JP2012041608A - Metal porous body and method for producing the same - Google Patents
Metal porous body and method for producing the same Download PDFInfo
- Publication number
- JP2012041608A JP2012041608A JP2010184802A JP2010184802A JP2012041608A JP 2012041608 A JP2012041608 A JP 2012041608A JP 2010184802 A JP2010184802 A JP 2010184802A JP 2010184802 A JP2010184802 A JP 2010184802A JP 2012041608 A JP2012041608 A JP 2012041608A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- plating
- porous body
- porous
- dimensional network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 97
- 239000002184 metal Substances 0.000 title claims abstract description 97
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000002344 surface layer Substances 0.000 claims abstract description 12
- 238000007747 plating Methods 0.000 claims description 98
- 239000004005 microsphere Substances 0.000 claims description 31
- 239000011148 porous material Substances 0.000 claims description 9
- KERTUBUCQCSNJU-UHFFFAOYSA-L nickel(2+);disulfamate Chemical compound [Ni+2].NS([O-])(=O)=O.NS([O-])(=O)=O KERTUBUCQCSNJU-UHFFFAOYSA-L 0.000 claims description 7
- 238000000034 method Methods 0.000 description 24
- 239000011347 resin Substances 0.000 description 23
- 229920005989 resin Polymers 0.000 description 23
- 239000000243 solution Substances 0.000 description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- 238000009713 electroplating Methods 0.000 description 13
- 239000011247 coating layer Substances 0.000 description 11
- 229910052759 nickel Inorganic materials 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 239000006260 foam Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 238000007772 electroless plating Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910003481 amorphous carbon Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- XIWFQDBQMCDYJT-UHFFFAOYSA-M benzyl-dimethyl-tridecylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 XIWFQDBQMCDYJT-UHFFFAOYSA-M 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- -1 palladium ions Chemical class 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- 239000004664 distearyldimethylammonium chloride (DHTDMAC) Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
Abstract
Description
本発明は3次元網目状構造を有する金属多孔体、及びその製造方法に関する。 The present invention relates to a porous metal body having a three-dimensional network structure and a method for producing the same.
従来、金属多孔体は、耐熱性を必要とするフィルタや、電池用電極板、更には、触媒担持体、金属複合材等、様々な用途に利用されている。これらの金属多孔体の製造方法としては、主として、発泡樹脂等に導電性処理を施した後に電気めっきする方法と、粉末金属を発泡樹脂等に付着させて焼結する方法が知られている。 Conventionally, metal porous bodies have been used for various applications such as filters that require heat resistance, battery electrode plates, catalyst carriers, and metal composite materials. As methods for producing these porous metal bodies, there are mainly known a method of electroplating after conducting a conductive treatment on a foamed resin or the like, and a method of sintering by attaching a powder metal to the foamed resin or the like.
電気めっきによる方法では、例えばウレタンフォームなどの発泡樹脂の骨格表面にカーボン粉末等を塗着することによって導電化処理を行い、その上に電気めっきにより所定に金属を電析させ、その後発泡樹脂及びカーボンを焼失させて金属多孔体を得ている(特許文献1、2等)。
また、焼結法では、スラリー化した金属粉末をウレタンフォームなどの発泡樹脂の骨格表面に含浸塗布し、その後加熱することにより金属粉末を焼結している(特許文献3、4等)。
In the method by electroplating, for example, carbon powder or the like is applied to the surface of a foamed resin skeleton such as urethane foam, and then a predetermined metal is electrodeposited thereon by electroplating. Carbon is burned off to obtain a porous metal body (Patent Documents 1, 2, etc.).
In the sintering method, slurry metal powder is impregnated and applied to the surface of a foamed resin skeleton such as urethane foam, and then heated to sinter the metal powder (Patent Documents 3, 4, etc.).
このような金属多孔体は、主として、単位体積当たりの表面積を大きくすることを目的として使用されているため、表面積が大きければ大きい程望ましいものである。しかしながら単位体積当たりの表面積を大きくしすぎると、金属多孔体の強度が低下するという問題が有った。 Since such a metal porous body is mainly used for the purpose of increasing the surface area per unit volume, a larger surface area is more desirable. However, if the surface area per unit volume is too large, there is a problem that the strength of the metal porous body is lowered.
本発明は上記問題点に鑑みて、従来の金属多孔体よりも更に大きな表面積を持ち、かつ強度に優れた金属多孔体を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a metal porous body having a larger surface area than that of a conventional metal porous body and excellent in strength.
本発明者等は上記課題を解決すべく鋭意探求を重ねた結果、金属多孔体の骨格の表層部分に微小孔を形成することが有効であることを見出し、本発明を完成させた。
すなわち、本発明は以下の構成を有する。
As a result of intensive investigations to solve the above problems, the present inventors have found that it is effective to form micropores in the surface layer portion of the skeleton of the porous metal body, and have completed the present invention.
That is, the present invention has the following configuration.
(1)3次元網目状構造を有する金属多孔体であって、
3次元網目状構造を形成する骨格の少なくとも表層に、骨格によって形成されている孔よりも径の小さな微小孔が形成されていることを特徴とする金属多孔体。
(2)前記微小孔が、球体状もしくは半球状であることを特徴とする上記(1)に記載の金属多孔体。
(3)前記微小孔が、前記骨格の厚さ方向において、表面から厚みの1/4の範囲内にのみ形成されていることを特徴とする上記(1)又は(2)に記載の金属多孔体。
(4)前記微小孔の孔径が0.2μm以上、20μm以下の範囲にあることを特徴とする上記(1)〜(3)のいずれかに記載の金属多孔体。
(5)上記(1)に記載の金属多孔体の製造方法であって、
少なくとも、
樹脂製3次元網目状多孔体に導電化処理を施す工程と、
上記樹脂製3次元網目状多孔体に金属めっきを施す第1のめっき工程と、
上記第1のめっき工程によって形成された金属めっき上に、金属と共に微小球体を付着させる第2のめっき工程と、
上記微小球体を除去する工程と、
上記樹脂製3次元網目状多孔体を除去する工程と、
を有することを特徴とする金属多孔体の製造方法。
(6)前記第1のめっき工程で、めっき量を第2のめっき工程でのめっき量よりも多くすることを特徴とする上記(5)に記載の金属多孔体の製造方法。
(7)前記第1のめっき工程における金属と、上記第2のめっき工程における金属が同一であることを特徴とする上記(5)又は(6)に記載の金属多孔体の製造方法。
(8)前記第1のめっき工程及び/又は第2のめっき工程において使用するめっき液が、スルファミン酸ニッケルめっき液を主体とするめっき液であることを特徴とする上記(5)〜(7)のいずれかに記載の金属多孔体の製造方法。
(1) A porous metal body having a three-dimensional network structure,
A porous metal body characterized in that micropores having a diameter smaller than the pores formed by the skeleton are formed in at least the surface layer of the skeleton forming the three-dimensional network structure.
(2) The porous metal body according to (1), wherein the micropores are spherical or hemispherical.
(3) The porous metal according to (1) or (2) above, wherein the micropores are formed only within a range of 1/4 of the thickness from the surface in the thickness direction of the skeleton. body.
(4) The porous metal body according to any one of (1) to (3) above, wherein a pore diameter of the micropore is in a range of 0.2 μm or more and 20 μm or less.
(5) A method for producing a porous metal body according to (1) above,
at least,
Applying a conductive treatment to the resinous three-dimensional network porous body;
A first plating step of performing metal plating on the resinous three-dimensional network porous body;
A second plating step for attaching microspheres together with metal on the metal plating formed by the first plating step;
Removing the microspheres;
Removing the resinous three-dimensional network porous body;
A method for producing a porous metal body, comprising:
(6) The method for producing a porous metal body according to (5), wherein in the first plating step, the amount of plating is larger than the amount of plating in the second plating step.
(7) The method for producing a metal porous body according to (5) or (6) above, wherein the metal in the first plating step and the metal in the second plating step are the same.
(8) The above (5) to (7), wherein the plating solution used in the first plating step and / or the second plating step is a plating solution mainly composed of nickel sulfamate plating solution. The manufacturing method of the metal porous body in any one of.
本発明により、単位体積当たりの表面積が極めて大きく、かつ強度に優れた3次元網目状構造を有する金属多孔体を提供することができる。 According to the present invention, it is possible to provide a porous metal body having a three-dimensional network structure having an extremely large surface area per unit volume and excellent strength.
本発明に係る3次元網目状金属多孔体は、3次元網目状構造を形成する骨格の少なくとも表層に、骨格によって形成されている孔よりも径の小さな微小孔が形成されていることを特徴とする。
図1に本発明の3次元網目状金属多孔体の一例の電子顕微鏡観察による写真を示し、図2に、図1の写真の太枠で囲った部分の拡大した写真を示す。図1及び図2から明らかなように、本発明の3次元網目状金属多孔体の骨格の表面には無数の微小孔による凹凸が形成されており、これにより単位体積当たりの表面積が極めて大きくなっている。
The three-dimensional network metal porous body according to the present invention is characterized in that at least a surface layer of a skeleton forming a three-dimensional network structure has micropores smaller in diameter than holes formed by the skeleton. To do.
FIG. 1 shows a photograph of an example of the three-dimensional network metal porous body of the present invention observed by an electron microscope, and FIG. 2 shows an enlarged photograph of a portion surrounded by a thick frame in the photograph of FIG. As is apparent from FIG. 1 and FIG. 2, the surface of the skeleton of the three-dimensional network metal porous body of the present invention has irregularities due to innumerable micropores, which makes the surface area per unit volume extremely large. ing.
一般に、3次元網目状構造を有する多孔体は単位体積あたりの表面積を大きくすることを目的として使用されるが、多孔体の表面積を高めると機械的な強度が低下する弊害がある。しかし、本発明の3次元網目状構造を有する金属多孔体は、骨格の表層に微小孔を形成することにより、強度の低下を抑えつつ、表面積を大きくすることを可能にした。 In general, a porous body having a three-dimensional network structure is used for the purpose of increasing the surface area per unit volume. However, increasing the surface area of the porous body has a disadvantage that the mechanical strength is lowered. However, the porous metal body having a three-dimensional network structure of the present invention can increase the surface area while suppressing a decrease in strength by forming micropores in the surface layer of the skeleton.
上記微小孔は金属多孔体の表面積を大きくする観点から、骨格部分の少なくとも表層に形成されていればよいが、骨格内部に形成されていても構わない。微小孔が骨格の内部に形成されている場合には、金属多孔体を軽量化することが可能となる。 From the viewpoint of increasing the surface area of the metal porous body, the micropores may be formed in at least the surface layer of the skeleton portion, but may be formed in the skeleton. When the micropores are formed inside the skeleton, the metal porous body can be reduced in weight.
上記微小孔の形状は、球体状もしくは半球状であることが好ましい。微小孔の形状が球体状もしくは半球状であることにより、微小孔の周辺に加わる応力が集中しないため、金属骨格部分に微小孔を形成することによる強度の低下を抑制することができる。 The micropores are preferably spherical or hemispherical. Since the shape of the micropores is spherical or hemispherical, stress applied to the periphery of the micropores is not concentrated, so that a decrease in strength due to the formation of micropores in the metal skeleton portion can be suppressed.
上記のごとく、金属多孔体の表面積を大きくするには、骨格の内部に微小孔を形成するよりも、骨格の表面付近のみに形成した方が、強度の低下を抑えつつ表面積を拡大することができる。このため、本発明の3次元網目状構造を有する金属多孔体においては、上記微小孔は、金属骨格の厚さ方向において、表面から厚みの1/4以下の範囲にのみ形成されていることが好ましい。 As described above, in order to increase the surface area of the porous metal body, it is possible to increase the surface area while suppressing the decrease in strength by forming it only near the surface of the skeleton rather than forming micropores inside the skeleton. it can. For this reason, in the porous metal body having a three-dimensional network structure of the present invention, the micropores are formed only in a range of 1/4 or less of the thickness from the surface in the thickness direction of the metal skeleton. preferable.
上記微小孔の孔径は、0.2μm以上、20μm以下の範囲にあることが好ましい。微小孔の孔径が小さい程、強度の低下を抑えつつ表面積を大きくすることができる。このため、孔径は20μm以下であることが好ましいが、一方で、孔径が小さすぎると生産性が悪化するため、0.2μm以上であることが好ましい。より好ましくは0.2μm以上、10μm以下であり、更に好ましくは0.2μm以上、5μm以下である。 The pore diameter of the micropores is preferably in the range of 0.2 μm or more and 20 μm or less. The surface area can be increased while the decrease in strength is suppressed as the pore diameter of the micropore is smaller. For this reason, the pore diameter is preferably 20 μm or less. On the other hand, if the pore diameter is too small, the productivity is deteriorated, and therefore it is preferably 0.2 μm or more. More preferably, they are 0.2 micrometer or more and 10 micrometers or less, More preferably, they are 0.2 micrometer or more and 5 micrometers or less.
本発明に係る3次元網目状構造を有する金属多孔体の製造方法は、少なくとも、樹脂製3次元網目状多孔体に導電化処理を施す工程と、上記樹脂製3次元網目状多孔体に金属めっきを施す第1のめっき工程と、上記第1の金属めっき工程によって形成された金属めっき上に、金属と共に微小球体を付着させる第2の金属めっき工程と、上記微小球体を除去する工程と、上記樹脂製3次元網目状多孔体を除去する工程と、を有することを特徴とする。これにより、本発明の3次元網目状金属多孔体を良好に製造することができる。 The method for producing a porous metal body having a three-dimensional network structure according to the present invention includes at least a step of conducting a conductive treatment on a resin-made three-dimensional network porous body, and metal plating on the resin-made three-dimensional network porous body. Performing a first plating step, a second metal plating step of attaching microspheres together with metal on the metal plating formed by the first metal plating step, a step of removing the microspheres, And a step of removing the resin-made three-dimensional network porous body. Thereby, the three-dimensional network metal porous body of the present invention can be manufactured satisfactorily.
(樹脂多孔体)
樹脂製3次元網目状多孔体としては、樹脂発泡体、不織布、フェルト、織布などが用いられるが必要に応じてこれらを組み合わせて用いることもできる。また、素材としては特に限定されるものではないが、金属をめっきした後焼却処理により除去できるものが好ましい。また、樹脂多孔体の取扱い上、特にシート状のものにおいては剛性が高いと折れるので柔軟性のある素材であることが好ましい。
(Resin porous body)
As the resin-made three-dimensional network porous body, a resin foam, a nonwoven fabric, a felt, a woven fabric, or the like is used, but these can be used in combination as necessary. Moreover, although it does not specifically limit as a raw material, The thing which can be removed by incineration after plating a metal is preferable. Further, in handling the porous resin body, in particular, a sheet-like material is preferably a flexible material because it breaks when the rigidity is high.
本発明においては、樹脂製3次元網目状多孔体として樹脂発泡体を用いることが好ましい。樹脂発泡体は、多孔性のものであればよく公知又は市販のものを使用でき、例えば、発泡ウレタン、発泡スチレン等が挙げられる。これらの中でも、特に多孔度が大きい観点から、発泡ウレタンが好ましい。発泡状樹脂の厚み、多孔度、平均孔径は限定的でなく、用途に応じて適宜に設定することができる。 In the present invention, it is preferable to use a resin foam as the resinous three-dimensional network porous body. As the resin foam, any known or commercially available resin may be used as long as it is porous. Examples thereof include urethane foam and foamed styrene. Among these, urethane foam is preferable from the viewpoint of particularly high porosity. The thickness, porosity, and average pore diameter of the foamed resin are not limited, and can be appropriately set according to the application.
(導電化処理)
樹脂製3次元網目状多孔体の導電化処理の方法は、樹脂製の多孔体の表面に導電被覆層を設けることができる方法であれば特に限定されない。導電被覆層を構成する材料としては、例えば、ニッケル、チタン、ステンレススチール等の金属の他、カーボンブラック等の非晶質炭素、黒鉛等のカーボン粉末が挙げられる。これらの中でも特にカーボン粉末が好ましく、カーボンブラックがより好ましい。なお、金属以外の非晶質炭素等を用いた場合には、後述する樹脂製多孔体の除去処理において当該導電被覆層も除去される。
(Conductive treatment)
The method of conducting the conductive treatment of the resin-made three-dimensional network porous body is not particularly limited as long as it is a method capable of providing a conductive coating layer on the surface of the resin-made porous body. Examples of the material forming the conductive coating layer include metals such as nickel, titanium, and stainless steel, amorphous carbon such as carbon black, and carbon powder such as graphite. Among these, carbon powder is particularly preferable, and carbon black is more preferable. In addition, when amorphous carbon other than a metal is used, the said conductive coating layer is also removed in the removal process of the resin porous body mentioned later.
導電処理の具体例としては、例えば、ニッケルを用いる場合は、無電解めっき処理、スパッタリング処理等が好ましく挙げられる。また、チタン、ステンレススチール等の金属、カーボンブラック、黒鉛などの材料を用いる場合は、これら材料の微粉末にバインダを加えて得られる混合物を、樹脂製多孔体の表面に塗着する処理が好ましく挙げられる。 As specific examples of the conductive treatment, for example, when nickel is used, electroless plating treatment, sputtering treatment, and the like are preferably exemplified. In addition, when using a material such as titanium, stainless steel or the like, carbon black, graphite, or the like, it is preferable to apply a mixture obtained by adding a binder to the fine powder of these materials to the surface of the resin porous body. Can be mentioned.
ニッケルを用いた無電解めっき処理としては、例えば、還元剤として次亜リン酸ナトリウムを含有した硫酸ニッケル水溶液等の公知の無電解ニッケルめっき浴に樹脂製多孔体を浸漬すればよい。必要に応じて、めっき浴浸漬前に、樹脂製多孔体を微量のパラジウムイオンを含む活性化液(カニゼン社製の洗浄液)等に浸漬してもよい。 As the electroless plating treatment using nickel, for example, the resin porous body may be immersed in a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite as a reducing agent. If necessary, before immersion in the plating bath, the resin porous body may be immersed in an activation liquid containing a trace amount of palladium ions (a cleaning liquid manufactured by Kanigen Co., Ltd.).
ニッケルを用いたスパッタリング処理としては、例えば、基板ホルダーに樹脂製多孔体を取り付けた後、不活性ガスを導入しながら、ホルダーとターゲット(ニッケル)との問に直流電圧を印加することにより、イオン化した不活性ガスをニッケルに衝突させて、吹き飛ばしたニッケル粒子を樹脂製多孔体の表面に堆積すればよい。 As a sputtering process using nickel, for example, a resin porous body is attached to a substrate holder, and then ionization is performed by applying a DC voltage between the holder and the target (nickel) while introducing an inert gas. The inert gas thus made may collide with nickel, and the blown-off nickel particles may be deposited on the surface of the resin porous body.
(第1のめっき工程)
第1のめっき工程においては、公知のめっき法によって金属めっきを施す工程であれば特に限定されないが、電気めっき法を用いることが好ましい。上記した無電解めっき処理及び/又はスパッタリング処理によってめっき膜の厚みを増していけば電気めっき処理の必要性はないが、生産性、コストの観点から好ましくない。このため、上記したような、まず樹脂製多孔体を導電化処理する工程を経た後に、電気めっき法により金属めっき層を形成する方法を採用することが好ましい。
(First plating process)
The first plating step is not particularly limited as long as it is a step of performing metal plating by a known plating method, but it is preferable to use an electroplating method. If the thickness of the plating film is increased by the above-described electroless plating process and / or sputtering process, the electroplating process is not necessary, but it is not preferable from the viewpoint of productivity and cost. For this reason, it is preferable to employ | adopt the method of forming a metal plating layer by the electroplating method, after passing through the process of electrically conducting a resin porous body as mentioned above first.
電気めっき処理は、常法に従って行えばよい。例えばニッケルめっきの場合には、めっき浴としては、公知又は市販のものを使用することができ、例えば、ワット浴、塩化浴、スルファミン酸浴等が挙げられる。前記の無電解めっきやスパッタリング等により表面に導電被覆層が形成された樹脂製多孔体をめっき浴に浸し、樹脂製多孔体を陰極に、めっき金属の対極板を陽極に接続して直流或いはパルス断続電流を通電させることにより、導電被覆層上に、さらに電気めっき被覆を形成することができる。導電被覆層及び電気めっき層の目付量(付着量)は特に制限されない。 The electroplating process may be performed according to a conventional method. For example, in the case of nickel plating, a known or commercially available plating bath can be used, and examples thereof include a watt bath, a chloride bath, a sulfamic acid bath, and the like. A resin porous body having a conductive coating layer formed on the surface thereof by electroless plating or sputtering is immersed in a plating bath, and the resin porous body is connected to the cathode, and a plating metal counter electrode is connected to the anode, and direct current or pulsed. By applying an intermittent current, an electroplating coating can be further formed on the conductive coating layer. The basis weight (attachment amount) of the conductive coating layer and the electroplating layer is not particularly limited.
導電被覆層は樹脂製多孔体表面に連続的に形成されていればよく、電気めっき層は導電被覆層が露出しない程度に当該導電被覆層上に形成されていればよい。導電被覆層の目付量は限定的でなく、通常0.1〜20g/m2程度、好ましくは0.5〜5g/m2程度とすればよい。電気めっき層の目付量は限定的でなく、通常100〜600g/m2程度、好ましくは200〜500g/m2程度とすればよい。 The conductive coating layer only needs to be continuously formed on the surface of the porous resin body, and the electroplating layer may be formed on the conductive coating layer to the extent that the conductive coating layer is not exposed. The basis weight of the conductive coating layer is not limited, and is usually about 0.1 to 20 g / m 2 , preferably about 0.5 to 5 g / m 2 . The basis weight of the electroplating layer is not limited and is usually about 100 to 600 g / m 2 , preferably about 200 to 500 g / m 2 .
(第2のめっき工程)
第2のめっき工程において使用するめっき液は、微小球体を含むめっき液であれば特に限定されず、上記第1の金属めっきと同様のものを用いることができる。
微小球体をめっき液中に浮遊させ、当該めっき液を用いて上記金属めっきが形成された多孔体にめっき処理を行うと、金属と共に微小球体が表面に付着し、また場合によっては金属の内部に微小球体が取り込まれた状態でめっきが出来上がる。そして、後述する工程において微小球体が除去されることにより、金属多孔体の骨格の表層に微小孔が形成される。
(Second plating process)
The plating solution used in the second plating step is not particularly limited as long as it is a plating solution containing microspheres, and the same plating solution as the first metal plating can be used.
When microspheres are suspended in the plating solution and the plating process is performed on the porous body on which the metal plating is formed using the plating solution, the microspheres adhere to the surface together with the metal, and in some cases, inside the metal. Plating is completed with the microspheres taken in. And micropores are formed in the surface layer of the skeleton of the metal porous body by removing the microspheres in the process described later.
微小球体としては、例えば、塩化ジステアリルジメチルアンモニウムや塩化ベンザルコニウム等の第四級アンモニウム塩の陽イオン界面活性剤で、水溶液中で球体状のミセルを形成するものを用いることができる。また、微小球体としてはめっき液に対して不溶性の無機又は有機の微小球体も利用可能である。そして、当該微小球体は、上記第2のめっき工程において使用するめっき液中に、攪拌等により均一に分散させて用いる。
第2のめっき工程においてめっきする金属の目付量は限定的でなく、通常10〜300g/m2程度、好ましくは20〜250g/m2程度とすればよい。
また、第2の金属めっき中の微小球体の濃度は特に限定されず目的によって変化させればよい。表面積を大きくする観点からは、0.01mol/L以上、0.1mol/L以下程度とすることが好ましい。
As the microsphere, for example, a cationic surfactant of a quaternary ammonium salt such as distearyldimethylammonium chloride or benzalkonium chloride, which forms a spherical micelle in an aqueous solution, can be used. As the microspheres, inorganic or organic microspheres that are insoluble in the plating solution can be used. The microspheres are used by being uniformly dispersed by stirring or the like in the plating solution used in the second plating step.
The basis weight of the metal to be plated in the second plating step is not limited and is usually about 10 to 300 g / m 2 , preferably about 20 to 250 g / m 2 .
Moreover, the density | concentration of the microsphere in 2nd metal plating is not specifically limited, What is necessary is just to change with the objectives. From the viewpoint of increasing the surface area, it is preferably about 0.01 mol / L or more and 0.1 mol / L or less.
上記のように微小球体は金属多孔体骨格の表層部に微小孔を形成するためのものであるため、微小孔と同サイズであることが好ましい。すなわち、微小球体の粒径は、0.2μm以上、20μm以下の範囲にあることが好ましい。より好ましくは0.2μm以上、10μm以下であり、更に好ましくは0.2μm以上、5μm以下である。 As described above, the microspheres are for forming micropores in the surface layer portion of the metal porous body skeleton, and therefore preferably have the same size as the micropores. That is, the particle diameter of the microsphere is preferably in the range of 0.2 μm or more and 20 μm or less. More preferably, they are 0.2 micrometer or more and 10 micrometers or less, More preferably, they are 0.2 micrometer or more and 5 micrometers or less.
(微小球体及び樹脂製3次元網目状多孔体を除去する工程)
この工程は、上記第2のめっき工程において作製された微小球体を表層部に有する多孔体から、微小球体を除去する工程と、樹脂製3次元網目状多孔体を除去する工程とを含む工程である。この工程において、微小球体を除去する工程と、樹脂製3次元網目状多孔体を除去する工程とは、以下に述べるように、別々に行ってもよいし、同時に行ってもよい。
(Step of removing microspheres and resinous 3D mesh porous body)
This step includes a step of removing the microspheres from the porous body having the microspheres produced in the second plating step in the surface layer portion, and a step of removing the resin-made three-dimensional network porous body. is there. In this step, the step of removing the microspheres and the step of removing the resin-made three-dimensional network porous body may be performed separately or simultaneously as described below.
上記微小球体と第2の金属めっきとの間には、共有結合や水素結合のような強い分子間力は形成されていないことから、第2のめっき工程後に水洗処理をすることによって微小球体を除去することができる。そして、続いて600℃以上、800℃以下、好ましくは600℃以上、700℃以下の大気等の酸化性雰囲気におくことにより、樹脂製3次元網目状多孔体を除去することができる。
また、仮に、上記微小球体が第2のめっき工程後の水洗処理によって除去できなくても、上記第2のめっき工程後の製品を、600℃以上、800℃以下、好ましくは600℃以上、700℃以下の大気等の酸化性雰囲気におくことで、上記微小球体及び樹脂製3次元網目状多孔体を同時に除去することができる。
Since no strong intermolecular force such as a covalent bond or hydrogen bond is formed between the microsphere and the second metal plating, the microsphere is removed by washing with water after the second plating step. Can be removed. Subsequently, the resin-made three-dimensional network porous body can be removed by placing in an oxidizing atmosphere such as air of 600 ° C. or higher and 800 ° C. or lower, preferably 600 ° C. or higher and 700 ° C. or lower.
In addition, even if the microspheres cannot be removed by the water washing treatment after the second plating step, the product after the second plating step is 600 ° C. or higher and 800 ° C. or lower, preferably 600 ° C. or higher, 700 The microspheres and the resin-made three-dimensional network porous body can be removed at the same time by placing in an oxidizing atmosphere such as air at a temperature of 0 ° C. or lower.
また、高温酸化性雰囲気において微小球体及び樹脂製3次元網目状多孔体を除去した後に、得られた3次元網目状金属多孔体を還元性雰囲気で処理することが好ましい。処理温度はできるだけ高温であることが望ましいが、コスト的に不利になることや、還元炉の炉体材質の面から、750℃以上、1000℃以下で処理することが好ましい。 Moreover, after removing the microspheres and the resin-made three-dimensional network porous body in a high-temperature oxidizing atmosphere, it is preferable to treat the obtained three-dimensional network metal porous body in a reducing atmosphere. The treatment temperature is preferably as high as possible, but it is preferred that the treatment be performed at 750 ° C. or more and 1000 ° C. or less in view of cost disadvantages and the aspect of the furnace body material of the reduction furnace.
本発明の3次元網目状金属多孔体の製造方法においては、上記第1のめっき工程でのめっき量を、第2のめっき工程でのめっき量よりも多くすることが好ましい。これにより、金属多孔体骨格の中心部分の金属のみの部分の方が、表層の微小孔を有する部分よりも厚くなり、金属多孔体の強度を保つことができる。 In the method for producing a three-dimensional network metal porous body of the present invention, it is preferable that the plating amount in the first plating step is larger than the plating amount in the second plating step. As a result, the metal-only portion at the central portion of the metal porous body skeleton becomes thicker than the portion having micropores on the surface layer, and the strength of the metal porous body can be maintained.
上記第1のめっき工程における金属と、上記第2のめっき工程における金属とは同一であることが好ましい。これによりめっき液の混入による液劣化を抑えることができる。
また、スルファミン酸ニッケルめっき液は、めっき応力が小さく、かつ、つきまわり性が良いため、熱処理前の中間製品においても柔軟性が確保でき、製造工程内での破断などのトラブルを抑制することができる。このため、上記第1のめっき工程及び/又は第2のめっき工程において使用するめっき液は、スルファミン酸ニッケルめっき液を主体とするめっき液であることが好ましい。
The metal in the first plating step and the metal in the second plating step are preferably the same. Thereby, the liquid deterioration by mixing of a plating solution can be suppressed.
In addition, since the nickel sulfamate plating solution has low plating stress and good throwing power, flexibility can be secured even in intermediate products before heat treatment, and troubles such as breakage in the manufacturing process can be suppressed. it can. For this reason, it is preferable that the plating solution used in the first plating step and / or the second plating step is a plating solution mainly composed of a nickel sulfamate plating solution.
以下、実施例に基づいて本発明をより詳細に説明するが、本発明の3次元網目状金属多孔体はこれらに限定されるものではない。
[実施例1]
(樹脂製3次元網目状多孔体の導電化処理)
樹脂製3次元網目状多孔体として、1.5mm厚のポリウレタンシートを用いて、粒径0.01〜0.2μmの非晶性炭素であるカーボンブラック100gを0.5Lの10%アクリル酸エステル系樹脂水溶液に分散し、この比率で粘着塗料を作製した。次に樹脂多孔シートを前記塗料に連続的に漬け、ロールで絞った後乾燥させることによって導電化処理を施し、樹脂製3次元網目状多孔体の表面に導電被覆層を形成した。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, the three-dimensional network metal porous body of this invention is not limited to these.
[Example 1]
(Conductive treatment of resin-made 3D mesh porous body)
Using a 1.5 mm thick polyurethane sheet as a resin-made three-dimensional network porous body, 100 g of carbon black, which is amorphous carbon having a particle size of 0.01 to 0.2 μm, is added to 0.5 L of 10% acrylic ester. Dispersed in an aqueous resin solution, an adhesive paint was prepared at this ratio. Next, the resin porous sheet was continuously dipped in the coating material, squeezed with a roll and then dried to conduct a conductive treatment, thereby forming a conductive coating layer on the surface of the resin-made three-dimensional mesh porous body.
(第1のめっき工程)
導電化処理を施した樹脂製3次元網目状多孔体に、ニッケルを電気めっきにより250g/m2付着させ、電気めっき層を形成した。めっき液としては、スルファミン酸ニッケルめっき液を用いた。
(第2のめっき工程)
上記第1の金属めっきが施された3次元網目状多孔体に、更に第2の金属めっきを施した。めっき液としては、スルファミン酸ニッケルめっき液に、粒径が0.2μm〜5μmで、塩化ベンザルコニウムを浮遊させたものを用いた。当該めっき液は、攪拌しながら微小球体がめっき液中に均一に分散するようにして用いた。
ニッケルの目付量は150g/m2とした。
(First plating process)
250 g / m 2 of nickel was attached to the resin-made three-dimensional mesh porous body subjected to the conductive treatment by electroplating to form an electroplating layer. As the plating solution, a nickel sulfamate plating solution was used.
(Second plating process)
A second metal plating was further applied to the three-dimensional network porous body to which the first metal plating was applied. As the plating solution, a nickel sulfamate plating solution having a particle size of 0.2 μm to 5 μm in which benzalkonium chloride was suspended was used. The plating solution was used such that the microspheres were uniformly dispersed in the plating solution while stirring.
The basis weight of nickel was 150 g / m 2 .
(微小球体及び樹脂製3次元網目状多孔体の除去)
上記により得られた3次元網目状多孔体から、微小球体を除去するため、第2のめっき工程の後に水洗処理を施した。次いで、樹脂製3次元網目状多孔体を除去するため、650℃の大気の酸化性雰囲気下で加熱した。続いて、窒素と水素の混合気体を用いた還元性ガスにより還元性雰囲気を形成して、1000℃で還元処理を行った。
上記工程により、金属多孔体の骨格の少なくとも表層に微小孔を有する本発明の3次元網目状構造を有する金属多孔体Aを作製することができた。
(Removal of microspheres and resinous 3D mesh porous bodies)
In order to remove microspheres from the three-dimensional network porous body obtained as described above, a water washing treatment was performed after the second plating step. Subsequently, in order to remove the resin-made three-dimensional network porous body, heating was performed in an oxidizing atmosphere of 650 ° C. air. Subsequently, a reducing atmosphere was formed with a reducing gas using a mixed gas of nitrogen and hydrogen, and reduction treatment was performed at 1000 ° C.
Through the above steps, the metal porous body A having the three-dimensional network structure of the present invention having micropores in at least the surface layer of the skeleton of the metal porous body could be produced.
[比較例1]
実施例1の第2のめっき工程において微小球体を含まないスルファミン酸ニッケルめっき液を使用した以外は、実施例1と同様にして3次元網目状金属多孔体Bを作製した。
[Comparative Example 1]
A three-dimensional mesh metal porous body B was produced in the same manner as in Example 1 except that a nickel sulfamate plating solution not containing microspheres was used in the second plating step of Example 1.
(評価)
上記により得られた3次元網目状金属多孔体A、Bの表面積を直接測定することは難しいため静電容量で代用評価した。
また、3次元網目状金属多孔体A、Bの強度を引張強度試験機で測定した。
結果を表1に示す。
(Evaluation)
Since it is difficult to directly measure the surface areas of the three-dimensional network metal porous bodies A and B obtained as described above, the capacitance was substituted and evaluated.
Further, the strength of the three-dimensional mesh metal porous bodies A and B was measured with a tensile strength tester.
The results are shown in Table 1.
本発明に係る3次元網目状構造を有する金属多孔体は、従来の金属多孔体よりも極めて大きな表面積を有し、かつ、強度にも優れる。このため、フィルタや、電池用電極板、更には、触媒担持体、吸音材、放熱体、金属複合材等、単位体積当たりの表面積が大きい材料が望まれる様々な分野に利用することができる。 The metal porous body having a three-dimensional network structure according to the present invention has an extremely large surface area as compared with a conventional metal porous body and is excellent in strength. Therefore, it can be used in various fields where a material having a large surface area per unit volume is desired, such as a filter, a battery electrode plate, a catalyst carrier, a sound absorbing material, a heat radiator, and a metal composite material.
Claims (8)
3次元網目状構造を形成する骨格の少なくとも表層に、骨格によって形成されている孔よりも径の小さな微小孔が形成されていることを特徴とする金属多孔体。 A porous metal body having a three-dimensional network structure,
A porous metal body characterized in that micropores having a diameter smaller than the pores formed by the skeleton are formed in at least the surface layer of the skeleton forming the three-dimensional network structure.
少なくとも、
樹脂製3次元網目状多孔体に導電化処理を施す工程と、
上記樹脂製3次元網目状多孔体に金属めっきを施す第1のめっき工程と、
上記第1のめっき工程によって形成された金属めっき上に、金属と共に微小球体を付着させる第2のめっき工程と、
上記微小球体を除去する工程と、
上記樹脂製3次元網目状多孔体を除去する工程と、
を有することを特徴とする金属多孔体の製造方法。 It is a manufacturing method of the metal porous body according to claim 1,
at least,
Applying a conductive treatment to the resinous three-dimensional network porous body;
A first plating step of performing metal plating on the resinous three-dimensional network porous body;
A second plating step for attaching microspheres together with metal on the metal plating formed by the first plating step;
Removing the microspheres;
Removing the resinous three-dimensional network porous body;
A method for producing a porous metal body, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010184802A JP5487487B2 (en) | 2010-08-20 | 2010-08-20 | Metal porous body and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010184802A JP5487487B2 (en) | 2010-08-20 | 2010-08-20 | Metal porous body and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012041608A true JP2012041608A (en) | 2012-03-01 |
JP5487487B2 JP5487487B2 (en) | 2014-05-07 |
Family
ID=45898243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010184802A Active JP5487487B2 (en) | 2010-08-20 | 2010-08-20 | Metal porous body and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5487487B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013194308A (en) * | 2012-03-22 | 2013-09-30 | Sumitomo Electric Ind Ltd | Porous metallic body, electrode material using the same, and battery |
JP2014162959A (en) * | 2013-02-26 | 2014-09-08 | Sumitomo Electric Ind Ltd | Aluminum porous body, heat-transfer material and heat exchange device |
JP2015001011A (en) * | 2013-06-17 | 2015-01-05 | 住友電気工業株式会社 | Aluminum porous body, air electrode collector for air cell, air cell and method of producing aluminum porous body |
WO2015068437A1 (en) | 2013-11-06 | 2015-05-14 | 住友電気工業株式会社 | Metal tube, heat transfer tube, heat exchange device, and method for manufacturing metal tube |
WO2015129108A1 (en) * | 2014-02-25 | 2015-09-03 | 住友電気工業株式会社 | Porous aluminum body, and production method for porous aluminum body |
JP2016094659A (en) * | 2014-11-05 | 2016-05-26 | 株式会社山王 | Production method of metal composite membrane for hydrogen permeation |
WO2017078069A1 (en) * | 2015-11-06 | 2017-05-11 | 株式会社山王 | Porous nickel thin film and manufacturing method thereof |
KR20180028625A (en) * | 2016-09-09 | 2018-03-19 | 한국과학기술원 | 3-dimensional nano-structure, method of manufacturing the same and fuel cell having the same |
WO2019163256A1 (en) * | 2018-02-22 | 2019-08-29 | 住友電気工業株式会社 | Porous metal body |
WO2020054170A1 (en) * | 2018-09-14 | 2020-03-19 | 住友電気工業株式会社 | Metallic porous body and steam reformer using same, and production method for metallic porous body |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03188203A (en) * | 1989-12-14 | 1991-08-16 | Nippon Steel Corp | Manufacture of porous sintered body |
JPH06248492A (en) * | 1993-02-25 | 1994-09-06 | Denki Kagaku Kogyo Kk | Three-dimensional network structure metallic porous body and its production |
JPH06306672A (en) * | 1993-04-26 | 1994-11-01 | Denki Kagaku Kogyo Kk | Composite material-reinforcing member and its production and composite material |
-
2010
- 2010-08-20 JP JP2010184802A patent/JP5487487B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03188203A (en) * | 1989-12-14 | 1991-08-16 | Nippon Steel Corp | Manufacture of porous sintered body |
JPH06248492A (en) * | 1993-02-25 | 1994-09-06 | Denki Kagaku Kogyo Kk | Three-dimensional network structure metallic porous body and its production |
JPH06306672A (en) * | 1993-04-26 | 1994-11-01 | Denki Kagaku Kogyo Kk | Composite material-reinforcing member and its production and composite material |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013194308A (en) * | 2012-03-22 | 2013-09-30 | Sumitomo Electric Ind Ltd | Porous metallic body, electrode material using the same, and battery |
JP2014162959A (en) * | 2013-02-26 | 2014-09-08 | Sumitomo Electric Ind Ltd | Aluminum porous body, heat-transfer material and heat exchange device |
JP2015001011A (en) * | 2013-06-17 | 2015-01-05 | 住友電気工業株式会社 | Aluminum porous body, air electrode collector for air cell, air cell and method of producing aluminum porous body |
WO2015068437A1 (en) | 2013-11-06 | 2015-05-14 | 住友電気工業株式会社 | Metal tube, heat transfer tube, heat exchange device, and method for manufacturing metal tube |
WO2015129108A1 (en) * | 2014-02-25 | 2015-09-03 | 住友電気工業株式会社 | Porous aluminum body, and production method for porous aluminum body |
JP2016094659A (en) * | 2014-11-05 | 2016-05-26 | 株式会社山王 | Production method of metal composite membrane for hydrogen permeation |
WO2017078069A1 (en) * | 2015-11-06 | 2017-05-11 | 株式会社山王 | Porous nickel thin film and manufacturing method thereof |
JP2017088940A (en) * | 2015-11-06 | 2017-05-25 | 株式会社山王 | Porous nickel thin film and method of producing the same |
KR20180028625A (en) * | 2016-09-09 | 2018-03-19 | 한국과학기술원 | 3-dimensional nano-structure, method of manufacturing the same and fuel cell having the same |
KR101994680B1 (en) * | 2016-09-09 | 2019-07-01 | 한국과학기술원 | 3-dimensional nano-structure, method of manufacturing the same and fuel cell having the same |
WO2019163256A1 (en) * | 2018-02-22 | 2019-08-29 | 住友電気工業株式会社 | Porous metal body |
CN111742071A (en) * | 2018-02-22 | 2020-10-02 | 住友电气工业株式会社 | Porous metal body |
JPWO2019163256A1 (en) * | 2018-02-22 | 2021-03-11 | 住友電気工業株式会社 | Porous metal |
JP7079842B2 (en) | 2018-02-22 | 2022-06-02 | 住友電気工業株式会社 | Porous metal |
US11466343B2 (en) | 2018-02-22 | 2022-10-11 | Sumitomo Electric Industries, Ltd. | Metal porous body |
WO2020054170A1 (en) * | 2018-09-14 | 2020-03-19 | 住友電気工業株式会社 | Metallic porous body and steam reformer using same, and production method for metallic porous body |
CN112673125A (en) * | 2018-09-14 | 2021-04-16 | 住友电气工业株式会社 | Porous metal body, steam reformer including the same, and method of manufacturing porous metal body |
JPWO2020054170A1 (en) * | 2018-09-14 | 2021-08-30 | 住友電気工業株式会社 | Porous metal, steam reformer using it, and method for producing porous metal |
EP3851561A4 (en) * | 2018-09-14 | 2022-06-22 | Sumitomo Electric Industries, Ltd. | Metallic porous body and steam reformer using same, and production method for metallic porous body |
JP7180678B2 (en) | 2018-09-14 | 2022-11-30 | 住友電気工業株式会社 | Porous metal body, steam reformer using the same, and method for manufacturing porous metal body |
US11938471B2 (en) | 2018-09-14 | 2024-03-26 | Sumitomo Electric Industries, Ltd. | Metal porous body, water vapor reformer including the same, and method for manufacturing metal porous body |
CN112673125B (en) * | 2018-09-14 | 2024-04-16 | 住友电气工业株式会社 | Metal porous body, steam reformer including the same, and method of manufacturing the metal porous body |
Also Published As
Publication number | Publication date |
---|---|
JP5487487B2 (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5487487B2 (en) | Metal porous body and method for producing the same | |
TWI441948B (en) | Porous metal foil and its manufacturing method | |
JP6055379B2 (en) | Porous metal body, method for producing porous metal body, and fuel cell | |
KR101832251B1 (en) | Highly corrosion-resistant porous metal body and method for producing the same | |
JP6055378B2 (en) | Metal porous body and method for producing the same | |
TWI439574B (en) | And a method for producing the porous metal foil and a method for producing the same | |
JP2012149282A (en) | Porous metal having high corrosion resistance, and process for producing the same | |
CA2765279A1 (en) | Metal foams | |
JP7079842B2 (en) | Porous metal | |
KR20150120962A (en) | Porous aluminum object, heat transfer material, and heat exchanger | |
JPH06306672A (en) | Composite material-reinforcing member and its production and composite material | |
JP5735265B2 (en) | Method for producing porous metal body having high corrosion resistance | |
JP6148141B2 (en) | Porous metal body and method for producing porous metal body | |
JPH06248492A (en) | Three-dimensional network structure metallic porous body and its production | |
JPH08148142A (en) | Manufacture of metal porous body for battery electrode plate and metal porous body for battery electrode plate | |
JP5635382B2 (en) | Method for producing porous metal body having high corrosion resistance | |
CN1327038C (en) | Windable porous iron nickel alloy material | |
JP2015001011A (en) | Aluminum porous body, air electrode collector for air cell, air cell and method of producing aluminum porous body | |
DE19806360A1 (en) | A method of electrolytically depositing a smooth-surfaced metal layer on a substrate using a graphite dispersion | |
JPH06296877A (en) | Metallic honeycomb structure and its production | |
JPH07268645A (en) | Production of three-dimensional copper network structure | |
TW202424271A (en) | Metal nonwoven fabric and electrode comprising same | |
WO2015129108A1 (en) | Porous aluminum body, and production method for porous aluminum body | |
JPH08193232A (en) | Production of metallic porous body | |
JPH06285377A (en) | Metallic catalyst carrier and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130620 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130717 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5487487 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |