JP2012039711A - Ground fault detector of double-fed synchronous machine - Google Patents

Ground fault detector of double-fed synchronous machine Download PDF

Info

Publication number
JP2012039711A
JP2012039711A JP2010176166A JP2010176166A JP2012039711A JP 2012039711 A JP2012039711 A JP 2012039711A JP 2010176166 A JP2010176166 A JP 2010176166A JP 2010176166 A JP2010176166 A JP 2010176166A JP 2012039711 A JP2012039711 A JP 2012039711A
Authority
JP
Japan
Prior art keywords
ground fault
circuit
double
synchronous machine
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010176166A
Other languages
Japanese (ja)
Other versions
JP5711478B2 (en
Inventor
Yuji Sato
裕二 佐藤
Tadahiro Yamakawa
忠宏 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010176166A priority Critical patent/JP5711478B2/en
Publication of JP2012039711A publication Critical patent/JP2012039711A/en
Application granted granted Critical
Publication of JP5711478B2 publication Critical patent/JP5711478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Protection Of Generators And Motors (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a single line to ground fault in a field circuit of a double-fed synchronous machine for sure by using a simple structure.SOLUTION: A double-fed synchronous machine 1, which is constructed in such a way that AC excitation current having a frequency (slip frequency) equivalent to the difference between a system frequency and rotating speed of a rotor is supplied from an AC excitation unit 5 to a rotor coil, comprises a simulated neutral point circuit formed via a high resistor 9 branching from a field circuit which connects the rotor coil and the AC excitation unit 5, a resistance grounding circuit which grounds a neutral point 10 of the simulated neutral point circuit to earth via a resistor 11, and a ground fault detector 12 which, when a single line to ground fault occurs in the field circuit including the rotor coil and the AC excitation unit 5, detects a ground fault current flowing in the resistance grounding circuit, thereby detecting a ground fault of the field circuit.

Description

この発明は、一次(固定子)側が電力系統に、二次(回転子)側が可変周波数の電力変換器に接続された二重給電同期機の地絡検出装置に関し、特に、界磁回路の1線地絡検出
装置に関するものである。
The present invention relates to a ground fault detection device for a double-feed synchronous machine in which a primary (stator) side is connected to a power system and a secondary (rotor) side is connected to a variable frequency power converter, and in particular, 1 of a field circuit. The present invention relates to a wire ground fault detection device.

従来の二重給電同期機の界磁回路は、高電圧が印加され、かつ、非接地系であるため、1線地絡検出においては、二重給電同期機の回転子の中性点を引き出し、高抵抗接地回路
を構成していた。この接地回路に電流監視回路を設け、他に地絡が発生することで、地絡電流が流れるため、この電流値を監視していた。
また、例えば、特許文献1に記載されているように、励磁装置のインバータとコンバータ間の直流電位部のコンデンサ中性相を引き出し、対地間を流れる電流を計測する方式が提案されている。
The field circuit of the conventional double-fed synchronous machine is applied with a high voltage and is ungrounded. Therefore, the neutral point of the rotor of the double-fed synchronous machine is extracted when detecting a one-wire ground fault. A high resistance grounding circuit was constructed. A current monitoring circuit is provided in the ground circuit, and since a ground fault occurs due to the occurrence of a ground fault, the current value is monitored.
In addition, for example, as described in Patent Document 1, a method has been proposed in which a capacitor neutral phase of a DC potential portion between an inverter and a converter of an exciter is drawn out and a current flowing between the ground is measured.

特開平8−168166号公報JP-A-8-168166

従来の回転子の中性点を引き出し、抵抗接地させる方式では、中性点の引き出しのためのスリップリングを設置する必要があり、二重給電同期機のコストを押し上げる要因となる。   In the conventional method in which the neutral point of the rotor is pulled out and the resistance is grounded, it is necessary to install a slip ring for pulling out the neutral point, which increases the cost of the double-feed synchronous machine.

また、特許文献1に示された技術は、コンバータとインバータ間で中性相から抵抗接地回路を引き出し、地絡を検出する方法であるが、この方法では、対地に対し、発電機が有するキャパシタンスに比べ、インバータおよびコンバータが有するキャパシタンスが絶対的に小さいために、地絡していない通常運転時に、発電機回転子部が対地に対し安定した電位を示し、励磁装置のインバータとコンバータ間の中性相の対地電位は、常時、変動する挙動を示し、地絡事故発生時の変動との違いが明確に現れにくいため、地絡事故の正確な検出が困難であるとの問題点があった。   The technique disclosed in Patent Document 1 is a method of extracting a grounded resistance circuit from a neutral phase between a converter and an inverter and detecting a ground fault. In this method, the capacitance of a generator with respect to the ground is determined. In comparison, the capacitance of the inverter and converter is absolutely small, so the generator rotor shows a stable potential with respect to the ground during normal operation with no ground fault. The ground potential of the sex phase always shows a fluctuating behavior, and the difference from the fluctuation at the time of the occurrence of the ground fault accident is difficult to clearly show, so there is a problem that it is difficult to accurately detect the ground fault accident .

この発明は、上記のような課題を解決するためになされたものであり、二重給電同期機の中性点を引き出すことなく、交流界磁回路の1線地絡を、簡単な構成で、確実に検出す
ることのできる二重給電同期機の地絡検出装置を得ることを目的とする。
The present invention was made to solve the above problems, and without drawing out the neutral point of the double-feed synchronous machine, the one-line ground fault of the AC field circuit, with a simple configuration, An object of the present invention is to obtain a ground fault detection device for a double-fed synchronous machine that can be reliably detected.

この発明に係る二重給電同期機の地絡検出装置は、固定子巻線が電力系統に接続され、回転子巻線が可変周波数の電力変換器からなる交流励磁装置に接続され、系統周波数と回転子の回転速度との差に相当する周波数(すべり周波数)を持った交流励磁電流が前記交流励磁装置から前記回転子巻線に供給されるよう構成された二重給電同期機において、前記回転子巻線と前記電力変換器とを接続する界磁回路から分岐して、抵抗を介して形成された模擬中性点回路と、この模擬中性点回路の中性点を抵抗を介して接地する抵抗接地回路と、この抵抗接地回路に設けられ、前記回転子巻線と電力変換器を含む界磁回路の一線地絡発生時に、この抵抗接地回路に流れる地絡電流を検出し、前記界磁回路の地絡を検出する地絡検出器を備えたものである。   A ground fault detection device for a double-feed synchronous machine according to the present invention has a stator winding connected to an electric power system, and a rotor winding connected to an AC exciter composed of a variable frequency power converter. In the double-feed synchronous machine configured to supply an AC excitation current having a frequency (slip frequency) corresponding to a difference from a rotation speed of the rotor to the rotor winding from the AC excitation device, the rotation A simulated neutral point circuit branched from the field circuit connecting the child winding and the power converter and grounded via the resistor and the neutral point of the simulated neutral point circuit grounded via the resistor A resistance grounding circuit, and a ground fault current flowing in the resistance grounding circuit is detected when a one-line ground fault occurs in the field circuit including the rotor winding and the power converter. It has a ground fault detector that detects the ground fault of the magnetic circuit. That.

この発明の二重給電同期機の地絡検出装置によれば、交流界磁回路から地絡検出回路を分岐するように構成したので、安価に回路を構成することができ、且つ、常時の電圧変動が少なくて済むため、確実に界磁回路の1線地絡を検出することができる。   According to the ground fault detection device of the double-feed synchronous machine of the present invention, since the ground fault detection circuit is branched from the AC field circuit, the circuit can be configured at low cost, and the constant voltage Since the fluctuation is small, a one-line ground fault of the field circuit can be reliably detected.

上述した、またその他の、この発明の目的、特徴、効果は、以下の実施の形態における詳細な説明および図面の記載からより明らかとなるであろう。   The above-described and other objects, features, and effects of the present invention will become more apparent from the detailed description and the drawings in the following embodiments.

この発明の実施の形態1を示す回路構成図である。It is a circuit block diagram which shows Embodiment 1 of this invention. この発明の実施の形態2を示す回路構成図である。It is a circuit block diagram which shows Embodiment 2 of this invention. この発明の実施の形態2の一次遅れフィルタへの入出力波形例を示す図である。It is a figure which shows the input-output waveform example to the 1st-order lag filter of Embodiment 2 of this invention. この発明の実施の形態3を示す回路構成図である。It is a circuit block diagram which shows Embodiment 3 of this invention. この発明の実施の形態3におけるすべり周波数成分除去演算部のブロックである。It is a block of the slip frequency component removal calculating part in Embodiment 3 of this invention. この発明の実施の形態3におけるすべり周波数成分除去演算部の各部の波形を示す図である。It is a figure which shows the waveform of each part of the slip frequency component removal calculating part in Embodiment 3 of this invention. この発明の実施の形態4を示す回路構成図である。It is a circuit block diagram which shows Embodiment 4 of this invention. この発明の実施の形態4におけるピークホールド回路の入出力波形を示す図である。It is a figure which shows the input-output waveform of the peak hold circuit in Embodiment 4 of this invention. この発明の実施の形態5を示す回路構成図である。It is a circuit block diagram which shows Embodiment 5 of this invention. この発明の実施の形態6を示す回路構成図である。It is a circuit block diagram which shows Embodiment 6 of this invention. この発明の実施の形態7を示す回路構成図である。It is a circuit block diagram which shows Embodiment 7 of this invention. この発明の実施の形態8を示す回路構成図である。It is a circuit block diagram which shows Embodiment 8 of this invention.

以下この発明の実施の形態について、図面を参照して詳述する。なお、各図中、同一符号は、同一あるいは相当部分を示すものとする。
実施の形態1.
図1は、この発明の実施の形態1における二重給電同期機の地絡検出装置の全体的な概略回路構成図であり、図1において、1は二重給電同期機で、その固定子巻線は並列用遮断器2及び主変圧器3を通じて電力系統4に接続されている。可変周波数の電力変換器で構成される交流励磁装置5は、励磁変圧器6及び励磁用遮断器7を介して並列用遮断器2と主変圧器3の間の母線から給電され、系統周波数と二重給電同期機1の回転子の回転速度の差に相当する周波数(すなわち、すべり周波数)を持った交流励磁電流を二重給電同期機1の回転子巻線に供給する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol shall show the same or an equivalent part.
Embodiment 1 FIG.
FIG. 1 is an overall schematic circuit configuration diagram of a ground fault detection device for a double-feed synchronous machine according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a double-feed synchronous machine, and its stator winding The line is connected to the power system 4 through the parallel circuit breaker 2 and the main transformer 3. The AC excitation device 5 composed of a variable frequency power converter is fed from the bus between the parallel circuit breaker 2 and the main transformer 3 via the excitation transformer 6 and the excitation circuit breaker 7, and the system frequency An AC excitation current having a frequency (that is, slip frequency) corresponding to the difference in rotational speed of the rotor of the double-feed synchronous machine 1 is supplied to the rotor winding of the double-feed synchronous machine 1.

8はこの発明の主要部をなす地絡検出回路で、二重給電同期機1と交流励磁装置5を接続する交流界磁回路(以下、単に界磁回路ともいう。)から分岐して、高抵抗9を介して模擬中性点回路を形成し、模擬中性点10は、抵抗11、地絡検出器である地絡検出リレー回路12を経由して抵抗接地されている。13は、界磁回路における1線地絡(例)を表している。また、地絡電流が流れるループを地絡電流回路14としている。   Reference numeral 8 denotes a ground fault detection circuit which constitutes a main part of the present invention. The ground fault detection circuit is branched from an AC field circuit (hereinafter also simply referred to as a field circuit) for connecting the double-feed synchronous machine 1 and the AC excitation device 5 to the A simulated neutral point circuit is formed via a resistor 9, and the simulated neutral point 10 is grounded via a resistor 11 and a ground fault detection relay circuit 12 which is a ground fault detector. Reference numeral 13 denotes a one-wire ground fault (example) in the field circuit. A loop through which a ground fault current flows is defined as a ground fault current circuit 14.

次に動作について説明する。
地絡が発生していない時、模擬中性点10の電圧は0Vであり、地絡検出器である地絡検出リレー回路12に地絡電流は流れない。
界磁回路に地絡が発生すると、抵抗9、抵抗11、地絡検出リレー回路12、地絡点13をループする地絡電流回路14に沿って地絡電流が流れる。この地絡電流を地絡検出リレー回路12で認識することで、回転子巻線と可変周波数の電力変換器を含む交流界磁回路の1線地絡を検出する。
Next, the operation will be described.
When no ground fault occurs, the voltage at the simulated neutral point 10 is 0 V, and no ground fault current flows through the ground fault detection relay circuit 12 that is a ground fault detector.
When a ground fault occurs in the field circuit, a ground fault current flows along the ground fault current circuit 14 that loops the resistor 9, the resistor 11, the ground fault detection relay circuit 12, and the ground fault point 13. By recognizing the ground fault current by the ground fault detection relay circuit 12, a one-line ground fault of the AC field circuit including the rotor winding and the variable frequency power converter is detected.

以上のように、この発明の実施の形態1の二重給電同期機の地絡検出装置によれば、固定子巻線が電力系統4に接続され、回転子巻線が可変周波数の電力変換器からなる交流励磁装置5に接続された二重給電同期機1であって、系統周波数と回転子の回転速度との差に相当する周波数(すべり周波数)を持った交流励磁電流が交流励磁装置5から回転子巻線に供給されるよう構成成された二重給電同期機において、回転子巻線と電力変換器とを接続する界磁回路から分岐して、抵抗9を介して形成された模擬中性点回路と、この模擬中性点回路の中性点10を抵抗11を介して接地する抵抗接地回路と、この抵抗接地回路に設けられ、前記回転子巻線と電力変換器を含む界磁回路の1線地絡発生時に、この抵抗接地回路に流れる地絡電流を検出し、前記界磁回路の地絡を検出する地絡検出器12を備えたので、二重給電同期機1の回転子巻線の中性点を引き出す必要がなく、安価な地絡検出装置を構成できる。また、常時の電圧変動が少ないため、地絡発生時に流れる地絡電流を確実に検出する信頼性の高い二重給電同期機の地絡検出装置を得ることができる。   As described above, according to the ground fault detection device for a double-feed synchronous machine according to Embodiment 1 of the present invention, the stator winding is connected to the power system 4, and the rotor winding is a variable frequency power converter. An AC excitation current having a frequency (slip frequency) corresponding to the difference between the system frequency and the rotational speed of the rotor is a double-feed synchronous machine 1 connected to an AC excitation device 5 comprising: In the dual-feed synchronous machine configured to be supplied to the rotor winding from the field circuit connecting the rotor winding and the power converter, the simulation is formed via the resistor 9 A neutral point circuit, a resistance grounding circuit for grounding the neutral point 10 of the simulated neutral point circuit via a resistor 11, and a field including the rotor winding and the power converter provided in the resistance grounding circuit When a one-wire ground fault occurs in the magnetic circuit, the ground fault current flowing in this resistance ground circuit is detected. In addition, since the ground fault detector 12 for detecting the ground fault of the field circuit is provided, it is not necessary to draw out the neutral point of the rotor winding of the double-feed synchronous machine 1, and an inexpensive ground fault detection device is provided. Can be configured. In addition, since there is little voltage fluctuation at all times, it is possible to obtain a highly reliable ground fault detection device for a double-fed synchronous machine that reliably detects a ground fault current that flows when a ground fault occurs.

実施の形態2.
この発明の実施の形態2を図2、図3に基づいて説明する。
この発明の実施の形態2の二重給電同期機の地絡検出装置は、地絡検出器の具体的な構成の一例を示すもので、図2において、地絡検出器である地絡検出リレー回路12は、抵抗15の両端から電圧信号を取り出し、この電圧信号を一次遅れフィルタ16を通して、地絡判定部17に入力する回路構成となっている。また、地絡発生時に抵抗接地回路に強制的に電流を流すため、外部の交流電源18から変圧器19を介して、整流回路20により直流電源を構成している。
なお、図3は、一次遅れフィルタ16への入力信号波形例と、出力信号波形例を表している。
Embodiment 2. FIG.
A second embodiment of the present invention will be described with reference to FIGS.
The ground fault detection device for a double-feed synchronous machine according to Embodiment 2 of the present invention shows an example of a specific configuration of a ground fault detector. In FIG. 2, a ground fault detection relay that is a ground fault detector. The circuit 12 has a circuit configuration in which a voltage signal is extracted from both ends of the resistor 15 and the voltage signal is input to the ground fault determination unit 17 through the first-order lag filter 16. In addition, in order to force a current to flow through the resistance grounding circuit when a ground fault occurs, a DC power supply is configured by a rectifier circuit 20 from an external AC power supply 18 via a transformer 19.
FIG. 3 shows an example of an input signal waveform to the first-order lag filter 16 and an example of an output signal waveform.

次に実施の形態2の動作について説明する。
界磁回路に地絡が発生すると、整流回路20により作られた直流電圧を抵抗接地回路に印加することで、地絡抵抗に応じた直流地絡電流を流す。
しかしながら、交流励磁装置5が流す励磁電流は、すべり周波数による数Hzの低周波電流であり、地絡発生時に地絡検出リレー回路12に流れる地絡電流にもすべり周波数成分が含まれる。このため、抵抗15の両端から取り出す地絡信号は、図3に示すように、直流にすべり周波数成分が重ね合わされた信号となる。
地絡判定部17が、このすべり周波数成分を含む地絡電流をレベル判定するために、フィルタ16を設ける。このフィルタ16は、一次遅れ機能であり、図3に示すように、すべり周波数成分を除去し、直流電圧印加による直流地絡電流成分のみを取り出すことができる。この一次遅れフィルタ16の出力を地絡判定部17に入力し、地絡判定部17でレベル判定することで1線地絡を検出する。
Next, the operation of the second embodiment will be described.
When a ground fault occurs in the field circuit, a DC ground fault current corresponding to the ground fault resistance is caused to flow by applying a DC voltage generated by the rectifier circuit 20 to the resistance ground circuit.
However, the excitation current that the AC excitation device 5 flows is a low-frequency current of several Hz due to the slip frequency, and the ground-fault current that flows through the ground-fault detection relay circuit 12 when a ground fault occurs also includes a slip-frequency component. For this reason, the ground fault signal taken out from both ends of the resistor 15 is a signal in which the slip frequency component is superimposed on the direct current as shown in FIG.
The ground fault determination unit 17 is provided with a filter 16 in order to determine the level of the ground fault current including the slip frequency component. This filter 16 has a first-order lag function, and as shown in FIG. 3, it can remove the slip frequency component and extract only the DC ground fault current component due to the DC voltage application. The output of the first-order lag filter 16 is input to the ground fault determination unit 17, and the ground fault determination unit 17 determines the level to detect a one-line ground fault.

以上のように、この発明の実施の形態2によれば、地絡検出器12は、地絡電流に重畳される直流成分を抵抗接地回路に供給するための外部交流電源18と整流器20からなる直流電源部と、地絡電流に含まれるすべり周波数成分を除去するための一次遅れフィルタ16と、この一次遅れフィルタ16の出力レベルを判定して地絡故障を検出する地絡判定部17を具備しているので、二重給電同期機の特徴である地絡電流に含まれるすべり周波数成分を取り除くことができ、一次遅れという安価な回路を適用するだけで確実に地絡判定する回路を得ることができる。
また、直流電源を印加し、強制的に地絡電流を流すため、二重給電同期機が停止中であったとしても、直流電源を印加することで地絡の有無を確認できる。
As described above, according to the second embodiment of the present invention, the ground fault detector 12 includes the external AC power source 18 and the rectifier 20 for supplying the DC component superimposed on the ground fault current to the resistance ground circuit. A DC power supply unit, a first-order lag filter 16 for removing a slip frequency component included in the ground-fault current, and a ground-fault determination unit 17 that determines an output level of the first-order lag filter 16 and detects a ground fault. Therefore, it is possible to remove the slip frequency component contained in the ground fault current, which is a feature of the double-fed synchronous machine, and to obtain a circuit for reliably determining the ground fault by simply applying an inexpensive circuit called a first-order lag. Can do.
Further, since a ground fault current is forcibly applied by applying a DC power source, the presence or absence of a ground fault can be confirmed by applying the DC power source even when the double-feed synchronous machine is stopped.

実施の形態3.
この発明の実施の形態3を図4、図5、図6に基づいて説明する。
実施の形態2では、地絡検出器12においてすべり周波数成分を取り除くために、一次遅れフィルタ16を用いたが、この実施の形態3においては、図4、図5に示すように、地絡検出器において、一次遅れフィルタに代えて、すべり周波数成分除去演算部21を設けることで同様の効果を得るよう構成したものである。
Embodiment 3 FIG.
A third embodiment of the present invention will be described with reference to FIGS. 4, 5, and 6. FIG.
In the second embodiment, the first-order lag filter 16 is used to remove the slip frequency component in the ground fault detector 12. However, in the third embodiment, as shown in FIGS. 4 and 5, the ground fault detection is performed. In this device, a slip frequency component removal calculating unit 21 is provided in place of the first-order lag filter to obtain the same effect.

図5は、すべり周波数成分除去演算部21の演算ブロックを表している。
図5に示すように、すべり周波数成分除去演算部21は、抵抗15で地絡電流から変換された地絡電圧信号22が入力される微分回路23と、微分回路23の出力(即ち、演算結果)と地絡電圧信号22が入力される減算器24を備えており、減算器24により地絡電圧信号22から微分回路23の演算結果を引いたものを地絡判別信号25として出力するよう構成されている。
地絡判定部17は、すべり周波数成分除去演算部21からの地絡判別信号25を使って地絡判定の演算を行なう。
図6は、すべり周波数成分除去演算部21の入、出力信号波形例と、微分回路23の出力波形例を示す。
FIG. 5 shows a calculation block of the slip frequency component removal calculation unit 21.
As shown in FIG. 5, the slip frequency component removal calculation unit 21 includes a differentiation circuit 23 to which a ground fault voltage signal 22 converted from a ground fault current by a resistor 15 is input, and an output (that is, a calculation result) of the differentiation circuit 23. ) And the ground fault voltage signal 22 is input, and the subtractor 24 subtracts the calculation result of the differentiation circuit 23 from the ground fault voltage signal 22 and outputs it as the ground fault determination signal 25. Has been.
The ground fault determination unit 17 performs ground fault determination using the ground fault determination signal 25 from the slip frequency component removal calculation unit 21.
FIG. 6 shows an example of the input and output signal waveforms of the slip frequency component removal calculating unit 21 and an output waveform example of the differentiating circuit 23.

以上のように構成されたこの発明の実施の形態3によれば、地絡電圧信号22は微分回路23を通ることで地絡電圧成分に含まれるすべり周波数成分を地絡電圧信号22の変動分として出力する。これを減算器24により、地絡電圧信号22から引くことで、すべり周波数成分を除去できる。この結果、地絡判別信号25は直流成分のみとなり、地絡判定部17で地絡発生を認識できる。   According to the third embodiment of the present invention configured as described above, when the ground fault voltage signal 22 passes through the differentiating circuit 23, the slip frequency component included in the ground fault voltage component is converted to the fluctuation amount of the ground fault voltage signal 22. Output as. By subtracting this from the ground fault voltage signal 22 by the subtractor 24, the slip frequency component can be removed. As a result, the ground fault determination signal 25 has only a DC component, and the ground fault determination unit 17 can recognize the occurrence of the ground fault.

尚、この実施の形態3においては、すべり周波数成分の除去に微分回路を用いたので、実施の形態2の一次遅れフィルタに比べて、若干、複雑な回路となるが、時間遅れなしで直流成分を検出することができるため、地絡判別に時間遅れを持たせない場合に有効な手段となる。   In the third embodiment, since the differential circuit is used to remove the slip frequency component, the circuit is slightly more complicated than the first-order lag filter of the second embodiment. Therefore, it is an effective means when no time delay is given to the ground fault determination.

実施の形態4.
この発明の実施の形態4を図7、図8に基づいて説明する。
この発明の実施の形態4は、地絡検出器において、地絡電流に含まれるすべり周波数成分を取り除くため、上述した実施の形態2、3における一次遅れフィルタ16、すべり周波数成分除去演算部21の代わりに、ピークホールド回路26を設けたものである。
なお、その他の構成は実施の形態2、3と同一であり説明は省略する。
図8はピークホールド回路26への入力信号と出力信号を示している。
Embodiment 4 FIG.
Embodiment 4 of the present invention will be described with reference to FIGS.
The fourth embodiment of the present invention eliminates the slip frequency component included in the ground fault current in the ground fault detector, so that the first-order lag filter 16 and the slip frequency component removal calculating unit 21 in the second and third embodiments described above. Instead, a peak hold circuit 26 is provided.
Other configurations are the same as those in the second and third embodiments, and a description thereof will be omitted.
FIG. 8 shows an input signal and an output signal to the peak hold circuit 26.

次に実施の形態4の動作について説明する。
ピークホールド回路26は、すべり周波数成分のピーク値をホールドするため、すべり周波数のピーク値を直流信号として地絡判定部17へ送る。
尚、実施の形態4では、ピークホールド回路26を用いるようにしたので、実施の形態2及び3によるすべり周波数成分の除去後の信号に比べて、大きな信号により地絡判定することになるため、実際の地絡よりも高い地絡抵抗で動作する。二重給電同期機を保護する目的からすると、早期に検出が可能となり、地絡事故を未然に防ぐ目的で回路を適用する際には有効である。また、ピークホールド回路は実施の形態2の一次遅れフィルタ16よりも、時間遅れが少ないというメリットもある。
Next, the operation of the fourth embodiment will be described.
In order to hold the peak value of the slip frequency component, the peak hold circuit 26 sends the peak value of the slip frequency to the ground fault determination unit 17 as a DC signal.
In the fourth embodiment, since the peak hold circuit 26 is used, the ground fault is determined by a large signal as compared with the signal after the removal of the slip frequency component according to the second and third embodiments. It operates with a ground fault resistance higher than the actual ground fault. For the purpose of protecting the double-feed synchronous machine, detection is possible at an early stage, which is effective when the circuit is applied for the purpose of preventing a ground fault. Further, the peak hold circuit has an advantage that the time delay is smaller than that of the first-order lag filter 16 of the second embodiment.

実施の形態5.
この発明の実施の形態5を図9に基づいて説明する。
図9は、図1の地絡検出回路8を取り出したものであり、この実施の形態5の発明は、地絡検出回路部のいずれかで断線28が発生した場合に対処するもので、抵抗接地回路の抵
抗11と地絡検出器である地絡検出リレー回路12の間に、地絡検出器12と並列にアレスタ27を接続したものである。
Embodiment 5 FIG.
Embodiment 5 of the present invention will be described with reference to FIG.
FIG. 9 shows the ground fault detection circuit 8 of FIG. 1 taken out. The invention of the fifth embodiment deals with a case where the disconnection 28 occurs in any of the ground fault detection circuit units. An arrester 27 is connected in parallel with the ground fault detector 12 between the resistor 11 of the ground circuit and the ground fault detection relay circuit 12 which is a ground fault detector.

次に実施の形態5の動作について説明する。
地絡13が発生中に断線28が発生した場合、もしくは、断線28が発生した状態で地絡13が発生した場合、地絡検出リレー回路12の対地電圧は、界磁回路電圧が、数kVであるため、同様に数kVに上昇する。従って、地絡検出リレー回路12に接続される機器が壊れないように高圧仕様とする必要がある。但し、全ての機器を高圧仕様とすると、高コストになるため、アレスタ27を設置することで、地絡検出リレー回路12に印加される電圧を抑え機器の耐圧仕様レベルを下げる。
尚、アレスタ27を設置したので、断線が発生したとしても、耐圧仕様を抑えた低コスト機器を地絡検出リレー回路12に適用できる。
Next, the operation of the fifth embodiment will be described.
When the disconnection 28 occurs while the ground fault 13 is generated, or when the ground fault 13 occurs when the disconnection 28 is generated, the ground circuit voltage of the ground fault detection relay circuit 12 is several kV. Therefore, the voltage similarly rises to several kV. Therefore, it is necessary to use a high voltage specification so that the equipment connected to the ground fault detection relay circuit 12 is not broken. However, if all the devices have high voltage specifications, the cost increases. Therefore, by installing the arrester 27, the voltage applied to the ground fault detection relay circuit 12 is suppressed and the breakdown voltage specification level of the devices is lowered.
In addition, since the arrester 27 is installed, even if a disconnection occurs, a low-cost device with a reduced withstand voltage specification can be applied to the ground fault detection relay circuit 12.

実施の形態6.
この発明の実施の形態6を図10に基づいて説明する。
この発明の実施の形態6は、実施の形態5の変形例であって、実施の形態5におけるアレスタ27に代えて、過電圧検出機能とコンタクタを設けたものである。
図10において、抵抗接地回路の抵抗11と地絡検出器である地絡検出リレー回路12の間に、地絡検出リレー回路12に印加される過電圧を検出する過電圧検出器29が接続され、コンタクタ30が抵抗11と過電圧検出器29への分岐との間に接続されている。
Embodiment 6 FIG.
A sixth embodiment of the present invention will be described with reference to FIG.
The sixth embodiment of the present invention is a modification of the fifth embodiment, and is provided with an overvoltage detection function and a contactor in place of the arrester 27 in the fifth embodiment.
In FIG. 10, an overvoltage detector 29 for detecting an overvoltage applied to the ground fault detection relay circuit 12 is connected between the resistor 11 of the resistance ground circuit and the ground fault detection relay circuit 12 which is a ground fault detector. 30 is connected between the resistor 11 and the branch to the overvoltage detector 29.

次に実施の形態6の動作について説明する。
実施の形態5では、アレスタ27により過電圧を抑制したが、この実施の形態6では、過電圧検出器29により、過電圧を検出した場合、コンタクタ30を開放することで、地絡検出器である地絡検出リレー回路12を抵抗接地回路から切り離すことができ、過電圧が地絡検出リレー回路12に印加されることを防止できるので過電圧により機器が壊れることを防ぐことができる。
尚、実施の形態5のアレスタを適用した場合、電圧抑制効果は高いが、必要な特性を得ることが困難な場合もあり、そのときには、過電圧検出器29とコンタクタ30による回路が有効となる。
Next, the operation of the sixth embodiment will be described.
In the fifth embodiment, the overvoltage is suppressed by the arrester 27. However, in this sixth embodiment, when the overvoltage is detected by the overvoltage detector 29, the contactor 30 is opened to open the ground fault as a ground fault detector. Since the detection relay circuit 12 can be disconnected from the resistance grounding circuit and an overvoltage can be prevented from being applied to the ground fault detection relay circuit 12, the device can be prevented from being broken by the overvoltage.
When the arrester of the fifth embodiment is applied, the voltage suppression effect is high, but it may be difficult to obtain necessary characteristics. In this case, the circuit using the overvoltage detector 29 and the contactor 30 is effective.

実施の形態7.
この発明の実施の形態7を図11に基づいて説明する。
この発明の実施の形態7は、図11に示すように、地絡検出リレー回路12と並列に同じ回路、機能の地絡検出リレー回路31を接続するものである。
Embodiment 7. FIG.
A seventh embodiment of the present invention will be described with reference to FIG.
In the seventh embodiment of the present invention, as shown in FIG. 11, a ground fault detection relay circuit 31 having the same circuit and function is connected in parallel with the ground fault detection relay circuit 12.

このように構成された実施の形態7において、実施の形態5、6と同様に断線と地絡が同時に発生した場合、地絡検出リレー回路12に高圧が印加されることを防止するため、地絡検出リレー回路31を接続し、地絡が発生したときは、地絡検出リレー回路12及び31の動作信号をOR回路で動作させる。   In the seventh embodiment configured as described above, when a disconnection and a ground fault occur at the same time as in the fifth and sixth embodiments, in order to prevent a high voltage from being applied to the ground fault detection relay circuit 12, When the ground fault detection relay circuit 31 is connected and a ground fault occurs, the operation signals of the ground fault detection relay circuits 12 and 31 are operated by the OR circuit.

尚、この地絡検出リレー回路12と31を設ける方法は、断線が2つの回路で同時に発生することは稀であることを利用しており、実施の形態5、6とコスト、信頼性を総合的に判断し、最良の方法を選択することになる。   Note that the method of providing the ground fault detection relay circuits 12 and 31 utilizes the fact that disconnection rarely occurs in two circuits at the same time, and combines the cost and reliability with the fifth and sixth embodiments. Judgment is made and the best method is selected.

実施の形態8.
この発明の実施の形態8を図12に基づいて説明する。
この発明の実施の形態8は、図12に示すように、地絡検出器12は、抵抗15の両端から取り出した地絡電圧信号を整流する整流器32と、この整流回路32の出力に含まれるリップル分を除去する、例えば抵抗RとコンデンサCを使用したCR回路等で構成される
リップル除去回路33と、このリップル除去回路で直流化された直流信号が入力されて1線地絡を判定検出する地絡判定部17を備えている。
Embodiment 8 FIG.
An eighth embodiment of the present invention will be described with reference to FIG.
In the eighth embodiment of the present invention, as shown in FIG. 12, the ground fault detector 12 is included in the output of the rectifier 32 that rectifies the ground fault voltage signal extracted from both ends of the resistor 15 and the rectifier circuit 32. Ripple removal, for example, a ripple removal circuit 33 composed of a CR circuit or the like using a resistor R and a capacitor C, and a DC signal converted into a direct current by this ripple removal circuit are input to detect and detect a one-wire ground fault A ground fault determination unit 17 is provided.

次に実施の形態8の動作について説明する。
抵抗15に流れる地絡電流は、すべり周波数の交流信号である。これを地絡判定するため、抵抗15の両端から取り出した地絡電圧信号を整流回路32を通して整流する。
この整流信号に含まれるリップル分を取り除くため、抵抗RとコンデンサCを使用したCR回路等で構成されたリップル除去回路33を介して、地絡判定部17へ直流信号を渡す。
Next, the operation of the eighth embodiment will be described.
The ground fault current flowing through the resistor 15 is an AC signal having a slip frequency. In order to determine the ground fault, the ground fault voltage signal taken out from both ends of the resistor 15 is rectified through the rectifier circuit 32.
In order to remove the ripple included in the rectified signal, a DC signal is passed to the ground fault determination unit 17 via a ripple removal circuit 33 configured by a CR circuit using a resistor R and a capacitor C.

この実施の形態8の地絡検出装置によれば、整流回路32を抵抗15の両端から引き出した電圧信号に適用したため、実施の形態2、3、4で適用した変圧器19が不要となる。但し、直流電源を強制的に印加することはしていないので、運転中のみの監視となる。   According to the ground fault detection device of the eighth embodiment, since the rectifier circuit 32 is applied to the voltage signal drawn from both ends of the resistor 15, the transformer 19 applied in the second, third, and fourth embodiments is not necessary. However, since the DC power supply is not forcibly applied, monitoring is performed only during operation.

1 二重給電同期機、4 電力系統、5 交流励磁装置、8 地絡検出回路、
9、11 抵抗、10 模擬中性点、12 地絡検出器(地絡検出リレー回路)、
13 地絡点、14 地絡電流回路、15 抵抗、16 一次遅れフィルタ、
17 地絡判定部、18 交流電源、 19 変圧器、20、32 整流回路、
21 すべり周波数成分除去演算部、22 地絡電圧信号、23 微分回路、
24 減算器、25 地絡判別信号、26 ピークホールド回路、
27 アレスタ、28 断線、29 過電圧検出器、30 コンタクタ、
31 地絡検出器(地絡検出リレー回路)、33 リップル除去回路
1 double-feed synchronous machine, 4 power system, 5 AC exciter, 8 ground fault detection circuit,
9, 11 resistance, 10 simulated neutral point, 12 ground fault detector (ground fault detection relay circuit),
13 ground fault point, 14 ground fault current circuit, 15 resistance, 16 first order lag filter,
17 ground fault determination unit, 18 AC power supply, 19 transformer, 20, 32 rectifier circuit,
21 slip frequency component elimination operation unit, 22 ground fault voltage signal, 23 differentiation circuit,
24 subtractor, 25 ground fault determination signal, 26 peak hold circuit,
27 Arrester, 28 Disconnection, 29 Overvoltage detector, 30 Contactor,
31 Ground fault detector (ground fault detection relay circuit), 33 Ripple elimination circuit

Claims (8)

固定子巻線が電力系統に接続され、回転子巻線が可変周波数の電力変換器からなる交流励磁装置に接続され、系統周波数と回転子の回転速度との差に相当する周波数(すべり周波数)を持った交流励磁電流が前記交流励磁装置から前記回転子巻線に供給されるよう構成された二重給電同期機において、
前記回転子巻線と前記電力変換器とを接続する界磁回路から分岐して、抵抗を介して形成された模擬中性点回路と、この模擬中性点回路の中性点を抵抗を介して接地する抵抗接地回路と、この抵抗接地回路に設けられ、前記回転子巻線と電力変換器を含む界磁回路の1線地絡発生時に、この抵抗接地回路に流れる地絡電流を検出し、前記界磁回路の地絡を検出する地絡検出器を備えた二重給電同期機の地絡検出装置。
The stator winding is connected to the power system, the rotor winding is connected to an AC exciter consisting of a variable frequency power converter, and the frequency (slip frequency) corresponding to the difference between the system frequency and the rotational speed of the rotor. In a double-feed synchronous machine configured to supply an AC excitation current having a current to the rotor winding from the AC excitation device,
A simulated neutral point circuit branched from a field circuit connecting the rotor winding and the power converter and formed via a resistor, and a neutral point of the simulated neutral point circuit via a resistor When a one-wire ground fault occurs in the field circuit including the rotor winding and the power converter, the ground fault current flowing in the resistance ground circuit is detected. A ground fault detection device for a double-feed synchronous machine comprising a ground fault detector for detecting a ground fault in the field circuit.
前記地絡検出器は、地絡電流に重畳される直流成分を前記抵抗接地回路に供給するための整流器からなる直流電源部と、地絡電流に含まれるすべり周波数成分を除去するための一次遅れフィルタと、この一次遅れフィルタの出力レベルを判定して1線地絡を検出する地絡判定部を備えたことを特徴とする請求項1に記載の二重給電同期機の地絡検出装置。   The ground fault detector includes a DC power supply unit including a rectifier for supplying a DC component superimposed on a ground fault current to the resistance grounding circuit, and a primary delay for removing a slip frequency component included in the ground fault current. 2. The ground fault detection device for a double-feed synchronous machine according to claim 1, further comprising a filter and a ground fault determination unit that determines an output level of the first-order lag filter and detects a one-line ground fault. 前記地絡検出器は、地絡電流に重畳される直流成分を前記抵抗接地回路に供給するための整流器からなる直流電源部と、地絡電流に含まれるすべり周波数成分を除去するためのすべり周波数成分除去演算部と、このすべり周波数成分除去演算部の出力レベルを判定して1線地絡を検出する地絡判定部を備え、前記すべり周波数成分除去演算部は、地絡電流を電圧信号に変換した地絡電圧信号を入力してすべり周波数成分のみを演算する微分回路と、該微分回路の演算結果を微分前の前記地絡電圧信号から減算して地絡電圧信号の直流成分のみを出力する減算器を具備することを特徴とする請求項1に記載の二重給電同期機の地絡検出装置。   The ground fault detector includes a DC power supply unit including a rectifier for supplying a DC component superimposed on a ground fault current to the resistance ground circuit, and a slip frequency for removing a slip frequency component included in the ground fault current. A component removal calculation unit, and a ground fault determination unit that detects an output level of the slip frequency component removal calculation unit and detects a one-wire ground fault, and the slip frequency component removal calculation unit converts the ground fault current into a voltage signal. A differential circuit that calculates the slip frequency component by inputting the converted ground fault voltage signal, and outputs only the DC component of the ground fault voltage signal by subtracting the calculation result of the differential circuit from the ground fault voltage signal before differentiation. The ground fault detection apparatus for a double-fed synchronous machine according to claim 1, further comprising a subtractor that performs the operation. 前記地絡検出器は、地絡電流に重畳される直流成分を前記抵抗接地回路に供給するための整流器からなる直流電源部と、地絡電流に含まれるすべり周波数成分のピーク値を保持し直流信号として出力するピークホールド回路と、このピークホールド回路のピーク値を判定して1線地絡を検出する地絡判定部を備えたことを特徴とする請求項1に記載の二重給電同期機の地絡検出装置。   The ground fault detector has a DC power source composed of a rectifier for supplying a DC component superimposed on a ground fault current to the resistance grounding circuit, and holds a peak value of a slip frequency component included in the ground fault current. The double-feed synchronous machine according to claim 1, further comprising: a peak hold circuit that outputs a signal; and a ground fault determination unit that determines a peak value of the peak hold circuit and detects a one-wire ground fault. Ground fault detection device. 前記抵抗接地回路の地絡検出器と並列にアレスタを設けたことを特徴とする請求項1〜4のいずれか1項に記載の二重給電同期機の地絡検出装置。   5. The ground fault detection device for a double-feed synchronous machine according to claim 1, wherein an arrester is provided in parallel with the ground fault detector of the resistance grounding circuit. 前記抵抗接地回路の抵抗と地絡検出器の間に、前記地絡検出器に印加される過電圧を検出する過電圧検出器と、この過電圧検出器が過電圧を検出した時に開路して前記地絡検出器を抵抗接地回路から切り離すコンタクタを備えたことを特徴とする請求項1〜4のいずれか1項に記載の二重給電同期機の地絡検出装置。   An overvoltage detector for detecting an overvoltage applied to the ground fault detector between a resistance of the resistance ground circuit and the ground fault detector, and when the overvoltage detector detects an overvoltage, the circuit is opened to detect the ground fault. The ground fault detection device for a double-feed synchronous machine according to any one of claims 1 to 4, further comprising a contactor for separating the device from the resistance ground circuit. 前記地絡検出回路を二重化することで断線による電圧上昇を防ぐことを特徴とする請求項1〜4のいずれか1項に記載の二重給電同期機の地絡検出装置。   5. The ground fault detection device for a double-feed synchronous machine according to claim 1, wherein voltage rise due to disconnection is prevented by duplexing the ground fault detection circuit. 前記地絡検出器は、地絡電流を電圧信号に変換した地絡電圧信号を整流する整流回路と、この整流回路の出力に含まれるリップル分を除去するリップル除去回路と、このリップル除去回路からの直流信号のレベルを判定して1線地絡を検出する地絡判定部を備えたことを特徴とする請求項1に記載の二重給電同期機の地絡検出装置。   The ground fault detector includes a rectifier circuit that rectifies a ground fault voltage signal obtained by converting a ground fault current into a voltage signal, a ripple elimination circuit that removes a ripple included in the output of the rectifier circuit, and a ripple elimination circuit. The ground fault detection apparatus of the double feeding synchronous machine of Claim 1 provided with the ground fault determination part which determines the level of the direct current signal of this and detects a 1 line ground fault.
JP2010176166A 2010-08-05 2010-08-05 Double fault synchronous machine ground fault detection device Active JP5711478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176166A JP5711478B2 (en) 2010-08-05 2010-08-05 Double fault synchronous machine ground fault detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176166A JP5711478B2 (en) 2010-08-05 2010-08-05 Double fault synchronous machine ground fault detection device

Publications (2)

Publication Number Publication Date
JP2012039711A true JP2012039711A (en) 2012-02-23
JP5711478B2 JP5711478B2 (en) 2015-04-30

Family

ID=45851087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176166A Active JP5711478B2 (en) 2010-08-05 2010-08-05 Double fault synchronous machine ground fault detection device

Country Status (1)

Country Link
JP (1) JP5711478B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153596A1 (en) * 2012-04-09 2013-10-17 東芝三菱電機産業システム株式会社 Ground fault detecting circuit and power conversion device using same
CN103424577A (en) * 2013-08-28 2013-12-04 哈尔滨电机厂有限责任公司 Installation technology of ground strap of quadrupole steam-turbine generator rotor
CN108604494A (en) * 2017-01-11 2018-09-28 那恩能源有限公司 Real-time detection/repair system when power distribution system source line fault and its construction method
CN111564828A (en) * 2020-06-11 2020-08-21 国网江西省电力有限公司电力科学研究院 Distance pilot protection method suitable for double-fed fan output line
CN114062965A (en) * 2021-11-02 2022-02-18 中国长江电力股份有限公司 Method for reducing ping-pong switching type rotor one-point grounding protection fault positioning range
CN114062964A (en) * 2021-11-02 2022-02-18 中国长江电力股份有限公司 Method for reducing one-point earth protection fault positioning range of double-end injection type rotor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105277846A (en) * 2014-06-12 2016-01-27 广西电网公司北海供电局 Passive coupling communication mode-based power distribution line on-line monitoring method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265516A (en) * 1987-04-22 1988-11-02 Hitachi Ltd Ground-fault detector for three-phase ac circuit
JPH01218326A (en) * 1988-02-24 1989-08-31 Hitachi Ltd Field ground fault detector for brushless synchronous machine
JPH01246912A (en) * 1988-03-29 1989-10-02 Mitsuba Electric Mfg Co Ltd Low-pass filter
JPH09131096A (en) * 1995-10-30 1997-05-16 Toshiba Corp Protective device for exciting circuit of variable speed generator-motor
JP2006141108A (en) * 2004-11-11 2006-06-01 Sumitomo Metal Ind Ltd Method and device for detecting abnormality of three-phase winding type induction motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265516A (en) * 1987-04-22 1988-11-02 Hitachi Ltd Ground-fault detector for three-phase ac circuit
JPH01218326A (en) * 1988-02-24 1989-08-31 Hitachi Ltd Field ground fault detector for brushless synchronous machine
JPH01246912A (en) * 1988-03-29 1989-10-02 Mitsuba Electric Mfg Co Ltd Low-pass filter
JPH09131096A (en) * 1995-10-30 1997-05-16 Toshiba Corp Protective device for exciting circuit of variable speed generator-motor
JP2006141108A (en) * 2004-11-11 2006-06-01 Sumitomo Metal Ind Ltd Method and device for detecting abnormality of three-phase winding type induction motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153596A1 (en) * 2012-04-09 2013-10-17 東芝三菱電機産業システム株式会社 Ground fault detecting circuit and power conversion device using same
JPWO2013153596A1 (en) * 2012-04-09 2015-12-17 東芝三菱電機産業システム株式会社 Ground fault detection circuit and power converter using the same
EP2837942A4 (en) * 2012-04-09 2016-06-15 Toshiba Mitsubishi Elec Inc Ground fault detecting circuit and power conversion device using same
US9606163B2 (en) 2012-04-09 2017-03-28 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ground fault detecting circuit and power converting device including the same
CN103424577A (en) * 2013-08-28 2013-12-04 哈尔滨电机厂有限责任公司 Installation technology of ground strap of quadrupole steam-turbine generator rotor
CN103424577B (en) * 2013-08-28 2015-08-05 哈尔滨电机厂有限责任公司 A kind of four-pole turbo-generator rotor ground fault sheet mounting process
CN108604494A (en) * 2017-01-11 2018-09-28 那恩能源有限公司 Real-time detection/repair system when power distribution system source line fault and its construction method
CN108604494B (en) * 2017-01-11 2021-04-20 那恩能源有限公司 Real-time detection/repair system for power line fault of power distribution system and construction method thereof
CN111564828A (en) * 2020-06-11 2020-08-21 国网江西省电力有限公司电力科学研究院 Distance pilot protection method suitable for double-fed fan output line
CN114062965A (en) * 2021-11-02 2022-02-18 中国长江电力股份有限公司 Method for reducing ping-pong switching type rotor one-point grounding protection fault positioning range
CN114062964A (en) * 2021-11-02 2022-02-18 中国长江电力股份有限公司 Method for reducing one-point earth protection fault positioning range of double-end injection type rotor

Also Published As

Publication number Publication date
JP5711478B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5711478B2 (en) Double fault synchronous machine ground fault detection device
CN103782509B (en) For detecting system, computer program and the method for the internal winding failure of synchronous generator
EP2905630B1 (en) Fault detection in brushless exciters
EP2856591B1 (en) System and method for high resistance ground fault detection and protection in power distribution systems
RU2542494C2 (en) Device and method for detection of ground short-circuit
JP5401250B2 (en) Ground fault detection device
US8873207B2 (en) Method for operating a ground fault interrupter as well as ground fault interrupter for a frequency converter
EP2908148B1 (en) Rectifier diode fault detection in brushless exciters
RU2557017C2 (en) Fault identification and directional detection in three-phase power system
EP2602893A1 (en) Power system protection
US20160099569A1 (en) Energy generating device with functionally reliable potential separation
JP6599802B2 (en) Ground fault detection method for AC side connection line of DC feeding rectifier
JP2002505068A (en) Method and circuit for monitoring insulation and fault current in AC power supply
WO2012097825A1 (en) A wind turbine fault detection circuit and method
CN102608483B (en) Direction diagnosing system of grounded fault of small current grounded distribution system
EP2501009A1 (en) Electric rotating machine
EP3787140B1 (en) Generator rotor turn-to-turn fault detection using fractional harmonics
Samantaray et al. A new approach to islanding detection in distributed generations
JP2014196920A (en) Leak detection device
CN109740105A (en) A kind of anti-power frequency magnetic field interference method for busbar protective device
US8120206B2 (en) Method of detecting a sustained parallel source condition
WO2018034260A1 (en) Open phase detecting system, open phase detecting device and open phase detecting method
JP2019009977A (en) Device and method for testing operation of protection unit and protection unit having the same test device
Kia et al. Slip independent monitoring of wound-rotor induction machines
CN104034985B (en) Island detection method and system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150306

R150 Certificate of patent or registration of utility model

Ref document number: 5711478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250