increases stilbene metabolism in Cabernet Sauvignon berries
Finch-Savage et al. Desiccation stress in recalcitrant Quercus robur L. seeds results in lipid peroxidation and increased synthesis of jasmonates and abscisic acid
Zhang et al. Anthocyanin accumulation and molecular analysis of correlated genes in purple kohlrabi (Brassica oleracea var. gongylodes L.)
Lin et al. Abscisic acid regulation of heterophylly in Marsilea quadrifolia L.: effects of R-(−) and S-(+) isomers
WO2006057446A1 (en) α-KETOL UNSATURATED FATTY ACID DERIVATIVES AND PLANT GROWTH REGULATORS CONTAINING THE SAME
JP4724661B2 (en) Plant rooting inducer
JP5679974B2 (en) Plant growth regulator
Mukhtarova et al. Lipoxygenase pathway in model bryophytes: 12-oxo-9 (13), 15-phytodienoic acid is a predominant oxylipin in Physcomitrella patens
Mastelić et al. Chemical composition and antimicrobial activity of volatiles from Degenia velebitica, a European stenoendemic plant of the Brassicaceae family
JPH1129410A (en) Flower bud formation-inducing agent and flower bud formation-inducing kit
Lalotra et al. Jasmonates: an emerging approach in biotic and abiotic stress tolerance
JP4845579B2 (en) Rooting method of cutting
KR100713858B1 (en) Fungicides compositions comprising the extract of chloranthus henryi and a novel sesquiterpene compound isolated from them
Ren et al. Cross-talk between calcium–calmodulin and brassinolide for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets
JP2012046458A (en) New oxylipin compound and flower bud formation-inducing agent
JP2009209053A (en) alpha-KETOL GLYCOSIDE, FLOWER-BUD FORMATION ACCELERATOR, AND METHOD FOR PRODUCING THE SAME
Hajihashemi Stomatal Regulation as a Drought‐tolerance Mechanism
JP2009209054A (en) alpha-KETOL FATTY ACID DERIVATIVE, KETO FATTY ACID DERIVATIVE, AND FLOWER-BUD FORMATION ACCELERATOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20141216