JP2012038473A - Induction heating apparatus and induction heating method - Google Patents

Induction heating apparatus and induction heating method Download PDF

Info

Publication number
JP2012038473A
JP2012038473A JP2010175678A JP2010175678A JP2012038473A JP 2012038473 A JP2012038473 A JP 2012038473A JP 2010175678 A JP2010175678 A JP 2010175678A JP 2010175678 A JP2010175678 A JP 2010175678A JP 2012038473 A JP2012038473 A JP 2012038473A
Authority
JP
Japan
Prior art keywords
furnace
heated
induction heating
coil
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010175678A
Other languages
Japanese (ja)
Inventor
Isamu Hosono
勇 細野
Ryota Aono
良太 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHINO KK
Original Assignee
UCHINO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHINO KK filed Critical UCHINO KK
Priority to JP2010175678A priority Critical patent/JP2012038473A/en
Publication of JP2012038473A publication Critical patent/JP2012038473A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating apparatus that supplies a heated material immediately at a normal restart of operation by retaining warmth of the heated material having been heated once to high temperature in a heating furnace while keeping energy loss small.SOLUTION: Adjacently to a cylinder type primary heating furnace 10 having a first induction heating coil 1 for primary heating, a cylinder type warmth retaining furnace 20 having a second induction heating coil 2 for warmth retainment is provided in parallel, and the overall length Lof the primary heating furnace and the overall length Lof the warmth retaining furnace 20 are set to be substantially equal to each other.

Description

本発明は、誘導加熱装置及び誘導加熱方法に関する。   The present invention relates to an induction heating apparatus and an induction heating method.

熱間鍛造機(設備)へ高温金属材料を供給するために、誘導加熱装置が用いられている。即ち、高周波誘導加熱コイル内にブロック状の金属材料(被加熱材)を順次送りを与えつつ加熱する連続搬送式誘導加熱装置が用いられ、例えば1200℃の高温まで加熱して次工程設備としての熱間鍛造機へブロック状の高温金属材料を供給している。   An induction heating device is used to supply a high-temperature metal material to a hot forging machine (equipment). That is, a continuous conveyance induction heating apparatus that heats a block-shaped metal material (material to be heated) sequentially fed into a high frequency induction heating coil is used, for example, heated to a high temperature of 1200 ° C. A block-like high-temperature metal material is supplied to a hot forging machine.

ところが、熱間鍛造機のトラブル等の理由にて、次工程の作業が中断した場合、誘導加熱装置から順次排出される高温金属材料は、上記作業の中断によって、焼ざまし材として、常温に戻してから、再加熱せねばならず、エネルギー無駄が発生する。   However, when work in the next process is interrupted due to a problem with a hot forging machine, etc., the high-temperature metal material that is sequentially discharged from the induction heating device is brought to room temperature as an annealing material due to the interruption of the above work. After returning, it must be reheated and energy is wasted.

このような焼ざまし材を発生させないために、従来、以下のような方法が行われている。
第1は、被加熱物(金属材料)の温度を保つように誘導加熱装置の加熱エネルギーを低減させて、搬送を停止する方法である。
第2は、誘導加熱装置の近傍に保温用雰囲気炉を設ける方法である(例えば、特許文献1参照)。
In order not to generate such an annealed material, the following methods have been conventionally performed.
The first is a method of stopping the conveyance by reducing the heating energy of the induction heating device so as to keep the temperature of the object to be heated (metal material).
The second is a method of providing a warming atmosphere furnace in the vicinity of the induction heating device (see, for example, Patent Document 1).

特開2005−153006号公報JP 2005-153006 A

しかし、前記第1の方法では、保温運転中に誘導加熱装置の炉内各部の温度を均等に保つことが困難であって、運転再開後の被加熱材の温度にバラツキが生じるという問題があった。また(この第1の方法を僅かに改善した方法として、)被加熱材の搬送を停止せずに減速送りを続けて、上記炉内各部の温度分布を均一化させる方法も提案されているが、減速搬送によって、(高温金属材が排出されることに変わりなく、)焼ざまし材が発生してしまう。   However, the first method has a problem that it is difficult to keep the temperature of each part in the furnace of the induction heating apparatus uniform during the heat insulation operation, and the temperature of the material to be heated varies after the operation is resumed. It was. In addition, a method has been proposed (as a slightly improved method of the first method) in which the temperature distribution of each part in the furnace is made uniform by continuing the decelerating feed without stopping the conveyance of the heated material. By decelerated conveyance, an annealed material is generated (as is the case with high-temperature metal material being discharged).

また、前記第2の方法では、従来から燃焼炉や電熱炉等の雰囲気炉が保温炉として使用されており、待機中のエネルギーロスが大きく、また、電熱炉では発熱体の寿命が短いという問題があり、一方、燃焼炉ではスケール付着等の品質上の問題があり、第2の方法は実用化が至難であった。   Further, in the second method, conventionally, an atmospheric furnace such as a combustion furnace or an electric heating furnace has been used as a heat insulation furnace, and there is a large energy loss during standby, and the heating element has a short life in the electric heating furnace. On the other hand, the combustion furnace has quality problems such as adhesion of scale, and the second method is difficult to put into practical use.

そこで、本発明は、一旦高温に加熱された被加熱材を迅速に保温炉に移すことが可能であり、かつ、予熱が不要な保温炉であり、省エネルギーを実現し、さらに、装置全体の省スペース化を可能として、実用性も高く、特に、運転再開後の被加熱材の温度を均一に保つことが容易であって、これによって、次工程の製品の品質を均一にかつ高く維持することを目的とする。   Therefore, the present invention is a heat insulation furnace that can quickly transfer a material to be heated, which has been heated to a high temperature, to a heat insulation furnace and does not require preheating, achieves energy saving, and further saves the entire apparatus. Space can be made, practicality is high, and it is easy to keep the temperature of the material to be heated even after restarting operation in particular, so that the quality of the product in the next process can be maintained uniformly and high. With the goal.

そこで、本発明に係る誘導加熱装置は、本加熱用の第1誘導加熱コイルを有する筒型本加熱炉に隣り合って、保温用の第2誘導加熱コイルを有する筒型保温炉を平行に並設し、さらに、上記本加熱炉と上記保温炉の全長を略同一に設定した。   In view of this, the induction heating apparatus according to the present invention is arranged in parallel with a cylindrical heat-retaining furnace having a second induction heating coil for heat retention, adjacent to the cylindrical main-heating furnace having a first induction heating coil for main heating. Furthermore, the full length of the main heating furnace and the temperature maintaining furnace was set to be substantially the same.

また、上記本加熱炉の排出口と、該排出口の横に隣り合って配設した上記保温炉の投入口との間を、横方向に往復移動して被加熱材を搬送可能なトラバース手段を備えている。
また、上記保温炉の上記第2誘導加熱コイルは、直列に配設された複数の加熱コイル単体と、1巻き乃至2巻きの接続コイルを、備え、上記加熱コイル単体を上記接続コイルを介して直列に電気接続したものである。
Further, traverse means capable of transporting the material to be heated by reciprocating in the horizontal direction between the discharge port of the main heating furnace and the input port of the heat insulation furnace disposed adjacent to the discharge port. It has.
Further, the second induction heating coil of the heat retaining furnace includes a plurality of heating coil single units arranged in series and one or two winding connection coils, and the heating coil unit is interposed via the connection coils. They are electrically connected in series.

そして、本発明に係る誘導加熱方法は、本加熱用の第1誘導加熱コイルを有する筒型本加熱炉に隣り合って、保温用の第2誘導加熱コイルを有する筒型保温炉を平行に並設し、さらに、上記本加熱炉と上記保温炉の全長を略同一に設定し、そして、上記本加熱炉から排出される被加熱材を次工程設備に搬送できない搬送中断時に、上記本加熱炉の内部にある被加熱材の全てを、隣り合った上記保温炉に収納して、保温し、その後、次工程設備が再起動されると、上記保温炉に収納していた被加熱材を上記次工程設備に搬送するために保温炉から排出すると同時に上記本加熱炉に新たな被加熱材の投入を行って被加熱材の加熱を再開し、上記保温炉からの排出と上記本加熱炉への投入を同期運転して、保温炉内の全ての被加熱材が排出されると、途切れることなく上記本加熱炉から加熱された被加熱材を引続き上記次工程設備に搬送する方法である。   The induction heating method according to the present invention includes a cylindrical heat-retaining furnace having a second heat-reducing coil for heat insulation, in parallel with a cylindrical main-heating furnace having a first induction heating coil for main heating. In addition, the main heating furnace and the heat retaining furnace are set to have substantially the same overall length, and when the material to be heated discharged from the main heating furnace cannot be transported to the next process facility, the main heating furnace All the materials to be heated inside are stored in the above-mentioned heat insulation furnace and kept warm, and then the next process equipment is restarted, the material to be heated contained in the heat insulation furnace is At the same time as discharging from the heat insulation furnace to transport to the next process equipment, a new material to be heated is put into the main heating furnace to resume heating of the material to be heated, and the discharge from the heat retention furnace and the main heating furnace are resumed. When all the materials to be heated in the heat insulation furnace are discharged The material to be heated that is heated from the main heating furnace without interruption continued a method for transporting to the next process equipment.

本発明によれば、何らかの理由で次工程設備(高温鍛造機等)が停止した際に、高温金属材料(高温被加熱材)を直ちに保温炉にてその高温状態を保つように、維持でき、次工程設備にて加工される製品の品質を安定して保ち得る。しかも、省スペースの装置であり、予熱エネルギーおよび待機エネルギーを必要とせず、作動のための消費エネルギーも少なくて済む。
特に、筒型本加熱炉内に存在していた被加熱材を、全部保温炉に収納可能なため、焼ざまし材を発生させないで済む。
According to the present invention, when the next process equipment (such as a high-temperature forging machine) is stopped for some reason, the high-temperature metal material (high-temperature heated material) can be maintained so as to immediately maintain its high-temperature state in a heat-retaining furnace, The quality of products processed in the next process equipment can be kept stable. Moreover, it is a space-saving device, does not require preheating energy and standby energy, and consumes less energy for operation.
In particular, since all the materials to be heated existing in the cylindrical main heating furnace can be stored in the heat insulation furnace, it is not necessary to generate an annealing material.

さらに、次工程設備が再起動した際には、直ちに高温被加熱材を保温炉から送り出すことが可能であり、その後、引き続いて本加熱材から高温被加熱材を途切れずに供給できる。   Furthermore, when the next process equipment is restarted, the high-temperature heated material can be immediately sent out from the heat retaining furnace, and then the high-temperature heated material can be continuously supplied from the main heating material without interruption.

本発明の実施の一形態を示す一部断面簡略側面図である。It is a partial cross section simplified side view which shows one Embodiment of this invention. 簡略平面図である。It is a simplified plan view. エネルギー(電力)付与状態を示すグラフ図である。It is a graph which shows an energy (electric power) provision state. 簡略平面図である。It is a simplified plan view. 正常搬送状態の簡略平面図である。It is a simplified top view of a normal conveyance state. 搬送中断状態で被加熱材を横方向へトラバースする状況を説明する簡略平面図である。It is a simplified top view explaining the condition where a to-be-heated material is traversed to a horizontal direction in a conveyance interruption state. 保温炉内へ最初の被加熱材を収納する状態を示す簡略平面図である。It is a simplified top view which shows the state which accommodates the first to-be-heated material in a heat retention furnace. 保温炉内へ2番目の被加熱材を収納する状態を示す簡略平面図である。It is a simplified top view which shows the state which accommodates the 2nd to-be-heated material in a heat retention furnace. 保温炉内へ全ての被加熱材を収納する状態を示す簡略平面図である。It is a simplified top view which shows the state which accommodates all the to-be-heated materials in a heat retention furnace. 運転を再開して、次工程設備へ被加熱材を搬送開始直後の状態を示した簡略平面図である。It is the simple top view which showed the state immediately after restarting an operation | movement and starting conveyance of a to-be-heated material to the next process equipment. その後の状態を示した簡略平面図である。It is the simplified top view which showed the state after that. さらにその後の状態を示す簡略平面図である。Furthermore, it is a simplified top view which shows the subsequent state. 次工程設備へ被加熱材を搬出する状態を示した簡略平面図である。It is the simple top view which showed the state which carries out a to-be-heated material to the next process equipment. 保温炉から最後の被加熱材が排出されてトラバース手段にて移送される直前の状態の簡略平面図である。It is a simplified top view of the state just before the last to-be-heated material is discharged | emitted from a heat retention furnace, and is transferred by a traverse means. その後、トラバース手段にて本加熱炉の排出口の前方まで移送された(保温炉からの最後の)被加熱材が次工程設備へ搬送される状態を説明する簡略平面図である。Then, it is a simplified top view explaining the state by which the to-be-heated material (the last from a heat retention furnace) transferred to the front of the discharge port of this heating furnace by a traverse means is conveyed to the next process equipment. 保温炉の要部構成を示した分解説明図である。It is the decomposition explanatory view showing the important section composition of a heat retention furnace. 接続コイルの一例の斜視簡略図である。It is a perspective schematic diagram of an example of a connection coil. 保温炉の要部構成を示した組立図である。It is an assembly drawing which showed the principal part structure of the heat retention furnace. 従来の誘導加熱炉の要部構成を示す組立図である。It is an assembly drawing which shows the principal part structure of the conventional induction heating furnace.

以下、図示の実施の形態に基づき本発明を詳説する。
図1〜図15に於て、10は本加熱用の第1誘導加熱コイル1を有する筒型本加熱炉であり、20は保温用の第2誘導加熱コイル2を有する筒型保温炉であり、平面視、相互に平行に、かつ、隣り合って、並設される。図例では本加熱炉10と保温炉20とは、いずれも水平状に固設され、全長L10と全長L20とは略同一に設定される。なお、図示省略したが、この本加熱炉10と保温炉20とは平行に上下に配設しても良い。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
1 to 15, 10 is a cylindrical main heating furnace having a first induction heating coil 1 for main heating, and 20 is a cylindrical heat insulating furnace having a second induction heating coil 2 for heat retention. , In plan view, parallel to each other and next to each other. In the illustrated example, the main heating furnace 10 and the heat retaining furnace 20 are both fixed horizontally, and the full length L 10 and the full length L 20 are set to be substantially the same. Although not shown, the main heating furnace 10 and the heat retaining furnace 20 may be arranged vertically in parallel.

3は材料供給装置であり、一般にビレットと呼ばれているブロック状金属材料(被加熱材)Mを、公知のチェーンコンベア,シュート,ロボットアーム等によって、矢印A(図2参照)のように、本加熱炉10の挿入口4の近傍まで供給する。図1〜図15では、金属材料(被加熱材)Mを受持する受け台やガイド部材を図示省略したが、本加熱炉10の挿入口4近傍にて、上記受け台やガイド部材にて受持された被加熱材Mは、本コイル用プッシャ5にて、挿入口4から貫通孔状加熱路6内へ送り込まれる。なお、貫通孔から成るこの加熱路6は、円筒状耐火断熱材によって形成され、しかも、この耐火断熱材の外周に第1誘導加熱コイル1が巻設される。また、図4〜図15に於ては、加熱路6,加熱コイル1を省略して、本加熱炉10を簡略表現している。   3 is a material supply device, and a block-shaped metal material (material to be heated) M generally called a billet is moved by a known chain conveyor, chute, robot arm or the like as indicated by an arrow A (see FIG. 2). Supply to the vicinity of the insertion port 4 of the main heating furnace 10. In FIG. 1 to FIG. 15, a cradle and a guide member for supporting the metal material (material to be heated) M are omitted, but in the vicinity of the insertion port 4 of the heating furnace 10, The to-be-heated material M held is fed into the through-hole heating path 6 from the insertion port 4 by the coil pusher 5. The heating path 6 formed of a through hole is formed of a cylindrical refractory heat insulating material, and the first induction heating coil 1 is wound around the outer periphery of the refractory heat insulating material. 4 to 15, the heating path 6 and the heating coil 1 are omitted, and the heating furnace 10 is simply expressed.

そして、15は熱間鍛造機等の次工程設備であり、本発明に係る誘導加熱装置にて高温に加熱された被加熱材(金属材料)Mを、図1に示すシュート、あるいは、コンベア等の搬送手段7によって、送り込む(図1及び後述の図5,図11,図13,図15の矢印B参照)。   Reference numeral 15 denotes a next process facility such as a hot forging machine, and the material to be heated (metal material) M heated to a high temperature by the induction heating device according to the present invention is used as a chute or a conveyor shown in FIG. (See arrow B in FIG. 1 and FIGS. 5, 11, 13, and 15 described later).

ところで、本加熱炉10の(上記加熱路6の)排出口11と、保温炉20の投入口21とは、横に隣り合って配設されている。なお、投入口21は、後述するように次工程設備15が停止(中断)した際に、本加熱炉10にて加熱された金属材料(被加熱材)Mを保温路22内に押込状に挿入(投入)する開口部を意味する。但し、この投入口21は、保温されていた保温路22内の金属材料(被加熱材)Mを排出する際には送り出し口となる。   By the way, the discharge port 11 (of the heating path 6) of the main heating furnace 10 and the input port 21 of the heat insulation furnace 20 are disposed side by side. The inlet 21 pushes the metal material (material to be heated) M heated in the heating furnace 10 into the heat retaining path 22 when the next process equipment 15 is stopped (interrupted) as will be described later. It means an opening to be inserted (inserted). However, the charging port 21 serves as a delivery port when discharging the metal material (heated material) M in the heat retaining path 22 that has been kept warm.

また、30はトラバース手段であって、同一高さで、かつ、左右横方向に隣り合って並んだ(前述の)排出口11と投入口21との間を矢印C,Eにて示すように横方向に往復移動して、被加熱材Mを搬送する。   Reference numeral 30 denotes traverse means, as indicated by arrows C and E, between the discharge port 11 and the input port 21 (described above) that are the same height and are arranged side by side in the horizontal direction. The material to be heated M is conveyed by reciprocating in the horizontal direction.

トラバース手段30について、さらに具体的に説明すると、平面視、本加熱炉10と保温炉20に対して直交方向に、かつ、排出口11と投入口21よりも僅かに下流側(本加熱炉10の内部を送られる被加熱材Mの送り方向の下流側を言うものとする。)に、2本の平行なレール31,31を床面32等に敷設又は載置固定する。このレール31,31に沿って、左右に(矢印C,Eのように)往復動可能に台枠33を取付ける。   The traverse means 30 will be described more specifically. In a plan view, in a direction orthogonal to the main heating furnace 10 and the heat retaining furnace 20, and slightly downstream from the discharge port 11 and the input port 21 (the main heating furnace 10). 2), the two parallel rails 31, 31 are laid or fixed on the floor 32 or the like. A frame 33 is attached along the rails 31 and 31 so as to be reciprocally movable left and right (as indicated by arrows C and E).

側方から見て、図1に示す如く、倒立三角形の各頂点位置に配設した鎖車等の回転体34,34,34に、チェーンコンベア35を懸架する。回転体34,34,34の内の1個は、電気モータにて回転駆動され、図1と図5と図10と図11等に示すように、チェーンコンベア35の上辺水平状部位が下流方向への送りを与える場合と、図7と図9に示すように、チェーンコンベア35の上辺水平状部位が上流方向への送りを与える場合とに、正逆切替自在にチェーンコンベア35が駆動される。   As viewed from the side, as shown in FIG. 1, a chain conveyor 35 is suspended from rotating bodies 34, 34, 34 such as chain wheels disposed at the respective vertex positions of the inverted triangle. One of the rotating bodies 34, 34, 34 is rotationally driven by an electric motor, and as shown in FIG. 1, FIG. 5, FIG. 10, FIG. 7 and FIG. 9, the chain conveyor 35 is driven so that it can be switched between forward and reverse, when the upper horizontal portion of the chain conveyor 35 supplies the feed in the upstream direction. .

上記電気モータにより、又は、別の電気モータによって、チェーンコンベア35と同期して回転する補助ローラ36が、図1のように、配設されている。つまり、被加熱材Mがチェーンコンベア35に乗り移ろうとする(又は、チェーンコンベア35から保温炉20内へ挿入させようとする)際に、被加熱材Mの上面に押圧状態で接触して、スムーズな移動を可能としている。なお、図2〜図15では、このローラ36及びその駆動手段を図示省略した。また、図1に於ては、台枠33、及び、回転体34の支持枠と枢支軸、及び、駆動用電気モータ等を図示省略した。これ等は公知の部材と機器を用いれば良い。   An auxiliary roller 36 that rotates in synchronism with the chain conveyor 35 by the electric motor or another electric motor is disposed as shown in FIG. That is, when the material to be heated M tries to transfer to the chain conveyor 35 (or to be inserted into the heat insulation furnace 20 from the chain conveyor 35), the upper surface of the material to be heated M is in a pressed state, Smooth movement is possible. 2 to 15, the roller 36 and its driving means are not shown. In FIG. 1, the base frame 33, the support frame and the pivot shaft of the rotating body 34, the drive electric motor, and the like are not shown. These may be performed using known members and equipment.

また、図1と図4と図5に簡略に図示したように、光電センサ手段37を設けている。この光電センサ手段37は、投光部37aと受光部37bを有し、図1中にX印40をもって示す高さで左右方向に光線38が走るように上記投光部37aと受光部37bを設置する。言い換えると、チェーンコンベア35の上辺水平部の上に被加熱材Mが有るか無いかを、検知するように、光線38は、チェーンコンベア35の上辺水平部近傍を走る高さに、投光部37aと受光部37bを設置する。(なお、それ以外の図2,図5〜図15では、このような光電センサ手段37を図示省略した。)   In addition, photoelectric sensor means 37 is provided as illustrated in FIGS. 1, 4, and 5. This photoelectric sensor means 37 has a light projecting part 37a and a light receiving part 37b. Install. In other words, the light beam 38 is at a height that runs near the upper horizontal portion of the chain conveyor 35 so as to detect whether or not the material to be heated M is present on the upper horizontal portion of the chain conveyor 35. 37a and light receiving part 37b are installed. (In FIG. 2 and FIGS. 5 to 15 other than that, such photoelectric sensor means 37 is not shown.)

次に、図16〜図18に於て、上述の保温炉20に用いられる第2誘導加熱コイル2等の要部を示した実施例であり、23は円筒型耐火断熱材であるが、一般に、この耐火断熱材23は軸方向長さを1000〜1200mmを越えて作製することが困難であるため、(図16〜図18では)2本の耐火断熱材単体23a,23aを作製して、これを相互に端面24,24にて接合して組立てる。これに伴って、第2誘導加熱コイル2も、複数(図例では2個)の加熱コイル単体2a,2aを直列に接続する必要が生ずる。   Next, in FIGS. 16-18, it is the Example which showed the principal parts, such as the 2nd induction heating coil 2 used for the above-mentioned heat retention furnace 20, 23 is a cylindrical refractory heat insulating material, Since it is difficult to produce the refractory heat insulating material 23 with an axial length exceeding 1000 to 1200 mm, the two refractory heat insulating materials 23a and 23a are produced (in FIGS. 16 to 18), These are assembled by joining the end faces 24 and 24 to each other. Along with this, the second induction heating coil 2 also needs to connect a plurality (two in the illustrated example) of heating coil units 2a, 2a in series.

図19は従来の加熱コイル44を示し、耐火断熱材単体23a,23aを接合する部位には、端面板45が形成されていた。各耐火断熱材単体23a,23aに巻設された加熱コイル単体46,46の内端側端子47,47は、端面板45を越えて端子接続板48によって、電気接続される構造であった。従って、図19に示した従来の加熱コイル44では、コイル端面板45,45近傍位置には、コイルが巻かれていない領域が存在し、通電時に、コイルが巻かれていない(端面板45,45付近の)領域では、磁束密度が弱くなっている。このような磁束密度が局部的に弱くなっている従来の加熱コイル44を、仮に、保温炉20に使用したとすると、保温炉20では、原則的に内部の被加熱材Mは送りを与えないで静止して保温されるため、端面板45,45近傍では、温度が(他よりも)低下するという大きな問題があることが判る。   FIG. 19 shows a conventional heating coil 44, and an end face plate 45 is formed at a portion where the refractory heat insulating materials 23a and 23a are joined. The inner terminal 47, 47 of the heating coil 46, 46 wound around each refractory heat insulating material 23a, 23a was electrically connected by the terminal connection plate 48 beyond the end face plate 45. Accordingly, in the conventional heating coil 44 shown in FIG. 19, there is a region where no coil is wound in the vicinity of the coil end face plates 45, 45, and the coil is not wound when energized (the end face plates 45, 45). In the region (near 45), the magnetic flux density is weak. If the conventional heating coil 44 in which the magnetic flux density is locally weak is assumed to be used in the heat insulation furnace 20, in the heat insulation furnace 20, the material to be heated M in principle is not fed. Therefore, it can be seen that there is a big problem that the temperature is lowered (more than others) in the vicinity of the end face plates 45, 45.

そこで、本発明の実施例(図16〜図18)では、このような問題を解決するために、端面板45,45を省略した(ストレート円筒型の)耐火断熱材単体23a,23a相互を接合すると共に、1巻き(又は図示省略の2巻き)の接続コイル25を、端面24,24相互接合部位に、介設して、加熱コイル単体2a,2aを電気接続する。   Therefore, in the embodiment of the present invention (FIGS. 16 to 18), in order to solve such problems, the end plate 45, 45 is omitted (straight cylindrical type) refractory heat insulation unit 23a, 23a are joined together. At the same time, one coil (or two coils, not shown) of the connection coil 25 is interposed between the end surfaces 24 and 24, and the heating coils 2a and 2a are electrically connected.

図16〜図18の実施例では、コイル単体2a,2aのコイルピッチと、接続コイル25のピッチとを同一とし、かつ、各々に端子27,26を付設して、図18に示すように、端子27と端子26とを接続して、全体として、同一ピッチの連続状にコイル2を構成している。つまり、コイル2は、コイル単体2aと(1巻き乃至2巻きの)接続コイル25とコイル単体2aとから構成されており、3者は直列に電気接続され、長手方向(軸方向)に磁束密度が均等となり、静止して保温する保温炉としては、複数の内部の被加熱材Mの温度が全て同一に保たれる。つまり、端面24,24の接合部位に静止している被加熱材Mの温度も低下させずに保持され、図19にて述べた問題が解決される。   In the embodiment of FIGS. 16 to 18, the coil pitch of the single coils 2a and 2a and the pitch of the connecting coil 25 are made the same, and terminals 27 and 26 are attached to each of them, as shown in FIG. The terminal 2 and the terminal 26 are connected, and the coil 2 is configured in a continuous manner with the same pitch as a whole. That is, the coil 2 is composed of a coil single body 2a, a connection coil 25 (1 or 2 turns) and a coil single body 2a, and the three are electrically connected in series and have a magnetic flux density in the longitudinal direction (axial direction). As a heat-retaining furnace that keeps the temperature constant, the plurality of internal materials to be heated M are kept at the same temperature. That is, the temperature of the material to be heated M that is stationary at the joining portion of the end faces 24 and 24 is maintained without being lowered, and the problem described in FIG. 19 is solved.

そして、図3(A)(B)は、第1誘導加熱コイル1と第2誘導加熱コイル2の消費電力、従って、磁束密度を、長手方向コイルの(軸心方向)に表示したグラフ図である。この図3(A)から判るように、本加熱炉10の第1誘導加熱コイル1では、挿入口4から排出口11へ段階的に電力(磁束密度)を減少させている。これに対し、保温炉20の第2誘導加熱コイル2では、図3(B)に示すように、投入口21から、その反対の押圧口29にわたって、均等に分布されており、その電力(磁束密度)は、第1誘導加熱コイル1の排出口11側の値と同一乃至それ以下に設定される。   3 (A) and 3 (B) are graphs showing the power consumption of the first induction heating coil 1 and the second induction heating coil 2, and accordingly the magnetic flux density, in the longitudinal coil (axial direction). is there. As can be seen from FIG. 3A, in the first induction heating coil 1 of the heating furnace 10, the power (magnetic flux density) is gradually reduced from the insertion port 4 to the discharge port 11. On the other hand, in the second induction heating coil 2 of the heat retaining furnace 20, as shown in FIG. 3B, it is evenly distributed from the charging port 21 to the opposite pressing port 29, and its electric power (magnetic flux) (Density) is set to be equal to or less than the value on the discharge port 11 side of the first induction heating coil 1.

次に、上述した本発明に係る誘導加熱装置の作用・動作について説明すると、次工程設備15が正常作動していれば、図2,図4,図5(及び図1)に示すように、順次、被加熱材(金属材料)Mが材料供給装置3から本加熱炉10の挿入口4へ本コイル用プッシャ5にて押込まれてゆき、排出口11から十分に加熱された(高温の)被加熱材Mは排出されて、チェーンコンベア35の水平状上辺部に載り、搬送手段7へ送られて、この搬送手段7にて、次工程設備15へ送られ、熱間鍛造等の加工が行われる。   Next, the operation and operation of the induction heating apparatus according to the present invention described above will be described. If the next process equipment 15 is operating normally, as shown in FIGS. 2, 4 and 5 (and FIG. 1), Sequentially, the material to be heated (metal material) M was pushed from the material supply device 3 into the insertion port 4 of the heating furnace 10 by the coil pusher 5 and sufficiently heated (high temperature) from the discharge port 11. The material to be heated M is discharged, placed on the horizontal upper side of the chain conveyor 35, sent to the conveying means 7, and sent to the next process equipment 15 by this conveying means 7, where processing such as hot forging is performed. Done.

ところが、色々なトラブル等によって、次工程設備15に搬送できない搬送中断時にあっては、図5の状態でチェーンコンベア35を停止し、(矢印Bにて示す次工程設備15への搬送を中断し、)図6,図7,図8,図9と順に示すように、本加熱炉10の内部にある被加熱材Mの全てを、一旦、隣り合った保温炉20に収納して、保温する。   However, in the case of interruption of conveyance that cannot be conveyed to the next process equipment 15 due to various troubles, the chain conveyor 35 is stopped in the state of FIG. 5 (the conveyance to the next process equipment 15 indicated by the arrow B is interrupted). 6) As shown in order of FIG. 6, FIG. 7, FIG. 8, and FIG. 9, all the materials to be heated M inside the main heating furnace 10 are temporarily stored in the adjacent heat insulating furnaces 20 and kept warm. .

ところで、被加熱材Mを矢印G方向に本加熱炉10へ押し込むための本コイル用プッシャ5の他に、矢印H方向に被加熱材Mを保温炉20へ押し込むための保温炉押込用プッシャ8、及び、矢印J方向に伸長(押圧)して、保温炉20内にて保温されていた被加熱材Mを押し出すための保温炉押し出し用プッシャ9が、各々、設けられている。また、レール31に沿って、台枠33を、矢印C,Eのように往復させるエアシリンダ等のアクチュエータ12が設けられている。前記プッシャ5,8,9は、電動式往復作動装置が望ましく、伸長速度制御及びストローク位置制御が精度良く行い得る機構のものとする。   By the way, in addition to the main coil pusher 5 for pushing the material to be heated M in the direction of arrow G into the main heating furnace 10, the warmer furnace pusher 8 for pushing the material to be heated M in the heat insulation furnace 20 in the direction of arrow H. Also, a warming furnace pusher 9 is provided for extending (pressing) the arrow J in the direction of arrow J and for extruding the material to be heated M that has been kept warm in the heat retaining furnace 20. An actuator 12 such as an air cylinder that reciprocates the frame 33 along the rail 31 as indicated by arrows C and E is provided. The pushers 5, 8, and 9 are preferably electric reciprocating devices, and have a mechanism capable of accurately performing extension speed control and stroke position control.

図5〜図9にもどって説明すると、何らかの原因で不意に次工程設備15が作動しなくなった中断時には、図5の矢印B方向への送りを中止し、直ちに、アクチュエータ12にて台枠33を矢印C方向へ移動させる。これによって、チェーンコンベア35上の高温の被加熱材(金属材料)Mは、保温炉20の投入口21の前まで移動して、停止する。直ちに、プッシャ8によって、図7に示す如く、矢印H方向へ押込み(投入させ)、保温炉20内へ収納する。   Returning to FIG. 5 to FIG. 9, when the next process equipment 15 is unexpectedly stopped for some reason, the feeding in the direction of arrow B in FIG. Is moved in the direction of arrow C. As a result, the hot material to be heated (metal material) M on the chain conveyor 35 moves to the front of the inlet 21 of the heat retaining furnace 20 and stops. Immediately, as shown in FIG. 7, the pusher 8 pushes (injects) it in the direction of the arrow H and stores it in the heat insulating furnace 20.

なお、上述の「中断」となるや否や、保温炉20の加熱コイル2へ直ちに通電を開始する。また、プッシャ8によって矢印H方向への押込み(投入)の際に、(図1の)矢印とは逆に、チェーンコンベア35と補助ローラ36を、回転駆動させるのが望ましい。   As soon as the above-mentioned “interruption” occurs, energization is immediately started to the heating coil 2 of the heat retaining furnace 20. In addition, when the pusher 8 is pushed (injected) in the direction of the arrow H, it is desirable that the chain conveyor 35 and the auxiliary roller 36 are driven to rotate, contrary to the arrow (in FIG. 1).

図7のように、第1番目の被加熱材Mの投入が完了すると、プッシャ8を短縮作動させ、レール31に沿って、矢印Cと逆方向へ台枠33をトラバースさせ、その後は順次、2番目、3番目……の被加熱材Mを、図8,図9に示すように保温炉20へ投入(収納)して、本加熱炉10内にあった全ての被加熱材Mを、保温炉20内へ移して、そこで保温する。既に本加熱炉10にて加熱されていた高温の被加熱材Mであるため、図3(B)に示したように、保温炉20で消費される電力は少なくても十分である。   As shown in FIG. 7, when the introduction of the first heated material M is completed, the pusher 8 is shortened and the frame 33 is traversed along the rail 31 in the direction opposite to the arrow C. The second, third,... Heated material M is placed (stored) in the heat insulation furnace 20 as shown in FIGS. 8 and 9, and all the heated materials M in the main heating furnace 10 are It moves in the heat insulation furnace 20, and heat-retains there. Since it is the high-temperature material to be heated M that has already been heated in the main heating furnace 10, as shown in FIG.

また、図16〜図19に於て述べたように第2誘導加熱コイル2は、複数の加熱コイル単体2a,2aを、同一コイルピッチに形成した1巻き乃至2巻きの接続コイル25を介して電気的に接続してあるので、磁束密度は、長手方向(軸心方向)に均等化され、収納保温中の全ての被加熱材Mは、同一の加熱エネルギーが付与されて、次工程設備15に、その中断解除後(再開時)に、図10〜図15に示すように、矢印B方向に供給される被加熱材Mの品質が安定して優れたものとなる。   Further, as described in FIGS. 16 to 19, the second induction heating coil 2 includes a plurality of heating coil single bodies 2a and 2a via one or two winding connection coils 25 formed at the same coil pitch. Since they are electrically connected, the magnetic flux density is equalized in the longitudinal direction (axial direction), and all the materials to be heated M that are stored and kept warm are given the same heating energy, so that the next process equipment 15 In addition, after the cancellation of the interruption (at the time of restart), the quality of the material to be heated M supplied in the direction of the arrow B becomes stable and excellent as shown in FIGS.

図10に示すように、次工程設備15が再起動されると、保温炉20に収納していた(
保温していた)被加熱材Mを継工程設備15に搬送するために、プッシャ9によって矢印J方向へ押圧して、保温炉20の元の投入口21から被加熱材Mを排出する作動と、本加熱炉10にプッシャ5によって矢印G方向に押圧して、新たな被加熱材Mを投入する作動とを、同期して行う(同時に両プッシャ9,5を押圧作動して、本加熱炉10における被加熱材Mの加熱を再開する。
As shown in FIG. 10, when the next process equipment 15 was restarted, it was stored in the heat insulation furnace 20 (
In order to transport the heated material M), which has been kept warm, to the joint process equipment 15, the pusher 9 presses the heated material M in the direction of arrow J, and discharges the heated material M from the original inlet 21 of the heat retaining furnace 20. The main heating furnace 10 is pressed in the direction of the arrow G by the pusher 5 and the operation of introducing a new material to be heated M is performed in synchronism (both the pushers 9 and 5 are simultaneously pressed to operate the main heating furnace. 10 resumes the heating of the material M to be heated.

図10に於て、一点鎖線Lをもって明示するように、保温炉20内の図の右端の被加熱材Mbの後端面16と、本加熱炉10内の最初の被加熱材Mfの先端面17とが、鉛直面に位置する。その後、図11,図12,図13,図14と、順次、保温炉20と本加熱炉10内の被加熱材M───Mb,Mf───が、プッシャ9,5にて送りが与えられてゆくが、前記後端面16と先端面17は、一点鎖線Lにて示した同一鉛直面上に位置しつつ、両者の被加熱材Mb,Mfは、同期しつつ前進させる。 In FIG. 10, as clearly indicated by a one-dot chain line L 0 , the rear end surface 16 of the heated material Mb at the right end of the figure in the heat insulating furnace 20 and the front end surface of the first heated material Mf in the heating furnace 10. 17 is located on the vertical plane. 11, 12, 13, and 14, the materials to be heated M ---- Mb, Mf ---- in the heat-retaining furnace 20 and the main heating furnace 10 are sequentially sent by the pushers 9, 5. Yuku given, but the rear end face 16 and the front end surface 17, while located on the same vertical plane as shown by a chain line L 0, both the material to be heated Mb, Mf is advancing while synchronously.

言い換えれば、図10〜図15に示すように、保温炉20からの被加熱材Mの排出(送り)と、本加熱炉10への投入(送り)を、同期運転する。このようにして、保温炉20内の全ての被加熱材Mが排出されると(図14,図15参照)、その次は、本加熱炉10から最前の被加熱材Mfが、矢印B方向へ途切れることなく搬送される。   In other words, as shown in FIGS. 10 to 15, the discharge (feed) of the material to be heated M from the heat insulation furnace 20 and the input (feed) to the main heating furnace 10 are operated synchronously. When all the materials to be heated M in the heat insulating furnace 20 are discharged in this way (see FIGS. 14 and 15), the next material to be heated Mf from the main heating furnace 10 is the direction of the arrow B. It is transported without interruption.

即ち、保温炉20の最後の被加熱材Mbが矢印B方向へ搬送されると、引続いて、本加熱炉10から最初(最前)の被加熱材Mfが搬送される。これによって、次工程設備15へは、所定の高温に加熱された被加熱材(金属材料)が次々と途切れずに供給でき、運転再開の際にも品質の低下が生じることなく、次工程に於て、安定した高品質の鍛造製品等を製造できることとなる。   That is, when the last material to be heated Mb of the heat retaining furnace 20 is conveyed in the direction of arrow B, the first (frontmost) material to be heated Mf is subsequently conveyed from the main heating furnace 10. As a result, the material to be heated (metal material) heated to a predetermined high temperature can be continuously supplied to the next process equipment 15 without interruption, and the quality is not deteriorated when the operation is resumed. Therefore, a stable high quality forged product can be manufactured.

以上述べたように、連続誘導加熱を行う本加熱炉10よりも後工程である鍛造作業等がトラブル等によって中断する場合に、直ちに、保温炉20へ収納(投入)して温度の低下を防ぎ、次工程設備15が再起動されると、まず、保温炉20から順次高温に保っていた被加熱材Mを搬送し、続いて、本加熱炉10から高温被加熱材Mを搬送するので、焼ざまし材が発生せず、エネルギーの無駄も発生しない。   As described above, when a forging operation or the like, which is a later process than the main heating furnace 10 that performs continuous induction heating, is interrupted due to trouble or the like, it is immediately stored (injected) into the heat insulating furnace 20 to prevent a decrease in temperature. When the next process equipment 15 is restarted, first, the heated material M that has been kept at a high temperature is sequentially transferred from the heat-retaining furnace 20, and then the high-temperature heated material M is transferred from the main heating furnace 10, No tempered material is generated and energy is not wasted.

さらに、再起動(運転再開)の後の被加熱材Mの温度にバラツキを生ずることなく、スムーズに次工程設備15へ途切れることなく搬送される。また、従来の燃焼炉において発生したスケール等の付着の問題も発生しないと共に、予熱及び待機エネルギーを必要としないので、本発明は省エネに貢献するものといえる。   Further, the material to be heated M after restarting (resuming operation) is smoothly conveyed to the next process equipment 15 without variation in temperature. Moreover, since the problem of adhesion of scales and the like generated in the conventional combustion furnace does not occur, and preheating and standby energy are not required, the present invention can be said to contribute to energy saving.

また、図1〜図15に示し、かつ、説明したように、全体がコンパクトな装置とすることが可能で、省スペースにも貢献できる。
要するに、本発明は、次工程設備15の作業中断後の待ち時間が無く、優れた発明といえる。しかも、保温炉20による保温運転から、中断解除の通常(正常)運転への切換え時の待ち時間も最少とできる。また、保温炉20は誘導加熱コイル2を用いる方式のため、予熱を必要とせず省エネ効果が大きい。
なお、保温炉20内の被加熱材Mの温度に関しては、第2誘導加熱コイル2内へ投入時、又は、排出時に、供給電力の補正を行えば、一層、高精度の管理ができる。
Moreover, as shown in FIGS. 1-15 and demonstrated, it can be set as the whole compact apparatus, and it can contribute also to space saving.
In short, the present invention has no waiting time after the work interruption of the next process equipment 15 and can be said to be an excellent invention. Moreover, the waiting time at the time of switching from the heat insulation operation by the heat insulation furnace 20 to the normal (normal) operation for canceling the interruption can be minimized. In addition, since the heat retaining furnace 20 uses the induction heating coil 2, it does not require preheating and has a large energy saving effect.
Note that the temperature of the material M to be heated in the heat retaining furnace 20 can be managed with higher accuracy if the supplied power is corrected at the time of introduction into the second induction heating coil 2 or at the time of discharge.

本発明によれば、一連の流れの中で、作業中断前後のサイクルタイムをそのまま維持でき、次工程設備15の作業の待ち時間が生じない利点がある。なお、図5から図6に示すように、次工程設備15の作業が何らかの理由で中断して、保温炉20の誘導加熱コイル2への通電開始から所定の初期の間、保温炉20自体の内壁自体を昇温するに必要な電力を、被加熱材Mの保温に要する電力に加算して、誘導加熱コイル2に付与するのが望ましい。特に、上述の通電開始から所定の初期の間、上記の内壁自体を昇温するに必要なエネルギーを少なくするため、保温炉内壁の耐火断熱材23(図18参照)の比重を、望ましくは、1.30〜1.60とする。
本発明によれば、特に、誘導加熱方式は、被加熱材Mを加熱したい時のみ通電すればよく保温炉20を予熱する必要がなく、そのため待機エネルギーも不要で省エネルギーである。
According to the present invention, the cycle time before and after the work interruption can be maintained as it is in a series of flows, and there is an advantage that the work waiting time of the next process equipment 15 does not occur. As shown in FIG. 5 to FIG. 6, the operation of the next process equipment 15 is interrupted for some reason, and during the predetermined initial period from the start of energization to the induction heating coil 2 of the heat retaining furnace 20, It is desirable to add the electric power required to raise the temperature of the inner wall itself to the electric power required to keep the material to be heated M, and apply it to the induction heating coil 2. In particular, during the predetermined initial period from the start of energization described above, in order to reduce the energy required to raise the temperature of the inner wall itself, the specific gravity of the refractory heat insulating material 23 (see FIG. 18) on the inner wall of the heat retaining furnace is desirably 1.30 to 1.60.
According to the present invention, in particular, the induction heating method may be energized only when it is desired to heat the material to be heated M, and it is not necessary to preheat the heat-retaining furnace 20, so that standby energy is unnecessary and energy saving.

1 第1誘導加熱コイル
2 第2誘導加熱コイル
2a 加熱コイル単体
10 本加熱炉
11 排出口
15 次工程設備(熱間鍛造装置)
20 保温炉
21 投入口
25 接続コイル
30 トラバース手段
10,L20 全長
M 被加熱材(金属材料)
DESCRIPTION OF SYMBOLS 1 1st induction heating coil 2 2nd induction heating coil 2a Heating coil single-piece | unit 10 Main heating furnace 11 Outlet 15 Next process equipment (hot forging apparatus)
20 Thermal insulation furnace 21 Input port 25 Connection coil 30 Traverse means L 10 , L 20 full length M Heated material (metal material)

Claims (4)

本加熱用の第1誘導加熱コイル(1)を有する筒型本加熱炉(10)に隣り合って、保温用の第2誘導加熱コイル(2)を有する筒型保温炉(20)を平行に並設し、さらに、上記本加熱炉(10)と上記保温炉(20)の全長(L10)(L20)を略同一に設定したことを特徴とする誘導加熱装置。 Adjacent to the cylindrical main heating furnace (10) having the first induction heating coil (1) for main heating, the cylindrical heating furnace (20) having the second induction heating coil (2) for heat insulation is arranged in parallel. An induction heating apparatus characterized in that the heating furnace (10) and the heat insulation furnace (20) are arranged in parallel, and the overall lengths (L 10 ) and (L 20 ) of the main heating furnace ( 20 ) are set substantially the same. 上記本加熱炉(10)の排出口(11)と、該排出口(11)の横に隣り合って配設した上記保温炉(20)の投入口(21)との間を、横方向に往復移動して被加熱材(M)を搬送可能なトラバース手段(30)を備えた請求項1記載の誘導加熱装置。   Between the outlet (11) of the main heating furnace (10) and the inlet (21) of the warming furnace (20) arranged adjacent to the side of the outlet (11) in the lateral direction. The induction heating apparatus according to claim 1, further comprising traverse means (30) capable of reciprocatingly moving the material to be heated (M). 上記保温炉(20)の上記第2誘導加熱コイル(2)は、直列に配設された複数の加熱コイル単体(2a)(2a)と、1巻き乃至2巻きの接続コイル(25)を、備え、上記加熱コイル単体(2a)(2a)を上記接続コイル(25)を介して直列に電気接続した請求項1記載の誘導加熱装置。   The second induction heating coil (2) of the heat retaining furnace (20) includes a plurality of heating coil single bodies (2a) (2a) arranged in series and a connection coil (25) of 1 to 2 turns. The induction heating device according to claim 1, further comprising a heating coil unit (2a) (2a) electrically connected in series via the connection coil (25). 本加熱用の第1誘導加熱コイル(1)を有する筒型本加熱炉(10)に隣り合って、保温用の第2誘導加熱コイル(2)を有する筒型保温炉(20)を平行に並設し、さらに、上記本加熱炉(10)と上記保温炉(20)の全長(L10)(L20)を略同一に設定し、そして、上記本加熱炉(10)から排出される被加熱材(M)を次工程設備(15)に搬送できない搬送中断時に、上記本加熱炉(10)の内部にある被加熱材(M)の全てを、隣り合った上記保温炉(20)に収納して、保温し、その後、次工程設備(15)が再起動されると、上記保温炉(20)に収納していた被加熱材(M)を上記次工程設備(15)に搬送するために保温炉(20)から排出すると同時に上記本加熱炉(10)に新たな被加熱材(M)の投入を行って被加熱材(M)の加熱を再開し、
上記保温炉(20)からの排出と上記本加熱炉(10)への投入を同期運転して、保温炉(20)内の全ての被加熱材(M)が排出されると、途切れることなく上記本加熱炉(10)から加熱された被加熱材(M)を引続き上記次工程設備(15)に搬送することを特徴とする誘導加熱方法。
Adjacent to the cylindrical main heating furnace (10) having the first induction heating coil (1) for main heating, the cylindrical heating furnace (20) having the second induction heating coil (2) for heat insulation is arranged in parallel. Further, the full lengths (L 10 ) and (L 20 ) of the main heating furnace (10) and the heat retaining furnace (20) are set substantially the same, and then discharged from the main heating furnace (10). When the material to be heated (M) is interrupted to the next process facility (15), all of the materials to be heated (M) inside the main heating furnace (10) are placed in the adjacent heat retaining furnace (20). When the next process equipment (15) is restarted, the material to be heated (M) stored in the heat insulation furnace (20) is transferred to the next process equipment (15). In order to do so, a new material to be heated (M) is put into the main heating furnace (10) at the same time as it is discharged from the heat insulation furnace (20). To resume the heating of the material to be heated (M),
When all the materials to be heated (M) in the heat insulation furnace (20) are discharged by synchronously operating the discharge from the heat insulation furnace (20) and the charging to the main heating furnace (10), there is no interruption. An induction heating method, wherein the heated material (M) heated from the main heating furnace (10) is continuously conveyed to the next process equipment (15).
JP2010175678A 2010-08-04 2010-08-04 Induction heating apparatus and induction heating method Pending JP2012038473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010175678A JP2012038473A (en) 2010-08-04 2010-08-04 Induction heating apparatus and induction heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175678A JP2012038473A (en) 2010-08-04 2010-08-04 Induction heating apparatus and induction heating method

Publications (1)

Publication Number Publication Date
JP2012038473A true JP2012038473A (en) 2012-02-23

Family

ID=45850293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175678A Pending JP2012038473A (en) 2010-08-04 2010-08-04 Induction heating apparatus and induction heating method

Country Status (1)

Country Link
JP (1) JP2012038473A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074181A (en) * 2010-09-28 2012-04-12 Uchino:Kk Induction heating device and method
CN105149491A (en) * 2015-09-21 2015-12-16 南京力源锻造有限公司 Forging die preheating tube
WO2018155043A1 (en) * 2017-02-23 2018-08-30 Ntn株式会社 Heat treatment equipment and heat treatment method
EP3476955A4 (en) * 2016-06-24 2019-12-04 NTN Corporation Heat treatment equipment and heat treatment method
EP3476954A4 (en) * 2016-06-24 2020-03-18 NTN Corporation Heat treatment method of rod-shape workpiece

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761481B2 (en) * 1975-06-20 1982-12-24 Hitachi Ltd
JPS5930401A (en) * 1982-08-10 1984-02-18 Rozai Kogyo Kk Temper heat retaining installation after flying shear in continuous casting installation
JPS63162856U (en) * 1987-04-10 1988-10-24
JPH02297891A (en) * 1989-05-11 1990-12-10 Mitsubishi Heavy Ind Ltd Member of induction heating coil
JPH08117814A (en) * 1994-10-20 1996-05-14 Sumitomo Metal Ind Ltd Manufacture of seamless steel pipe and manufacturing equipment train for executing the same method
JP2001250667A (en) * 2000-03-06 2001-09-14 Meidensha Corp High-frequency heating device
JP2003338363A (en) * 2002-05-21 2003-11-28 Harison Toshiba Lighting Corp Induction heating roller device and image formation device
JP2004012804A (en) * 2002-06-06 2004-01-15 Toshiba Tec Corp Heating device using induction heating, and fixing device
JP2005153006A (en) * 2003-11-27 2005-06-16 Hagoromo Denki Kk Induction heating apparatus
JP2006302635A (en) * 2005-04-20 2006-11-02 Denki Kogyo Co Ltd Cam shaft high-frequency induction heating coil, and method of cam shaft high frequency induction heating using the heating coil
JP2007253224A (en) * 2006-03-24 2007-10-04 Nissan Motor Co Ltd Device and method for heating billet stock

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761481B2 (en) * 1975-06-20 1982-12-24 Hitachi Ltd
JPS5930401A (en) * 1982-08-10 1984-02-18 Rozai Kogyo Kk Temper heat retaining installation after flying shear in continuous casting installation
JPS63162856U (en) * 1987-04-10 1988-10-24
JPH02297891A (en) * 1989-05-11 1990-12-10 Mitsubishi Heavy Ind Ltd Member of induction heating coil
JPH08117814A (en) * 1994-10-20 1996-05-14 Sumitomo Metal Ind Ltd Manufacture of seamless steel pipe and manufacturing equipment train for executing the same method
JP2001250667A (en) * 2000-03-06 2001-09-14 Meidensha Corp High-frequency heating device
JP2003338363A (en) * 2002-05-21 2003-11-28 Harison Toshiba Lighting Corp Induction heating roller device and image formation device
JP2004012804A (en) * 2002-06-06 2004-01-15 Toshiba Tec Corp Heating device using induction heating, and fixing device
JP2005153006A (en) * 2003-11-27 2005-06-16 Hagoromo Denki Kk Induction heating apparatus
JP2006302635A (en) * 2005-04-20 2006-11-02 Denki Kogyo Co Ltd Cam shaft high-frequency induction heating coil, and method of cam shaft high frequency induction heating using the heating coil
JP2007253224A (en) * 2006-03-24 2007-10-04 Nissan Motor Co Ltd Device and method for heating billet stock

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074181A (en) * 2010-09-28 2012-04-12 Uchino:Kk Induction heating device and method
CN105149491A (en) * 2015-09-21 2015-12-16 南京力源锻造有限公司 Forging die preheating tube
EP3476955A4 (en) * 2016-06-24 2019-12-04 NTN Corporation Heat treatment equipment and heat treatment method
EP3476954A4 (en) * 2016-06-24 2020-03-18 NTN Corporation Heat treatment method of rod-shape workpiece
US11286535B2 (en) 2016-06-24 2022-03-29 Ntn Corporation Heat treatment equipment and heat treatment method
WO2018155043A1 (en) * 2017-02-23 2018-08-30 Ntn株式会社 Heat treatment equipment and heat treatment method

Similar Documents

Publication Publication Date Title
JP2012038473A (en) Induction heating apparatus and induction heating method
JP5201003B2 (en) Heating apparatus and method for hot press forming steel sheet
CN101896292B (en) Hot press forming device and hot press forming method
US7842230B2 (en) Continuous carburizing furnace
JPWO2014051014A1 (en) Molding equipment
JP2006289425A (en) Hot press forming method, and apparatus therefor
JPH0139976B2 (en)
US7811510B2 (en) Continuous carburizing furnace
JP5410393B2 (en) Induction heating device
KR102222786B1 (en) Film formation device for cutting tool provided with coating film, and film formation method for cutting tool provided with coating film
CN211451816U (en) Industrial push plate kiln circulating feeding device
CN213687792U (en) High-temperature furnace for magnetic core production
JPH11316085A (en) Steel material heater and method for heating steel material
KR20150107324A (en) Ceramic layer manufacturing system
JP4872648B2 (en) Heating and cooling equipment for clad material manufacturing equipment
KR20200066630A (en) Hot rolling online mobile heat insulation heat treatment process, and heat treatment line
JP2608203B2 (en) Induction heating device
JP7525948B1 (en) High Temperature Furnace
CN204884754U (en) Stove in succession demagnetizes
CN220366653U (en) Automatic drying system for materials
JP3938554B2 (en) Heat treatment furnace
JP2004107778A (en) Induction heating furnace
KR101524346B1 (en) Blank moving equipment
JP5840403B2 (en) Environmental test equipment
JP2009155669A (en) Induction-heating apparatus and heating method using induction-heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603