JP2012037680A - Light condensation optical element, light condensation device, and photovoltaic power generation device - Google Patents

Light condensation optical element, light condensation device, and photovoltaic power generation device Download PDF

Info

Publication number
JP2012037680A
JP2012037680A JP2010176830A JP2010176830A JP2012037680A JP 2012037680 A JP2012037680 A JP 2012037680A JP 2010176830 A JP2010176830 A JP 2010176830A JP 2010176830 A JP2010176830 A JP 2010176830A JP 2012037680 A JP2012037680 A JP 2012037680A
Authority
JP
Japan
Prior art keywords
optical element
light
condensing optical
condensing
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010176830A
Other languages
Japanese (ja)
Other versions
JP5765608B2 (en
Inventor
Tatsuo Niwa
達雄 丹羽
Wakana Uchida
和歌奈 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010176830A priority Critical patent/JP5765608B2/en
Priority to EP11795858.7A priority patent/EP2584383A4/en
Priority to CN201180030080.XA priority patent/CN102947731B/en
Priority to PCT/JP2011/064092 priority patent/WO2011158956A1/en
Publication of JP2012037680A publication Critical patent/JP2012037680A/en
Priority to US13/718,510 priority patent/US9196778B2/en
Application granted granted Critical
Publication of JP5765608B2 publication Critical patent/JP5765608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide new light condensation means that can efficiently use light energy.SOLUTION: A light condensation optical element 10 is composed of an (A) member 11 having optical transparency and a particulate (B) member 12 having optical transparency and dispersed in the (A) member 11. When a wavelength of incident light is denoted by λ, the particle size of the (B) member is 0.1 λ to 10 λ. When light refraction index along an X axis in an electric field amplitude is denoted by nand light refraction index along a Y axis in an electric field amplitude is denoted by nin the (A) member 11, and light refraction index along an X axis in an electric field amplitude is denoted by nand light refraction index along a Y axis in an electric field amplitude is denoted by the nin the (B) member 12, the light condensation optical element 10 is so configured that the nand the nare different and the nand the nare significantly the same.

Description

本発明は、光を集光する装置に関し、なお詳細には、厚さ方向に入射する光を側面方向に集光する集光光学素子、及びこれを用いた集光装置並びに光発電装置に関する。   The present invention relates to an apparatus for condensing light, and more particularly to a condensing optical element that condenses light incident in a thickness direction in a side surface direction, a condensing apparatus using the condensing optical element, and a photovoltaic device.

近年、CO2排出量の削減が全世界的に求められ、自然エネルギーの利用が進められている。太陽光のエネルギー利用では、旧来より太陽熱温水器等により太陽光の熱エネルギー利用が用いられてきたほか、太陽光の光エネルギーを電気エネルギーに変換して利用する太陽光発電システムが一般家庭に導入され、大規模な太陽光発電所も各国で実用化段階に入りつつある。 In recent years, reduction of CO 2 emissions has been demanded worldwide and the use of natural energy has been promoted. In the use of solar energy, solar heat energy has been used for some time with solar water heaters, etc., and a photovoltaic power generation system that converts solar light energy into electrical energy has been introduced to ordinary households. Large-scale solar power plants are also being put into practical use in various countries.

光エネルギーを電気エネルギーに変換する太陽電池セルは、光電変換する材料分類上、シリコン系、化合物系、有機系、色素増感系などに分類される。このような材料により構成される一般的な太陽電池のセルは、電力への変換効率が概ね10〜20%程度である。そこで、太陽光の放射スペクトル範囲を複数の波長帯域に分割し、各波長帯域の光を光電変換するのに最適なバンドギャップの半導体層を複数積層して、電力への変換効率を40%程度まで高めた多接合型(タンデム型、積層型などとも称される)の太陽電池セルが開発されている。   Solar cells that convert light energy into electrical energy are classified into silicon-based, compound-based, organic-based, dye-sensitized systems, and the like in terms of photoelectric conversion material classification. A typical solar battery cell made of such a material has a power conversion efficiency of about 10 to 20%. Therefore, the radiation spectrum range of sunlight is divided into a plurality of wavelength bands, and a plurality of semiconductor layers with band gaps that are optimal for photoelectric conversion of light in each wavelength band are stacked, and the conversion efficiency to power is about 40%. Multi-junction type (also called tandem type, stacked type, etc.) solar cells have been developed.

しかし、上記のような高効率の太陽電池セルは極めて高価であり、航空宇宙などの特殊な用途以外では使用することが困難である。そこで、小型のセルに太陽光を集光して入射させることでコストを低減し、高効率で太陽光発電を行う集光型の太陽電池モジュールが考案されている。集光形式として、太陽光をフレネルレンズや反射鏡等により集光して太陽電池セルに入射させるレンズ集光型(例えば、特許文献1、特許文献2を参照)、蛍光粒子が分散された蛍光プレートに太陽光を入射させ、プレート内で発生した蛍光をプレート側方に導出して集光する蛍光プレート集光型(例えば、特許文献3を参照)、ホログラムフィルム及び太陽電池セルが挟み込まれたプレートに太陽光を入射させ、ホログラムフィルムにより回折した光を太陽電池セルに導く分光集光型(例えば、特許文献4を参照)などが提案されている。   However, the high-efficiency solar cells as described above are extremely expensive and difficult to use except for special applications such as aerospace. In view of this, a concentrating solar cell module has been devised that condenses and enters sunlight into a small cell to reduce costs and to perform solar power generation with high efficiency. As a condensing form, a lens condensing type that condenses sunlight with a Fresnel lens or a reflecting mirror and enters the solar cell (for example, see Patent Document 1 and Patent Document 2), and fluorescent light in which fluorescent particles are dispersed Fluorescent plate condensing type (for example, refer to Patent Document 3), in which sunlight is incident on the plate and the fluorescence generated in the plate is led out and collected to the side of the plate, the hologram film and the solar battery cell are sandwiched A spectral condensing type (for example, refer to Patent Document 4) in which sunlight is incident on a plate and light diffracted by a hologram film is guided to a solar battery cell has been proposed.

特表2005−142373号公報JP 2005-142373 A 特開2005−217224号公報JP 2005-217224 A 米国特許出願公開第2006/0107993号明細書US Patent Application Publication No. 2006/0107993 米国特許第6274860号明細書US Pat. No. 6,274,860

しかしながら、上記各集光方式には一長一短がある。例えば、レンズ集光型では、光軸方向にレンズの焦点距離に応じた厚さが必要であることや、光軸を太陽の方位に一致させるための追尾装置が必要になる。一方、蛍光プレート集光型や分光集光型は、モジュールの光軸方向寸法を薄くでき、また必ずしも追尾装置を必要としないが、波長依存性や変換効率の面で改善すべき余地がある。   However, each condensing method has advantages and disadvantages. For example, the lens condensing type requires a thickness corresponding to the focal length of the lens in the optical axis direction and a tracking device for matching the optical axis with the azimuth of the sun. On the other hand, the fluorescent plate condensing type and the spectral condensing type can reduce the dimension of the module in the optical axis direction and do not necessarily require a tracking device, but there is room for improvement in terms of wavelength dependency and conversion efficiency.

本発明は、上記のような事情に鑑みてなされたものであり、太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することを目的とする。   This invention is made | formed in view of the above situations, and it aims at providing the new condensing means which can utilize optical energy, such as sunlight efficiently.

上記目的を達成するため、本発明を例示する第1の態様は集光光学素子である。この集光光学素子は、光透過性を有するA部材と、このA部材中に厚さ方向(実施形態におけるy軸方向)及びこれと相互に直交する第1方向(同、x軸方向)、第2方向(同、z軸方向)に分散された光透過性を有する粒子状のB部材とを有して構成される。B部材の粒子径dは、厚さ方向に入射する光の波長をλとしたときに円相当径が0.1λ〜10λである。そして、A部材における、電界振幅が第1方向に沿った光の屈折率をnax、電界振幅が厚さ方向に沿った光の屈折率をnayとし、B部材における、電界振幅が第1方向に沿った光の屈折率をnbx、電界振幅が厚さ方向に沿った光の屈折率をnbyとしたときに、naxとnbxとが異なり、nayとnbyとが実質的に等しいことを特徴として構成される。なお、本明細書において「粒子径」は、日本工業規格JIS Z 8901「試験用粉体及び試験用粒子」における顕微鏡法による円相当径(直径)で規定し、頻度分布が最大の最頻粒子径(モード径)をもって粒子径dとしている。 In order to achieve the above object, a first aspect illustrating the present invention is a condensing optical element. The condensing optical element includes a light-transmitting A member, a thickness direction in the A member (y-axis direction in the embodiment), and a first direction orthogonal to the first direction (same as the x-axis direction), And a particulate B member having light permeability dispersed in a second direction (the same as the z-axis direction). The particle diameter d of the B member has a circle equivalent diameter of 0.1λ to 10λ, where λ is the wavelength of light incident in the thickness direction. Then, the A member and the refractive index of the light electric field amplitude in the first direction n ax, the refractive index of the light electric field amplitude in the thickness direction and n ay, in B member, the electric field amplitude first When the refractive index of light along the direction is n bx and the refractive index of light along the thickness direction is n by , n ax and n bx are different, and n ay and n by are substantially Are characterized by equality. In this specification, “particle diameter” is defined by the equivalent circle diameter (diameter) by microscopy in Japanese Industrial Standard JIS Z 8901 “Test Powder and Test Particles”, and the most frequent particle with the largest frequency distribution The diameter (mode diameter) is used as the particle diameter d.

この場合において、前記屈折率の関係は、nax<nbxでありnbx>nbyであること、あるいは、nax<nbxでありnax<nayであること、あるいは、nax>nbxでありnbx<nbyであること、または、nax>nbxでありnax>nayであるように構成することができる。 In this case, the relationship between the refractive indices is n ax <n bx and n bx > n by , or n ax <n bx and n ax <n ay , or n ax > It can be configured that n bx and n bx <n by , or n ax > n bx and n ax > n ay .

また、A部材における電界振幅が第2方向に沿った光の屈折率をnazとし、B部材における電界振幅が第2方向に沿った光の屈折率をnbzとしたときに、nazとnbzとが実質的に等しくなるように構成しても良い。 Further, when the electric field amplitude at the A member of the refractive index of the light in the second direction and n az, the refractive index of the light electric field amplitude in the second direction in the B member has a n bz, and n az You may comprise so that nbz may become substantially equal.

前記A部材及び前記B部材は、(π×d×nax)/λで規定するサイズパラメータαが、1.5≦α≦40であることが好ましく、2≦α≦20であることがより好ましい。また、B部材の粒子径dは20μm以下であることが望ましい。 In the A member and the B member, the size parameter α defined by (π × d × n ax ) / λ is preferably 1.5 ≦ α ≦ 40, and more preferably 2 ≦ α ≦ 20. preferable. Further, the particle diameter d of the B member is desirably 20 μm or less.

A部材中に分散された前記B部材の密度は、前記集光光学素子の表面から前記厚さ方向に入射し、複数の前記B部材により多重散乱されて前記集光光学素子の裏面に向かう光が、裏面において全反射されるように設定することができる。   The density of the B member dispersed in the A member is incident on the surface of the condensing optical element in the thickness direction, and is scattered by the plurality of B members and travels toward the back surface of the condensing optical element. Can be set to be totally reflected on the back surface.

本発明を例示する第2の態様は集光装置である。この態様に含まれる第1の構成形態の集光装置は、請求項1〜11のいずれかに記載の集光光学素子と、この集光光学素子の裏面側に裏面に沿って設けられた反射鏡と、集光光学素子と反射鏡との間に設けられ、二度透過した光の偏光面を90度回転させる偏光面回転素子とを備えて構成される。   The 2nd mode which illustrates the present invention is a condensing device. The condensing apparatus of the 1st structure form contained in this aspect is the condensing optical element in any one of Claims 1-11, and the reflection provided along the back surface in the back surface side of this condensing optical element A mirror, and a polarization plane rotating element that is provided between the condensing optical element and the reflecting mirror and rotates the polarization plane of the light that has been transmitted twice by 90 degrees.

本態様に含まれる第2の構成形態の集光装置は、請求項1〜11のいずれかに記載の第1の集光光学素子と、請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、第2の集光光学素子は、第1の集光光学素子の裏面側に当該第2の集光光学素子の第1方向(実施形態における第2の集光光学素子のx軸方向)が第1の集光光学素子の第2方向(同、第1の集光光学素子のz軸方向)と平行になるように配設される。   The condensing apparatus of the 2nd structure form contained in this aspect is the 1st condensing optical element in any one of Claims 1-11, and the 2nd in any one of Claims 1-11. A second condensing optical element on the back side of the first condensing optical element in the first direction of the second condensing optical element (second condensing optical element in the embodiment). The element is arranged so that the x-axis direction of the element is parallel to the second direction of the first light-collecting optical element (same as the z-axis direction of the first light-collecting optical element).

本態様に含まれる第3の構成形態の集光装置は、請求項1〜11のいずれかに記載の第1の集光光学素子と、請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、第2の集光光学素子は、第1の集光光学素子の裏面側に当該第2の集光光学素子の第1方向(実施形態における第2の集光光学素子のx軸方向)が第1の集光光学素子の第1方向(同、第1の集光光学素子のz軸方向)と平行になるように配設されるとともに、第1の集光光学素子と第2の集光光学素子との間に、透過する光の偏光面を90度回転させる偏光面回転素子が設けられることを特徴とする   The condensing apparatus of the 3rd structure form contained in this aspect is the 1st condensing optical element in any one of Claims 1-11, and the 2nd in any one of Claims 1-11. A second condensing optical element on the back side of the first condensing optical element in the first direction of the second condensing optical element (second condensing optical element in the embodiment). The first condensing element is disposed so that the x-axis direction of the element is parallel to the first direction of the first condensing optical element (same as the z-axis direction of the first condensing optical element). A polarization plane rotating element is provided between the optical element and the second condensing optical element to rotate the polarization plane of the transmitted light by 90 degrees.

本発明を例示する第3の態様は光発電装置である。この態様に含まれる第1の構成形態の光発電装置は、請求項1〜11のいずれかに記載の集光光学素子と、集光光学素子により第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光電変換する光電変換素子(例えば、実施形態における太陽電池セル)とを備えて構成される。   A third aspect illustrating the present invention is a photovoltaic device. A photovoltaic device according to a first configuration included in this aspect includes a condensing optical element according to any one of claims 1 to 11 and light guided in a first direction by the condensing optical element (for example, implementation) And a photoelectric conversion element (for example, a solar cell in the embodiment) that photoelectrically converts light guided to the + x side and the −x side in the x-axis direction in the embodiment.

本態様に含まれる第2の構成形態の光発電装置は、請求項1〜11のいずれかに記載の集光光学素子と、集光光学素子により第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光電変換する光電変換素子(例えば、実施形態における太陽電池セル)と、集光光学素子により第2方向に導かれた光(例えば、実施形態におけるz軸方向の+z側及び−z側に導かれた光)を光電変換する光電変換素子とを備えて構成される。   A photovoltaic device according to a second configuration included in this aspect includes a condensing optical element according to any one of claims 1 to 11 and light guided in a first direction by the condensing optical element (for example, implementation) Light guided to the + x side and −x side in the x-axis direction in the embodiment) (for example, solar cells in the embodiment) and light guided in the second direction by the condensing optical element (For example, light guided to + z side and −z side in the z-axis direction in the embodiment) and a photoelectric conversion element that performs photoelectric conversion.

本態様に含まれる第3の構成形態の光発電装置は、請求項12に記載の集光装置と、
集光光学素子により第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光電変換する光電変換素子とを備えて構成される。
The photovoltaic device of the 3rd composition form contained in this mode is the condensing device according to claim 12,
And a photoelectric conversion element that photoelectrically converts light guided in the first direction by the condensing optical element (for example, light guided to the + x side and the −x side in the x-axis direction in the embodiment).

本態様に含まれる第4、第5構成形態の光発電装置は、請求項13または14に記載の集光装置と、第1の集光光学素子における第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光電変換する光電変換素子と、第2の集光光学素子における第1方向に導かれた光(同上)を光電変換する第2の光電変換素子とを備えて構成される。   The photovoltaic device of the 4th, 5th structure form contained in this aspect WHEREIN: The light (For example, the light guide | induced to the 1st direction in the condensing apparatus of Claim 13 or 14 and a 1st condensing optical element) Photoelectric conversion element that photoelectrically converts light guided to + x side and −x side in the x-axis direction in the embodiment) and photoelectric conversion of light guided in the first direction in the second condensing optical element (same as above) And a second photoelectric conversion element.

本発明の第1の態様の集光光学素子は、透明なA部材中に粒子状のB部材が分散されており、このB部材の粒子径は、入射光の波長をλとしたときに円相当径dが0.1λ〜10λとされる。A部材及びB部材は、電界振幅が第1方向に沿った光の屈折率を各々nax及びnbxとし、厚さ方向に沿った光の屈折率を各々nay及びnbyとしたときに、電界振幅が第1方向に沿った光についてnbxとnaxとが異なり、電界振幅が厚さ方向に沿った光についてnayとnbyとが実質的に等しく構成される。ここで、A部材とB部材とは、電界振幅が第1方向に沿った光の屈折率nbxとnaxとが異なることから、波長変換光学素子に入射した電界振幅が第1方向に沿った光にとってB部材が粒子として見える。 In the condensing optical element of the first aspect of the present invention, the particulate B member is dispersed in the transparent A member, and the particle diameter of the B member is a circle when the wavelength of incident light is λ. The equivalent diameter d is 0.1λ to 10λ. In the A member and the B member, when the electric field amplitude is set to n ax and n bx respectively for the refractive index of the light along the first direction and n ay and n by for the refractive index of the light along the thickness direction, respectively. Unlike the light field amplitude along the first direction and n bx and n ax, the optical electric field amplitude in the thickness direction and the n ay and n By substantially equal constructed. Here, the A member and the B member, since the refractive index n bx and n ax of the light electric field amplitude in the first direction is different from the electric field amplitude entering the wavelength conversion optical element along a first direction The B member appears as particles to the light.

本発明の第1の態様の集光光学素子は、A部材中に分散されたB部材の粒子径が入射光の波長λと同程度のオーダであることから、ミー(Mie)の散乱理論によれば、集光光学素子に厚さ方向に入射した光は、B部材に遭遇するたびに第1方向に沿った偏光成分の光が所定角度範囲に散乱され、これを繰り返すことによって第1方向に沿って+側に進む光と−側に進む光の割合が多くなる。第1方向に沿って進む光(電界振幅が第2方向に沿った光)にとっては、A部材とB部材とで実質的な屈折率差がないことから、B部材が粒子として見えず、均質媒質中を伝播するようにA部材及びB部材を透過して、第1方向の+側または−側に集光される。従って、本発明によれば、太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することができる。   The condensing optical element according to the first aspect of the present invention is based on the Mie scattering theory because the particle diameter of the B member dispersed in the A member is on the same order as the wavelength λ of the incident light. According to the above, in the light incident on the condensing optical element in the thickness direction, the light of the polarization component along the first direction is scattered in a predetermined angle range every time the B member is encountered, and the first direction is obtained by repeating this. The ratio of the light traveling to the + side and the light traveling to the − side along the line increases. For light traveling along the first direction (light whose electric field amplitude is along the second direction), there is no substantial difference in refractive index between the A member and the B member. The light passes through the A member and the B member so as to propagate in the medium, and is condensed on the + side or the − side in the first direction. Therefore, according to this invention, the new condensing means which can utilize optical energy, such as sunlight efficiently, can be provided.

本発明の第2の態様の集光装置は、集光光学素子を透過した偏光成分の光を再度同一の/または第2の集光光学素子で集光するように構成される。このため、薄型かつ簡明な構成で太陽光等の光エネルギーを高効率で利用可能な集光装置を提供することができる。   The condensing device according to the second aspect of the present invention is configured to condense the light of the polarization component transmitted through the condensing optical element again with the same / or the second condensing optical element. For this reason, the condensing apparatus which can utilize light energy, such as sunlight, with high efficiency with a thin and simple structure can be provided.

本発明の第3の態様の光発電装置は、上記のような集光光学素子または集光装置と、集光された光を光電変換する光電変換素子とを備えて構成される。このため、薄型かつ簡明な構成で太陽光等の光エネルギーを効率的に利用可能な光発電装置を提供することができる。   The photovoltaic device according to the third aspect of the present invention includes the above-described condensing optical element or condensing device, and a photoelectric conversion element that photoelectrically converts the collected light. For this reason, the photovoltaic device which can utilize light energy, such as sunlight efficiently, with a thin and simple structure can be provided.

本発明の態様を例示する光発電装置1の外観斜視図である。1 is an external perspective view of a photovoltaic device 1 illustrating an embodiment of the present invention. 図1中に付記するII−II矢視方向に見た模式的な断面図であり、散乱により光の進行方向が変化していく様子を示す説明図である。It is typical sectional drawing seen in the II-II arrow direction attached to FIG. 1, and is explanatory drawing which shows a mode that the advancing direction of light changes by scattering. 第1構成形態の集光光学素子10における屈折率楕円の関係を示す説明図である。図において(a)はB部材12が複屈折性を有する場合、(b)はA部材11が複屈折性を有する場合である。It is explanatory drawing which shows the relationship of the refractive index ellipse in the condensing optical element 10 of a 1st structure form. In the figure, (a) shows the case where the B member 12 has birefringence, and (b) shows the case where the A member 11 has birefringence. 第2構成形態の集光光学素子20における屈折率楕円の関係を示す説明図である。図において(a)はB部材22が複屈折性を有する場合、(b)はA部材21が複屈折性を有する場合である。It is explanatory drawing which shows the relationship of the refractive index ellipse in the condensing optical element 20 of a 2nd structure form. In the figure, (a) shows the case where the B member 22 has birefringence, and (b) shows the case where the A member 21 has birefringence. 第1構成形態の集光光学素子10における光の入射角と散乱との関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between the incident angle of light and scattering in the condensing optical element 10 of a 1st structure form. 第2構成形態の集光光学素子20における光の入射角と散乱との関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between the incident angle of light and scattering in the condensing optical element 20 of a 2nd structure form. 粒子径が0.15μmの場合の光の散乱分布を例示するグラフである。It is a graph which illustrates light scattering distribution in case a particle diameter is 0.15 micrometer. 粒子径が0.3μmの場合の光の散乱分布を例示するグラフである。It is a graph which illustrates light scattering distribution in case a particle diameter is 0.3 micrometer. 図7及び図8の散乱分布を異なる表示形態で示すグラフである。It is a graph which shows the scattering distribution of FIG.7 and FIG.8 with a different display form. サイズパラメータを変化させたときの光の散乱分布の変化を示すグラフ群である。It is a graph group which shows the change of the scattering distribution of light when a size parameter is changed. サイズパラメータと前方散乱に対する後方散乱の割合との関係を示すグラフである。It is a graph which shows the relationship between a size parameter and the ratio of backscattering with respect to forward scattering. サイズパラメータと散乱角との関係を示すグラフである。It is a graph which shows the relationship between a size parameter and a scattering angle. 体積を一定としたときのサイズパラメータと散乱係数との関係を示すグラフである。It is a graph which shows the relationship between a size parameter when a volume is made constant, and a scattering coefficient. 第1実施例における、粒子の屈折率と散乱断面積との関係を示すグラフである。It is a graph which shows the relationship between the refractive index of particle | grains, and a scattering cross section in 1st Example. 第1実施例における、粒子への入射角と各指標との関係をまとめた表である。It is the table | surface which put together the relationship between the incident angle to particle | grains, and each parameter | index in 1st Example. 第1実施例における、垂直入射した光が散乱段階でどの様な角度分布になるかを計算したシミュレーションデータである。It is the simulation data which calculated what kind of angle distribution the perpendicularly incident light in a 1st Example becomes in a scattering step. 第2実施例における、粒子の屈折率と散乱断面積との関係を示すグラフである。It is a graph which shows the relationship between the refractive index of particle | grains, and a scattering cross section in 2nd Example. 第2実施例における、粒子への入射角と各指標との関係をまとめた表である。It is the table | surface which put together the relationship between the incident angle to particle | grains, and each parameter | index in 2nd Example. 第2実施例における、垂直入射した光が散乱段階でどの様な角度分布になるかを計算したシミュレーションデータである。It is the simulation data which calculated what kind of angle distribution the perpendicularly incident light in a 2nd Example becomes in a scattering step. 比較例における、粒子への入射角と各指標との関係をまとめた表である。It is the table | surface which put together the relationship between the incident angle to particle | grains, and each parameter | index in a comparative example. 比較例における、垂直入射した光が散乱段階でどの様な角度分布になるかを計算したシミュレーションデータである。It is the simulation data which calculated what kind of angle distribution the perpendicularly incident light in a comparative example becomes in a scattering step. 第1構成例の集光装置60の概要構成図である。It is a schematic block diagram of the condensing device 60 of the 1st structural example. 第3構成例の集光装置80の概要構成図である。It is a schematic block diagram of the condensing apparatus 80 of the 3rd structural example. 集光光学素子からの光エネルギーの取り出し手法を例示する概念図である。It is a conceptual diagram which illustrates the extraction method of the light energy from a condensing optical element.

以下、本発明を実施するための形態について図面を参照しながら説明する。本発明の態様を例示する光発電装置1の外観斜視図を図1に、図1中に付記するII−II矢視方向に見た模式的な断面図を図2に示す。なお、説明を明瞭化するため、相互に直行するx軸、y軸、z軸から成る座標系を規定し、これを図1中に示す。y軸は集光光学素子10の厚さ方向、x軸及びz軸は集光光学素子の面内で直交する二軸であり、図2はx軸及びy軸を含みz軸に垂直な面(x−y平面)で切断した模式的な断面図に相当する。なお、説明の便宜上から、図2に示す姿勢をもって上下左右ということがあるが、配設姿勢は任意である。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of a photovoltaic device 1 illustrating an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view as viewed in the direction of arrows II-II appended in FIG. For the sake of clarity, a coordinate system consisting of an x-axis, a y-axis, and a z-axis that are orthogonal to each other is defined and shown in FIG. The y axis is the thickness direction of the condensing optical element 10, the x axis and the z axis are two axes perpendicular to each other in the plane of the condensing optical element, and FIG. 2 is a plane that includes the x axis and the y axis and is perpendicular to the z axis. This corresponds to a schematic cross-sectional view cut along (xy plane). For convenience of explanation, the posture shown in FIG. 2 is sometimes referred to as up, down, left, and right, but the placement posture is arbitrary.

[光発電装置の概要]
装置全体の概要を把握するため、まず第1構成形態の集光光学素子10を利用した光発電装置1を主たる例として全体概要を説明する。光発電装置1は、厚さ方向に入射する光を集光する集光光学素子10(20)と、集光光学素子により集光されて端部に導かれた光を光電変換する光電変換素子50とを備えて構成される。図示する構成形態は、集光光学素子10(20)をプレート状に形成した構成例を示す。光電変換素子50は、公知の種々の素子を用いることができ、例えば、前述した種々の形態の太陽電池セルを用いて構成することができる。
[Outline of photovoltaic power generation equipment]
In order to grasp the outline of the whole apparatus, first, the whole outline will be described with the photovoltaic power generation apparatus 1 using the condensing optical element 10 of the first configuration form as a main example. The photovoltaic device 1 includes a condensing optical element 10 (20) that condenses light incident in the thickness direction, and a photoelectric conversion element that photoelectrically converts the light collected by the condensing optical element and guided to the end. 50. The illustrated configuration form shows a configuration example in which the condensing optical element 10 (20) is formed in a plate shape. As the photoelectric conversion element 50, various known elements can be used. For example, the photoelectric conversion element 50 can be configured by using the various types of solar cells described above.

[集光光学素子の概要]
集光光学素子10(20)は、太陽光を透過するA部材11(21)と、このA部材中に分散された光透過性を有する粒子状のB部材12(22)とを主体として構成される。B部材の粒子径は、集光光学素子に入射する光の波長をλとしたときに円相当径dが0.1λ〜10λ程度に設定される。ここで、集光光学素子において集光しようとする光の波長λが幅を有する場合には、B部材の粒子径dは、その波長帯域における最短波長λminの1/10〜最長波長λmaxの10倍とすることができる。具体的に、太陽光を集光する場合には、太陽光の放射スペクトルは概ね400nm〜1800nm程度であり、B部材の粒子径dは、40nm〜1.8μmとすることができる。
[Outline of condensing optical element]
The condensing optical element 10 (20) is mainly composed of an A member 11 (21) that transmits sunlight and a particulate B member 12 (22) having light permeability dispersed in the A member. Is done. The particle diameter of the B member is set such that the equivalent circle diameter d is about 0.1λ to 10λ, where λ is the wavelength of light incident on the condensing optical element. Here, when the wavelength λ of the light to be condensed in the condensing optical element has a width, the particle diameter d of the B member is 1/10 of the shortest wavelength λmin in the wavelength band and 10 of the longest wavelength λmax. Can be doubled. Specifically, when collecting sunlight, the radiation spectrum of sunlight is approximately 400 nm to 1800 nm, and the particle diameter d of the B member can be 40 nm to 1.8 μm.

B部材は、x軸方向、y軸方向及びz軸方向に、全体として(マクロ的に見て)均一に分散されるが、図2ではB部材12による散乱の作用を説明するため、散乱された光の光路上にあるB部材12のみを示している。なお、B部材の分布密度は、A部材及びB部材の材質や形状寸法、使用条件等に応じて適宜設定される。これについては後に詳述する。   The B member is uniformly dispersed (as viewed macroscopically) as a whole in the x-axis direction, the y-axis direction, and the z-axis direction. However, in FIG. Only the B member 12 on the optical path of the light is shown. Note that the distribution density of the B member is appropriately set according to the material, shape, and use conditions of the A member and the B member. This will be described in detail later.

集光光学素子10(20)は、A部材とB部材11,12(21,22)の屈折率特性が異なり、かつA部材及びB部材の少なくともいずれか一方が複屈折性を有している。本明細書においては、A部材における、偏光方向がx−y平面内で電界振幅がx軸方向の光の屈折率をnax、偏光方向がx−y平面内で電界振幅がy軸方向の光の屈折率をnay、偏光方向がy−z平面内で電界振幅がz軸方向の光の屈折率をnazとする。同様に、B部材における、偏光方向がx−y平面内で電界振幅がx軸方向の光の屈折率をnbx、偏光方向がx−y平面内で電界振幅がy軸方向の光の屈折率をnby、偏光方向がy−z平面内で電界振幅がz軸方向の光の屈折率をnbzとする。 In the condensing optical element 10 (20), the refractive index characteristics of the A member and the B members 11, 12 (21, 22) are different, and at least one of the A member and the B member has birefringence. . In this specification, in the A member, the polarization direction is in the xy plane and the electric field amplitude is in the x-axis direction, the refractive index of the light is n ax , the polarization direction is in the xy plane, and the electric field amplitude is in the y-axis direction. Assume that the refractive index of light is nay , and the refractive index of light whose polarization direction is in the yz plane and whose electric field amplitude is in the z-axis direction is naz . Similarly, in the B member, the refractive index of light in which the polarization direction is in the xy plane and the electric field amplitude is in the x-axis direction is n bx , and the refraction of light in the polarization direction is in the xy plane and the electric field amplitude is in the y-axis direction. rate the n by, the polarization direction electric field amplitude of the refractive index in the z-axis direction of the light and n bz in the y-z plane.

ここで、図2において電界振幅が紙面に平行な光の偏光状態をp偏光、電界振幅が紙面に垂直な光の偏光状態をs偏光とすると、偏光方向がx−y平面内で電界振幅がx軸方向の光はy軸方向に進むp偏光の光であり、偏光方向がx−y平面内で電界振幅がy軸方向の光はx軸方向に進むp偏光の光である。また、偏光方向がy−z平面内で電界振幅がz軸方向の光はy軸方向に進むs偏光の光である。   Here, in FIG. 2, if the polarization state of light whose electric field amplitude is parallel to the paper surface is p-polarized light, and the polarization state of light whose electric field amplitude is perpendicular to the paper surface is s-polarized light, the electric field amplitude is in the xy plane. The light in the x-axis direction is p-polarized light traveling in the y-axis direction, and the light having the polarization direction in the xy plane and the electric field amplitude in the y-axis direction is p-polarized light traveling in the x-axis direction. Further, light whose polarization direction is in the yz plane and whose electric field amplitude is in the z-axis direction is s-polarized light traveling in the y-axis direction.

このとき、naxとnbxとが異なり、nayとnbyとが実質的に等しくなるようにA部材及びB部材が設定される。なお、nayとnbyとが実質的に等しいとは、x軸方向に進むp偏光の光が、B部材により有意な散乱や屈折を受けない屈折率の関係をいい、具体的には、屈折率差が0.05以下のような場合をいう。 In this case, different from the n ax and n bx, n ay and the n By the A member and the B member is set to be substantially equal. Note that n ay and n by are substantially equal means a refractive index relationship in which p-polarized light traveling in the x-axis direction is not significantly scattered or refracted by the B member. The case where the difference in refractive index is 0.05 or less.

このような集光光学素子10(20)では、上方から素子内に入射してy軸方向に進むp偏光の光には、naxとnbxとが異なることから、B部材12(22)が粒子として認識される。このとき、y軸方向に進むp偏光の光がB部材の存在によりどの様な影響を受けるか、その取扱いは、媒質(A部材)中をy軸方向に進むp偏光の光の波長(λ/nax)と媒質中に分散された粒子(B部材)の粒子径dとによって異なったものになる。 In such a condensing optical element 10 (20), for p-polarized light that enters the element from above and proceeds in the y-axis direction, n ax and n bx are different from each other. Therefore, the B member 12 (22) Are recognized as particles. At this time, how the p-polarized light traveling in the y-axis direction is affected by the presence of the B member is handled by handling the wavelength of the p-polarized light traveling in the y-axis direction in the medium (A member) (λ / N ax ) and the particle diameter d of the particles (B member) dispersed in the medium.

具体的には、B部材の粒子径dが、A部材中を伝播する光の波長よりも充分小さい場合には、レーリー散乱の理論が適用できる。一方、B部材の粒子径dが、A部材中を伝播する光の波長と同程度のオーダーの場合には、ミー散乱の理論が適用できる。また、B部材の粒子径dが、A部材中を伝播する光の波長よりも充分に大きい場合には、幾何光学の理論が適用される。   Specifically, when the particle diameter d of the B member is sufficiently smaller than the wavelength of light propagating in the A member, the Rayleigh scattering theory can be applied. On the other hand, when the particle diameter d of the B member is on the same order as the wavelength of light propagating through the A member, the theory of Mie scattering can be applied. When the particle diameter d of the B member is sufficiently larger than the wavelength of light propagating through the A member, the theory of geometric optics is applied.

本実施形態において、B部材12(22)の粒子径dは、円相当径で0.1λ〜10λ程度に設定されており、媒質であるA部材中を伝播する光の波長と同程度のオーダーである。そのため、集光光学素子10(20)においてA部材中を伝播する光とB部材との関係は、基本的にミー散乱の理論が適用できる。   In the present embodiment, the particle diameter d of the B member 12 (22) is set to a circle-equivalent diameter of about 0.1λ to 10λ, and is on the same order as the wavelength of light propagating through the A member, which is a medium. It is. Therefore, the theory of Mie scattering can be basically applied to the relationship between the light propagating through the A member and the B member in the condensing optical element 10 (20).

但し、集光光学素子10(20)においては、A部材及びB部材11,12(21,22)の少なくとも一方が複屈折性を有しており、その複屈折の主軸の方位(光線が異常光となる進相軸または遅相軸の方位)と、A部材中を進む光の偏光方向との関係に応じて、散乱の有無及び光の散乱方向が偏向する。   However, in the condensing optical element 10 (20), at least one of the A member and the B members 11, 12 (21, 22) has birefringence, and the orientation of the principal axis of the birefringence (the ray is abnormal). The presence / absence of scattering and the light scattering direction are deflected in accordance with the relationship between the direction of the fast axis or slow axis as light) and the polarization direction of the light traveling through the A member.

単純化のため、A部材及びB部材のいずれか一方が正の複屈折性(異常光の屈折率が常光の屈折率よりも高くなる複屈折性)を有し、複屈折の主軸が一軸の場合を考える。この場合、naxとnbxとが異なり(nax≠nbx)、nayとnbyとが実質的に等しくなる(nay≒nby)のは、複屈折の主軸がx軸方向に配向する場合と、y軸方向に配向する場合の2つがある。 For simplification, either the A member or the B member has positive birefringence (birefringence in which the refractive index of extraordinary light is higher than the refractive index of ordinary light), and the main axis of birefringence is uniaxial. Think about the case. In this case, n ax and n bx are different (n ax ≠ n bx ), and n ay and n by are substantially equal (n ay ≈n by ). The main axis of birefringence is in the x-axis direction. There are two cases, the case of orientation and the case of orientation in the y-axis direction.

複屈折の主軸がx軸方向に配向する場合のA部材の屈折率楕円30とB部材の屈折率楕円35との関係を図3に示す。図3において、(a)はB部材が正の複屈折性を有する場合、(b)はA部材が正の複屈折性を有する場合である。図中にハッチングを付して示すものは、y−z平面内のA部材及びB部材の屈折率円である。両図から分かるように、複屈折の主軸がx軸方向に配向する場合には、nayとnbyのみならずnazとnbzも実質的に等しくなり、nay=naz≒nby=nbzとなる。このように、一軸異方性の複屈折の主軸がx軸方向に配向する場合の代表例として、図3(a)に示すようにB部材が複屈折性を有する場合を第1構成形態の集光光学素子10として説明する。 FIG. 3 shows the relationship between the refractive index ellipse 30 of the A member and the refractive index ellipse 35 of the B member when the principal axis of birefringence is oriented in the x-axis direction. In FIG. 3, (a) shows the case where the B member has positive birefringence, and (b) shows the case where the A member has positive birefringence. What is shown with hatching in the figure is the refractive index circle of the A member and the B member in the yz plane. As can be seen from both figures, when the main axis of birefringence is oriented in the x-axis direction, not only n ay and n by but also n az and n bz are substantially equal, and n ay = n az ≈n by = N bz Thus, as a typical example of the case where the principal axis of uniaxial anisotropic birefringence is oriented in the x-axis direction, the case where the B member has birefringence as shown in FIG. The condensing optical element 10 will be described.

一方、複屈折の主軸がy軸方向に配向する場合のA部材の屈折率楕円40とB部材の屈折率楕円45との関係を図4に示す。図4において、(a)はB部材が正の複屈折性を有する場合、(b)はA部材が正の複屈折性を有する場合である。図中にハッチングを付して示すものは、A部材またはB部材のx−z平面内の屈折率円である。両図から分かるように、複屈折の主軸がy軸方向に配向する場合には、屈折率が実質的に等しいのはnayとnbyのみであり、nax≠nbx,naz≠nbzとなる。このように、一軸異方性の複屈折の主軸がy軸方向に配向する場合の代表例として、図4(a)に示すようにB部材が複屈折性を有する場合を第2構成形態の集光光学素子20として説明する。 On the other hand, FIG. 4 shows the relationship between the refractive index ellipse 40 of the A member and the refractive index ellipse 45 of the B member when the main axis of birefringence is oriented in the y-axis direction. In FIG. 4, (a) shows the case where the B member has positive birefringence, and (b) shows the case where the A member has positive birefringence. What is shown with hatching in the figure is a refractive index circle in the xz plane of the A member or the B member. As can be seen from these figures, when the principal axis of birefringence oriented in the y-axis direction, the refractive index is substantially equal to is only n ay and n by, n ax ≠ n bx , n az ≠ n bz . Thus, as a typical example of the case where the principal axis of uniaxial anisotropic birefringence is oriented in the y-axis direction, the case where the B member has birefringence as shown in FIG. The condensing optical element 20 will be described.

[第1構成形態の集光光学素子]
第1構成形態の集光光学素子10においては、集光光学素子の上方から素子内に入射してA部材中を進む光のうち、y軸方向に進むp偏光の光(異常光)にはnax≠nbxであることからB部材12が媒質(A部材11)から識別されて粒子として存在する。一方、x軸方向に進むp偏光の光(常光)にはnay≒nbyであることからB部材12が粒子と識別されず、粒子が存在しない状態(均質媒質)と同じになる。
[Condensing optical element of first configuration]
In the condensing optical element 10 of the first configuration, the p-polarized light (abnormal light) that travels in the y-axis direction out of the light that enters the element from above the condensing optical element and travels through the A member. Since n ax ≠ n bx , the B member 12 is identified from the medium (A member 11) and exists as particles. On the other hand, since p-polarized light (ordinary light) traveling in the x-axis direction is n ay ≈ n by , the B member 12 is not distinguished from particles, and is the same as a state in which no particles exist (homogeneous medium).

そのため、集光光学素子10の上方から入射してy軸方向に進むp偏光の光(p偏光成分)は、屈折率差に基づいて媒質中に粒子として存在するB部材12によりミー散乱を生じるが、x軸方向に進むp偏光の光は、粒子と識別されないB部材によって散乱されることなくそのままx軸方向に進む。   Therefore, p-polarized light (p-polarized component) that enters from the upper side of the condensing optical element 10 and travels in the y-axis direction causes Mie scattering by the B member 12 that exists as particles in the medium based on the refractive index difference. However, the p-polarized light traveling in the x-axis direction travels in the x-axis direction as it is without being scattered by the B member that is not identified as a particle.

本発明は、上記のような複屈折性に基づく屈折率差を利用するため、B部材12に入射する光の入射角に応じて散乱断面積が変化し、散乱効率が変化する。図5(a)〜(d)は、B部材12に入射する光の入射角と散乱との関係を模式的に示す説明図である。図示のように、y軸を基準としたB部材12への入射角が0度のときに屈折率差が最大、散乱断面積が最大となって大きな散乱を受け(a)、入射角が90度のときに屈折率差が無く散乱断面積が無限小になって散乱を受けない(d)。   Since the present invention uses the refractive index difference based on the birefringence as described above, the scattering cross section changes according to the incident angle of the light incident on the B member 12, and the scattering efficiency changes. 5A to 5D are explanatory views schematically showing the relationship between the incident angle of light incident on the B member 12 and scattering. As shown in the figure, when the incident angle to the B member 12 with respect to the y-axis is 0 degree, the refractive index difference is the maximum, the scattering cross section is the maximum, and the scattering is large (a), and the incident angle is 90. When there is no difference in refractive index, the scattering cross section becomes infinitesimal and no scattering occurs (d).

B部材への入射角が0〜90度の間にあるときは、当該入射角におけるA部材11とB部材12との屈折率差に応じた散乱断面積となり散乱効率が変化する(b)(c)。図5(及び図2)では、散乱により拡散する光を、入射光軸に沿って直進する光と、入射光軸から離れて左右に広がる2本の光とに代表させた3本のベクトルで表しており、入射角が大きくなるほど散乱効率が低下して左右に広がる散乱光のレートが小さくなること、入射角が90度では散乱が生じないことを示している。   When the incident angle to the B member is between 0 and 90 degrees, the scattering efficiency becomes a scattering cross section corresponding to the refractive index difference between the A member 11 and the B member 12 at the incident angle (b) ( c). In FIG. 5 (and FIG. 2), the light diffused by scattering is represented by three vectors represented by light traveling straight along the incident optical axis and two lights spreading left and right away from the incident optical axis. This indicates that the scattering efficiency decreases as the incident angle increases and the rate of scattered light spreading to the left and right decreases, and that no scattering occurs when the incident angle is 90 degrees.

このような構成の集光光学素子10では、図2に示すように、素子上方から入射してy軸方向に進むp偏光の光が、A部材(媒質)11中に粒子として存在するB部材12によりミー散乱を受け、例えば表面付近のB部材12で入射光の4割が散乱される。B部材12の側方を通過した光も厚さ方向に分布する次のB部材12で4割が散乱され、段階が進むといずれ散乱を受ける。またB部材12で散乱された光が厚さ方向に分布する次のB部材により散乱され、多重散乱される。   In the condensing optical element 10 having such a configuration, as shown in FIG. 2, B-polarized light in which p-polarized light entering from above the element and traveling in the y-axis direction exists as particles in the A member (medium) 11. For example, 40% of incident light is scattered by the B member 12 near the surface. 40% of the light passing through the side of the B member 12 is scattered by the next B member 12 distributed in the thickness direction, and will eventually be scattered as the stage proceeds. Further, the light scattered by the B member 12 is scattered by the next B member distributed in the thickness direction, and multiple scattered.

その結果、集光光学素子10に垂直入射した光は、この素子中を進むにつれてy軸方向(垂直方向)に進む光の割合が減少し、x−y平面で斜め下方に傾斜した光の割合が増加する。x軸の+方向または−方向に傾斜した光は、B部材12への入射角が大きくなるほど散乱効率が低下して水平方向への変化は小さくなるが、x軸方向に大きく傾斜した(水平に近くなった)光の割合が大きくなる。x軸に沿って水平に進む光はB部材12によって散乱されず、x軸の+側または−側の側端に向かって進む。   As a result, the ratio of the light vertically incident on the converging optical element 10 decreases in the y-axis direction (vertical direction) as it travels through the element, and the ratio of light inclined obliquely downward in the xy plane. Will increase. The light tilted in the + or − direction of the x-axis has a scattering efficiency that decreases as the incident angle to the B member 12 increases, and the change in the horizontal direction decreases. The ratio of light is increased. Light traveling horizontally along the x axis is not scattered by the B member 12 but travels toward the + or − side edge of the x axis.

このとき、x軸方向に傾斜した状態で集光光学素子の下面に到達した光の傾斜角が、A部材11と空気との界面における全反射角を超えていれば、集光光学素子10に入射した光を素子内に閉じ込めることができる。例えば、A部材11の屈折率をnax=1.64とした場合に、A部材と空気層との界面に入射する入射角が37.6度以上の光は界面で全反射され、集光光学素子10内に閉じ込められる。集光光学素子10の下面で全反射された光は、下面側から上面側に進む過程で再びB部材12により散乱され進行方向がx軸方向に偏向される。 At this time, if the inclination angle of the light reaching the lower surface of the condensing optical element in the state inclined in the x-axis direction exceeds the total reflection angle at the interface between the A member 11 and air, the condensing optical element 10 Incident light can be confined in the device. For example, when the refractive index of the A member 11 is n ax = 1.64, light having an incident angle of 37.6 degrees or more incident on the interface between the A member and the air layer is totally reflected at the interface and condensed. It is confined in the optical element 10. The light totally reflected by the lower surface of the condensing optical element 10 is scattered again by the B member 12 in the process of traveling from the lower surface side to the upper surface side, and the traveling direction is deflected in the x-axis direction.

このため、集光光学素子10に上方から入射したp偏光成分の光は、ほぼ全体がx軸方向の左右いずれかに向かうこととなり、このようにして集光された光がx軸方向の両端部に配設された光電変換素子50,50に集光入射される。   For this reason, the light of the p-polarized component incident on the condensing optical element 10 from above is almost entirely directed to either the left or right in the x-axis direction, and the light thus collected has both ends in the x-axis direction. The light is condensed and incident on the photoelectric conversion elements 50 and 50 disposed in the unit.

このような構成よれば、集光光学素子10の上面から入射した光が、A部材11とB部材12の屈折率差によってx軸方向に散乱され、屈折率差のないz軸方向への散乱に伴う損失を抑止することができる。この場合、集光光学素子の上面から入射してy軸方向に進むs偏光成分の光(常光)は、集光光学素子10をそのまま透過することになるが、集光光学素子の下面側に同様の集光光学素子10をy軸まわりに90度回転して配置する等により、透過した光を効率的に集光することができる。このような集光光学素子の配置構成による集光装置については後に詳述する。   According to such a configuration, the light incident from the upper surface of the condensing optical element 10 is scattered in the x-axis direction by the difference in refractive index between the A member 11 and the B member 12, and is scattered in the z-axis direction without a difference in refractive index. The loss associated with can be suppressed. In this case, the light of the s-polarized component (ordinary light) incident from the upper surface of the condensing optical element and traveling in the y-axis direction is transmitted through the condensing optical element 10 as it is, but on the lower surface side of the condensing optical element. The transmitted light can be efficiently condensed by arranging the same condensing optical element 10 rotated 90 degrees around the y axis. A condensing device having such a condensing optical element arrangement will be described in detail later.

[第2構成形態の集光光学素子]
第2構成形態の集光光学素子20は、複屈折性を有するB部材22を、複屈折の主軸がy軸方向に沿うように配向して分布させた構成である(図4(a)を参照)。このような集光光学素子20においては、集光光学素子20の上方から素子内に入射してA部材中を進む光は、y軸方向に進むp偏光の光(常光)についてnax≠nbxであるとともに、y軸方向に進むs偏光の光(常光)についてもnaz≠nbzである。このため、y軸方向に進む光はp偏光及びs偏向の何れについてもB部材22が媒質(A部材21)から識別されて粒子として存在する。一方、x軸方向に進むp偏光の光(異常光)にはnay≒nbyであることからB部材22が粒子と識別されず、粒子が存在しない状態(均質媒質)と同じになる。
[Condensing optical element of second configuration]
The condensing optical element 20 of the second configuration form is a configuration in which a B member 22 having birefringence is oriented and distributed so that the main axis of birefringence is along the y-axis direction (see FIG. 4A). reference). In such a condensing optical element 20, the light that enters the element from above the condensing optical element 20 and travels through the A member is n ax ≠ n with respect to p-polarized light (ordinary light) traveling in the y-axis direction. In addition to bx , s-polarized light (ordinary light) traveling in the y-axis direction also satisfies n az ≠ n bz . For this reason, in the light traveling in the y-axis direction, the B member 22 is identified from the medium (A member 21) for both p-polarized light and s-polarized light, and exists as particles. On the other hand, since p-polarized light (abnormal light) traveling in the x-axis direction is n ay ≈ n by , the B member 22 is not distinguished from particles, and is the same as a state where particles are not present (homogeneous medium).

そのため、集光光学素子20の上方から入射してy軸方向に進む光は、屈折率差に基づいて媒質中に粒子として存在するB部材22によりミー散乱を生じるが、x軸方向に進むp偏光の光は、粒子と識別されないB部材によって散乱されることなくそのままx軸方向に進む。   Therefore, light that enters from the upper side of the condensing optical element 20 and travels in the y-axis direction causes Mie scattering by the B member 22 existing as particles in the medium based on the refractive index difference, but p travels in the x-axis direction. The polarized light travels in the x-axis direction without being scattered by the B member that is not identified as a particle.

このような複屈折性に基づく屈折率差を利用するため、B部材22に入射する光の偏光方向と入射角に応じて散乱断面積が変化し、散乱効率が変化する。図6(a)〜(d)は、B部材22に入射する光の入射角と散乱との関係を模式的に示す説明図であり、図5と同様に、散乱により拡散する光を3本のベクトルで表している。また、図6では電界振幅が紙面に平行なp偏光の光を両端矢印の符号、電界振幅が紙面に垂直なs偏光の光を中心にドットを有する丸印の符号で示している。   In order to utilize such a refractive index difference based on birefringence, the scattering cross section changes according to the polarization direction and the incident angle of the light incident on the B member 22, and the scattering efficiency changes. FIGS. 6A to 6D are explanatory views schematically showing the relationship between the incident angle of light incident on the B member 22 and scattering, and in the same manner as FIG. 5, three lights diffused by scattering are shown. This is represented by a vector. In FIG. 6, p-polarized light whose electric field amplitude is parallel to the paper surface is indicated by a double-ended arrow symbol, and s-polarized light whose electric field amplitude is perpendicular to the paper surface is indicated by a circular symbol having dots.

集光光学素子20に上方から入射してy軸方向に進む光のうち、p偏光の光(p偏光成分)は、y軸を基準としたB部材22への入射角が0度のときに屈折率差が最大、散乱断面積が最大となって大きな散乱を受け(a)、入射角が0〜90度の間では当該入射角におけるA部材とB部材との屈折率差に応じた散乱断面積となって散乱効率が変化し(b),(c)、入射角が90度のときに屈折率差が無く散乱断面積が無限小になって散乱を受けない(d)。一方、集光光学素子20に上方から入射してy軸方向に進む光のうち、s偏光の光(s偏光成分)は、y軸を基準としたB部材22への入射角によらず屈折率差が一定であり、散乱効率は変化しない(a)〜(d)。   Of the light that enters the condensing optical element 20 from above and travels in the y-axis direction, p-polarized light (p-polarized component) is when the incident angle to the B member 22 with respect to the y-axis is 0 degree. When the refractive index difference is the maximum and the scattering cross section is the maximum, the scattering is large (a), and when the incident angle is between 0 and 90 degrees, the scattering according to the refractive index difference between the A member and the B member at the incident angle. The scattering efficiency changes with the cross-sectional area (b) and (c), and when the incident angle is 90 degrees, there is no difference in refractive index, and the scattering cross-sectional area becomes infinitely small and is not scattered (d). On the other hand, s-polarized light (s-polarized component) out of light entering the condensing optical element 20 from above and traveling in the y-axis direction is refracted regardless of the incident angle to the B member 22 with respect to the y-axis. The rate difference is constant and the scattering efficiency does not change (a) to (d).

このような構成の集光光学素子20では、素子上方から入射してy軸方向に進むp偏光及びs偏光の両方の光が、媒質(A部材21)中に粒子として存在するB部材12によりミー散乱を受け多重散乱される。   In the condensing optical element 20 having such a configuration, both p-polarized light and s-polarized light that enter from above the element and travel in the y-axis direction are transmitted by the B member 12 that exists as particles in the medium (A member 21). Multiple scattering due to Mie scattering.

そのため、集光光学素子20に垂直入射した光は、この素子中を下方に進むにつれてy軸方向(垂直方向)に進む光の割合が減少し、x−y平面で斜め下方に傾斜した光の割合、及びy−z平面で斜め下方に傾斜した光の割合が増加する。傾斜した光の割合は下面に向かうほど大きく傾斜した(水平に近くなった)光の割合が大きくなる。特に、x軸に沿って進むp偏光の光(異常光)はB部材22によって散乱されず、x軸の+側または−側の側端に向かって進む。y−z平面で斜め下方に大きく傾斜した光は、B部材22による散乱を受けつつz軸の+側または−側の側端に向かって進む。   For this reason, the light vertically incident on the condensing optical element 20 decreases in the proportion of light traveling in the y-axis direction (vertical direction) as it travels downward in the element, and the light inclined obliquely downward in the xy plane. The ratio and the ratio of light inclined obliquely downward in the yz plane increase. The ratio of the inclined light increases toward the lower surface, and the ratio of the light that is greatly inclined (becomes horizontal) increases. In particular, the p-polarized light (abnormal light) traveling along the x axis is not scattered by the B member 22 and travels toward the + or − side edge of the x axis. The light that is greatly inclined obliquely downward on the yz plane travels toward the + or − side edge of the z axis while being scattered by the B member 22.

このとき、x軸方向またはz軸方向に傾斜した光の傾斜角が、A部材11と空気との界面における全反射角を超えていれば、集光光学素子20に入射した光が下面で全反射され集光光学素子20内に閉じ込められる。集光光学素子20の下面で全反射された光は、下面側から上面側に進む過程で再びB部材22により散乱され進行方向がx軸方向またはz軸方向に偏向される。   At this time, if the tilt angle of the light tilted in the x-axis direction or the z-axis direction exceeds the total reflection angle at the interface between the A member 11 and air, the light incident on the condensing optical element 20 is totally reflected on the lower surface. It is reflected and confined in the condensing optical element 20. The light totally reflected by the lower surface of the condensing optical element 20 is scattered again by the B member 22 in the process of traveling from the lower surface side to the upper surface side, and the traveling direction is deflected in the x-axis direction or the z-axis direction.

このため、集光光学素子20に上方から入射した光は、p偏光成分のほぼ全体がx軸方向の左右いずれかに向かい、s偏光成分の多くがz軸方向の前後いずれかに向かうこととなり、このようにして集光された光がx軸方向の両端部に配設された光電変換素子50,50、及びx軸方向の両端部に配設された光電変換素子50,50に集光入射される。   For this reason, in the light incident on the condensing optical element 20 from above, almost the entire p-polarized component goes to the left or right in the x-axis direction, and most of the s-polarized component goes to either the front or back in the z-axis direction. The light condensed in this way is condensed on the photoelectric conversion elements 50 and 50 disposed at both ends in the x-axis direction and the photoelectric conversion elements 50 and 50 disposed at both ends in the x-axis direction. Incident.

このような構成よれば、集光光学素子20の上面から入射した光が、A部材21とB部材22の屈折率差によってx軸方向及びz軸方向に散乱され、各方向の側端部に設けられた光電変換素子50に集光される。この場合、集光光学素子20の内部を進むs偏光成分の光の一部は、集光光学素子20の上面または下面から出射し得るが、1枚の集光光学素子を用いた簡明な構成でx軸方向及びz軸方向の集光が可能な集光装置及び光発電装置を構成することができる。   According to such a configuration, the light incident from the upper surface of the condensing optical element 20 is scattered in the x-axis direction and the z-axis direction due to the refractive index difference between the A member 21 and the B member 22, and at the side end portions in each direction. The light is condensed on the photoelectric conversion element 50 provided. In this case, a part of the light of the s-polarized component traveling inside the condensing optical element 20 can be emitted from the upper surface or the lower surface of the condensing optical element 20, but a simple configuration using one condensing optical element. Thus, a condensing device and a photovoltaic device capable of condensing in the x-axis direction and the z-axis direction can be configured.

[サイズパラメータ]
次に、A部材11,21及びB部材12,22の好適な構成形態について、ミーの散乱理論に基づいてより詳細に説明する。なお、ミーの散乱理論そのものについては、本明細書において詳細説明を省略するが、例えば、1995年発売(McGRAW-HILL, INC)の アメリカの光学学会 OSA(OPTICAL SOCIE TY OF AMERICA)監修の「HANDBOOK OF OPTICS」VolumeI Chapter6 にミー理論の散乱理論について記載されている。集光光学素子10,20では、B部材の粒子径dを入射光の波長λとほぼ同じオーダの0.1λ〜10λとすることで散乱を生じさせ、前方散乱を多重的に行わせて光を側方に導いている。このとき、後方散乱(損失)を抑制して前方散乱を支配的とし、また一定の厚さ内で効率的に集光することが望まれる。ミーの散乱理論では、その指標としてサイズパラメータαを用いる。
[Size parameter]
Next, preferred configurations of the A members 11 and 21 and the B members 12 and 22 will be described in more detail based on Mie's scattering theory. The detailed explanation of Mie's scattering theory is omitted in this specification. OF OPTICS ”VolumeI Chapter 6 describes the scattering theory of Mie theory. In the condensing optical elements 10 and 20, the particle diameter d of the B member is set to 0.1λ to 10λ on the order of approximately the same as the wavelength λ of the incident light to cause scattering, and forward scattering is performed in a multiplexed manner. To the side. At this time, it is desired to suppress the backscattering (loss) to make the forward scattering dominant, and to efficiently collect light within a certain thickness. In Mie's scattering theory, the size parameter α is used as the index.

サイズパラメータαは、一般的に、下記(1)式で規定される。
α=(π×d)/(λ/n)=(π×d×n)/λ・・・・・・・(1)
ここで、dは粒子径(直径)であり、本明細書においては、B部材の粒子径を、日本工業規格JIS Z 8901「試験用粉体及び試験用粒子」における顕微鏡法による円相当径とし、頻度分布が最大の最頻粒子径(モード径)で規定している。また(λ/n)は媒質中を進む光の波長であり、nは媒質(A部材)の屈折率である。例示する集光光学素子10,20において、A部材11は複屈折性を有しておらず、媒質の屈折率はn=nax=nay=nazで一定である。
The size parameter α is generally defined by the following equation (1).
α = (π × d) / (λ / n) = (π × d × n) / λ (1)
Here, d is the particle diameter (diameter), and in this specification, the particle diameter of the B member is the equivalent circle diameter by the microscopic method in Japanese Industrial Standard JIS Z 8901 “Test Powder and Test Particles”. The frequency distribution is defined by the most frequent particle diameter (mode diameter). Further, (λ / n) is the wavelength of light traveling through the medium, and n is the refractive index of the medium (A member). In the condensing optical elements 10 and 20 illustrated, the A member 11 does not have birefringence, and the refractive index of the medium is constant at n = n ax = n ay = n az .

図7及び図8は、ミー散乱の理論に基づいてシュミレーションしたデータであり、円の中心に配設された粒子により左方から入射した光が散乱される様子(散乱光の分布)を、前方0度方向の大きさで規格化して示している。円の中心から右側の半円が前方、左側が後方であり、点線は30度ごとの方位角を示す。両図における粒子、媒質(媒体)、入射光の共通条件は下記のとおりである。
・粒子の屈折率nbx:1.88
・媒質の屈折率nax:1.64
・入射光の波長 λ:633nm
FIGS. 7 and 8 are simulation data based on the theory of Mie scattering, in which light incident from the left is scattered by the particles arranged at the center of the circle (distribution of scattered light). It is shown normalized by the size in the 0 degree direction. The semicircle on the right side from the center of the circle is forward and the left side is backward. Common conditions for the particles, medium (medium), and incident light in both figures are as follows.
Particle refractive index n bx : 1.88
-Refractive index n ax of medium: 1.64
-Incident light wavelength λ: 633 nm

図7と図8で相違する条件は粒子径dであり、図7は粒子径d=0.15μm、図8は粒子径d=0.3μmである。これらの値を(1)式に代入してサイズパラメータαを求めると、
・図7の例のサイズパラメータα:1.22
・図8の例のサイズパラメータα:2.44
となる。図9は、図7の散乱分布と図8の散乱分布を、横軸が入射方向を0度とする左右180度の角度とし、縦軸が分布の割合として描きなおしたものである。
The condition that differs between FIG. 7 and FIG. 8 is the particle diameter d, FIG. 7 is the particle diameter d = 0.15 μm, and FIG. 8 is the particle diameter d = 0.3 μm. Substituting these values into equation (1) to obtain the size parameter α,
Size parameter α in the example of FIG. 7: 1.22
Size parameter α in the example of FIG. 8: 2.44
It becomes. FIG. 9 is a redraw of the scattering distribution of FIG. 7 and the scattering distribution of FIG. 8 with the horizontal axis as an angle of 180 degrees to the left and right where the incident direction is 0 degree, and the vertical axis as the distribution ratio.

図7〜図9から、サイズパラメータαが1.22の場合(図7)と2.44の場合(図8)とで散乱光の分布形態が大きく異なること、サイズパラメータα=1.22の場合には散乱角度が前方及び後方に広く分布し前方散乱も分散が大きいのに対し、サイズパラメータα=2.44の場合には殆ど後方散乱が見られず前方散乱の分散も小さいことなどが分かる。   From FIG. 7 to FIG. 9, the distribution form of the scattered light is greatly different between the case where the size parameter α is 1.22 (FIG. 7) and the case of 2.44 (FIG. 8), and the size parameter α = 1.22. In some cases, the scattering angle is widely distributed in the forward and backward directions, and the forward scattering has a large dispersion. On the other hand, in the case of the size parameter α = 2.44, the back scattering is hardly observed and the dispersion of the forward scattering is small. I understand.

図10(a)〜(d)は、上記共通条件のもとでサイズパラメータαを変化させた場合(すなわち粒子径dを変化させた場合)の散乱光の分布を規格化せずに示したものであり、(a)α=1.0、(b)α=1.5、(c)α=2.0、(d)α=2.5である。図11は、上記共通条件のもとでサイズパラメータαを変化させたときの、前方0度方向への散乱割合に対する後方180度方向への散乱割合をプロットしたものである。   FIGS. 10A to 10D show the distribution of scattered light without normalization when the size parameter α is changed under the above common conditions (that is, when the particle diameter d is changed). (A) α = 1.0, (b) α = 1.5, (c) α = 2.0, and (d) α = 2.5. FIG. 11 is a plot of the scattering rate in the backward 180 degree direction with respect to the scattering rate in the forward 0 degree direction when the size parameter α is changed under the above common conditions.

図10及び図11から、サイズパラメータαが1.5以上のときに前方散乱が略9割以上となり、前方散乱が支配的になる。またサイズパラメータαが2以上になると、前方散乱に対する後方散乱の割合がほぼ0になる。   10 and 11, when the size parameter α is 1.5 or more, the forward scattering is approximately 90% or more, and the forward scattering becomes dominant. When the size parameter α is 2 or more, the ratio of backscattering to forward scattering becomes almost zero.

但し、サイズパラメータαが大きくなると0度方向への前方散乱の割合が増加するが、散乱角度が小さく(狭く)なる。このことは、集光光学素子10,20を製作する際の複屈折体の配向精度や、集光光学素子の下面側に達した光が全反射条件を満たすようにするための厚さ方向寸法に影響を及ぼす。つまりサイズパラメータαは所定以上大きければ大きいほど良いわけではなく、実用上の見地から一定の範囲であることが必要となる。   However, as the size parameter α increases, the proportion of forward scattering in the 0 degree direction increases, but the scattering angle becomes smaller (narrower). This is because the orientation accuracy of the birefringent body when the condensing optical elements 10 and 20 are manufactured and the dimension in the thickness direction so that the light reaching the lower surface side of the condensing optical element satisfies the total reflection condition. Affects. That is, the size parameter α is not as good as it is larger than a predetermined value, and needs to be within a certain range from a practical point of view.

図12は、前記共通条件のもとで、サイズパラメータαと散乱角との関係を示したグラフである。複屈折体(A部材またはB部材)の製作角度精度は1〜2度程度が一般的であり、粒子による散乱角はこれを超える角度であることが必要となる。図12から、現状での一般的な製作角度精度に基づくサイズパラメータαの上限は50前後である。   FIG. 12 is a graph showing the relationship between the size parameter α and the scattering angle under the common conditions. The production angle accuracy of the birefringent body (A member or B member) is generally about 1 to 2 degrees, and the scattering angle by the particles needs to exceed this. From FIG. 12, the upper limit of the size parameter α based on the current general manufacturing angle accuracy is around 50.

次に、前記共通条件のもとで、集光光学素子の体積、及び集光光学素子に占める粒子の充填率を一定(π/6)とした場合のサイズパラメータαと散乱係数との関係を図13に示す。図において、散乱係数が大きいほど集光光学素子の厚さを低減することができ、複屈折材料が少なくて済む。この点から粒子の充填率が一定の場合には、サイズパラメータα=10前後において散乱係数が最大になる。散乱係数は最大値の1/5(20%)以上であることが好ましく、この場合サイズパラメータαの上限はα=40程度となる。   Next, the relationship between the size parameter α and the scattering coefficient when the volume of the condensing optical element and the filling rate of the particles occupying the condensing optical element are constant (π / 6) under the above common conditions. As shown in FIG. In the figure, as the scattering coefficient is larger, the thickness of the condensing optical element can be reduced, and the birefringent material can be reduced. From this point, when the particle filling rate is constant, the scattering coefficient becomes maximum at around the size parameter α = 10. The scattering coefficient is preferably 1/5 (20%) or more of the maximum value. In this case, the upper limit of the size parameter α is about α = 40.

また、製造精度の観点から見ると、一般的な製作精度の2倍以上となる5度を確保可能なサイズパラメータはα=20以下であることが好ましい(図12)。また総体積を一定とした場合の散乱係数の面からも散乱効率がピーク値の1/4以上であるサイズパラメータα=20以下であることが好ましい(図13)。   From the viewpoint of manufacturing accuracy, it is preferable that the size parameter capable of securing 5 degrees, which is twice or more of general manufacturing accuracy, is α = 20 or less (FIG. 12). Further, from the viewpoint of the scattering coefficient when the total volume is constant, it is preferable that the scattering parameter has a size parameter α = 20 or less, which is ¼ or more of the peak value (FIG. 13).

他方、粒子径についてみると、集光光学素子の厚さを考慮した場合、厚さは10mm程度以内にすることが望ましい。この場合において上面から入射した光が下面側に到達するまでに500回散乱されるためには粒子間隔が20μm以内である必要があり、このときの最大粒子径は20μmとなる。粒子の体積充填率を5%以内とする場合には、粒子径は10μm以内であることが好ましい。なお、前記共通条件において粒子径をd=10μmとしたときのサイズパラメータはα≒80であり、粒子径をd=10μmとし入射光の波長λを1.3μmとしたときのサイズパラメータはα≒40である。   On the other hand, regarding the particle diameter, when the thickness of the condensing optical element is taken into consideration, it is desirable that the thickness be within about 10 mm. In this case, in order for light incident from the upper surface to be scattered 500 times before reaching the lower surface, the particle interval needs to be within 20 μm, and the maximum particle size at this time is 20 μm. When the volume filling factor of the particles is within 5%, the particle diameter is preferably within 10 μm. Note that the size parameter when the particle diameter is d = 10 μm under the common condition is α≈80, and the size parameter when the particle diameter is d = 10 μm and the wavelength λ of incident light is 1.3 μm is α≈. 40.

以上を総合すると、A部材及びB部材からなる集光光学素子において、サイズパラメータは1.5≦α≦40であることが好ましく、2≦α≦20であることがより好ましい。また、B部材の粒子径dは20μm以下であることが好ましく、d≦10μmであることがより好ましい。   In summary, in the condensing optical element composed of the A member and the B member, the size parameter is preferably 1.5 ≦ α ≦ 40, and more preferably 2 ≦ α ≦ 20. The particle diameter d of the B member is preferably 20 μm or less, and more preferably d ≦ 10 μm.

以下、前述した第1構成形態の集光光学素子10、第2構成形態の集光光学素子20について、具体的な実施例を説明する。なお、集光光学素子10の適用例を第1実施例、集光光学素子20の適用例を第2実施例とし、A部材及びB部材が何れも複屈折性を有しない構成を比較例として説明する。   Specific examples of the condensing optical element 10 having the first configuration and the condensing optical element 20 having the second configuration will be described below. An application example of the condensing optical element 10 is a first example, an application example of the condensing optical element 20 is a second example, and a configuration in which neither the A member nor the B member has birefringence is used as a comparative example. explain.

[第1実施例]
第1実施例は、既述した第1構成形態の集光光学素子10において、A部材11及びB部材12の条件として下記を適用した。
・A部材の屈折率 :nax=nay=naz=1.64
・B部材の屈折率 :nbx=1.88(異常光の屈折率)
by=nbz=1.64(常光の屈折率)
・B部材の粒子径 :d=1.0μm(延伸後の粒子径)
・B部材の分布密度:0.1個/μm3
入射光の波長λを633nmとしたときのサイズパラメータはα=8.14である。
[First embodiment]
In the first example, the following was applied as the conditions of the A member 11 and the B member 12 in the condensing optical element 10 having the first configuration described above.
-Refractive index of member A: n ax = n ay = n az = 1.64
-Refractive index of member B: n bx = 1.88 (refractive index of extraordinary light)
n by = n bz = 1.64 (refractive index of ordinary light)
-Particle size of B member: d = 1.0 μm (particle size after stretching)
・ B member distribution density: 0.1 / μm 3
The size parameter when the wavelength λ of the incident light is 633 nm is α = 8.14.

上記の条件は、A部材11としてナフタレート70/テレフタレート30のコポリエステル(coPEN)のモノマー、B部材12としてポリエチレンナフタレート(PEN)の粒を用いて、A部材11中にB部材12を均一分散させたシートを作成し、このシートをx軸方向に一軸延伸して集光光学素子10を作成した場合に相当する。このとき、A部材11(coPEN)は複屈折性を持たず、何れの方向に進む光についても屈折率が一定でnax=nay=naz=1.64程度となる。一方、B部材12は延伸方向(x軸方向)と他の方向とで屈折率が異なり、偏光面が延伸方向に沿った光に対して1.88程度、他の方向について1.64程度となる。なお、散乱理論からB部材は球形でなくても良く、本実施例では、延伸後のB部材(粒子)の円相当径を上記条件として適用した。 The above conditions are as follows: A member 11 is a naphthalate 70 / terephthalate 30 copolyester (coPEN) monomer, B member 12 is polyethylene naphthalate (PEN) particles, and B member 12 is uniformly dispersed in A member 11. This corresponds to the case where the light collecting optical element 10 is formed by preparing the sheet and making the sheet uniaxially stretched in the x-axis direction. At this time, the A member 11 (coPEN) does not have birefringence, and the refractive index is constant for light traveling in any direction, so that n ax = n ay = n az = 1.64. On the other hand, the B member 12 has a different refractive index in the stretching direction (x-axis direction) and the other direction, and the polarization plane is about 1.88 with respect to the light along the stretching direction, and about 1.64 in the other direction. Become. In addition, from the scattering theory, the B member may not be spherical, and in this example, the equivalent circle diameter of the B member (particle) after stretching was applied as the above condition.

ここで、B部材12は、複屈折の主軸がx軸方向に配向した一軸異方性の複屈折体であることから、B部材に入射するp偏光の光はx−y平面内の入射角度によってB部材12の屈折率が変化し、A部材11との屈折率差が変化する。そのため、ミーの散乱理論における散乱断面積が変化し、散乱効率が変化する。具体的には、y軸を基準(0度)とした入射角が増加するにつれて散乱断面積が減少する。   Here, since the B member 12 is a uniaxial anisotropic birefringent body in which the main axis of birefringence is oriented in the x-axis direction, the p-polarized light incident on the B member is incident on the xy plane. As a result, the refractive index of the B member 12 changes and the refractive index difference from the A member 11 changes. Therefore, the scattering cross section in Mie's scattering theory changes and the scattering efficiency changes. Specifically, the scattering cross section decreases as the incident angle with respect to the y-axis as a reference (0 degree) increases.

図14は、横軸にB部材(粒子)12の屈折率、縦軸に散乱断面積をとり、B部材への入射角変化に伴う屈折率変化により散乱断面積がどのように変化するかを示したものである。図において、左上端の黒塗り四角のプロットがB部材12への入射角が0度(垂直入射)、右下端の黒塗り四角のプロットがB部材12への入射角が90度(水平入射)であり、入射角10度ごとの計算値をプロットしている。この図14から、B部材12の屈折率が大きい(A部材との屈折率差が大きい)領域では、B部材の屈折率変化にほぼ比例して散乱断面積が変化すること、B部材12の屈折率が小さい(A部材との屈折率差が小さい)領域では、B部材の屈折率変化に対する散乱断面積の変化が小さいことが分かる。   In FIG. 14, the horizontal axis represents the refractive index of the B member (particle) 12, the vertical axis represents the scattering cross section, and how the scattering cross section changes due to the refractive index change accompanying the change in the incident angle to the B member. It is shown. In the figure, the plot of the black square at the upper left corner is 0 degree (normal incidence) on the B member 12, and the plot of the black square at the lower right corner is 90 degrees (horizontal incidence) on the B member 12. The calculated values for every incident angle of 10 degrees are plotted. From FIG. 14, in the region where the refractive index of the B member 12 is large (the refractive index difference from the A member is large), the scattering cross-section changes almost in proportion to the refractive index change of the B member. It can be seen that in the region where the refractive index is small (the difference in refractive index from the A member is small), the change in the scattering cross section with respect to the change in the refractive index of the B member is small.

図15は、上記の散乱断面積やB部材の分布密度を考慮した散乱確率などの指標が、B部材への入射角度によってどのように変化するかをまとめた表である。表中の粒子への入射角度は、x−y平面においてy軸を基準(0度)としx軸方向を90度としたB部材への光の入射角度である。散乱効率は、ミーの散乱理論により求められる散乱断面積をB部材の幾何学的面積(πd2/4)で除した値である。また、散乱係数は、散乱断面積にB部材の密度(単位体積に含まれる粒子の数)を乗じた値、散乱確率は、散乱断面積にB部材の密度の三分の二乗を乗じた値である。 FIG. 15 is a table summarizing how indices such as the scattering cross section and the scattering probability considering the distribution density of the B member change depending on the incident angle to the B member. The incident angle to the particles in the table is an incident angle of light to the B member in the xy plane with the y axis as a reference (0 degree) and the x axis direction as 90 degrees. Scattering efficiency is a value obtained by dividing the scattering cross section obtained by the scattering theory of Mie geometric area B member (πd 2/4). The scattering coefficient is a value obtained by multiplying the scattering cross section by the density of the B member (the number of particles contained in the unit volume), and the scattering probability is a value obtained by multiplying the scattering cross sectional area by the square of the density of the B member. It is.

このように構成された集光光学素子10では、素子上面から垂直入射してy軸方向に進むp偏光の光が、媒質(A部材11)中に粒子として存在するB部材12によりミー散乱を受ける。B部材12の粒子径が1μm、粒子密度が0.1個/μm3では、表面付近の最初の段階で入射光の約4割が散乱され、6割は散乱されずに直進する。直進した光も厚さ方向に分布する次の段階のB部材12で4割が散乱され、段階が進むといずれ散乱を受ける。散乱を受けた光はy軸に対して角度が付き、斜め下方に傾斜した光になる。 In the condensing optical element 10 configured as described above, p-polarized light that is perpendicularly incident from the upper surface of the element and travels in the y-axis direction is scattered by the B member 12 existing as particles in the medium (A member 11). receive. When the particle diameter of the B member 12 is 1 μm and the particle density is 0.1 particles / μm 3 , about 40% of the incident light is scattered at the first stage near the surface, and 60% goes straight without being scattered. 40% of the light that travels straight is scattered by the B member 12 at the next stage, which is distributed in the thickness direction, and will eventually be scattered as the stage proceeds. The scattered light is angled with respect to the y-axis and becomes light inclined obliquely downward.

斜め下方に傾斜した光は、次の段階では一部がより斜め(入射角が増加する方向)に曲げられ、他の一部は元に戻る方向(入射角が減少する方向)に曲げられ、残りは入射角が変化せずにそのまま進む光になる(図2を参照)。但し、斜めに傾斜した光は入射角が大きくなるほど(水平に近くなるほど)散乱確率が減少する。これは、媒質(A部材11)と粒子(B部材12)との屈折率差が小さくなり、散乱断面積が急激に減少するからである(図14及び図15を参照)。そのため、入射角度の大きい光については散乱を受ける割合が減少し、元の垂直方向に戻る割合も減少する。   In the next stage, the light inclined obliquely downward is bent more obliquely (in the direction in which the incident angle increases), and the other part is bent in the direction to return to the original (the direction in which the incident angle decreases). The remaining light becomes the light traveling as it is without changing the incident angle (see FIG. 2). However, the probability of scattering of light inclined obliquely decreases as the incident angle increases (closer to the horizontal). This is because the refractive index difference between the medium (A member 11) and the particles (B member 12) is reduced, and the scattering cross section is rapidly reduced (see FIGS. 14 and 15). For this reason, the ratio of receiving light with a large incident angle decreases and the ratio of returning to the original vertical direction also decreases.

媒質中を進む光の傾斜角度(入射角度)が90度近くになると、粒子の屈折率nbxが媒質の屈折率naxとほぼ同じになり、散乱確率が無視できるほど小さくなる。そのため、数多くの段階が進むことにより、光は90度方向つまりx軸に沿った+側または−側に向かい、面方向に閉じ込められる。 When the inclination angle (incident angle) of light traveling through the medium is close to 90 degrees, the refractive index n bx of the particles becomes almost the same as the refractive index n ax of the medium, and the scattering probability becomes small enough to be ignored. Therefore, as the number of steps proceeds, the light is confined in the plane direction toward the 90 ° direction, that is, the + side or the − side along the x axis.

なお、90度方向まで傾斜せず、集光光学素子の下面に到達した光でも、傾斜角が媒質と空気との界面における全反射角を超えていれば、媒質中の光は面内に閉じ込められる。本実施例においては、A部材11と空気層との界面に入射する光の入射角が37.6度以上であれば光は界面で全反射される。全反射された光は上面側に向けて媒質中を進む過程で再びB部材12に多重散乱され、最終的に90度方向つまりx軸に沿った+側または−側に集光される(図22、図23を参照)。   Even if the light reaches the lower surface of the condensing optical element without tilting to the 90 degree direction, the light in the medium is confined in the plane if the tilt angle exceeds the total reflection angle at the interface between the medium and air. It is done. In this embodiment, if the incident angle of light incident on the interface between the A member 11 and the air layer is 37.6 degrees or more, the light is totally reflected at the interface. The totally reflected light is again multiple scattered by the B member 12 in the process of traveling through the medium toward the upper surface, and finally converged in the 90-degree direction, that is, the + side or the − side along the x axis (see FIG. 22, see FIG.

従って、最も下面側に分散されたB部材12の層を通って下面に向かう光が、下面において全反射されるようにA部材11及びB部材12を設定すれば、集光光学素子10に入射したp偏光成分の光全てを+x方向の端部に向けて集光することができる。このような構成によれば、集光光学素子10を薄く構成することができる。   Therefore, if the A member 11 and the B member 12 are set so that light traveling toward the lower surface through the layer of the B member 12 dispersed on the lowermost surface side is totally reflected on the lower surface, the light enters the condensing optical element 10. All the light of the p-polarized component can be condensed toward the end in the + x direction. According to such a structure, the condensing optical element 10 can be comprised thinly.

そこで、集光光学素子10に垂直入射した光が、散乱によりどの様な角度分布に変化してゆくのかを図15に示した指標を用いて計算したシミュレーションデータを図16に示す。図16において、横軸はx−y平面において集光光学素子10に垂直入射した光の角度を0度としx軸方向を±90度とした光の角度(粒子への入射角度)、縦軸は各角度方向に配向した光の割合(百分率、%)である。図中に四角、丸、三角等で示すパラメータは、粒子(B部材12)による散乱の段階数であり、2n回ごとにプロットしている。 Accordingly, FIG. 16 shows simulation data calculated using the index shown in FIG. 15 as to how the angle distribution of light perpendicularly incident on the converging optical element 10 changes due to scattering. In FIG. 16, the horizontal axis represents the light angle (incident angle to the particle) where the angle of light perpendicularly incident on the condensing optical element 10 in the xy plane is 0 degree and the x-axis direction is ± 90 degrees, and the vertical axis. Is the ratio (percentage,%) of light oriented in each angular direction. The parameters indicated by squares, circles, triangles, etc. in the figure are the number of stages of scattering by the particles (B member 12), and are plotted every 2 n times.

このシミュレーションデータから、粒子による散乱の段階が進むにつれ、垂直入射した光がx軸の+方向と−方向とに傾斜していく様子が明確に把握できる。このデータを詳細に見ると、粒子による散乱の段階が16段階程度までは、0度方向の光が減少し角度分布の幅が広がっていく様子がわかる。但し、この初期過程では、割合として0度方向の光が最も多く、1ピークの山形の分布である。ところが、32段階ではピークがほとんどない平坦な分布になり、64段階,128段階では中央がへこんだ緩い凹状の分布に変化する。256段階以降では左右対称な2ピークが明確になり、512段階では−20〜20度の光がほとんど見られなくなる。そして、1024段階以降ではピーク値をとる角度の変化が小さくなって概略±80度付近に強いピークを有するようになり、−40〜40度の角度範囲の光が略ゼロになっている。   From this simulation data, it can be clearly understood that the vertically incident light is inclined in the + direction and the − direction of the x-axis as the stage of scattering by the particles proceeds. Looking at this data in detail, it can be seen that the light in the 0 degree direction decreases and the width of the angular distribution increases until the number of stages of scattering by the particles is about 16. However, in this initial process, the light in the 0 degree direction is the most in proportion, and the distribution is a mountain shape with one peak. However, a flat distribution with few peaks is obtained at 32 levels, and a gentle concave distribution with a depressed center is obtained at 64 and 128 levels. After the 256th stage, two symmetrical peaks become clear, and at the 512th stage, light of -20 to 20 degrees is hardly seen. After 1024 steps, the change in the angle at which the peak value is obtained becomes small and has a strong peak in the vicinity of approximately ± 80 degrees, and the light in the angle range of −40 to 40 degrees is substantially zero.

このデータから、粒子による散乱が1000段階程度まで進むと、素子内を伝播する光の角度は大半が40度以上または−40度以下になり、A部材11と空気層との界面の全反射角を超える。従って、A部材11に垂直入射した光がB部材12により1000段階以上多重散乱されるように集光光学素子10を構成することにより、入射光を集光光学素子10内に閉じ込め、x軸方向の両端に設けた光電変換素子50,50に集光入射させることができる。   From this data, when scattering by particles progresses to about 1000 steps, the angle of light propagating in the element is mostly 40 degrees or more and -40 degrees or less, and the total reflection angle at the interface between the A member 11 and the air layer Over. Accordingly, by configuring the condensing optical element 10 so that light vertically incident on the A member 11 is scattered by 1000 or more steps by the B member 12, the incident light is confined in the condensing optical element 10, and the x-axis direction The light can be focused and incident on photoelectric conversion elements 50 and 50 provided at both ends.

[第2実施例]
第2実施例は、既述した第2構成形態の集光光学素子20において、A部材21及びB部材22の条件として下記を適用した。
・A部材の屈折率 :nax=nay=naz=1.49
・B部材の屈折率 :nby=1.49(異常光の屈折率)
bx=nbz=1.66(常光の屈折率)
・B部材の粒子径 :d=1.0μm
・B部材の分布密度:0.1個/μm3
入射光の波長λを633nmとしたときのサイズパラメータはα=7.40である。なお本実施例においては、第2構成形態の集光光学素子20において、B部材が負の複屈折性(異常光の屈折率が常光の屈折率よりも低くなる複屈折性)を有する場合を例示する。
[Second Embodiment]
In the second example, the following was applied as the conditions of the A member 21 and the B member 22 in the condensing optical element 20 of the second configuration form described above.
-Refractive index of member A: n ax = n ay = n az = 1.49
-Refractive index of member B: n by = 1.49 (refractive index of extraordinary light)
n bx = n bz = 1.66 (ordinary refractive index)
-Particle size of B member: d = 1.0 μm
・ B member distribution density: 0.1 / μm 3
The size parameter when the wavelength λ of the incident light is 633 nm is α = 7.40. In this example, in the condensing optical element 20 of the second configuration form, the B member has a negative birefringence (birefringence in which the refractive index of extraordinary light is lower than the refractive index of ordinary light). Illustrate.

上記の条件は、A部材21として硬化後の屈折率が1.49となるように調整した熱硬化性ポリマー、B部材22として円相当径1μmの方解石の粒子を用い、A部材21にB部材22を均一分散させた溶液を平板状の型に流し込み、型の上下に3kV/mmの電圧を印加しつつ加熱硬化させて集光光学素子20を作成した場合に相当する。このとき、A部材21(硬化後のポリマー)は複屈折性を持たず、何れの方向に進む光についても屈折率が一定でnax=nay=naz=1.49程度となる。一方、B部材22は電圧の印加方向(y軸方向)に誘電率の異常軸が揃って他の方向と屈折率が異なり、偏光面が電圧の印加方向に沿った光に対して1.49程度、他の方向について1.66程度となる。 The above conditions are as follows: A member 21 is a thermosetting polymer adjusted to have a refractive index after curing of 1.49; B member 22 is a calcite particle having an equivalent circle diameter of 1 μm; This corresponds to the case where the condensing optical element 20 is formed by pouring a solution in which 22 is uniformly dispersed into a flat plate mold and applying heat and curing while applying a voltage of 3 kV / mm above and below the mold. At this time, the A member 21 (cured polymer) does not have birefringence, and the refractive index is constant for light traveling in any direction, so that n ax = n ay = n az = 1.49. On the other hand, the B member 22 has an abnormal axis of dielectric constant aligned with the voltage application direction (y-axis direction) and has a refractive index different from that of the other directions, and the polarization plane is 1.49 with respect to light along the voltage application direction. About 1.66 in other directions.

B部材22は、複屈折の主軸がy軸方向に配向した一軸異方性の複屈折体であることから、B部材に入射する光の入射角度によってB部材22の屈折率が変化し、A部材21との屈折率差が変化する。そのため、ミーの散乱理論における散乱断面積が変化し、散乱効率が変化する。x−y平面について考慮すると、y軸を基準(0度)とした入射角が増加するにつれて散乱断面積が減少する。   Since the B member 22 is a uniaxial anisotropic birefringent body in which the main axis of birefringence is oriented in the y-axis direction, the refractive index of the B member 22 changes depending on the incident angle of light incident on the B member. The difference in refractive index with the member 21 changes. Therefore, the scattering cross section in Mie's scattering theory changes and the scattering efficiency changes. Considering the xy plane, the scattering cross section decreases as the incident angle with the y-axis as a reference (0 degree) increases.

図17は、横軸にB部材(粒子)22の屈折率、縦軸に散乱断面積をとり、x−y平面内におけるB部材への入射角変化に伴う屈折率変化により散乱断面積がどのように変化するかを示したものである。図において、左上端の黒塗り四角のプロットがB部材22への入射角が0度(垂直入射)、右下端の黒塗り四角のプロットがB部材22への入射角が90度(水平入射)であり、入射角10度ごとの計算値をプロットしている。この図17から、B部材22の屈折率が大きい(A部材との屈折率差が大きい)領域では、B部材の屈折率変化にほぼ比例して散乱断面積が変化すること、B部材22の屈折率が小さい(A部材との屈折率差が小さい)領域では、B部材の屈折率変化に対する散乱断面積の変化が小さいことが分かる。   In FIG. 17, the horizontal axis represents the refractive index of the B member (particle) 22, the vertical axis represents the scattering cross section, and the scattering cross section is determined by the change in the refractive index accompanying the change in the incident angle to the B member in the xy plane. It shows how it changes. In the figure, a black square plot at the upper left corner has an incident angle to the B member 22 of 0 degree (vertical incidence), and a black square plot at the lower right corner has an incident angle to the B member 22 of 90 degrees (horizontal incidence). The calculated values for every incident angle of 10 degrees are plotted. From FIG. 17, in the region where the refractive index of the B member 22 is large (the difference in refractive index from the A member is large), the scattering cross section changes almost in proportion to the refractive index change of the B member. It can be seen that in the region where the refractive index is small (the difference in refractive index from the A member is small), the change in the scattering cross section with respect to the change in the refractive index of the B member is small.

図18は、上記散乱断面積やB部材の分布密度を考慮した散乱確率などの指標が、B部材への入射角度によってどのように変化するかをまとめた表である。表中の粒子への入射角度は、x−y平面においてy軸を0度としx軸方向を90度としたB部材への光の入射角度である。散乱効率、散乱係数、散乱確率の各指標は、第1実施例(図15)と同様である。   FIG. 18 is a table summarizing how indicators such as the scattering cross section and the scattering probability considering the distribution density of the B member change depending on the incident angle to the B member. The incident angle to the particles in the table is an incident angle of light to the B member in which the y-axis is 0 degree and the x-axis direction is 90 degrees on the xy plane. Each index of scattering efficiency, scattering coefficient, and scattering probability is the same as in the first embodiment (FIG. 15).

集光光学素子20では、素子上面から垂直入射してy軸方向に進むp偏光の光は、媒質中に粒子として存在するB部材22によりミー散乱を受ける。B部材22の粒子径が1μm、粒子密度が0.1個/μm3では、散乱過程の概要は第1実施例と同様であり、表面付近の最初の段階で入射光の約4割、次段で4割が散乱され、段階が進むにつれて散乱を受ける。散乱を受けた光はy軸に対して傾斜した光となり、徐々に傾斜角が増加してゆく。 In the condensing optical element 20, p-polarized light that is perpendicularly incident from the upper surface of the element and travels in the y-axis direction is subjected to Mie scattering by the B member 22 that exists as particles in the medium. When the particle size of the B member 22 is 1 μm and the particle density is 0.1 particles / μm 3 , the outline of the scattering process is the same as that in the first embodiment. 40% is scattered at the stage and is scattered as the stage progresses. The scattered light becomes light inclined with respect to the y-axis, and the inclination angle gradually increases.

図16と同様に、集光光学素子20に垂直入射した光が、散乱によりどの様な角度分布に変化してゆくのか計算したシミュレーションデータを図19に示す。図19において、横軸はx−y平面において集光光学素子20に垂直入射した光の角度を0度としx軸方向を±90度とした光の角度(粒子への入射角度)、縦軸は各角度方向に配向した光の割合(百分率、%)である。図中に四角、丸、三角等で示すパラメータは、粒子(B部材22)による散乱の段階数であり、2n回ごとにプロットしている。 Similarly to FIG. 16, simulation data calculated as to what angular distribution of light perpendicularly incident on the condensing optical element 20 changes due to scattering is shown in FIG. In FIG. 19, the horizontal axis represents the angle of light (incident angle to the particle) where the angle of light perpendicularly incident on the condensing optical element 20 in the xy plane is 0 degree and the x-axis direction is ± 90 degrees, and the vertical axis. Is the ratio (percentage,%) of light oriented in each angular direction. The parameters indicated by squares, circles, triangles, etc. in the figure are the number of stages of scattering by the particles (B member 22), and are plotted every 2 n times.

シミュレーションデータから、粒子による散乱の段階が進むにつれて、垂直入射した光がx軸の+方向と−方向とに傾斜していく様子が把握でき、この基本的な傾向は第1実施例と同様である。データを詳細に見ると、粒子による散乱の段階が32段階程度まで、0度方向の光が減少し角度分布の幅が広がっていく。この初期過程では、割合として0度方向の光が最も多い1ピークの山形の分布である。ピークがほとんどない平坦な分布になるのは64段階で、128,256段階で中央がへこんだ緩い凹状の分布に変化する。512段階以降で左右対称な2ピークが明確になり、1024段階程度で−20〜20度の光がほとんど見られなくなる。そして、2048段階以降でピーク値をとる角度の変化が小さくなって概略±80度付近に強いピークを有するようになり、−40〜40度の角度範囲の光が略ゼロになっている。   From the simulation data, it can be seen that the vertically incident light is inclined in the + direction and the − direction of the x-axis as the stage of scattering by the particles proceeds, and this basic tendency is the same as in the first embodiment. is there. Looking at the data in detail, the light in the 0 degree direction decreases and the width of the angular distribution increases until the number of particle scattering stages reaches about 32 stages. In this initial process, the distribution is a peak-shaped distribution of one peak with the largest amount of light in the 0 degree direction. The flat distribution with almost no peaks is in 64 steps, and the distribution changes into a gentle concave distribution in which the center is recessed in 128 and 256 steps. After the 512 stage, two symmetrical peaks become clear, and -20 to 20 degree light is hardly seen in about 1024 stages. And the change of the angle which takes a peak value after 2048 steps becomes small, and has a strong peak in the vicinity of about ± 80 degrees, and light in an angle range of −40 to 40 degrees is substantially zero.

このデータから、粒子による散乱が2000段階程度まで進むと、素子内を伝播する光の角度は大半が40度以上または−40度以下になり、A部材21と空気層との界面の全反射角を超える。従って、A部材21に垂直入射した光がB部材22により2000段階以上多重散乱されるように集光光学素子20を構成することにより、入射光を集光光学素子20内に閉じ込め、x軸方向の両端に設けた光電変換素子50,50に集光入射させることができる。垂直ではなく斜め入射の光は本例の垂直入射に比べて少ない段数で閉じ込められるようになる。   From this data, when the scattering by the particles proceeds to about 2000 steps, the angle of light propagating in the element is mostly 40 degrees or more and −40 degrees or less, and the total reflection angle at the interface between the A member 21 and the air layer. Over. Accordingly, by configuring the condensing optical element 20 so that light vertically incident on the A member 21 is scattered by 2000 or more stages by the B member 22, the incident light is confined in the condensing optical element 20, and the x-axis direction The light can be focused and incident on photoelectric conversion elements 50 and 50 provided at both ends. Light that is not vertically but obliquely incident is confined with a smaller number of stages than the normal incident in this example.

[比較例]
比較例として、何れも複屈折性を有しないA部材及びB部材で構成した場合について、同様のシミュレーションを行った。A部材及びB部材の条件として下記を適用した。
・A部材の屈折率 :nax=nay=naz=1.49
・B部材の屈折率 :nbx=nby=nbz=1.66
・B部材の粒子径 :d=1.0μm
・B部材の分布密度:0.1個/μm3
入射光の波長λを633nmとしたときのサイズパラメータはα=7.40である。
[Comparative example]
As a comparative example, the same simulation was performed for the case where each of the A member and the B member did not have birefringence. The following was applied as conditions of A member and B member.
-Refractive index of member A: n ax = n ay = n az = 1.49
-Refractive index of B member: n bx = n by = n bz = 1.66
-Particle size of B member: d = 1.0 μm
・ B member distribution density: 0.1 / μm 3
The size parameter when the wavelength λ of the incident light is 633 nm is α = 7.40.

図20は、図15及び図18と同様に、散乱断面積や散乱確率などの指標がB部材への入射角度によってどのように変化するかをまとめた表である。また図21が、図16及び図19と同様に、集光光学素子に垂直入射した光が、散乱によりどの様な角度分布に変化してゆくのか計算したシミュレーションデータである。   FIG. 20 is a table summarizing how indices such as the scattering cross section and the scattering probability change depending on the incident angle to the B member, as in FIGS. 15 and 18. Further, FIG. 21 shows simulation data calculated as to how the angular distribution of light perpendicularly incident on the condensing optical element changes due to scattering, as in FIGS. 16 and 19.

図21のシミュレーションデータから、粒子による散乱の段階が進むにつれて、垂直入射した光が散乱されていく様子が把握できる。また図16及び図19と対比することにより、実施例1及び2と散乱過程が明らかに異なっていることが把握される。   From the simulation data shown in FIG. 21, it can be seen that vertically incident light is scattered as the stage of scattering by particles proceeds. Further, by comparing with FIG. 16 and FIG. 19, it is understood that the scattering process is clearly different from the first and second embodiments.

すなわち、実施例1及び実施例2においては、垂直入射した光が散乱によってx軸の+方向と−方向に傾斜して行き、所定段階を経ることによって明確な2つのピークとなって表れていたが、この比較例においてそのような傾向は全く見られない。   That is, in Example 1 and Example 2, vertically incident light was tilted in the + and − directions of the x axis due to scattering, and appeared as two distinct peaks through a predetermined stage. However, no such tendency is observed in this comparative example.

データを詳細に見ると、粒子の散乱により0度方向の光が減少して角度分布の幅が広がっていく初期段階の傾向は実施例1及び実施例2と近似する。しかし、比較例においては散乱段階が増えてもこの傾向が変化せずブロードに拡がってゆくことに加え、90度を超えて90〜180度方向に進む光、すなわち入射方向に戻る光の割合が散乱段階の増加とともに増大している。これは素子に入射した光が媒質中の粒子により散乱され単純に拡散していく状況に他ならない。入射と反対側の表面に光が達したときには全反射角より小さな光線は全て外部に抜け出てしまう。これが繰り返し行われると、内部に閉じ込められる光はなくなってくる。   Looking at the data in detail, the tendency of the initial stage where the light in the 0-degree direction decreases due to particle scattering and the width of the angular distribution widens is similar to that in the first and second embodiments. However, in the comparative example, in addition to the fact that this tendency does not change and spreads even if the number of scattering stages increases, the proportion of light that travels in the 90 to 180 degree direction beyond 90 degrees, that is, the ratio of the light that returns to the incident direction. Increasing with increasing scattering stage. This is nothing but a situation where light incident on the element is scattered by particles in the medium and simply diffused. When light reaches the surface opposite to the incident side, all light rays smaller than the total reflection angle escape to the outside. If this is repeated, no light will be trapped inside.

従って、仮にA部材及びB部材の屈折率やB部材の粒子径、B部材の分布密度等を実施例と同一とし、ミー散乱のサイズパラメータを同一にしたとしても、比較例では入射光を素子内に閉じ込めることができず、素子の端部に設けた光電変換素子に効率的に集光入射させることが困難であることが容易に理解される。   Therefore, even if the refractive index of the A member and the B member, the particle diameter of the B member, the distribution density of the B member, and the like are the same as those in the example, and the size parameter of Mie scattering is the same, It is easy to understand that it is difficult to condense and enter the photoelectric conversion element provided at the end of the element efficiently.

以上の説明では、A部材が複屈折性を持たず、B部材が正または負の複屈折性を有する場合について説明したが、逆であっても良く(図3(b)及び図4(b)を参照)、A部材及びB部材の両方が複屈折性を有していても良い。また、説明簡明化のため、波長λが一定の場合を例示したが、波長λが幅を有する場合には、B部材の粒子径dを集光する光の波長帯域に応じて適宜設定することができる。具体的には、太陽光の放射スペクトルに合わせて400〜1800nmの範囲とし、あるいは放射スペクトルの強度が高い400〜800nmの範囲とし、または次述する光発電装置における光電変換素子50の変換効率が高い範囲などとすることができる。この場合において、B部材の粒子径dを波長帯域の中心や重心等に合わせて設定することができる他、波長帯域を複数に分割して各分割帯域に合わせた粒子径d1,d2,d3として(すなわち粒子径が異なる複数のB部材の混合体として)設定することも可能である。   In the above description, the case where the A member does not have birefringence and the B member has positive or negative birefringence has been described, but the opposite may be possible (FIGS. 3B and 4B). )), Both the A member and the B member may have birefringence. In addition, for simplicity of explanation, the case where the wavelength λ is constant has been illustrated, but when the wavelength λ has a width, the particle diameter d of the B member should be appropriately set according to the wavelength band of the collected light. Can do. Specifically, the conversion efficiency of the photoelectric conversion element 50 in the photovoltaic device described below is set in a range of 400 to 1800 nm according to the emission spectrum of sunlight, or in a range of 400 to 800 nm where the intensity of the emission spectrum is high. It can be a high range. In this case, the particle diameter d of the B member can be set in accordance with the center, the center of gravity, etc. of the wavelength band, and the particle diameters d1, d2, and d3 are divided into a plurality of wavelength bands and matched to the respective divided bands. It is also possible to set (as a mixture of a plurality of B members having different particle diameters).

[集光装置及び光発電装置の構成例1]
次に、以上説明したような集光光学素子を用いた集光装置について、集光光学素子10を用いた場合を代表例として説明する。既述したように、集光光学素子10は、y軸方向に進む光についてA部材11及びB部材12の屈折率がp偏光の光に対して異なり、x軸方向に進む光について実質的に等しくなるように設定することで、厚さ方向に入射するp偏光成分の光をx軸方向に導いて集光する。
[Configuration example 1 of condensing device and photovoltaic device]
Next, a condensing apparatus using the condensing optical element as described above will be described as a representative example using the condensing optical element 10. As described above, the condensing optical element 10 has different refractive indexes of the A member 11 and the B member 12 with respect to the p-polarized light with respect to the light traveling in the y-axis direction, and substantially with respect to the light traveling in the x-axis direction. By setting to be equal, the light of the p-polarized component incident in the thickness direction is guided in the x-axis direction and condensed.

集光光学素子10では、素子の上方から入射する光のうち、s偏光成分の光はx軸方向に集光されず、集光光学素子10の下面側から出射する。そこで、本発明の態様の集光装置60,70,80は、このs偏光成分の光を含めて、集光光学素子の上方から入射する光全てを集光し得るように構成される。以下、集光装置の代表的な構成例について、図面を参照して説明する。なお、各図では、電界振幅が紙面に平行なp偏光の光を両端矢印の符号、電界振幅が紙面に垂直なs偏光の光を中心にドットを有する丸印の符号で示している。   In the condensing optical element 10, the light of the s-polarized component out of the light incident from above the element is not condensed in the x-axis direction and is emitted from the lower surface side of the condensing optical element 10. Therefore, the condensing devices 60, 70, and 80 according to the aspect of the present invention are configured to collect all the light incident from above the condensing optical element, including the light of the s-polarized component. Hereinafter, a typical configuration example of the light collecting device will be described with reference to the drawings. In each figure, p-polarized light whose electric field amplitude is parallel to the paper surface is indicated by a double-ended arrow symbol, and s-polarized light whose electric field amplitude is perpendicular to the paper surface is indicated by a circular symbol having dots.

第1構成例の集光装置60の概要構成を図22に示す。図示する集光装置60は、集光光学素子10と、この集光光学素子10の下面側に下面に沿って設けられた反射鏡62と、集光光学素子10と反射鏡62との間に設けられた偏光面回転素子65とを備えて構成される。なお、集光光学素子は、第2構成例の集光光学素子20を用いても良い。   A schematic configuration of the condensing device 60 of the first configuration example is shown in FIG. The condensing device 60 shown in the figure includes the condensing optical element 10, a reflecting mirror 62 provided on the lower surface side of the condensing optical element 10 along the lower surface, and between the condensing optical element 10 and the reflecting mirror 62. The polarization plane rotation element 65 is provided. Note that the condensing optical element 20 of the second configuration example may be used as the condensing optical element.

偏光面回転素子65は、二回度透過した光の偏光面を90度回転させる光学素子である。このような機能を有する偏光面回転素子として、例えば、太陽光の波長帯域の光について、一回目の透過でs偏光を円偏光に変換し、二回目の透過で円偏光をp偏光に変換する、広帯域の1/4波長板が好適に用いられる。   The polarization plane rotation element 65 is an optical element that rotates the polarization plane of light transmitted twice, by 90 degrees. As a polarization plane rotation element having such a function, for example, for light in the wavelength band of sunlight, s-polarized light is converted to circularly polarized light by the first transmission, and circularly polarized light is converted to p-polarized light by the second transmission. A broadband quarter-wave plate is preferably used.

このような構成の集光装置60では、集光光学素子10の上面側から厚さ方向に入射した光のうち、p偏光成分の光は、A部材11中に均一分散された多数のB部材12により散乱されて進行方向(光ベクトル)がx軸方向の+x側または−x側に配向し、両端部に集光される。一方、集光光学素子10の上面側から厚さ方向に入射した光のうち、s偏光成分の光は、B部材12によって散乱されることなく集光光学素子10の下面側から出射する。   In the condensing device 60 having such a configuration, among the light incident in the thickness direction from the upper surface side of the condensing optical element 10, the p-polarized component light is a large number of B members uniformly dispersed in the A member 11. 12, the traveling direction (light vector) is oriented to the + x side or the -x side in the x-axis direction and is collected at both ends. On the other hand, of the light incident in the thickness direction from the upper surface side of the condensing optical element 10, the light of the s-polarized component is emitted from the lower surface side of the condensing optical element 10 without being scattered by the B member 12.

集光光学素子10の下面側から出射したs偏光成分の光は、偏光面回転素子65を透過して反射鏡62により反射され、再び偏光面回転素子65を透過して、集光光学素子10の下面側から再び集光光学素子10に入射する。   The light of the s-polarized component emitted from the lower surface side of the condensing optical element 10 is transmitted through the polarization plane rotating element 65, reflected by the reflecting mirror 62, and again transmitted through the polarization plane rotating element 65, and the condensing optical element 10 Is incident on the condensing optical element 10 again from the lower surface side.

このとき、集光光学素子10に再入射する光は、偏光面回転素子65を二度透過していることから、偏光面が90度回転されてp偏光成分の光になっている。そのため、集光光学素子10の下面側から再入射して厚さ方向に進むp偏光成分の光は、集光光学素子10の下面(A部材11と空気層との界面)で全反射されたp偏光成分の光と同様に、下面側から上面側に向けて進む過程でB部材12により散乱され、x軸方向の+x側または−x側の側端部に集光される。   At this time, the light re-entering the condensing optical element 10 is transmitted through the polarization plane rotating element 65 twice, so that the polarization plane is rotated by 90 degrees to become p-polarized component light. Therefore, the light of the p-polarized component that re-enters from the lower surface side of the condensing optical element 10 and proceeds in the thickness direction is totally reflected on the lower surface of the condensing optical element 10 (interface between the A member 11 and the air layer). Similar to the light of the p-polarized component, the light is scattered by the B member 12 in the process of traveling from the lower surface side toward the upper surface side, and is collected on the side end portion on the + x side or the −x side in the x-axis direction.

従って、このような構成の集光装置60によれば、1枚の集光光学素子10で、上方から入射する光全てをx軸方向の両端部に集光することができる。また、集光光学素子10の端部に集光された光を光電変換する光電変換素子50を設けることにより、集光光学素子10及び光電変換素子50がわずか1組の簡明かつローコストな構成で、集光光学素子10に入射する光全てを光電変換する光発電装置2を構成することができる。   Therefore, according to the condensing device 60 having such a configuration, a single condensing optical element 10 can condense all the light incident from above onto both ends in the x-axis direction. Further, by providing the photoelectric conversion element 50 that photoelectrically converts the light condensed at the end of the condensing optical element 10, the condensing optical element 10 and the photoelectric conversion element 50 have a simple and low-cost configuration. The photovoltaic device 2 that photoelectrically converts all the light incident on the condensing optical element 10 can be configured.

[集光装置及び光発電装置の構成例2]
次に、第2構成例の集光装置について簡潔に説明する。この構成例の集光装置(図示を省略するが、説明の便宜上、集光装置70とする)は、既述した集光光学素子を二つ用いて構成される。ここでは、集光光学素子10を二つ(101,102とする)用いる場合を例として説明する。
[Configuration example 2 of condensing device and photovoltaic device]
Next, the condensing device of the second configuration example will be briefly described. The condensing device of this configuration example (not shown, but for convenience of explanation, referred to as the condensing device 70) is configured using the two condensing optical elements described above. Here, the case where two (10 1 and 10 2 ) condensing optical elements 10 are used will be described as an example.

集光装置70は、第1の集光光学素子101と、その下面側に設けられた第2の集光光学素子102とからなり、第2の集光光学素子102のx軸方向が、第1の集光光学素子101のz軸方向と平行になるように配設されて構成される。端的にいえば、第1の集光光学素子101の下側に位置する第2の集光光学素子102を、y軸まわりに90度回転して配置することにより集光装置70が構成される。 Condenser 70, 1 and the first condensing optical element 10 consists of a second focusing optical element 10 2 which provided on the lower surface side, a second x-axis direction of the condensing optical element 10 2 Are arranged so as to be parallel to the z-axis direction of the first condensing optical element 101. In short, the second condensing optical element 10 2 located on the first lower focusing optics 10 1, the light collector 70 by arranging rotated 90 degrees around the y-axis configuration Is done.

そのため、第1の集光光学素子101の座標系におけるs偏光の光は、第2の集光光学素子102の座標系ではp偏光になる。これにより、集光装置70の上方から第1の集光光学素子101に入射した光は、第1の集光光学素子101におけるp偏光成分の光が散乱されて第1の集光光学素子101のx軸方向の両端部に集光され、この集光光学素子101を透過した光が第2の集光光学素子102においてp偏光成分の光になって、第2の集光光学素子102のx軸方向の両端部に集光される。 Therefore, the s-polarized light in the coordinate system of the first condensing optical element 101 becomes p-polarized light in the coordinate system of the second condensing optical element 102. As a result, the light incident on the first condensing optical element 10 1 from above the condensing device 70 is scattered by the p-polarized component light in the first condensing optical element 10 1 . The light condensed at both ends of the element 10 1 in the x-axis direction and transmitted through the condensing optical element 10 1 becomes light of the p-polarized component in the second condensing optical element 10 2 , and the second condensing element It is focused on both ends of the x-axis direction of the light optical elements 10 2.

従って、このような構成の集光装置70によれば、2枚の集光光学素子をy軸まわりに相対角度90度回転して重ねて配設する簡明な構成で、上方から入射する光全てを集光することができる。また、各々の端部に集光された光を光電変換する光電変換素子50を設けることにより、簡明な構成で上方から入射する光全てを光電変換する光発電装置3(不図示)を構成することができる。さらに、第1の集光光学素子101に設けられる光電変換素子と、第2の集光光学素子102に設けられる光電変換素子とが上下に重複しないため、光電変換素子の構成及び配置の自由度を確保することができる。 Therefore, according to the condensing device 70 having such a configuration, all the light incident from above can be obtained with a simple configuration in which the two condensing optical elements are arranged so as to be rotated at a relative angle of 90 degrees around the y axis. Can be condensed. Further, by providing the photoelectric conversion element 50 that photoelectrically converts the condensed light at each end portion, a photovoltaic device 3 (not shown) that photoelectrically converts all light incident from above with a simple configuration is configured. be able to. Furthermore, a photoelectric conversion element provided in the first collection optics 10 1, since the photoelectric conversion element provided in a second condensing optical element 10 2 do not overlap vertically, the construction and the arrangement of the photoelectric conversion element A degree of freedom can be secured.

なお、第1の集光光学素子及び第2の集光光学素子は、同種の集光光学素子を二つ(例えば集光光学素子10を二つ、あるいは集光光学素子20を二つ)用いてもよく、また異なる種類の集光光学素子を組み合わせて用いても良い。異なる種類の集光光学素子を組み合わせる場合には、何れを上方に配置しても良い。   The first condensing optical element and the second condensing optical element use two condensing optical elements of the same type (for example, two condensing optical elements 10 or two condensing optical elements 20). Alternatively, different types of condensing optical elements may be used in combination. When combining different types of condensing optical elements, any of them may be arranged above.

[集光装置及び光発電装置の構成例3]
次に、第3構成例の集光装置80について、図23を参照して説明する。本構成例の集光装置80は、既述した集光光学素子二つと偏光面回転素子85により構成される。図23では集光光学素子10を二つ(101,102)用いた場合を例示する。
[Configuration Example 3 of Condensing Device and Photovoltaic Power Generation Device]
Next, the condensing device 80 of the third configuration example will be described with reference to FIG. The condensing device 80 of this configuration example includes the two condensing optical elements and the polarization plane rotating element 85 described above. FIG. 23 illustrates a case where two condensing optical elements 10 (10 1 , 10 2 ) are used.

集光装置80は、第1の集光光学素子101と、その下面側に設けられた第2の集光光学素子102と、これらの集光光学素子101,102の間に設けられた偏光面回転素子85とからなり、第1の集光光学素子101のx軸方向と第2の集光光学素子102のx軸方向とが平行になるように配設される。 The condensing device 80 is provided between the first condensing optical element 10 1 , the second condensing optical element 10 2 provided on the lower surface side thereof, and these condensing optical elements 10 1 and 10 2. consist obtained polarizing plane rotating element 85., a first x-axis direction of the condensing optical element 10 1 and the second focusing optical element 10 2 of the x-axis direction are disposed in parallel.

偏光面回転素子85は、透過した光の偏光面を90度回転させる光学素子である。このような機能を有する偏光面回転素子として、例えば、太陽光の波長帯域の光について、一回の透過でs偏光をp偏光に変換する、広帯域の1/2波長板が好適に用いられる。   The polarization plane rotation element 85 is an optical element that rotates the polarization plane of transmitted light by 90 degrees. As a polarization plane rotating element having such a function, for example, a broadband half-wave plate that converts s-polarized light into p-polarized light with a single transmission is preferably used.

このような構成の集光装置80では、第1の集光光学素子101の上面側から厚さ方向に入射した光のうち、p偏光成分の光は、第1の集光光学素子101のA部材11中に均一分散された多数のB部材12により散乱されて進行方向(光ベクトル)がx軸方向の+x側または−x側に配向し、両端部に集光される。一方、第1の集光光学素子101を透過したs偏光成分の光は第1の集光光学素子10の下面側から出射され偏光面回転素子85に入射する。 In the condensing device 80 having such a configuration, of the light incident in the thickness direction from the upper surface side of the first condensing optical element 10 1 , the p-polarized component light is the first condensing optical element 10 1. Scattered by a large number of B members 12 uniformly dispersed in the A member 11, the traveling direction (light vector) is oriented to the + x side or −x side in the x-axis direction, and is condensed at both ends. On the other hand, s-polarized light component transmitted through the first focusing optical element 10 1 is incident on the polarization plane rotating element 85 is emitted from the lower surface side of the first focusing optical element 10.

偏光面回転素子85に入射したs偏光成分の光は、この偏光面回転素子85を透過する過程で偏光面が90度回転され、p偏光成分の光となって偏光面回転素子85から出射する。そのため、第2の集光光学素子102には、偏光面が回転されてp偏光成分になった光が入射し、この第2の集光光学素子102のA部材11中に均一分散された多数のB部材12により散乱されてx軸方向の両端部に集光される。 The light of the s-polarized component incident on the polarization plane rotating element 85 is rotated by 90 degrees in the process of passing through the polarization plane rotating element 85, and is emitted from the polarization plane rotating element 85 as p-polarized component light. . Therefore, the second focusing optical element 10 2, the plane of polarization is rotated is incident light becomes p-polarized light component is uniformly dispersed in the A member 11 of the second focusing optical element 10 2 Further, the light is scattered by a large number of B members 12 and collected at both ends in the x-axis direction.

従って、このような構成の集光装置80によれば、2枚の集光光学素子を重ねて配設する簡明な構成で、上方から入射する光全てを集光することができる。また、集光光学素子101,102の各々の端部に集光された光を光電変換する光電変換素子50を設けることにより、簡明な構成で上方から入射する光全てを光電変換する光発電装置4を構成することができる。 Therefore, according to the condensing device 80 having such a configuration, it is possible to condense all the light incident from above with a simple configuration in which the two condensing optical elements are arranged in an overlapping manner. In addition, by providing a photoelectric conversion element 50 that photoelectrically converts the light collected at each end of the condensing optical elements 10 1 and 10 2 , light that photoelectrically converts all light incident from above with a simple configuration. The power generation device 4 can be configured.

この場合、第1の集光光学素子101及び第2の集光光学素子102の各+x側の端部と各−x側の端部とが上下に位置して配設される。そこで、各+x側の端部同士をつないでひとつの光電変換素子50に導くライトガイド、及び各−x側の端部同士をつないでひとつの光電変換素子50に導くライトガイドを設けて構成することもできる。このような構成によれば、比較的高額な光電変換素子の素子数を低減できる。なお、第1の集光光学素子及び第2の集光光学素子は、集光光学素子20を二つ用いても良く、集光光学素子10と集光光学素子20とを組み合わせて用いても良い。 In this case, the + x-side end portions and the −x-side end portions of the first condensing optical element 10 1 and the second condensing optical element 10 2 are arranged vertically. Therefore, a light guide that connects the respective + x side ends to each photoelectric conversion element 50 and a light guide that connects each −x side end to each photoelectric conversion element 50 are provided. You can also. According to such a configuration, the number of relatively expensive photoelectric conversion elements can be reduced. In addition, the 1st condensing optical element and the 2nd condensing optical element may use the two condensing optical elements 20, and may use it combining the condensing optical element 10 and the condensing optical element 20. FIG. good.

[集光光学素子の端部における光エネルギーの取り出し手法]
次に、以上説明した集光光学素子10,20において、x軸方向の+x側及び−x側の端部に集光された光の、エネルギー取り出し手法について、幾つかの代表的な概念を例示する図24(a)〜(e)を参照しながら簡明に説明する。
[Method of extracting light energy at the end of the condensing optical element]
Next, in the condensing optical elements 10 and 20 described above, some typical concepts are illustrated with respect to an energy extraction method of the light condensed at the + x side and −x side ends in the x-axis direction. A brief description will be given with reference to FIGS.

(a)は、端部に集光された光を、そのまま取り出し、光として利用する構成例の概念図である。この場合において、集光光学素子の端部から出射する光をシリンドリカルレンズ91や集光ロッド92等を介してz軸方向に集光し、集光された光を光ファイバー93により所望位置に導光するような構成が例示される。   (a) is the conceptual diagram of the structural example which takes out the light condensed on the edge part as it is, and uses it as light. In this case, the light emitted from the end of the condensing optical element is condensed in the z-axis direction via the cylindrical lens 91, the condensing rod 92, etc., and the condensed light is guided to a desired position by the optical fiber 93. Such a configuration is exemplified.

(b)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第1構成例の概念図である。この図は、光電変換素子50を集光光学素子10,20の集光側の端部に結合し、電気エネルギーとして取り出す構成例を示す。なお、集光された光を熱エネルギーとして取り出す場合には、光熱変換する光吸収体付きのヒートパイプ等が好適に用いられる。   (b) is a conceptual diagram of the 1st structural example in the case of using the light condensed on the edge part, converting into electric energy or thermal energy. This figure shows a configuration example in which the photoelectric conversion element 50 is coupled to the condensing side ends of the condensing optical elements 10 and 20 and taken out as electric energy. In addition, when taking out the condensed light as a thermal energy, the heat pipe with the light absorber etc. which carry out photothermal conversion are used suitably.

(c)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第2構成例の概念図である。本構成例は、集光光学素子10,20の端部を斜めにカットしてミラー94を配設し(あるいは傾斜面に反射膜を形成し)、集光光学素子10,20の上面側(または下面側)に設けた光電変換素子50に集光させる構成例である。これにより、集光光学素子10,20が薄いシート状の場合であっても、所定面積の光電変換素子50を安定的に取り付けることができる。なお、集光された光を熱エネルギーとして取り出す場合には、上記同様に光吸収体付きのヒートパイプ等が好適に用いられる。   (c) is a conceptual diagram of the 2nd structural example in the case of converting and using the light condensed on the edge part as an electrical energy or a thermal energy. In this configuration example, the end portions of the condensing optical elements 10 and 20 are cut obliquely to dispose the mirror 94 (or a reflection film is formed on the inclined surface), and the upper surface side of the condensing optical elements 10 and 20 ( Or it is the structural example condensed on the photoelectric conversion element 50 provided in the lower surface side. Thereby, even if the condensing optical elements 10 and 20 are thin sheet-like, the photoelectric conversion element 50 of a predetermined area can be attached stably. In addition, when taking out the condensed light as heat energy, the heat pipe with a light absorber like the above is used suitably.

(d)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第3構成例の概念図である。本構成例は、集光光学素子10,20の端部を斜めにカットしてダイクロイックミラー95を配設し(あるいは傾斜面に波長選択性のある反射膜を形成し)、集光光学素子10,20の上面側(または下面側)と、集光光学素子10,20の側方とに設けた光電変換素子50,50′に分割して集光させる構成例である。このような構成によれば、分割された各波長帯域について高効率な光電変換素子を用いるこができるため、比較的低コストで変換効率の高い光発電装置を構成することが可能となる。   (d) is a conceptual diagram of a third configuration example in the case where light collected at the end is used after being converted into electric energy or heat energy. In this configuration example, the end portions of the condensing optical elements 10 and 20 are cut obliquely to dispose the dichroic mirror 95 (or a reflective film having wavelength selectivity is formed on the inclined surface). , 20 is divided into photoelectric conversion elements 50 and 50 ′ provided on the upper surface side (or lower surface side) of the light collecting optical elements 10 and 20 and on the side of the condensing optical elements 10 and 20. According to such a configuration, since a highly efficient photoelectric conversion element can be used for each divided wavelength band, a photovoltaic device with high conversion efficiency can be configured at a relatively low cost.

なお、分割した光のうち一方(例えば赤外領域の光)を光吸収体付きのヒートパイプ等に入射して熱エネルギーとして利用し、他方(例えば可視領域及び紫外領域の光)を光電変換素子50に入射して電気エネルギーとして利用するような構成も好適な適用例である。   One of the divided lights (for example, light in the infrared region) is incident on a heat pipe with a light absorber and used as thermal energy, and the other (for example, light in the visible region and ultraviolet region) is used as a photoelectric conversion element. A configuration in which the light is incident on 50 and used as electric energy is also a preferable application example.

(e)は、端部に集光された光を、さらに厚さ方向に集光して取り出す構成例の概念図である。本構成の集光光学素子10,20は、集光側の端部近傍領域で厚さが徐々に薄くなるように構成されており、素子内部をx軸方向に進む光が、上面あるいは下面で全反射されて厚さ方向に集光されるようになっている。これにより、例えば光をそのまま利用する場合にシリンドリカルレンズ等を用いずに構成することができ、また光電変換素子50やヒートパイプに入射させる場合に、簡明な構成で入射光のパワー密度を高めることができる。   (e) is a conceptual diagram of a configuration example in which the light condensed at the end is further condensed and extracted in the thickness direction. The condensing optical elements 10 and 20 of this configuration are configured so that the thickness gradually decreases in a region near the end on the condensing side, and light traveling in the x-axis direction inside the element is reflected on the upper surface or the lower surface. It is totally reflected and condensed in the thickness direction. Thereby, for example, when using light as it is, it can be configured without using a cylindrical lens or the like, and when entering the photoelectric conversion element 50 or the heat pipe, the power density of incident light is increased with a simple configuration. Can do.

なお、実施形態では、説明簡明化のため、集光光学素子を板状に構成した形態の例示し、また集光光学素子の作用を説明するため、A部材及びB部材に具体的な物質の屈折率を適用した構成例を説明したが、本発明はこれらの構成形態や構成例に限定されるものではない。例えば、集光光学素子の形状は、薄いシート状や角柱・円柱等のロッド状であっても良く、A部材及びB部材の材質は、種々の樹脂材料や無機材料等を適宜選択して構成することができる。また、本発明の要旨を逸脱しない範囲で、A部材及びB部材以外の他の部材を含むものであっても良い。   In the embodiment, for the sake of simplification of explanation, the condensing optical element is illustrated as a plate-like form, and in order to explain the operation of the condensing optical element, specific materials are applied to the A member and the B member. Although the structural example which applied the refractive index was demonstrated, this invention is not limited to these structural forms and structural examples. For example, the condensing optical element may have a thin sheet shape or a rod shape such as a prism or a cylinder, and the material of the A member and the B member may be appropriately selected from various resin materials and inorganic materials. can do. Further, other members than the A member and the B member may be included without departing from the gist of the present invention.

以上説明したように、集光光学素子10,20は、母材ないし基材となるA部材中に粒子径が集光対象の光の波長とほぼ同じオーダの粒子状のB部材が分散されており、両者の屈折率の関係が厚さ方向であるy軸方向に進むp偏光の光について異なり、x軸方向について実質的に等しくなるように構成される。集光装置60,70,80及び光発電装置1〜4は、このような集光光学素子を用いて構成される。   As described above, in the condensing optical elements 10 and 20, the particulate B member whose particle diameter is approximately the same as the wavelength of the light to be condensed is dispersed in the A member serving as the base material or the base material. The relationship between the refractive indexes of the two is different for p-polarized light traveling in the y-axis direction, which is the thickness direction, and is configured to be substantially equal in the x-axis direction. The condensing devices 60, 70, 80 and the photovoltaic power generation devices 1 to 4 are configured using such condensing optical elements.

従って、以上説明した集光光学素子10,20、集光装置60,70,80によれば、薄型かつ簡明な構成で、太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することができる。また、これらの集光光学素子10,20、集光装置60,70,80を適用した光発電装置1〜4は、集光部の光軸方向の厚さが薄く小型軽量であり、太陽の追従装置を必ずしも必要としない、新たな太陽光発電手段として好適に適用することができる。   Therefore, according to the concentrating optical elements 10 and 20 and the concentrating devices 60, 70, and 80 described above, a new condensing that can efficiently use light energy such as sunlight with a thin and simple configuration. Means can be provided. In addition, the photovoltaic power generators 1 to 4 to which the condensing optical elements 10 and 20 and the condensing devices 60, 70, and 80 are applied are thin, small, and lightweight in the optical axis direction of the condensing unit. It can be suitably applied as a new solar power generation means that does not necessarily require a tracking device.

1〜4 光発電装置
10(101,102) 第1構成形態の集光光学素子
11 A部材
12 B部材
20 第2構成形態の集光光学素子
21 A部材
22 B部材
50,50′ 光電変換素子
60 第1構成例の集光装置
62 反射鏡
65 偏光面回転素子
80 第3構成例の集光装置
85 偏光面回転素子
1-4 Photovoltaic power generation device 10 (10 1 , 10 2 ) Condensing optical element 11 in the first configuration form A member 12 B member 20 Condensing optical element 21 in the second configuration form A member 22 B members 50, 50 ′ Photoelectric Conversion element 60 Condensing device 62 of the first configuration example Reflecting mirror 65 Polarization plane rotation element 80 Condensing device 85 of the third configuration example Polarization plane rotation element

Claims (18)

光透過性を有するA部材と、前記A部材中に厚さ方向及びこれと相互に直交する第1方向、第2方向に分散された光透過性を有する粒子状のB部材とを有して構成され、
前記B部材の粒子径dは、前記厚さ方向に入射する光の波長をλとしたときに円相当径が0.1λ〜10λであり、
前記A部材における、電界振幅が前記第1方向に沿った光の屈折率をnax、電界振幅が前記厚さ方向に沿った光の屈折率をnayとし、
前記B部材における、電界振幅が前記第1方向に沿った光の屈折率をnbx、電界振幅が前記厚さ方向に沿った光の屈折率をnbyとしたときに、
axとnbxとが異なり、nayとnbyとが実質的に等しいことを特徴とする集光光学素子。
A member having light permeability, and a particulate B member having light transmittance dispersed in the thickness direction and the first direction and the second direction orthogonal to each other in the A member. Configured,
The particle diameter d of the B member has an equivalent circle diameter of 0.1λ to 10λ, where λ is the wavelength of light incident in the thickness direction,
In the A member, the refractive index of light along which the electric field amplitude is along the first direction is nax , and the refractive index of light along which the electric field amplitude is along the thickness direction is nay ,
In the B member, when the electric field amplitude is n bx as the refractive index of light along the first direction and the electric field amplitude is as n by the refractive index of light along the thickness direction,
n ax and n is different from the bx, converging optical element n ay and the n By is equal to or substantially equal.
前記屈折率の関係が、nax<nbxであり、nbx>nbyであることを特徴とする請求項1に記載の集光光学素子。 2. The condensing optical element according to claim 1, wherein the refractive index relationship is n ax <n bx and n bx > n by . 前記屈折率の関係が、nax<nbxであり、nax<nayであることを特徴とする請求項1に記載の集光光学素子。 2. The condensing optical element according to claim 1, wherein the relationship between the refractive indexes is n ax <n bx and n ax <n ay . 前記屈折率の関係が、nax>nbxであり、nbx<nbyであることを特徴とする請求項1に記載の集光光学素子。 2. The condensing optical element according to claim 1, wherein the refractive index relationship is n ax > n bx and n bx <n by . 前記屈折率の関係が、nax>nbxであり、nax>nayであることを特徴とする請求項1に記載の集光光学素子。 The condensing optical element according to claim 1, wherein the relationship between the refractive indexes is n ax > n bx and n ax > n ay . 前記A部材における、電界振幅が前記第2方向に沿った光の屈折率をnazとし、
前記B部材における、電界振幅が前記第2方向に沿った光の屈折率をnbzとしたときに、
azとnbzとが実質的に等しいことを特徴とする請求項1〜5のいずれか一項に記載の集光光学素子。
In the A member, the refractive index of light whose electric field amplitude is along the second direction is naz ,
When the electric field amplitude in the B member is nbz as the refractive index of light along the second direction,
6. The condensing optical element according to claim 1, wherein n az and n bz are substantially equal.
前記A部材及び前記B部材は、(π×d×nax)/λで規定するサイズパラメータαが、1.5≦α≦40であることを特徴とする請求項1〜6のいずれか一項に記載の集光光学素子。 The A member and the B member have a size parameter α defined by (π × d × n ax ) / λ satisfying 1.5 ≦ α ≦ 40. The condensing optical element according to item. 前記A部材及び前記B部材は、(π×d×nax)/λで規定するサイズパラメータαが、2≦α≦20であることを特徴とする請求項1〜7のいずれか一項に記載の集光光学素子。 The A member and the B member have a size parameter α defined by (π × d × n ax ) / λ satisfying 2 ≦ α ≦ 20, according to claim 1. The condensing optical element as described. 前記B部材の粒子径dが、20μm以下であることを特徴とする請求項1〜8のいずれか一項に記載の集光光学素子。   The condensing optical element according to claim 1, wherein a particle diameter d of the B member is 20 μm or less. 前記A部材中に分散された前記B部材の密度は、前記集光光学素子の表面から前記厚さ方向に入射し、複数の前記B部材により多重散乱されて前記集光光学素子の裏面に向かう光が、前記裏面において全反射されるように設定されることを特徴とする請求項1〜9のいずれか一項に記載の集光光学素子。   The density of the B member dispersed in the A member is incident in the thickness direction from the surface of the condensing optical element, and multiple scattered by the plurality of B members toward the back surface of the condensing optical element. The condensing optical element according to claim 1, wherein light is set so as to be totally reflected on the back surface. 前記第1方向及び前記第2方向の大きさが前記厚さ方向の大きさに対して充分に大きく、プレート状またはシート状に形成されることを特徴とする請求項1〜10のいずれか一項に記載の集光光学素子。   The size in the first direction and the second direction is sufficiently larger than the size in the thickness direction, and is formed in a plate shape or a sheet shape. The condensing optical element according to item. 請求項1〜11のいずれかに記載の集光光学素子と、
前記集光光学素子の裏面側に裏面に沿って設けられた反射鏡と、
前記集光光学素子と前記反射鏡との間に設けられ、二度透過した光の偏光面を90度回転させる偏光面回転素子とを備えた集光装置。
The condensing optical element according to any one of claims 1 to 11,
A reflecting mirror provided on the back side of the condensing optical element along the back side;
A condensing device comprising: a polarization plane rotating element that is provided between the condensing optical element and the reflecting mirror and rotates a polarization plane of light that has been transmitted twice by 90 degrees.
請求項1〜11のいずれかに記載の第1の集光光学素子と、
請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、
前記第2の集光光学素子は、前記第1の集光光学素子の裏面側に、当該第2の集光光学素子の前記第1方向が前記第1の集光光学素子の前記第2方向と平行になるように配設されることを特徴とする集光装置。
The first condensing optical element according to any one of claims 1 to 11,
A second condensing optical element according to any one of claims 1 to 11,
The second condensing optical element has a back surface side of the first condensing optical element, and the first direction of the second condensing optical element is the second direction of the first condensing optical element. It is arrange | positioned so that it may become parallel with.
請求項1〜11のいずれかに記載の第1の集光光学素子と、
請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、
前記第2の集光光学素子は、前記第1の集光光学素子の裏面側に、当該第2の集光光学素子の前記第1方向が前記第1の集光光学素子の前記第1方向と平行になるように配設されるとともに、前記第1の集光光学素子と前記第2の集光光学素子との間に、透過する光の偏光面を90度回転させる偏光面回転素子が設けられることを特徴とする集光装置。
The first condensing optical element according to any one of claims 1 to 11,
A second condensing optical element according to any one of claims 1 to 11,
The second condensing optical element has a back surface side of the first condensing optical element, and the first direction of the second condensing optical element is the first direction of the first condensing optical element. And a polarization plane rotation element that rotates the plane of polarization of the transmitted light by 90 degrees between the first light collection optical element and the second light collection optical element. A condensing device provided.
請求項1〜11のいずれかに記載の集光光学素子と、
前記集光光学素子により前記第1方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
The condensing optical element according to any one of claims 1 to 11,
A photovoltaic device comprising: a photoelectric conversion element that photoelectrically converts light guided in the first direction by the condensing optical element.
請求項1〜11のいずれかに記載の集光光学素子と、
前記集光光学素子により前記第1方向に導かれた光を光電変換する光電変換素子と、
前記集光光学素子により前記第2方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
The condensing optical element according to any one of claims 1 to 11,
A photoelectric conversion element that photoelectrically converts light guided in the first direction by the condensing optical element;
A photovoltaic device comprising: a photoelectric conversion element that photoelectrically converts light guided in the second direction by the condensing optical element.
請求項12に記載の集光装置と、
前記集光光学素子により前記第1方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
The light collecting device according to claim 12,
A photovoltaic device comprising: a photoelectric conversion element that photoelectrically converts light guided in the first direction by the condensing optical element.
請求項13または14に記載の集光装置と、
前記第1の集光光学素子における前記第1方向に導かれた光を光電変換する光電変換素子と、
前記第2の集光光学素子における前記第1方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
The light collecting device according to claim 13 or 14,
A photoelectric conversion element that photoelectrically converts light guided in the first direction in the first condensing optical element;
A photovoltaic device comprising: a photoelectric conversion element that photoelectrically converts light guided in the first direction in the second condensing optical element.
JP2010176830A 2010-06-18 2010-08-05 Condensing optical element, condensing device, and photovoltaic device Active JP5765608B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010176830A JP5765608B2 (en) 2010-08-05 2010-08-05 Condensing optical element, condensing device, and photovoltaic device
EP11795858.7A EP2584383A4 (en) 2010-06-18 2011-06-20 Light-focusing optical element, light-focusing device, photovoltaic device and photothermal conversion device
CN201180030080.XA CN102947731B (en) 2010-06-18 2011-06-20 Converging optical element, beam condensing unit, light generating device and photothermal conversion device
PCT/JP2011/064092 WO2011158956A1 (en) 2010-06-18 2011-06-20 Light-focusing optical element, light-focusing device, photovoltaic device and photothermal conversion device
US13/718,510 US9196778B2 (en) 2010-06-18 2012-12-18 Light concentrating optical element, light concentrating device, photovoltaic power generation device and photothermal conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176830A JP5765608B2 (en) 2010-08-05 2010-08-05 Condensing optical element, condensing device, and photovoltaic device

Publications (2)

Publication Number Publication Date
JP2012037680A true JP2012037680A (en) 2012-02-23
JP5765608B2 JP5765608B2 (en) 2015-08-19

Family

ID=45849743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176830A Active JP5765608B2 (en) 2010-06-18 2010-08-05 Condensing optical element, condensing device, and photovoltaic device

Country Status (1)

Country Link
JP (1) JP5765608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049171A (en) * 2016-09-21 2018-03-29 株式会社ニコン Light deflection element, light deflection sheet, light deflection window material, lighting system, and method for manufacturing light deflection element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352623A (en) * 1999-06-14 2000-12-19 Nitto Denko Corp Polarizing light guide plate and polarizing surface light source
JP2002022966A (en) * 2000-07-11 2002-01-23 Seizo Miyata Scattering light guide sheet having polarization function
JP2007218540A (en) * 2006-02-17 2007-08-30 Nagaoka Univ Of Technology Solar collector, and solar battery and solar heat collector using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352623A (en) * 1999-06-14 2000-12-19 Nitto Denko Corp Polarizing light guide plate and polarizing surface light source
JP2002022966A (en) * 2000-07-11 2002-01-23 Seizo Miyata Scattering light guide sheet having polarization function
JP2007218540A (en) * 2006-02-17 2007-08-30 Nagaoka Univ Of Technology Solar collector, and solar battery and solar heat collector using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049171A (en) * 2016-09-21 2018-03-29 株式会社ニコン Light deflection element, light deflection sheet, light deflection window material, lighting system, and method for manufacturing light deflection element

Also Published As

Publication number Publication date
JP5765608B2 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
Gjessing et al. Comparison of periodic light-trapping structures in thin crystalline silicon solar cells
JP5346008B2 (en) Thin flat concentrator
WO2011158956A1 (en) Light-focusing optical element, light-focusing device, photovoltaic device and photothermal conversion device
JP5624064B2 (en) Stimulated emission luminescence optical waveguide solar concentrator
KR101791130B1 (en) Solar cell module
JP6710633B2 (en) Photodiode with elements made of metamaterial
WO2012025019A1 (en) Condensing lens, compound-eye lens condenser, and compound-eye concentrating solar cell assembly
US20120073626A1 (en) Light concentrator assembly and solar cell apparatus having same
JP5679283B2 (en) Condensing optical element, condensing device, photovoltaic device and photothermal conversion device
KR102204500B1 (en) Flat Concentrating Photovoltaic Apparatus for Vehicle
JP5765608B2 (en) Condensing optical element, condensing device, and photovoltaic device
JP5679286B2 (en) Condensing optical element, condensing device, and photovoltaic device
JP2007073774A (en) Solar battery
JP5630690B2 (en) Condensing optical element, condensing device, and photovoltaic device
JPWO2012026572A1 (en) Condensing device, photovoltaic power generation device, and photothermal conversion device
JP6694072B2 (en) Photovoltaic device
Kavehvash et al. An energy efficient refractive structure for energy concentration on PV cells
Ahaitouf et al. Contribution to solar concentrators design for photovoltaic application
CN105703704A (en) Tapered concentrator used for CPV and design method therefor
JP2012064895A (en) Light condensation device, optical power generation device and photothermal conversion device
JP2013088690A (en) Light collecting device and photovoltaic device using the same
WO2012033132A1 (en) Light condenser, photovoltaic system, and photothermal converter
Katardjiev Evaluation of a fractal concentrator of light at 100X
KR20200106350A (en) Fixed-structure equipment for concentrating solar light for photovoltaic energy generation
TWM459498U (en) Anti-reflection condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150604

R150 Certificate of patent or registration of utility model

Ref document number: 5765608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250