JP2012036814A - Air fuel ratio detecting device - Google Patents

Air fuel ratio detecting device Download PDF

Info

Publication number
JP2012036814A
JP2012036814A JP2010177397A JP2010177397A JP2012036814A JP 2012036814 A JP2012036814 A JP 2012036814A JP 2010177397 A JP2010177397 A JP 2010177397A JP 2010177397 A JP2010177397 A JP 2010177397A JP 2012036814 A JP2012036814 A JP 2012036814A
Authority
JP
Japan
Prior art keywords
fuel ratio
temperature
air
ratio sensor
air fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010177397A
Other languages
Japanese (ja)
Other versions
JP5630135B2 (en
Inventor
Makoto Aida
真 会田
Takeshi Yamamuro
毅 山室
Shingo Ito
晋吾 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010177397A priority Critical patent/JP5630135B2/en
Publication of JP2012036814A publication Critical patent/JP2012036814A/en
Application granted granted Critical
Publication of JP5630135B2 publication Critical patent/JP5630135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air fuel ratio detecting device that can surely prevent an element from being damaged by being moistened with a condensate water, and can start an air fuel ratio feed back control at an early stage.SOLUTION: The air fuel ratio detecting device includes: an air fuel ratio sensor 7 provided in an exhaust passage 4 of an internal combustion engine 1; a heater built in the air fuel ratio sensor 7 to increase a temperature of the element of the air fuel ratio sensor 7; and a control means 8 that starts to increase of the element when the internal combustion engine 1 is started, and decreases the speed of the temperature increase when the element reaches an active temperature.

Description

本発明は、内燃機関の排気空燃比を検出する空燃比検出装置に関する。   The present invention relates to an air-fuel ratio detection device that detects an exhaust air-fuel ratio of an internal combustion engine.

車両から排出される有害成分を低減するために、排気通路中には排気浄化用触媒が介装されている。そして、排気浄化用触媒の浄化性能を発揮させるために、内燃機関から排出される排気の空燃比を検出する空燃比センサを設け、この空燃比センサの検出値に基づいて空燃比フィードバック制御が行われている。   In order to reduce harmful components discharged from the vehicle, an exhaust purification catalyst is interposed in the exhaust passage. In order to exhibit the purification performance of the exhaust purification catalyst, an air-fuel ratio sensor for detecting the air-fuel ratio of the exhaust discharged from the internal combustion engine is provided, and air-fuel ratio feedback control is performed based on the detected value of the air-fuel ratio sensor. It has been broken.

ところで、一般的に暖機終了後の通常運転時には、素子温度は、空燃比センサが精度良くかつ高い応答性を示す700℃以上に制御される。このため、機関始動後は、素子温度を速やかにこの温度まで昇温すべく、ヒータ等による加熱が行われる。しかし、排気通路中に凝縮水がある場合には、昇温中の素子が凝縮水を被水し、被水した部位とその他の部位との温度差に起因する熱応力によって素子割れを生ずるおそれがある。   By the way, generally, at the time of normal operation after the completion of warm-up, the element temperature is controlled to 700 ° C. or higher where the air-fuel ratio sensor exhibits high accuracy and high response. For this reason, after the engine is started, heating by a heater or the like is performed in order to quickly raise the element temperature to this temperature. However, if there is condensed water in the exhaust passage, the element whose temperature is rising may be exposed to the condensed water, and element cracking may occur due to the thermal stress caused by the temperature difference between the wetted part and other parts. There is.

そこで、特許文献1では、始動直後の冷却水温が所定値以下の場合には、空燃比センサの活性温度よりも低い300℃程度まで急速に昇温し、300℃程度まで昇温したら空燃比フィードバック制御を開始し、冷却水温が所定値を超えた場合には700℃以上の温度まで急速に昇温する技術が開示されている。これは、素子温度が300℃程度になれば、空燃比に対してリニアな出力はできないまでも、理論空燃比を基準としてリーン、リッチのいずれなのかは検出可能になるという空燃比センサの特性を利用したものである。リーンかリッチかを検出できるようになったら直ちに空燃比フードバック制御を開始することで、被水による素子割れを防止しつつ、より早期に空燃比フィードバックを開始するための制御である。   Therefore, in Patent Document 1, when the cooling water temperature immediately after starting is below a predetermined value, the temperature is rapidly raised to about 300 ° C., which is lower than the activation temperature of the air-fuel ratio sensor. A technique is disclosed in which control is started and the temperature is rapidly raised to a temperature of 700 ° C. or higher when the cooling water temperature exceeds a predetermined value. The characteristic of the air-fuel ratio sensor is that if the element temperature is about 300 ° C., it is possible to detect whether lean or rich based on the stoichiometric air-fuel ratio, even if linear output with respect to the air-fuel ratio cannot be performed. Is used. This is a control for starting air-fuel ratio feedback at an earlier stage while preventing element cracking due to moisture by immediately starting air-fuel ratio food back control when it becomes possible to detect lean or rich.

特開2003−155953号公報JP 2003-155953 A

ところで、素子割れの原因となる熱応力は、素子温度が高いほど大きくなるが、その他に、素子の昇温速度が高くなるほど大きくなるという特性もある。したがって、凝縮水はなくなったものの被水していた部位と他の部位との温度差がある状態で、冷却水温が所定値を超えた場合に、特許文献1のように急速に高温まで昇温すると、熱応力によって素子割れを生じるおそれがある。   By the way, the thermal stress that causes element cracking increases as the element temperature increases, but it also has a characteristic that it increases as the temperature rise rate of the element increases. Therefore, when the cooling water temperature exceeds a predetermined value in a state where there is a temperature difference between the part that has been flooded but other parts, although the condensed water has disappeared, the temperature is rapidly raised to a high temperature as in Patent Document 1. Then, there exists a possibility of producing an element crack by a thermal stress.

そこで、本発明では、機関始動時に被水による素子割れを確実に防止しつつ、より早期に空燃比フィードバック制御を開始し得る空燃比検出装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an air-fuel ratio detection device capable of starting air-fuel ratio feedback control at an earlier stage while reliably preventing element cracking due to water when the engine is started.

本発明の空燃比検出装置は、内燃機関の排気通路に設けられた空燃比センサと、空燃比センサの素子を昇温させるヒータと、内燃機関が始動したら素子の昇温を開始し、素子が活性温度に達したら素子の昇温速度を低下させるようヒータを制御する制御手段とを備える。   An air-fuel ratio detection device of the present invention includes an air-fuel ratio sensor provided in an exhaust passage of an internal combustion engine, a heater that raises the temperature of an element of the air-fuel ratio sensor, and starts the temperature of the element when the internal combustion engine is started. And a control means for controlling the heater so as to reduce the heating rate of the element when the activation temperature is reached.

本発明によれば、活性温度までは速やかに昇温することができ、活性温度に達したら昇温速度を低下させることで、熱応力の発生を抑制することができる。すなわち、素子割れを防止しつつ早期に空燃比フィードバック制御を開始することができる。   According to the present invention, the temperature can be quickly raised to the activation temperature, and the generation of thermal stress can be suppressed by reducing the rate of temperature rise when the activation temperature is reached. That is, air-fuel ratio feedback control can be started early while preventing element cracking.

本発明を適用する内燃機関システムの実施形態を示す図である。1 is a diagram showing an embodiment of an internal combustion engine system to which the present invention is applied. コントローラが実行する空燃比センサの素子昇温のための制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine for the element temperature rise of the air fuel ratio sensor which a controller performs. 素子の被水に対する強度と素子温度との関係を示す図である。It is a figure which shows the relationship between the intensity | strength with respect to the moisture of an element, and element temperature. 空燃比センサの素子温度と検出精度との関係を示す図である。It is a figure which shows the relationship between the element temperature of an air fuel ratio sensor, and detection accuracy. 混合気の空燃比が変化した場合の素子温度と空燃比センサの応答性との関係を示す図である。It is a figure which shows the relationship between the element temperature when the air fuel ratio of an air-fuel mixture changes, and the responsiveness of an air fuel ratio sensor. 図2の制御ルーチンを実行した場合のタイムチャートである。It is a time chart at the time of performing the control routine of FIG.

以下本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本実施形態を適用する内燃機関システムの概略構成図である。   FIG. 1 is a schematic configuration diagram of an internal combustion engine system to which the present embodiment is applied.

吸気マニホールド2の入口に配置したスロットルバルブ3は、内燃機関1の吸入空気量を調整する。吸気マニホールド2から分岐して各気筒につながるブランチ部分に配置した燃料噴射弁5は、吸入空気量に応じた量の燃料を噴射する。スロットルバルブ3の開度及び燃料噴射量は、後述するコントロールユニット(ECU)8により決定される。   A throttle valve 3 disposed at the inlet of the intake manifold 2 adjusts the intake air amount of the internal combustion engine 1. A fuel injection valve 5 arranged at a branch portion branched from the intake manifold 2 and connected to each cylinder injects an amount of fuel corresponding to the intake air amount. The opening degree of the throttle valve 3 and the fuel injection amount are determined by a control unit (ECU) 8 described later.

内燃機関1の排気は排気通路4へ排出され、排気通路4に介装した排気浄化用の触媒6にて浄化される。排気通路4の触媒6より上流側部分には、排気の空燃比を検出する空燃比センサ7が配置される。なお、空燃比センサ7は、公知の空燃比センサと同様にジルコニアやチタニア等のセラミックスを素子として用い、理論空燃比を中心として、それよりリーン側及びリッチ側の広範囲にわたって、排気の空燃比に対してリニアな出力特性を示すものである。   Exhaust gas from the internal combustion engine 1 is discharged to the exhaust passage 4 and purified by an exhaust purification catalyst 6 interposed in the exhaust passage 4. An air-fuel ratio sensor 7 that detects the air-fuel ratio of the exhaust is disposed on the upstream side of the catalyst 6 in the exhaust passage 4. The air-fuel ratio sensor 7 uses ceramics such as zirconia and titania as elements as well as the known air-fuel ratio sensor, and adjusts the air-fuel ratio of the exhaust gas over a wide range from the stoichiometric air-fuel ratio to the lean side and the rich side. On the other hand, linear output characteristics are shown.

また、空燃比センサ7は、加熱用ヒータを内蔵している。空燃比センサ7は素子温度が活性温度、つまり550℃程度、に達していないと空燃比を検出できず、また、空燃比検出精度や空燃比変化に対する応答性が十分に高くなるのは活性温度より高温の700℃以上なので、冷機始動時等には加熱用ヒータにより空燃比センサ7の検出用の素子を昇温する。   The air-fuel ratio sensor 7 has a built-in heater. The air-fuel ratio sensor 7 cannot detect the air-fuel ratio unless the element temperature reaches the active temperature, that is, about 550 ° C., and the air-fuel ratio detection accuracy and the responsiveness to changes in the air-fuel ratio are sufficiently high. Since the temperature is higher than 700 ° C., the temperature of the element for detection of the air-fuel ratio sensor 7 is raised by the heater for heating at the time of cold start.

空燃比センサ7の検出信号はECU8に読み込まれる。ECU8には、この他にクランク角センサ10、アクセル開度センサ11、冷却水温センサ12、等の運転状態に関する各種センサの信号が読み込まれる。そして、ECU8は、読み込んだ信号に基づいて、運転状態に応じた燃料噴射量や点火時期の設定、スロットル開度の設定、空燃比センサ7のヒータのオン、オフ、排気空燃比を理論空燃比に保持するための空燃比フィードバック制御、等を行う。   A detection signal from the air-fuel ratio sensor 7 is read into the ECU 8. In addition to this, the ECU 8 reads signals from various sensors relating to the operation state such as the crank angle sensor 10, the accelerator opening sensor 11, the cooling water temperature sensor 12, and the like. Based on the read signal, the ECU 8 sets the fuel injection amount and ignition timing according to the operating state, the throttle opening, the heater on / off of the air-fuel ratio sensor 7, and the exhaust air-fuel ratio as the stoichiometric air-fuel ratio. Air-fuel ratio feedback control, etc. for maintaining the temperature is performed.

ECU8は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。ECU8を複数のマイクロコンピュータで構成することも可能である。   The ECU 8 is composed of a microcomputer including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). The ECU 8 can also be composed of a plurality of microcomputers.

ところで、内燃機関1の始動時には、排気通路4に凝縮水が存在する場合がある。凝縮水は、冷機始動時のように排気通路4の壁面温度が低い場合に、内燃機関1から排出された排気中の水分が、排気通路4の壁面等で冷却されて凝縮したり、前回の運転停止後に排気通路4内の空気が排気通路4の温度低下に伴って冷却されて凝縮したものである。   By the way, when the internal combustion engine 1 is started, condensed water may exist in the exhaust passage 4. When the wall surface temperature of the exhaust passage 4 is low, such as when starting the cold machine, the condensed water is condensed by the moisture in the exhaust discharged from the internal combustion engine 1 being cooled by the wall surface of the exhaust passage 4 or the like. After the operation is stopped, the air in the exhaust passage 4 is cooled and condensed as the temperature of the exhaust passage 4 decreases.

空燃比センサ7の検出用の素子が凝縮水を被水すると、被水した部位と被水していない部位との温度差によって素子内に熱応力が発生し、素子割れを生じるおそれがある。   When the element for detection of the air-fuel ratio sensor 7 is flooded with condensed water, a thermal stress is generated in the element due to a temperature difference between the wetted part and the non-watered part, which may cause element cracking.

素子割れの原因となる熱応力は、被水した部位と被水していない部位との温度差が大きいほど大きくなる。つまり、素子温度が高いほど被水に起因する熱応力も大きくなる。したがって、素子が高温になった状態で被水すると、素子割れを生じる可能性が高くなる。また、素子の昇温速度が高い場合も、被水した部位と被水していない部位の温度差が大きくなり、素子割れを生じる可能性が高くなる。このため、凝縮水がある期間中に素子を昇温することは得策ではない。   The thermal stress that causes element cracking increases as the temperature difference between the wetted part and the unwatered part increases. In other words, the higher the element temperature, the greater the thermal stress due to water exposure. Therefore, if the element is exposed to water at a high temperature, the possibility of element cracking increases. In addition, even when the temperature rising rate of the element is high, the temperature difference between the wetted part and the non-watered part becomes large, and the possibility of element cracking increases. For this reason, it is not a good idea to raise the temperature of the element during a period of condensed water.

しかし、空燃比センサ7は、素子温度が活性温度より低いと空燃比の検出精度が著しく低下するので、排気性能向上の観点からは、機関始動後に速やかに昇温することが望まれる。   However, if the element temperature is lower than the activation temperature, the air-fuel ratio sensor 7 has a marked decrease in air-fuel ratio detection accuracy. Therefore, from the viewpoint of improving the exhaust performance, it is desirable that the air-fuel ratio sensor 7 be quickly raised after the engine is started.

これらの相反する要求を満足するための制御として、特開2003−155953号公報には、凝縮水があると判断した場合には、理論空燃比を基準としてリーン、リッチのいずれなのかを検出可能な温度、例えば300℃程度、まで素子を昇温したら空燃比フィードバック制御を開始する制御が開示されている。一方、凝縮水が無いと判断した場合には、急速に昇温するよう制御している。   As control for satisfying these conflicting requirements, Japanese Patent Application Laid-Open No. 2003-155953 can detect whether lean or rich based on the theoretical air-fuel ratio when it is determined that there is condensed water. A control is disclosed in which air-fuel ratio feedback control is started when the temperature of the element is raised to a certain temperature, for example, about 300 ° C. On the other hand, when it is determined that there is no condensed water, the temperature is controlled to rise rapidly.

しかし、理論空燃比に対してリーンなのか又はリッチなのかがわかるだけでは、ECU8は高精度の空燃比フィードバック制御ができない。また、後述するように300℃程度の素子温度では、空燃比センサ7の空燃比の変化に対する応答性が、活性状態に比べて著しく低い。したがって、上述した特開2003−155953号公報に開示された制御では、素子割れを確実に回避することも、排気性能の向上も望めない。さらに、凝縮水が無いと判断した場合には急速に昇温しているが、上述したように昇温速度が高すぎる場合にも素子割れを生じるおそれがある。   However, the ECU 8 cannot perform highly accurate air-fuel ratio feedback control only by knowing whether the air-fuel ratio is lean or rich with respect to the theoretical air-fuel ratio. As will be described later, at an element temperature of about 300 ° C., the responsiveness of the air-fuel ratio sensor 7 to changes in the air-fuel ratio is significantly lower than that in the active state. Therefore, with the control disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2003-155953, it is impossible to reliably avoid element cracking and to improve exhaust performance. Furthermore, when it is determined that there is no condensed water, the temperature is rapidly increased. However, as described above, there is a possibility that element cracking may occur even when the rate of temperature increase is too high.

これに対して本実施形態では、以下に説明する制御によって、空燃比センサ7の素子割れを確実に防止し、かつ排気性能の向上を図る。   On the other hand, in the present embodiment, element cracking of the air-fuel ratio sensor 7 is reliably prevented and exhaust performance is improved by the control described below.

図2は、機関始動時にECU8が実行する空燃比センサ7の昇温制御ルーチンの内容を示すフローチャートである。この制御ルーチンは、内燃機関始動時から一定の時間間隔、例えば10ミリ秒、で繰り返し実行される。以下、フローチャートのステップにしたがって説明する。   FIG. 2 is a flowchart showing the contents of a temperature increase control routine of the air-fuel ratio sensor 7 executed by the ECU 8 when the engine is started. This control routine is repeatedly executed at a constant time interval, for example, 10 milliseconds from the start of the internal combustion engine. Hereinafter, it demonstrates according to the step of a flowchart.

ステップS100で、ECU8は機関始動時か否かを、イグニッションスイッチ等の状態に基づいて判定する。機関始動時であればステップS110の処理を実行し、そうでない場合は処理を終了する。   In step S100, the ECU 8 determines whether or not the engine is being started based on the state of the ignition switch or the like. If it is at the time of engine starting, the process of step S110 will be performed, and if that is not right, a process will be complete | finished.

ステップS110で、ECU8はヒータのデューティを100%に設定する。つまり、ヒータの能力の上限値で加熱する。   In step S110, the ECU 8 sets the heater duty to 100%. That is, it heats with the upper limit of the capability of a heater.

ステップS120で、空燃比センサ7の素子の内部抵抗がA(Ω)以下であるか否かを判定し、判定の結果がA(Ω)以下の場合はステップS130の処理を実行し、A(Ω)より大きい場合は処理を終了する。この処理は、空燃比センサ7が空燃比フィードバック制御可能な温度であるか否かを判定するものである。内部抵抗は素子温度が高くなるほど低下するという特性があるので、空燃比センサ7がフィードバック制御可能な下限の温度、つまり活性温度のときの素子の内部抵抗をA(Ω)として設定すれば、素子温度をセンサ等で測定することなく、空燃比フィードバック制御が可能な下限の温度か否かの判定が可能となる。空燃比フィードバック制御が可能な下限の素子温度、つまり活性温度は約550℃である。   In step S120, it is determined whether or not the internal resistance of the element of the air-fuel ratio sensor 7 is A (Ω) or less. If the determination result is A (Ω) or less, the process of step S130 is executed, and A ( If it is greater than Ω), the process is terminated. This process determines whether or not the air-fuel ratio sensor 7 has a temperature at which air-fuel ratio feedback control is possible. Since the internal resistance has a characteristic that it decreases as the element temperature increases, if the lower limit temperature at which the air-fuel ratio sensor 7 can perform feedback control, that is, the internal resistance of the element at the active temperature is set as A (Ω), the element It is possible to determine whether or not the temperature is a lower limit temperature at which air-fuel ratio feedback control is possible without measuring the temperature with a sensor or the like. The lower limit element temperature at which air-fuel ratio feedback control is possible, that is, the activation temperature is about 550 ° C.

ここで、空燃比フィードバック制御の開始温度を活性温度、つまり550℃に設定する理由について説明する。   Here, the reason why the start temperature of the air-fuel ratio feedback control is set to the activation temperature, that is, 550 ° C. will be described.

図3は、素子の被水に対する強度と素子温度との関係を示す図であり、縦軸は素子の被水に対する強度、横軸は素子温度であり、破線Xは車両用に用いる場合に要求される強度(以下、要求強度という)の下限である。なお、要求強度は任意に設定可能な値である。   FIG. 3 is a diagram showing the relationship between the strength of the element against moisture and the element temperature, where the vertical axis represents the strength against moisture of the element, the horizontal axis represents the element temperature, and the broken line X is required when used for vehicles. The lower limit of the strength to be applied (hereinafter referred to as required strength). The required strength is a value that can be arbitrarily set.

被水に対する強度とは、素子に対して徐々に増量させながら水を滴下し、素子割れが生じたときの滴下量で評価したものである。すなわち、図3の縦軸は滴下量に相当し、素子割れを生じたときの滴下量が多いほど、被水に対する強度が高いということになる。なお、図3の縦軸の上限は、一般的に想定しうる凝縮水量の上限値になっている。   The strength against water is evaluated by the amount of dripping when element is cracked by dropping water while gradually increasing the amount of the element. That is, the vertical axis in FIG. 3 corresponds to the amount of dripping, and the greater the amount of dripping when an element crack occurs, the higher the strength against moisture. In addition, the upper limit of the vertical axis | shaft of FIG. 3 is the upper limit of the amount of condensed water which can generally be assumed.

図3をみると、素子温度が500℃以下では一般的に想定し得る凝縮水量では素子割れのおそれはなく、550℃程度でも十分な強度を有することがわかる。   FIG. 3 shows that when the element temperature is 500 ° C. or less, there is no fear of element cracking with the amount of condensed water that can be generally assumed, and sufficient strength is obtained even at about 550 ° C.

図4は、空燃比センサ7の素子温度と検出精度の関係を示す図であり、横軸は素子温度、縦軸は検出した空燃比である。図中の実線a−dは、それぞれA/F=13、14.5及び18に設定した各混合気、並びに大気の空燃比を各素子温度で計測した結果を示している。   FIG. 4 is a diagram showing the relationship between the element temperature of the air-fuel ratio sensor 7 and the detection accuracy. The horizontal axis represents the element temperature, and the vertical axis represents the detected air-fuel ratio. Solid lines a-d in the figure show the results of measuring the air-fuel ratios of the air-fuel ratios and the air-fuel ratios set to A / F = 13, 14.5 and 18, respectively, and the element temperatures.

図4に示すように、素子温度が600℃を超えると、実線a−dはいずれも設定した空燃比と計測結果がほぼ一致している。600℃以下では、A/F=13、14.5、つまり理論空燃比よりリッチ側の空燃比については設定値と計測結果がほぼ一致するが、A/F=18及び大気、つまり理論空燃比よりリーン側の空燃比については設定値と計測結果のずれが大きくなる。ただし、550℃以上であれば素子は活性化しているため、各空燃比の違いは判別できる。   As shown in FIG. 4, when the element temperature exceeds 600 ° C., the solid line a-d almost coincides with the set air-fuel ratio and the measurement result. At 600 ° C. or lower, A / F = 13, 14.5, that is, the set value and the measurement result almost coincide with each other for the air-fuel ratio richer than the stoichiometric air-fuel ratio, but A / F = 18 and the atmosphere, that is, the stoichiometric air-fuel ratio. For the leaner air-fuel ratio, the difference between the set value and the measurement result increases. However, since the element is activated at 550 ° C. or higher, the difference between the air-fuel ratios can be determined.

図5は、混合気の空燃比が変化した場合、ここではA/F=13からA/F=18に変化した場合、の素子温度と空燃比センサ7の応答性との関係を示す図であり、縦軸は応答性、横軸は素子温度である。なお、応答性は、空燃比の設定を変化させてから空燃比センサ7の検出値が変化するまでの時間(ミリ秒)である。図5から、素子温度が600℃以下になると、応答性が著しく悪化し始めることがわかる。   FIG. 5 is a diagram showing the relationship between the element temperature and the responsiveness of the air-fuel ratio sensor 7 when the air-fuel ratio of the air-fuel mixture changes, here, when A / F = 13 changes to A / F = 18. Yes, the vertical axis represents the response, and the horizontal axis represents the element temperature. The responsiveness is the time (milliseconds) from when the setting of the air-fuel ratio is changed until the detection value of the air-fuel ratio sensor 7 is changed. From FIG. 5, it can be seen that when the element temperature is 600 ° C. or lower, the responsiveness starts to deteriorate significantly.

上記のように、素子温度が550℃であれば被水に対する十分な強度を持っているので、この温度までであれば急速に昇温しても素子割れのおそれがない。また、機関始動時は始動時増量等を行うので理論空燃比よりリッチ側の空燃比の検出精度が重要になるところ、550℃であれば、空燃比センサ7は理論空燃比よりもリッチ側については十分な検出精度を有している。さらに、機関始動時であれば空燃比を大きく変化させるような制御も行わないので、550℃における応答性でも十分にフィードバック制御に使用できる。したがって、空燃比フィードバック制御を開始する素子温度を活性温度である550℃に設定する。   As described above, if the element temperature is 550 ° C., the element has sufficient strength against water, and if it is up to this temperature, there is no risk of element cracking even if the temperature is rapidly increased. In addition, when the engine is started, the amount of increase at the time of starting is performed, so the detection accuracy of the air-fuel ratio richer than the stoichiometric air-fuel ratio is important. However, at 550 ° C., the air-fuel ratio sensor 7 is on the rich side of the stoichiometric air-fuel ratio. Has sufficient detection accuracy. Further, since control is not performed to greatly change the air-fuel ratio when the engine is started, even responsiveness at 550 ° C. can be sufficiently used for feedback control. Therefore, the element temperature for starting the air-fuel ratio feedback control is set to 550 ° C., which is the activation temperature.

フローチャートの説明に戻る。ステップS130で、ECU8は空燃比フィードバック制御を開始し、かつ、ヒータのデューティをB%に低下させる。B%は、例えば70%程度の値を設定する。これにより素子温度の上昇速度が低下する。   Return to the description of the flowchart. In step S130, the ECU 8 starts air-fuel ratio feedback control and reduces the duty of the heater to B%. For B%, for example, a value of about 70% is set. As a result, the increasing speed of the element temperature decreases.

ステップS140で、ECU8は素子の内部抵抗がC(Ω)以下になったか否かを判定し、C(Ω)以下の場合はステップS150の処理を実行し、C(Ω)より大きい場合は処理を終了する。ステップS150で、ECU8は、目標内部抵抗をC(Ω)とするヒータデューティのフィードバック制御を実行する。   In step S140, the ECU 8 determines whether or not the internal resistance of the element has become equal to or less than C (Ω). If it is equal to or less than C (Ω), the process of step S150 is executed. Exit. In step S150, the ECU 8 executes heater duty feedback control with the target internal resistance set to C (Ω).

C(Ω)は、ここでは素子温度が700℃の場合の素子温度とする。ただし、600℃〜700℃の範囲内の所定温度となる内部抵抗値であればよく、例えば、上述した要求強度を図3に示したものより高く設定するのであれば、要求強度を満たすように700℃より低い温度に設定してもよい。   Here, C (Ω) is the element temperature when the element temperature is 700 ° C. However, the internal resistance value may be a predetermined temperature within a range of 600 ° C. to 700 ° C. For example, if the above-described required strength is set higher than that shown in FIG. You may set to the temperature lower than 700 degreeC.

図3に示すように、700℃以下であれば、被水に対する強度は要求強度の下限よりも高くなる。また、図4、図5に示すように、素子温度が600℃〜700℃の範囲であれば、理論空燃比よりリーン、リッチを問わずに空燃比センサ7の検出精度を確保でき、空燃比の変化に対する応答性も確保できる。したがって、フィードバック制御の目標内部抵抗を、素子温度700℃に相当する内部抵抗C(Ω)とする。   As shown in FIG. 3, if it is 700 degrees C or less, the intensity | strength with respect to water will become higher than the minimum of a required intensity | strength. As shown in FIGS. 4 and 5, when the element temperature is in the range of 600 ° C. to 700 ° C., the detection accuracy of the air / fuel ratio sensor 7 can be ensured regardless of whether the air / fuel ratio is leaner or richer than the theoretical air / fuel ratio. Responsiveness to changes can be secured. Therefore, the target internal resistance for feedback control is set to an internal resistance C (Ω) corresponding to an element temperature of 700 ° C.

ステップS150で、ECU8は、目標内部抵抗をC(Ω)とするヒータデューティのフィードバック制御を実行する。   In step S150, the ECU 8 executes heater duty feedback control with the target internal resistance set to C (Ω).

ステップS160で、ECU8は機関稼働時間が予め設定した閾値D(分)を経過したか否かを判定し、経過している場合はステップS170の処理を実行し、経過していない場合は処理を終了する。閾値Dは、排気通路4内から凝縮水がなくなるまでの時間であり、内燃機関1の仕様毎に実験等により求めて設定する。ここでは、4〜5(分)程度に設定する。   In step S160, the ECU 8 determines whether or not the engine operating time has exceeded a preset threshold value D (minutes). If it has elapsed, the process of step S170 is executed, and if not, the process is performed. finish. The threshold value D is the time until the condensed water disappears from the exhaust passage 4, and is determined and set by experiment or the like for each specification of the internal combustion engine 1. Here, it is set to about 4 to 5 (minutes).

ステップS170で、ECU8は、目標内部抵抗をE(Ω)とするヒータデューティのフィードバック制御を実行する。目標内部抵抗E(Ω)は、通常運転時の素子温度(以下、通常制御温度という)、例えば730(℃)、に相当する内部抵抗値である。   In step S170, the ECU 8 performs heater duty feedback control with the target internal resistance set to E (Ω). The target internal resistance E (Ω) is an internal resistance value corresponding to an element temperature during normal operation (hereinafter referred to as normal control temperature), for example, 730 (° C.).

なお、ステップS160及び170は必須の処理ではない。図4、図5で示したように、素子温度が730℃になると、特に理論空燃比よりリーン側については空燃比センサ7の検出精度が向上している。また、空燃比センサ7の応答性は700℃よりも730℃の方が勝っている。しかし、素子温度が700℃であれば、十分な検出精度及び応答性ともに確保できるので、目標空燃比が理論空燃比から変化しないような場合には、730℃まで昇温する必要がない。一方、運転状態に応じて目標空燃比を理論空燃比または理論空燃比よりもリーンな空燃比に切り替える場合等には、応答性及び理論空燃比よりもリーンな空燃比の検出精度がより高い730℃まで昇温することで、より高精度の空燃比フィードバック制御が可能となる。そこで、要求される検出精度及び応答性に応じて、ステップS160、S170の要否を判断する。   Note that steps S160 and 170 are not essential processes. As shown in FIGS. 4 and 5, when the element temperature reaches 730 ° C., the detection accuracy of the air-fuel ratio sensor 7 is improved particularly on the lean side of the theoretical air-fuel ratio. Further, the responsiveness of the air-fuel ratio sensor 7 is better at 730 ° C. than at 700 ° C. However, if the element temperature is 700 ° C., sufficient detection accuracy and responsiveness can be ensured. Therefore, when the target air-fuel ratio does not change from the theoretical air-fuel ratio, it is not necessary to raise the temperature to 730 ° C. On the other hand, when the target air-fuel ratio is switched to the stoichiometric air-fuel ratio or an air-fuel ratio leaner than the stoichiometric air-fuel ratio according to the operating state, etc., the response and the detection accuracy of the air-fuel ratio leaner than the stoichiometric air-fuel ratio are higher 730. By raising the temperature to ° C., more accurate air-fuel ratio feedback control becomes possible. Therefore, the necessity of steps S160 and S170 is determined according to the required detection accuracy and responsiveness.

次に、ECU8が上記制御ルーチンを実行することによる効果について、図6のタイムチャートを参照して説明する。図6の実線は本実施形態の制御ルーチンを実行した場合を示しており、破線は素子温度が730℃に達するまでヒータデューティ100%で昇温した場合を示している。   Next, the effect obtained when the ECU 8 executes the control routine will be described with reference to the time chart of FIG. The solid line in FIG. 6 shows the case where the control routine of the present embodiment is executed, and the broken line shows the case where the temperature is increased at a heater duty of 100% until the element temperature reaches 730 ° C.

t0で機関始動した後、ヒータデューティ100%で素子を昇温する。これにより、素子温度が上昇し始め、熱応力も増大し始める。素子温度が550℃以下であれば、素子割れに対する強度は確保されているので、ヒータデューティ100%で急速に昇温しても素子割れのおそれはない。また、素子を急速に昇温させることで、空燃比フィードバック制御開始までの時間を短縮することができる。   After starting the engine at t0, the temperature of the element is raised at a heater duty of 100%. Thereby, the element temperature starts to rise and the thermal stress also starts to increase. If the element temperature is 550 ° C. or less, the strength against element cracking is ensured, so there is no risk of element cracking even if the temperature is rapidly increased at a heater duty of 100%. In addition, by rapidly raising the temperature of the element, it is possible to shorten the time until the start of air-fuel ratio feedback control.

t1で素子の内部抵抗がA(Ω)になったら、つまり素子温度が活性温度である550℃になったら、ヒータデューティをB%、つまり本実施形態では70%、に低下させ、空燃比フィードバック制御を開始する。なお、t1が4秒程度になるような昇温能力を有するヒータを使用する。   When the internal resistance of the element reaches A (Ω) at t1, that is, when the element temperature reaches the activation temperature of 550 ° C., the heater duty is reduced to B%, that is, 70% in this embodiment, and air-fuel ratio feedback is performed. Start control. In addition, a heater having a temperature raising capability such that t1 is about 4 seconds is used.

そして、素子の内部抵抗がC(Ω)に、つまり素子温度が700℃になるt3までは、ヒータデューティは70%を維持する。ヒータデューティを低下させることで、素子温度の上昇速度が低下し、これに伴って熱応力の上昇速度も低下する。これにより、素子割れを回避しつつ、素子を昇温させることができる。   The heater duty is maintained at 70% until the internal resistance of the element is C (Ω), that is, until t3 when the element temperature becomes 700 ° C. By reducing the heater duty, the increasing speed of the element temperature is decreased, and the increasing speed of the thermal stress is also decreased accordingly. Thereby, the temperature of the element can be raised while avoiding the element cracking.

これに対して、素子を730℃までヒータデューティ100%で昇温させると、t3より前のt2で素子温度が730℃に達するが、ヒータデューティを低下させた場合に比べて、熱応力が大きな値まで急速に増大し、t2よりも前にピークを迎える。そして、この期間中は、凝縮水量が増大している。したがって、被水によって素子割れが生じる可能性が高い。   On the other hand, when the temperature of the element is raised to 730 ° C. at a heater duty of 100%, the element temperature reaches 730 ° C. at t2 before t3, but the thermal stress is larger than when the heater duty is reduced. It increases rapidly to a value and peaks before t2. And the amount of condensed water is increasing during this period. Therefore, there is a high possibility that element cracking occurs due to water exposure.

なお、ヒータデューティB%は、ヒータデューティ100%と後述するヒータデューティフィードバック制御時の目標ヒータデューティである40%との中間の値であればよく、70%に限られないので、例えば60%や80%に設定してもよい。   The heater duty B% may be an intermediate value between the heater duty 100% and the target heater duty 40% at the time of heater duty feedback control described later, and is not limited to 70%. It may be set to 80%.

t3で素子の内部抵抗がC(Ω)、つまり素子温度が700℃に達したら、凝縮水がなくなるt4まで、それを維持するようヒータデューティをフィードバック制御する。なお、この際のヒータデューティの目標値は約40%である。   When the internal resistance of the element is C (Ω) at t3, that is, when the element temperature reaches 700 ° C., the heater duty is feedback controlled so as to maintain it until t4 when condensed water runs out. Note that the target value of the heater duty at this time is about 40%.

これにより、空燃比フィードバック制御を高精度で実行しつつ、被水による素子割れを防止できる。なお、t4は上述した制御ルーチンのステップS160で判定用の閾値として用いたD(秒)である。   As a result, it is possible to prevent element cracking due to water exposure while performing air-fuel ratio feedback control with high accuracy. Note that t4 is D (seconds) used as the threshold for determination in step S160 of the control routine described above.

t4で凝縮水が無くなったら、ヒータデューティを増大させて、素子を730℃まで昇温させる。これによって、より高精度な空燃比フィードバック制御が可能になる。   When the condensed water disappears at t4, the heater duty is increased and the temperature of the element is raised to 730 ° C. This enables more accurate air-fuel ratio feedback control.

なお、ヒータデューティを70%、40%と段階的に低下させているが、素子温度が550℃に達したら一気に40%まで低下させてもかまわない。ヒータデューティ40%であれば、素子温度はいずれ700℃に達するからである。ただし、空燃比フィードバック制御開始から700℃に達するまでの時間は長くなる。   Although the heater duty is gradually reduced to 70% and 40%, it may be reduced to 40% at once when the element temperature reaches 550 ° C. This is because the element temperature will eventually reach 700 ° C. if the heater duty is 40%. However, the time from starting the air-fuel ratio feedback control to reaching 700 ° C. becomes longer.

本実施形態の効果をまとめると、次のようになる。   The effects of the present embodiment are summarized as follows.

(1)ECU8は、内燃機関1が始動したら素子の昇温を開始し、素子が活性温度に達したら素子の昇温速度を低下させるので、被水による素子割れのおそれがない活性温度までは早期に昇温することができ、活性温度以上になったら発生する熱応力を低減することができる。つまり、素子割れを防止しつつ、早期に空燃比フィードバック制御を開始することができる。   (1) The ECU 8 starts the temperature increase of the element when the internal combustion engine 1 is started, and reduces the temperature increase rate of the element when the element reaches the activation temperature. The temperature can be raised at an early stage, and the thermal stress generated when the temperature rises above the activation temperature can be reduced. That is, the air-fuel ratio feedback control can be started early while preventing element cracking.

(2)ECU8は、排気通路4に凝縮水が残っている期間中は、素子が活性温度に達した後、素子温度が活性温度より高くかつ通常制御温度より低くなるようにヒータを制御するので、凝縮水が残っている期間中も被水による素子割れを防止しつつ、空燃比フィードバック制御を十分な精度及び応答性で行うことができる。   (2) The ECU 8 controls the heater so that the element temperature is higher than the activation temperature and lower than the normal control temperature after the element reaches the activation temperature during the period when the condensed water remains in the exhaust passage 4. The air-fuel ratio feedback control can be performed with sufficient accuracy and responsiveness while preventing the element from being cracked even during the period when the condensed water remains.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

1 内燃機関
2 吸気通路
3 スロットルバルブ
4 排気通路
5 燃料噴射弁
6 触媒
7 空燃比センサ
8 コントロールユニット
10 クランク角センサ
11 アクセル開度センサ
12 冷却水温センサ
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Intake passage 3 Throttle valve 4 Exhaust passage 5 Fuel injection valve 6 Catalyst 7 Air fuel ratio sensor 8 Control unit 10 Crank angle sensor 11 Accelerator opening sensor 12 Cooling water temperature sensor

Claims (2)

内燃機関の排気通路に設けられた空燃比センサと、
前記空燃比センサの素子を昇温させるヒータと、
前記内燃機関が始動したら前記素子の昇温を開始し、前記素子が活性温度に達したら素子の昇温速度を低下させるよう前記ヒータを制御する制御手段と、
を備えることを特徴とする空燃比検出装置。
An air-fuel ratio sensor provided in the exhaust passage of the internal combustion engine;
A heater for raising the temperature of the air-fuel ratio sensor element;
Control means for starting the temperature rise of the element when the internal combustion engine is started, and controlling the heater so as to reduce the temperature rise rate of the element when the element reaches an activation temperature;
An air-fuel ratio detection apparatus comprising:
前記制御手段は、排気通路中に凝縮水が残っている期間中は、前記素子が活性温度に達した後、素子温度が活性温度より高くかつ凝縮水が無くなった後の運転時の目標温度より低くなるように前記ヒータを制御する請求項1に記載の空燃比検出装置。   The control means is configured so that, during a period in which condensed water remains in the exhaust passage, after the element reaches the activation temperature, the element temperature is higher than the activation temperature and the target temperature during operation after the condensed water disappears is exceeded. The air-fuel ratio detection apparatus according to claim 1, wherein the heater is controlled to be low.
JP2010177397A 2010-08-06 2010-08-06 Air-fuel ratio detection device Expired - Fee Related JP5630135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010177397A JP5630135B2 (en) 2010-08-06 2010-08-06 Air-fuel ratio detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177397A JP5630135B2 (en) 2010-08-06 2010-08-06 Air-fuel ratio detection device

Publications (2)

Publication Number Publication Date
JP2012036814A true JP2012036814A (en) 2012-02-23
JP5630135B2 JP5630135B2 (en) 2014-11-26

Family

ID=45849066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177397A Expired - Fee Related JP5630135B2 (en) 2010-08-06 2010-08-06 Air-fuel ratio detection device

Country Status (1)

Country Link
JP (1) JP5630135B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063482A (en) * 2019-10-16 2021-04-22 日本特殊陶業株式会社 Air-fuel ratio control system and air-fuel ratio control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218044A (en) * 1998-01-30 1999-08-10 Suzuki Motor Corp Heating control device of oxygen sensor
JP2000292407A (en) * 1999-04-01 2000-10-20 Toyota Motor Corp Heater controller of air/fuel ratio sensor
JP2002267633A (en) * 2001-03-09 2002-09-18 Ngk Insulators Ltd Method of heating gas sensor, and gas sensor
JP2008138569A (en) * 2006-11-30 2008-06-19 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JP2010537110A (en) * 2008-03-07 2010-12-02 フオルクスワーゲン・アクチエンゲゼルシヤフト How to activate the lambda sensor during the warm-up phase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218044A (en) * 1998-01-30 1999-08-10 Suzuki Motor Corp Heating control device of oxygen sensor
JP2000292407A (en) * 1999-04-01 2000-10-20 Toyota Motor Corp Heater controller of air/fuel ratio sensor
JP2002267633A (en) * 2001-03-09 2002-09-18 Ngk Insulators Ltd Method of heating gas sensor, and gas sensor
JP2008138569A (en) * 2006-11-30 2008-06-19 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JP2010537110A (en) * 2008-03-07 2010-12-02 フオルクスワーゲン・アクチエンゲゼルシヤフト How to activate the lambda sensor during the warm-up phase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063482A (en) * 2019-10-16 2021-04-22 日本特殊陶業株式会社 Air-fuel ratio control system and air-fuel ratio control method
JP7452975B2 (en) 2019-10-16 2024-03-19 日本特殊陶業株式会社 Air-fuel ratio control system and air-fuel ratio control method

Also Published As

Publication number Publication date
JP5630135B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
US8362405B2 (en) Heater controller of exhaust gas sensor
US10337435B2 (en) Heater control device for exhaust gas sensor
JP2010019178A (en) Engine control device
JP5379722B2 (en) Water temperature sensor abnormality determination device
JP4706928B2 (en) Exhaust gas sensor heater control device
US8000883B2 (en) Control apparatus and method for air-fuel ratio sensor
JP4458019B2 (en) Control device for vehicle engine
JP4621984B2 (en) Exhaust gas sensor heater control device
JP5630135B2 (en) Air-fuel ratio detection device
WO2008108502A1 (en) Control device for internal combustion engine
JP5041341B2 (en) Exhaust gas sensor heater control device
WO2012105173A1 (en) Glow plug controller for internal combustion engine
WO2014080846A1 (en) Gas concentration sensor and method for warming up same
JP2010145256A (en) Heater control device of emission gas sensor
US6976483B2 (en) Air-fuel ratio control apparatus for internal combustion engine and method thereof
JP2007032320A (en) Controller of internal combustion engine
JP6806417B1 (en) Catalyst temperature estimation device and engine control device
JP5058141B2 (en) Air-fuel ratio control method for internal combustion engine
JP2009168769A (en) Heater control device of exhaust gas sensor
JP4573047B2 (en) Control device for internal combustion engine
JP2010014036A (en) Internal combustion engine stop time estimation device
JP4872793B2 (en) Control device for internal combustion engine
JP2009079546A (en) Air-fuel ratio control device for internal combustion engine
JP2017002757A (en) Control device of internal combustion engine
JP5482459B2 (en) Secondary air supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R151 Written notification of patent or utility model registration

Ref document number: 5630135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees