JP2012039734A - Protection relay system of multi-terminal transmission system - Google Patents

Protection relay system of multi-terminal transmission system Download PDF

Info

Publication number
JP2012039734A
JP2012039734A JP2010177050A JP2010177050A JP2012039734A JP 2012039734 A JP2012039734 A JP 2012039734A JP 2010177050 A JP2010177050 A JP 2010177050A JP 2010177050 A JP2010177050 A JP 2010177050A JP 2012039734 A JP2012039734 A JP 2012039734A
Authority
JP
Japan
Prior art keywords
terminal
power supply
current differential
circuit
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010177050A
Other languages
Japanese (ja)
Other versions
JP5645535B2 (en
Inventor
Takashi Kikuchi
孝 菊地
Shinji Komatsu
親司 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010177050A priority Critical patent/JP5645535B2/en
Publication of JP2012039734A publication Critical patent/JP2012039734A/en
Application granted granted Critical
Publication of JP5645535B2 publication Critical patent/JP5645535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a protection relay system of a multi-terminal transmission system capable of mounting and operating a ground-fault current differential protection relay and improving stability of the system even in a terminal (slave terminal) that cannot capture a bus voltage.SOLUTION: In a protection relay system of a multi-terminal transmission system including a variable power supply end or a non-power supply end other than a power supply end: a protection relay system of each terminal includes a master device circuit that performs a current differential operation and a slave device circuit that does not perform the curent differential operation and usually selects the master device circuit at the power supply end and the slave device circuit in other terminals; a transmission part of each terminal transmits local end detection information required for the current differential operation of the master device circuit; a transmission part of the power supply end further transmits a bus voltage of the power supply end; a protection relay device of the power supply end operates a local end circuit breaker according to the result of the current differential operation and transmits the result of the current differential operation to other terminals; and slave device circuits of the other terminals operate the local end circuit breaker according to the bus voltage of the power supply end and the result of the current differential operation transmitted from the power supply end side.

Description

本発明は、多端子送電系統の保護継電システムに係り、特に可変電源端や非電源端を含みかつ休止端処理を行う多端子送電系統の保護継電システムに関する。   The present invention relates to a protective relay system for a multi-terminal power transmission system, and more particularly, to a protective relay system for a multi-terminal power transmission system that includes variable power supply terminals and non-power supply terminals and performs pause end processing.

多端子送電系統において、休止端処理を行う保護継電システムとして特許文献1のものが知られている。   In a multi-terminal power transmission system, a protection relay system that performs idle end processing is known from Patent Document 1.

特許文献1においては、送電線の各端子のうち2つ以上の端子に親装置を設け、各親装置で保護区間内の故障判別を行い、その結果を子装置に送っていわゆる転送遮断形式で送電線の保護を行う。   In Patent Document 1, a parent device is provided in two or more terminals of each terminal of a power transmission line, each parent device performs failure determination within a protection section, and sends the result to a child device in a so-called transfer interruption format. Protect transmission lines.

また、送電線端子の一部を休止端扱いとすることがあるが、この場合には1つの親装置が休止状態になっても、他の親装置が動いているので全体保護に支障が生じない。   Also, some of the power transmission line terminals may be treated as dormant ends. In this case, even if one parent device is in a dormant state, the other parent device is moving, which hinders overall protection. Absent.

特開平10−23654号公報Japanese Patent Laid-Open No. 10-23654

近年、分散型電源の普及などにより多端子送電系統が増えてきているが、多端子送電系統の中には、各端子の背後電源がない、あるいは存在しても規模が小さいといったものを含む場合がある。いわゆる可変電源端あるいは、非電源端と呼ばれるものであり、内部故障の場合に十分な故障電流が得られないという課題がある。   In recent years, the number of multi-terminal power transmission systems has increased due to the spread of distributed power sources, etc., but some multi-terminal power transmission systems include those that do not have a power supply behind each terminal or are small in size even if they exist There is. This is a so-called variable power supply terminal or non-power supply terminal, and there is a problem that a sufficient fault current cannot be obtained in the case of an internal failure.

ここでの保護には、多くの場合に電流差動保護継電システムを採用しており、多端子各端で同時サンプリングして得た電流情報を、伝送路を介して伝送し保護演算に使用する。例えば、地絡保護のために零相電流差動方式を適用した場合は、零相電圧と零相差電流にて演算を実施するため、全端子の電圧データと、電流データが必要となる。このような内部故障の判定は、電源端に設置した保護継電装置で行い、可変電源端あるいは、非電源端に動作結果を伝送して、転送遮断の形を採用することが多い。   In many cases, a current differential protection relay system is used for protection here, and current information obtained by simultaneous sampling at each end of the multi-terminal is transmitted via the transmission line and used for protection calculation. To do. For example, when the zero-phase current differential method is applied for ground fault protection, calculation is performed using the zero-phase voltage and the zero-phase difference current, so voltage data and current data for all terminals are required. Such an internal failure is often determined by a protective relay device installed at the power supply end, and an operation result is transmitted to the variable power supply end or the non-power supply end to adopt a transfer interruption form.

しかるに、親端とした電源端に実装される零相電流差動方式保護継電器の入力である零相電圧は、一般的に母線電圧を使用しているケースが多いが、母線電圧を使用した場合は、親端以外の子端(可変電源端あるいは、非電源端)は電圧を取込むことはできなかった。   However, the zero-phase voltage, which is the input of the zero-phase current differential protection relay mounted on the power supply terminal as the master terminal, generally uses the bus voltage in many cases, but when the bus voltage is used In other words, the child terminals (variable power supply terminals or non-power supply terminals) other than the parent terminal cannot take in voltage.

また、伝送のための伝送帯域が狭いため、各端子に伝送できるのは電流データ、零相電圧データのみである。そのため、各相電圧取込方式の地絡電流差動保護継電器は適用できず、唯一母線電圧の取込を実施している親端にしか地絡電流差動保護継電器は実装できなかった。   Further, since the transmission band for transmission is narrow, only current data and zero-phase voltage data can be transmitted to each terminal. Therefore, the ground fault current differential protection relay of each phase voltage capture method cannot be applied, and the ground fault current differential protection relay can be mounted only at the parent end where the bus voltage is captured.

また、零相電圧取込による地絡電流差動保護継電器においては零相電圧データの伝送が可能であるため各端に地絡電流差動保護継電器を設けることが可能であるが、スペックおよびCPU処理能力の関係で各端に地絡電流差動保護継電器を設ける思想が無く、各相電圧取込み方式の地絡電流差動保護継電器同様に、親端にしか地絡電流差動保護継電器を設けていなかった。   In addition, in the ground fault current differential protection relay by taking in the zero phase voltage, since it is possible to transmit the zero phase voltage data, it is possible to provide a ground fault current differential protection relay at each end. There is no idea of providing a ground fault current differential protection relay at each end due to processing capacity, and a ground fault current differential protection relay is provided only at the parent end, as with each phase voltage capture type ground fault current differential protection relay. It wasn't.

以上の理由により、親端に予め地絡電流差動保護継電器を設け、代表端とする必要があった。   For the above reasons, it is necessary to provide a ground fault current differential protection relay in advance at the parent end to be a representative end.

前述したように地絡電流差動保護継電器用の零相電圧は、母線電圧を使用しているケースが多く、母線電圧を取込んでいる端子(親端)以外の端子(子端)においては、電圧を取込むことができない。   As described above, the zero-phase voltage for a ground fault current differential protection relay often uses a bus voltage, and at terminals (child ends) other than the terminal (parent end) that takes in the bus voltage, Can't take in the voltage.

本発明の目的は、母線電圧を取込むことができない端子(子端)においても地絡電流差動保護継電器の実装、および演算を可能とし、系統の安定度を向上させることができる多端子送電系統の保護継電システムを提供することを目的とする。   The object of the present invention is to enable the implementation and calculation of a ground fault current differential protection relay even at a terminal (child end) that cannot take in the bus voltage, and to improve the stability of the system. The purpose is to provide a protective relay system for the grid.

本発明では、電源端以外に可変電源端あるいは非電源端を含む多端子送電系統の保護継電システムにおいて、各端子の保護継電装置は、電流作動演算を行う親装置回路と電流差動演算を行なわない子装置回路を含み、通常は電源端で親装置回路を選択して、他の端子で子装置回路を選択し、各端子の伝送部は、親装置回路の電流差動演算に必要な自端検出情報を伝送し、電源端の伝送部は、さらに電源端母線電圧を伝送し、電源端の保護継電装置は、親装置回路の電流差動演算結果で自端遮断器を操作するとともに、電流差動演算結果を他の端子に伝送し、他の端子の子装置回路は、電源端側から送られてきた電源端母線電圧と電流差動演算結果とから、自端遮断器を操作する。   In the present invention, in a protective relay system of a multi-terminal power transmission system including a variable power supply terminal or a non-power supply terminal in addition to a power supply terminal, the protective relay device of each terminal includes a parent device circuit that performs a current operation calculation and a current differential calculation. In general, the parent device circuit is selected at the power supply terminal, the child device circuit is selected at the other terminals, and the transmission section of each terminal is necessary for the current differential operation of the parent device circuit. Self-end detection information is transmitted, the power-end transmission section further transmits the power-end bus voltage, and the power-end protection relay device operates the self-end breaker with the current differential calculation result of the parent device circuit At the same time, the current differential calculation result is transmitted to the other terminal, and the slave device circuit of the other terminal is determined from the power supply end bus voltage sent from the power supply end side and the current differential calculation result. To operate.

また、各端子の伝送部は、自端が休止端であることの情報を伝送し、各端子の保護継電装置は、休止端の情報を用いて電源端を第1位とする優先順位判断に従い、自端を親装置回路と子装置回路のいずれとするかを決定する。   In addition, the transmission unit of each terminal transmits information that its own terminal is a dormant terminal, and the protection relay device of each terminal uses the information of the dormant terminal to determine the priority order with the power supply terminal being the first. Accordingly, it is determined whether the self-end is the parent device circuit or the child device circuit.

また、電源端の伝送部は、電源端以外の保護継電装置が、親装置回路を選択されたときにも、電源端母線電圧を伝送し、親装置回路を選択した端子の保護継電装置は、親装置回路の電流差動演算結果で自端遮断器を操作するとともに、電流差動演算結果を他の端子に伝送し、他の端子の子装置回路は、電流差動演算結果から自端遮断器を操作する。   In addition, the transmission unit of the power supply terminal transmits the power supply bus voltage even when a protective relay device other than the power supply terminal selects the parent device circuit, and the protective relay device of the terminal that selects the parent device circuit Operates the self-end circuit breaker with the current differential calculation result of the parent device circuit and transmits the current differential calculation result to the other terminal, and the child device circuit of the other terminal automatically determines from the current differential calculation result. Operate the end breaker.

また、各端子の伝送部は、伝送異常の情報を含めて伝送し、
他の端子の子装置回路は、電源端側から送られてきた電源端母線電圧を用いるに当り、伝送異常の情報を用いて電源端母線電圧を用いる保護継電器の不正動作を阻止する。
In addition, the transmission part of each terminal transmits information including transmission abnormality information,
When the slave device circuit of the other terminal uses the power supply end bus voltage sent from the power supply end side, illegal operation of the protective relay using the power supply end bus voltage is prevented using information on the transmission abnormality.

本発明の装置によれば、母線電圧を取込むことができない端子(子端)においても地絡電流差動保護継電器の実装、および演算を可能とし、系統の安定度を向上させることができるえることが可能である。   According to the apparatus of the present invention, the ground fault current differential protection relay can be mounted and operated even at a terminal (child end) that cannot take in the bus voltage, and the stability of the system can be improved. It is possible.

演算処理部が備える保護継電器、保護シーケンスロジックを示す図。The figure which shows the protection relay and protection sequence logic with which an arithmetic processing part is provided. 保護継電システムが適用される多端子送電系統の一例を示す図。The figure which shows an example of the multi-terminal power transmission system to which a protection relay system is applied. 電流差動保護継電方式を採用するときの信号伝送系統を示す図。The figure which shows a signal transmission system | strain when employ | adopting a current differential protection relay system. 信号伝送路を介して伝送される信号の伝送フォーマットを示す図。The figure which shows the transmission format of the signal transmitted via a signal transmission path. 電源端が送出する信号の伝送フォーマットを示す図。The figure which shows the transmission format of the signal which a power supply end sends out. 電源端以外の端子端が送出する信号の伝送フォーマットを示す図。The figure which shows the transmission format of the signal which terminal terminals other than a power supply terminal send out. 従来の保護システム概要図Overview of conventional protection system 代表端の保護継電システム構成を示す図。The figure which shows the protection relay system configuration of a representative end. 代表端以外の端子の保護継電システム構成を示す図。The figure which shows the protection relay system structure of terminals other than a representative end. 従来の保護システム概要図Overview of conventional protection system

以下本発明の実施例を説明する。   Examples of the present invention will be described below.

図2は、本発明の保護継電システムが適用される多端子送電系統の一例を示す。この図では、送電線LにA端Ta、B端Tb、C端Tcが接続された3端子構成の例を示しており、A端Taには背後電源1を備えるが、B端TbとC端Tcは、非電源端2もしくは可変電源端3とされている。このため、A端Taでは母線電圧を検出する母線電圧検出器BPDを備えるが、背後電源の確立しないB端TbとC端Tcでは、母線電圧検出器BPDを備えない。   FIG. 2 shows an example of a multi-terminal power transmission system to which the protective relay system of the present invention is applied. This figure shows an example of a three-terminal configuration in which the A end Ta, the B end Tb, and the C end Tc are connected to the power transmission line L. The A end Ta includes the rear power source 1, but the B end Tb and C The end Tc is a non-power source end 2 or a variable power source end 3. For this reason, the A-terminal Ta includes a bus voltage detector BPD that detects the bus voltage, but the B-terminal Tb and the C-terminal Tc where the rear power supply is not established do not include the bus-voltage detector BPD.

かかる多端子送電線の保護のために、電流差動保護継電方式を採用するときの信号伝送系統を図3に示している。図3において、8は各端子に設けられた信号伝送装置であり、各端子Ta、Tb、Tc間で、信号伝送路4を用いて信号の伝送を行う。各端子には保護継電装置RYが備えられ、保護継電装置RY内は、伝送部5と演算処理部6から構成される。上記の構成を用いて、信号伝送路4を介して各端子で検出した電流信号を送信しあい、演算処理部6で電流差動演算を実行することにより電流差動保護継電方式を実現している。   FIG. 3 shows a signal transmission system when a current differential protection relay system is employed to protect such a multi-terminal power transmission line. In FIG. 3, reference numeral 8 denotes a signal transmission device provided at each terminal, which transmits a signal using the signal transmission path 4 between the terminals Ta, Tb, and Tc. Each terminal includes a protective relay device RY, and the protective relay device RY includes a transmission unit 5 and an arithmetic processing unit 6. Using the above configuration, a current signal detected at each terminal is transmitted through the signal transmission path 4 and a current differential calculation is performed by the arithmetic processing unit 6 to realize a current differential protection relay system. Yes.

図4は、信号伝送路4を介して伝送される信号の伝送フォーマットを示している。但し、ここでは保護継電演算や各種の表示などに使用される情報を主体に表記し、同期信号部等を除外して示している。伝送フォーマットで伝送される主な情報は、各フレームF1−F7ごとに以下の通りである。
F1:休止端などの制御情報
F2:自端遮断器、ラインスイッチなどの機器開閉情報
F3:電流差動保護演算結果情報(地絡検出用87S、短絡検出用87G)
F4:地絡検出信号51(地絡過電流継電器)
F5:各端子電流(各相電流、零相電流)
F6:各端子電圧(各相電圧、零相電圧)
F7:伝送不良情報
なお、上記の伝送を実現するに当り、その背景には保護継電装置を構成するCPUの処理能力向上により伝送フォーマットの伝送帯域が広くなったことがあり、この結果、各相電流、零相電圧の他に零相電流、各相電圧を追加することができた。ここでは、零相電流差動方式を適用したディジタル形保護制御装置を例に記載しているが、保護制御の用途により、伝送フォーマットには電力、無効電力、皮相電力、周波数を追加しても良い。
FIG. 4 shows a transmission format of a signal transmitted through the signal transmission path 4. However, here, the information used for the protective relay calculation and various displays is mainly described, and the synchronization signal portion and the like are excluded. The main information transmitted in the transmission format is as follows for each frame F1-F7.
F1: Control information such as a pause end F2: Device open / close information such as a self-end circuit breaker, line switch F3: Current differential protection calculation result information (87S for ground fault detection, 87G for short circuit detection)
F4: Ground fault detection signal 51 (ground fault overcurrent relay)
F5: Each terminal current (each phase current, zero phase current)
F6: Each terminal voltage (each phase voltage, zero phase voltage)
F7: Transmission failure information In addition, in realizing the above transmission, the background of the transmission format is that the transmission band of the transmission format has been widened by improving the processing capability of the CPU constituting the protective relay device. In addition to the phase current and zero phase voltage, the zero phase current and each phase voltage could be added. In this example, a digital protection control device using the zero-phase current differential method is described as an example. However, depending on the purpose of protection control, transmission, reactive power, apparent power, and frequency may be added to the transmission format. good.

図1は、図2の演算処理部6が備える保護継電器、および保護シーケンスロジックを示している。この演算処理部6は、各端子に共通に設置されるが、自端代表端信号Xにより、図7aの回路として作動するか、図7bの回路として作動するかが切り替えられる。詳細な動作説明は図7で行うが、要するに自端代表端信号Xが、「1」になっている端子の演算処理部6では、アンド回路A3、A4、A5の出力が選択され、否定回路N1、N2の出力が阻止される。以後の説明においては、A端子Taを代表端として説明する。自端が代表端でない、B端Tb、C端Tcでは、自端代表端信号Xが、「0」になっているので、演算処理部6では、アンド回路A3、A4、A5の出力が阻止され、否定回路N1、N2の出力が選択される。   FIG. 1 shows a protection relay and protection sequence logic included in the arithmetic processing unit 6 of FIG. The arithmetic processing unit 6 is installed in common at each terminal, but is switched between operating as the circuit of FIG. 7a or operating as the circuit of FIG. The detailed operation will be described with reference to FIG. 7. In short, the output of the AND circuits A3, A4, and A5 is selected in the arithmetic processing unit 6 of the terminal whose own terminal representative signal X is "1", and the negation circuit The output of N1 and N2 is blocked. In the following description, the A terminal Ta will be described as a representative end. Since the own end representative end signal X is “0” at the B end Tb and the C end Tc where the own end is not the representative end, the arithmetic processing unit 6 blocks the outputs of the AND circuits A3, A4, A5. Then, the outputs of the negation circuits N1 and N2 are selected.

なお、A端Taを代表端とした理由は、背後に電源を有する電源端であり、送電線故障時に、より確実な保護継電器動作が期待できることによる。この結果から明らかなように、代表端であるA端Taは、図7aとして保護継電動作を実行し、他の、B端Tb、C端Tcでは、図7bとして保護継電動作を実行する。以下各端子の保護継電器動作について説明する。   The reason why the A end Ta is the representative end is that the power supply end has a power source behind it, and a more reliable protective relay operation can be expected when the power transmission line fails. As is clear from this result, the A terminal Ta, which is the representative end, executes the protective relay operation as shown in FIG. 7a, and the other B terminal Tb and C terminal Tc execute the protective relay operation as shown in FIG. 7b. . Hereinafter, the protective relay operation of each terminal will be described.

まず、代表端A端Taについて説明する。ここでの送電線故障判定には、4つの保護継電器動作と、1つの受信信号を使用する。これらは、以下のようなものである。
87S:短絡検出用電流差動保護継電器。全端子の電流、代表端の母線電圧情報を入力とする。
87G:地絡検出用電流差動保護継電器。全端子の電流、代表端の母線電圧情報を入力とする。
27:不足電圧継電器。代表端の母線電圧を入力とする。
64:地絡過電圧継電器。代表端の母線電圧を入力とする。
51受信:他端の過電流継電器51の動作信号。
First, the representative end A end Ta will be described. For the transmission line failure determination here, four protective relay operations and one received signal are used. These are as follows.
87S: Current differential protection relay for short circuit detection. The current of all terminals and the bus voltage information of the representative end are input.
87G: Current differential protection relay for ground fault detection. The current of all terminals and the bus voltage information of the representative end are input.
27: Undervoltage relay. The bus voltage at the representative end is used as input.
64: Ground fault overvoltage relay. The bus voltage at the representative end is used as input.
51 Reception: Operation signal of the overcurrent relay 51 at the other end.

このように、代表端が、代表端での保護継電演算並びに保護シーケンスロジックを実行するためには、代表端で取り込んだ情報以外に、伝送路4を介して得た他の端子の情報(電流、他端の過電流継電器51の動作信号)を使用している。   Thus, in order for the representative end to execute the protection relay operation and the protection sequence logic at the representative end, in addition to the information captured at the representative end, information on other terminals obtained via the transmission path 4 ( Current, operation signal of the overcurrent relay 51 at the other end).

これらの信号を用いて、最終的にはアンド回路A4が成立したときに代表端Taの遮断器引き外しとなるが、これはオア回路OR1が成立したときである。オア回路OR1の成立条件は、アンド回路A1の成立と、アンド回路A2の成立の2つである。前者の成立条件は送電線の短絡故障発生であり、短絡検出用電流差動保護継電器87S動作、代表端の不足電圧検出27、かつ他の端子での短絡に伴う過電流検出(51受信)である。また、後者の成立条件は送電線の地絡故障発生であり、地絡検出用電流差動保護継電器87G動作、代表端の地絡過電圧検出64である。   Using these signals, when the AND circuit A4 is finally established, the circuit breaker is tripped at the representative terminal Ta. This is when the OR circuit OR1 is established. There are two conditions for establishing the OR circuit OR1, namely, establishment of the AND circuit A1 and establishment of the AND circuit A2. The former conditions are the occurrence of a short-circuit fault in the transmission line, the short-circuit detection current differential protection relay 87S operation, the undervoltage detection 27 at the representative end, and the overcurrent detection (51 reception) associated with a short-circuit at another terminal. is there. The latter conditions are the occurrence of a ground fault in the transmission line, the operation of the ground fault detection current differential protection relay 87G, and the ground fault overvoltage detection 64 at the representative end.

代表端での遮断器引き外し操作には、上記のロジックを備えればよいが、他の端子での動作を確実に行わせるために、代表端では、アンド回路A3を用いて短絡検出用電流差動保護継電器87Sの動作信号を送信し、またアンド回路A5を用いて地絡検出用電流差動保護継電器87Gの動作信号を送信する。   The circuit breaker tripping operation at the representative end may be provided with the above-mentioned logic. However, in order to ensure the operation at the other terminals, the representative end uses the AND circuit A3 to detect the short circuit detection current. The operation signal of the differential protection relay 87S is transmitted, and the operation signal of the ground fault detection current differential protection relay 87G is transmitted using the AND circuit A5.

次に、代表端以外のB端Tb、C端Tcについて説明する。ここでの送電線故障判定には、2つの保護継電器動作と、2つの受信信号を使用する。これらは、以下のようなものである。
51:過電流継電器。自端の電流を入力とする。
27:不足電圧継電器。代表端の母線電圧を入力とする。
87S受信:代表端の短絡検出用電流差動保護継電器動作。
87G受信:代表端の地絡検出用電流差動保護継電器動作。
Next, the B end Tb and the C end Tc other than the representative end will be described. In this case, two protective relay operations and two received signals are used for power transmission line failure determination. These are as follows.
51: Overcurrent relay. The current at the end is used as input.
27: Undervoltage relay. The bus voltage at the representative end is used as input.
87S reception: Current differential protection relay operation for short-circuit detection at the representative end.
87G reception: Current differential protection relay operation for ground fault detection at the representative end.

これらの信号を用いて、最終的には否定回路N2が成立したときに代表端Ta
以外のB端Tb、C端Tcの遮断器引き外しとなるが、これはオア回路OR2が成立したときである。オア回路OR2の成立条件は、アンド回路A6の成立と、87G受信(代表端の地絡検出用電流差動保護継電器動作)の2つである。前者の成立条件は送電線の短絡故障発生であり、87S受信(代表端の短絡検出用電流差動保護継電器動作)、かつ自端の不足電圧継電器27動作である。このことから明らかなように、代表端以外のB端Tb、C端Tcにおける遮断器引き外しは、代表端の判断結果を受けてのいわゆる転送遮断である。
Using these signals, when the negative circuit N2 is finally established, the representative terminal Ta
Circuit breaker tripping of the B terminal Tb and the C terminal Tc other than the above is when the OR circuit OR2 is established. There are two conditions for establishing the OR circuit OR2: the establishment of the AND circuit A6 and the 87G reception (current differential protection relay operation for ground fault detection at the representative end). The former conditions are the occurrence of a short-circuit fault in the transmission line, the 87S reception (current differential protection relay operation for short-circuit detection at the representative end), and the undervoltage relay 27 operation at its own end. As is clear from this, the breaker tripping at the B end Tb and the C end Tc other than the representative end is a so-called transfer interruption upon receiving the determination result of the representative end.

なお、ここで不足電圧継電器27動作を確認している。これは87S受信(代表端の短絡検出用電流差動保護継電器動作)との一致を図ることで短絡の確実な検出を行うものであるが、代表端Ta以外のB端Tb、C端Tcでは母線電圧を検出していないので、この確認のためにA端Taから送信された母線電圧情報を利用する。つまり、図6に実施例を示すように、図5aのA端伝送フォーマットのうち、フレームF6の各相電圧の情報を入力とする不足電圧継電器27を構成する。またフレームF7の伝送不良検知信号を入力して、伝送不良時に不足電圧継電器27の動作を阻止する。   Here, the operation of the undervoltage relay 27 is confirmed. This is to detect short circuit reliably by matching with 87S reception (current differential protection relay operation for short circuit detection of representative terminal), but at B terminal Tb and C terminal Tc other than representative terminal Ta Since the bus voltage is not detected, the bus voltage information transmitted from the A terminal Ta is used for this confirmation. That is, as shown in FIG. 6, the undervoltage relay 27 is configured to receive information on each phase voltage of the frame F6 in the A-end transmission format of FIG. In addition, the transmission failure detection signal of the frame F7 is input, and the operation of the undervoltage relay 27 is blocked at the time of transmission failure.

具体的には、電圧低下を検出して不足電圧継電器27が動作し、かつ伝送不良検出しない一致条件でフリップフロップFFをセットし、電圧低下しておらず不足電圧継電器27が不動作、かつ伝送不良を検出しない一致条件でフリップフロップFFをリセットして最終出力とする。この工夫により、母線電圧を取り込むことができないB端Tb、C端Tcでも、伝送路を介して入手したA端母線電圧を活用することができ、この結果電圧要素を用いた事故検出判断とすることができるので、装置信頼性を高めることができる。   More specifically, the undervoltage relay 27 operates by detecting a voltage drop, and the flip-flop FF is set under a matching condition that does not detect a transmission failure. The undervoltage relay 27 does not operate and the voltage is not lowered. The flip-flop FF is reset under a coincidence condition that does not detect a defect to obtain a final output. With this device, the A-end bus voltage obtained via the transmission line can be used even at the B-end Tb and the C-end Tc where the bus-bar voltage cannot be taken in. As a result, an accident detection judgment using the voltage element is made. Therefore, the device reliability can be improved.

なお、伝送データを使用する場合、伝送データの異常を考慮する必要がある。例えば、各相電圧データ伝送の際、伝送データが異常となったことを想定すると、誤動作・誤不動作が懸念される。対策手法の一つとして電圧データを利用した保護継電器に、伝送異常時の誤動作・誤不動作を考慮したロジックを施すのがよい。通常電流差動方式において、休止となった端子は電流値を零化し不要動作防止を図っている。しかし電圧データを利用した不足電圧継電器27に関しては、電圧値を零化してしまうと保護継電器が不要に動作となるため、別の対策が必要となる。そのため電圧データを利用した保護継電器では、各相電圧に伝送異常の条件を組合せることによって、伝送異常の場合は不足電圧継電器27条件の前置保持を実施し、異常が無い場合は通常動作が可能となるようロジックを確立することにより、ライン電圧(LPD)取込みによる装置と同等の保護機能を備えることを可能とした。   In addition, when using transmission data, it is necessary to consider abnormality of transmission data. For example, when it is assumed that the transmission data becomes abnormal during the transmission of each phase voltage data, there is a concern about malfunction / malfunction. As one of the countermeasures, it is recommended to apply logic that takes into account malfunctions and malfunctions in the event of transmission abnormalities to protective relays that use voltage data. In the normal current differential method, the terminal that has become inactive is zeroed to prevent unnecessary operation. However, regarding the undervoltage relay 27 using the voltage data, if the voltage value is zeroed, the protective relay becomes unnecessary, so another countermeasure is required. For this reason, in the protective relay using voltage data, by combining the condition of transmission abnormality with each phase voltage, the pre-holding of the undervoltage relay 27 condition is carried out in the case of transmission abnormality, and the normal operation is performed when there is no abnormality. By establishing logic so as to be possible, it was possible to provide a protection function equivalent to that of a device by taking in line voltage (LPD).

B端Tb、C端Tcでの遮断器引き外し操作には、上記のロジックを備えればよいが、代表端での動作を確実に行わせるために、否定回路N1を介して51(過電流継電器)の動作信号を送信する。   The circuit breaker tripping operation at the B end Tb and the C end Tc may be provided with the above-described logic. However, in order to ensure the operation at the representative end, 51 (overcurrent) is provided via the negative circuit N1. Transmit the operation signal of the relay.

上記の多端子保護継電システムにおいては、各端子の情報を相互に伝送し、利用しあっているが、この実現のために図4の伝送フォーマットは、各端子が送出するときには、図5のように利用されている。図5aは、代表端であるTaが送出する伝送フォーマットを示しており、図5bは、代表端Ta以外のB端Tb、C端Tcが送出する伝送フォーマットを示している。   In the above-described multi-terminal protection relay system, information of each terminal is transmitted and used mutually. For this purpose, the transmission format of FIG. Have been used. FIG. 5a shows a transmission format sent out by Ta as a representative end, and FIG. 5b shows a transmission format sent out by B end Tb and C end Tc other than the representative end Ta.

まず、代表端であるTaが送出する伝送フォーマットFaについて説明する。但し、図5で○は、保護動作に利用する情報、△は表示などのための参考情報、×は、不使用情報を意味している。   First, the transmission format Fa transmitted by Ta as the representative end will be described. In FIG. 5, ◯ means information used for the protection operation, Δ means reference information for display, and X means nonuse information.

代表端Taの場合、フレームF1の休止端の情報と、フレームF3の電流差動保護継電器の動作情報(87S、87G)と、フレームF6の各相電圧(含む零相)と、フレームF7の伝送不良情報が保護動作に利用する情報であり、フレームF4は使用しない(載せるべき情報がない)。そのほかのフレームには情報は載せるが、受信側での利用は、あくまでも参考情報である。B端Tb、C端Tcの場合、フレームF1の休止端の情報と、フレームF4の過電流継電器51の動作情報と、フレームF5の電流情報が、保護動作に利用する情報であり、フレームF3、F6は使用しない。これらのフレームには載せるべき情報がない。フレームF2には情報は載せるが、あくまでも参考情報である。なお、このフレームのうちF1の休止端情報については、各端子が事故の状態を乗せて伝送しあうものとする。   In the case of the representative end Ta, information on the idle end of the frame F1, operation information (87S, 87G) of the current differential protection relay of the frame F3, each phase voltage (including zero phase) of the frame F6, and transmission of the frame F7 The defect information is information used for the protection operation, and the frame F4 is not used (there is no information to be loaded). Information is placed in other frames, but use on the receiving side is only reference information. In the case of the B end Tb and the C end Tc, the information on the idle end of the frame F1, the operation information of the overcurrent relay 51 of the frame F4, and the current information of the frame F5 are information used for the protection operation, and the frame F3, F6 is not used. There is no information to put in these frames. Information is put on the frame F2, but it is only for reference. In this frame, the terminal F1 pause end information is transmitted with each terminal carrying the state of the accident.

本発明に係る多端子送電系統の保護継電システムは、可変電源端あるいは非電源端を有する場合にも上記のようにして確実な保護動作を行い得る。そして、代表端が休止端となったときには、以下のような運転態様に変化することで運転を継続することができる。   The protection relay system for a multi-terminal power transmission system according to the present invention can perform a reliable protection operation as described above even when it has a variable power supply end or a non-power supply end. And when a representative end turns into a dormant end, a driving | running can be continued by changing into the following driving | operation modes.

次に、代表端が変更されたときの動作について説明する。なお、代表端が休止端となる条件には、保護継電装置の点検、遮断器開放など幾つかあるが、ここでは保護継電装置の点検時における保護継電システムの運転継続を可能とすることについて説明する。なお、本発明で対象とする多端子送電系統の保護継電システムは、可変電源端あるいは非電源端を有する場合を想定しているので、唯一の電源端である代表端が遮断器開放の条件で休止端となった状態では、代表端を変更しての保護継電器動作の継続運転は行えない。   Next, an operation when the representative end is changed will be described. In addition, there are several conditions for the representative end to be the dormant end, such as inspection of the protective relay device and opening of the circuit breaker. Here, it is possible to continue operation of the protective relay system at the time of inspection of the protective relay device. This will be explained. In addition, since the protection relay system of the multi-terminal power transmission system targeted in the present invention assumes the case of having a variable power supply end or a non-power supply end, the representative end that is the only power supply end is a condition that the circuit breaker is open. In the state where it becomes a dormant end, the continuous operation of the protective relay operation by changing the representative end cannot be performed.

代表端Taの保護継電装置が点検となり休止端扱いとなった場合に、後で図8で説明するように、優先度によりB端を代表端にするものとする。なお、代表端Taが休止端となったことは、図4のフレームF1に記載されて他端に通知され、各端子の優先度判定により、各端子の図1の回路の自端代表端信号Xが、「1」または「0」に変更される。この場合、A端では自端代表端信号Xが、「1」から「0」に変更され、回路構成が図7bとされる。B端では自端代表端信号Xが、「0」から「1」に変更され、回路構成が図7aとされる。C端は図7bのままである。   When the protective relay device at the representative end Ta is inspected and treated as a dormant end, the B end is assumed to be the representative end according to priority, as will be described later with reference to FIG. The fact that the representative end Ta has become a pause end is described in the frame F1 in FIG. 4 and is notified to the other end, and the terminal representative end signal of the circuit in FIG. X is changed to “1” or “0”. In this case, the local end representative signal X is changed from “1” to “0” at the A end, and the circuit configuration is as shown in FIG. At the B end, the local representative end signal X is changed from “0” to “1”, and the circuit configuration is as shown in FIG. The C end remains as in FIG. 7b.

なお、この状態においてもA端の伝送部(図3、5a)は、従前どおりに伝送フォーマット(図5)を形成し、A端で検出できた全ての情報を送出し続けている。つまり、図5aのフレームのF3が×、F4が○に変化し、かつF5の扱いが△から○になった状態でフォーマット形成して信号伝送を継続している。従って、新たに代表端になったB端での保護継電動作に必要な情報は、確保されており、その保護継電動作に支障は生じない。   Even in this state, the A-end transmission unit (FIGS. 3 and 5a) forms the transmission format (FIG. 5) as before, and continues to send all the information detected at the A-end. That is, the format is formed in the state where F3 of the frame in FIG. 5a changes to x, F4 changes to ○, and the handling of F5 changes from Δ to ○, and signal transmission is continued. Therefore, the information necessary for the protective relay operation at the B end, which has become the new representative end, is secured, and there is no problem in the protective relay operation.

また、休止端のA端についてみると、点検中であるが代表端からの転送遮断信号に対応して、遮断器の引き外し動作を行う必要がある。このことを可能とするには、図7b回路以外の部分を点検対象として、図7b回路を活かしておく、あるいは休止端点検中、かつ転送遮断信号受信を条件に強制遮断に入ることなどが考えられる。   Further, regarding the A end of the resting end, it is necessary to perform the tripping operation of the circuit breaker in response to the transfer interruption signal from the representative end although it is being inspected. In order to make this possible, it is possible to use the part other than the circuit in FIG. 7b as an inspection target and make use of the circuit in FIG. 7b, or to enter the forced interruption during the pause end inspection and on condition of receiving the transfer interruption signal. It is done.

次に、他端情報を伝送して保護継電器動作に活用する他の事例として、地絡検出用電流差動保護継電器87Gの例について説明する。   Next, as another example of transmitting the other end information and utilizing it for the protection relay operation, an example of a ground fault detection current differential protection relay 87G will be described.

図1の装置構成において、多端子送電系統の内部故障を検出する主要な要素である地絡検出用電流差動保護継電器87Gは、図8のように構成される。87Gの具体的な処理としては、図2の各端子で同時刻にサンプリングした電流データを伝送装置8により代表端Taに収集し、これを用いて各端子電流のベクトル和(零相電流)を動作量、スカラー和を抑制量として処理部6aにて電流差動保護を行う。図8において、この処理を行うのが差電流演算部30である。また、位相特性については、位相比較部31にて零相電圧と零相差電流にて演算を実施し動作域を越えた場合にリレー動作とする。   In the apparatus configuration of FIG. 1, a ground fault detection current differential protection relay 87G, which is a main element for detecting an internal failure of the multi-terminal power transmission system, is configured as shown in FIG. As specific processing of 87G, current data sampled at the same time at each terminal in FIG. 2 is collected at the representative terminal Ta by the transmission device 8, and a vector sum (zero phase current) of each terminal current is used by using this data. Current differential protection is performed in the processing unit 6a using the operation amount and the scalar sum as the suppression amount. In FIG. 8, the difference current calculation unit 30 performs this process. As for the phase characteristics, when the phase comparison unit 31 performs the calculation with the zero-phase voltage and the zero-phase difference current and exceeds the operating range, the relay operation is performed.

図8では、位相比較部31で使用する零相電圧を、代表端選択回路32で選択して使用する。代表端選択回路32は、各端子で検出した零相電圧33と各端子の休止情報34を有し、優先選択回路35において、優線度の順に1つの端子の零相電圧を選択する。図示の優先選択回路35は、A端、B端、C端の順に優先度が設定されている。   In FIG. 8, the zero-phase voltage used in the phase comparison unit 31 is selected by the representative end selection circuit 32 and used. The representative end selection circuit 32 has the zero-phase voltage 33 detected at each terminal and the pause information 34 of each terminal, and the priority selection circuit 35 selects the zero-phase voltage at one terminal in the order of superiority. In the illustrated priority selection circuit 35, priorities are set in the order of A end, B end, and C end.

これにより、当初はA端(親端)が代表端であるため、A端の87Gリレーの位相比較部31にはA端零相電圧が入力されて、A端(代表端)の故障判定に使用できる。仮に代表端であるA端が休止となった場合は、次に優先順位が高いB端(子端)が代表端に選択され、B端の87Gリレーの使用が可能となり、このときに使用する零相電圧としてはB零相電圧が入力されて、B端(代表端)の故障判定に使用できる。以下、C端が選択された場合にも、C端の87Gリレーの使用が可能となり、このときに使用する零相電圧としてはC端零相電圧が入力されて、C端(代表端)の故障判定に使用できる。   Thereby, since the A end (parent end) is the representative end at the beginning, the zero-phase voltage of the A end is input to the phase comparison unit 31 of the 87 G relay at the A end, and the A end (representative end) failure determination is performed. Can be used. If the A end, which is the representative end, is suspended, the B end (child end) with the next highest priority is selected as the representative end, and the 87G relay at the B end can be used. As the zero-phase voltage, the B zero-phase voltage is input and can be used for failure determination at the B end (representative end). Hereinafter, even when the C end is selected, the 87G relay at the C end can be used. The zero-phase voltage used as the zero-phase voltage is input, and the C-end (representative end) is connected. Can be used for failure determination.

但し、B端、C端の母線電圧がとれない条件の場合には、零相電圧33として、伝送路経由のA端電圧を代替使用することで継続運転を可能とする。   However, in the condition where the bus voltage at the B end and the C end cannot be obtained, the continuous operation can be performed by using the A-end voltage via the transmission line instead of the zero-phase voltage 33.

なお、この優線選択回路34の考え方は、ここでは87Gリレーで使用する零相電圧の切替に使用したが、図1の自端代表端信号Xの作成条件としてもよい。つまり、各端子の申告する休止端情報から代表端を決定する為の論理として、優先順位に基づく選択論理とすることができる。   The concept of the dominant line selection circuit 34 is used for switching the zero-phase voltage used in the 87G relay here, but may be a condition for generating the self-end representative terminal signal X in FIG. That is, the selection logic based on the priority order can be used as the logic for determining the representative end from the pause end information reported by each terminal.

更に各相電圧データの伝送を可能とすることで、母線電圧取込みによる系統において、従来まで実装できなかった電圧要素のリレーを適用することができる。図1の電圧データを利用した保護継電装置では不足電圧リレーを例に記載しているが、保護制御の用途および、伝送フォーマットの内容により、電圧要素、電流要素の各種保護継電器に適用しても良い。   Further, by enabling transmission of each phase voltage data, it is possible to apply a relay of voltage elements that could not be implemented until now in a system that takes in the bus voltage. In the protection relay device using the voltage data of FIG. 1, an undervoltage relay is described as an example. However, depending on the use of protection control and the contents of the transmission format, it can be applied to various protection relays for voltage elements and current elements. Also good.

以上説明した本発明によれば、以下の効果が期待できる。まず、従来の技術では、休止となった端子は電流値を零化し不要動作防止を図っている。87Gリレーを実装しているA端が休止端となった場合は、演算が実施できなくなり、不要動作防止のため伝送装置を介して、電流値を零化すると共に、各端にロック信号を送信していた。この点、本発明装置では複数端子で電圧・電流データを伝送することにより保護継電演算を実施するので母線電圧取込みによる系統においても、各端で87Gリレー演算が可能である。   According to the present invention described above, the following effects can be expected. First, according to the conventional technique, the terminal that has become inactive is zeroed to prevent unnecessary operation. When the A terminal that implements the 87G relay becomes the idle terminal, the calculation cannot be performed, and the current value is zeroed and a lock signal is transmitted to each terminal through the transmission device to prevent unnecessary operations. Was. In this respect, since the device according to the present invention performs protective relay calculation by transmitting voltage / current data at a plurality of terminals, 87G relay calculation can be performed at each end even in a system using bus voltage acquisition.

また、従来のスペックでは87Gリレーを設ける代表端を予め決定し、動作情報を各端に伝送していたが、本発明では、各端で87Gリレーを設けており、各端の休止を検出することにより、代表端を選定する手法を確立した。これにより、従来の考えを踏襲し、且つ系統の安定度を向上させることが可能である。   Further, in the conventional specification, the representative end where the 87G relay is provided is determined in advance and the operation information is transmitted to each end. However, in the present invention, the 87G relay is provided at each end, and a pause at each end is detected. As a result, a method for selecting a representative end was established. Thereby, it is possible to follow the conventional idea and improve the stability of the system.

更に各相電圧データの伝送を可能とすることで、母線電圧取込みによる系統において、従来まで実装できなかった不足電圧リレー等の電圧要素のリレーを適用することができ、系統の安定度を向上させることが可能である。   Furthermore, by enabling transmission of each phase voltage data, it is possible to apply a relay of a voltage element such as an undervoltage relay, which could not be implemented until now, to improve the stability of the system. It is possible.

可変電源端あるいは非電源端を含む多端子送電系統が増えてきているので、この場合の保護継電システムとして広く採用することができる。   Since multi-terminal power transmission systems including variable power supply terminals or non-power supply terminals are increasing, it can be widely used as a protective relay system in this case.

1:背後電源
2:非電源端
3:可変電源端
4:信号伝送路
5:伝送部
6:演算処理部
8:信号伝送装置
L:送電線
Ta:A端
Tb:B端
Tc:C端
RY:保護継電装置
BPD:母線電圧検出器
F1:休止端などの制御情報
F2:自端遮断器、ラインスイッチなどの機器開閉情報
F3:電流差動保護継電装置の演算結果情報(地絡検出用、短絡検出用)
F4:地絡検出信号51(地絡過電流継電器)
F5:各端子電流(各相電流、零相電流)
F6:各端子電圧(各相電圧、零相電圧)
F7:伝送不良情報
A1−A6:アンド回路
N1、N2:否定回路
OR1、OR2:オア回路
X:自端代表端信号
27:不足電圧継電器
51:過電流継電器
64:地絡過電圧継電器
87S:短絡検出用電流差動保護継電器
87G:地絡検出用電流差動保護継電器
1: Back power supply 2: Non-power supply end 3: Variable power supply end 4: Signal transmission path 5: Transmission unit 6: Arithmetic processing unit 8: Signal transmission device L: Transmission line Ta: A end Tb: B end Tc: C end RY : Protection relay device BPD: Bus voltage detector F1: Control information such as pause end F2: Opening / closing information of equipment such as self-breaker and line switch F3: Calculation result information of current differential protection relay device (earth fault detection For short circuit detection)
F4: Ground fault detection signal 51 (ground fault overcurrent relay)
F5: Each terminal current (each phase current, zero phase current)
F6: Each terminal voltage (each phase voltage, zero phase voltage)
F7: Transmission failure information A1-A6: AND circuit N1, N2: negative circuit OR1, OR2: OR circuit X: own terminal representative signal 27: undervoltage relay 51: overcurrent relay 64: ground fault overvoltage relay 87S: short circuit detection Current differential protection relay 87G: Current differential protection relay for ground fault detection

Claims (4)

電源端以外に可変電源端あるいは非電源端を含む多端子送電系統の保護継電システムにおいて、
各端子の保護継電装置は、電流作動演算を行う親装置回路と電流差動演算を行なわない子装置回路を含み、通常は電源端で親装置回路を選択して、他の端子で子装置回路を選択し、
各端子の伝送部は、前記親装置回路の電流差動演算に必要な自端検出情報を伝送し、
電源端の伝送部は、さらに電源端母線電圧を伝送し、
電源端の保護継電装置は、前記親装置回路の電流差動演算結果で自端遮断器を操作するとともに、前記電流差動演算結果を他の端子に伝送し、
他の端子の子装置回路は、電源端側から送られてきた前記電源端母線電圧と前記電流差動演算結果とから、自端遮断器を操作する
ことを特徴とする多端子送電系統の保護継電システム。
In a protective relay system for multi-terminal power transmission systems that include variable power supply terminals or non-power supply terminals in addition to power supply terminals,
The protective relay device of each terminal includes a parent device circuit that performs current operation calculation and a child device circuit that does not perform current differential operation. Normally, the parent device circuit is selected at the power supply terminal, and the child device is selected at the other terminals. Select the circuit,
The transmission unit of each terminal transmits self-end detection information necessary for the current differential calculation of the parent device circuit,
The transmission section at the power supply further transmits the power supply bus voltage,
The protective relay device at the power supply terminal operates the self-breaker with the current differential calculation result of the parent device circuit, and transmits the current differential calculation result to another terminal.
The protection device for the multi-terminal power transmission system is characterized in that the slave device circuit of the other terminal operates a self-end circuit breaker from the power supply end bus voltage sent from the power supply end side and the current differential calculation result. Relay system.
第1項記載の多端子送電系統の保護継電システムにおいて、
前記各端子の伝送部は、自端が休止端であることの情報を伝送し、
前記各端子の保護継電装置は、前記休止端の情報を用いて電源端を第1位とする優先順位判断に従い、自端を親装置回路と子装置回路のいずれとするかを決定する
ことを特徴とする多端子送電系統の保護継電システム。
In the protective relay system of the multi-terminal power transmission system according to item 1,
The transmission unit of each terminal transmits information that its own end is a pause end,
The protective relay device of each terminal determines whether the self-end is a parent device circuit or a sub-device circuit according to the priority order determination that places the power supply end as the first using the information on the sleep end. A protective relay system for multi-terminal power transmission systems.
第1項記載の多端子送電系統の保護継電システムにおいて、
前記電源端の伝送部は、電源端以外の保護継電装置が、親装置回路を選択されたときにも、電源端母線電圧を伝送し、
親装置回路を選択した端子の保護継電装置は、親装置回路の電流差動演算結果で自端遮断器を操作するとともに、電流差動演算結果を他の端子に伝送し、
他の端子の子装置回路は、電流差動演算結果から自端遮断器を操作する
ことを特徴とする多端子送電系統の保護継電システム。
In the protective relay system of the multi-terminal power transmission system according to item 1,
The transmission unit at the power supply end transmits the power supply bus voltage even when the protective relay device other than the power supply end selects the parent device circuit,
The protective relay device of the terminal that has selected the parent device circuit operates the self-breaker with the current differential calculation result of the parent device circuit, and transmits the current differential calculation result to the other terminals.
A protection relay system for a multi-terminal power transmission system, wherein the slave device circuit of the other terminal operates the self-end circuit breaker from the current differential calculation result.
第1項記載の多端子送電系統の保護継電システムにおいて、
各端子の伝送部は、伝送異常の情報を含めて伝送し、
他の端子の子装置回路は、電源端側から送られてきた電源端母線電圧を用いるに当り、前記伝送異常の情報を用いて電源端母線電圧を用いる保護継電器の不正動作を阻止する
ことを特徴とする多端子送電系統の保護継電システム。
In the protective relay system of the multi-terminal power transmission system according to item 1,
The transmission part of each terminal transmits information including transmission abnormality information.
When the power supply terminal bus voltage sent from the power supply terminal side is used, the slave device circuit of the other terminal uses the information of the transmission abnormality to prevent unauthorized operation of the protective relay using the power supply bus voltage. A protective relay system for multi-terminal power transmission systems.
JP2010177050A 2010-08-06 2010-08-06 Protective relay system for multi-terminal transmission systems Active JP5645535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010177050A JP5645535B2 (en) 2010-08-06 2010-08-06 Protective relay system for multi-terminal transmission systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177050A JP5645535B2 (en) 2010-08-06 2010-08-06 Protective relay system for multi-terminal transmission systems

Publications (2)

Publication Number Publication Date
JP2012039734A true JP2012039734A (en) 2012-02-23
JP5645535B2 JP5645535B2 (en) 2014-12-24

Family

ID=45851104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177050A Active JP5645535B2 (en) 2010-08-06 2010-08-06 Protective relay system for multi-terminal transmission systems

Country Status (1)

Country Link
JP (1) JP5645535B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135875A (en) * 2013-01-11 2014-07-24 Toshiba Corp Power transmission line protection device
CN105470931A (en) * 2015-12-25 2016-04-06 国家电网公司 Bus bar differential protection method unaffected by bus bar data asynchronization
CN112448372A (en) * 2020-10-30 2021-03-05 中国南方电网有限责任公司超高压输电公司 Method for realizing metal longitudinal differential protection of parallel multi-terminal direct-current transmission system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124225A (en) * 1984-11-20 1986-06-12 三菱電機株式会社 Phase comparison relay
JPH07212958A (en) * 1994-01-24 1995-08-11 Toshiba Corp Current differential relay
JPH1023654A (en) * 1996-06-28 1998-01-23 Toshiba Corp Multiterminal transmission line protective apparatus
JP2000023348A (en) * 1998-07-06 2000-01-21 Nissin Electric Co Ltd Current differential relay system for protecting transmission line
JP2001119851A (en) * 1999-10-15 2001-04-27 Hitachi Ltd Protective relay system and method of setting pause therefor end
JP2001286055A (en) * 2000-04-04 2001-10-12 Toshiba Corp Multiterminal protective relay for transmission line

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124225A (en) * 1984-11-20 1986-06-12 三菱電機株式会社 Phase comparison relay
JPH07212958A (en) * 1994-01-24 1995-08-11 Toshiba Corp Current differential relay
JPH1023654A (en) * 1996-06-28 1998-01-23 Toshiba Corp Multiterminal transmission line protective apparatus
JP2000023348A (en) * 1998-07-06 2000-01-21 Nissin Electric Co Ltd Current differential relay system for protecting transmission line
JP2001119851A (en) * 1999-10-15 2001-04-27 Hitachi Ltd Protective relay system and method of setting pause therefor end
JP2001286055A (en) * 2000-04-04 2001-10-12 Toshiba Corp Multiterminal protective relay for transmission line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135875A (en) * 2013-01-11 2014-07-24 Toshiba Corp Power transmission line protection device
CN105470931A (en) * 2015-12-25 2016-04-06 国家电网公司 Bus bar differential protection method unaffected by bus bar data asynchronization
CN112448372A (en) * 2020-10-30 2021-03-05 中国南方电网有限责任公司超高压输电公司 Method for realizing metal longitudinal differential protection of parallel multi-terminal direct-current transmission system

Also Published As

Publication number Publication date
JP5645535B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
EP3001535B1 (en) Protection control system for process bus, merging unit, and computation device
US8072715B2 (en) Method, apparatus and computer program product for fault protection
EP2206208B1 (en) Differential protection method, system and device
US11258249B2 (en) Primary and system protection for an electric power delivery system
JP2018064416A (en) Two parallel line transmission line protection system
JP5645535B2 (en) Protective relay system for multi-terminal transmission systems
CN112363005B (en) GIS combined electrical apparatus fault detection and processing method, device and storage medium
CN101931209A (en) The equipment of signaling electric fault and method, the unit that comprises this equipment and distribution panelboard
JPS6260428A (en) Annular line system protecting device
JP6698414B2 (en) Power transmission line protection system
US11431161B2 (en) Electric power distribution sectionalizing in high-risk areas using wireless fault sensors
JP2019068529A (en) Short-circuit protection relay system
JP4020203B2 (en) Automatic monitoring circuit for protective relay device
JPWO2004042883A1 (en) Protective relay
JP2005312180A (en) Digital protective relay system
JPH0847165A (en) Bidirectional protection relaying system and bidirectional protection distance relay in the power line
JP2007078501A (en) Failure spot specifying system, protective relay device and fault spot specifying device
JPS63287321A (en) Fault section detecting/separating device for distribution line
JP2009022063A (en) Power transmission line protection system, and protection relay device
JP3964601B2 (en) Protection system
JP2009055763A (en) Network power transmission protector
JPS63287322A (en) Relay for detecting ground fault section in distribution line
JP6645759B2 (en) Current differential relay system
JP5665507B2 (en) Protective relay device
JPS6223222Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5645535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150