JP2012035252A - Process for producing supported ruthenium oxide and process for producing chlorine - Google Patents

Process for producing supported ruthenium oxide and process for producing chlorine Download PDF

Info

Publication number
JP2012035252A
JP2012035252A JP2010247226A JP2010247226A JP2012035252A JP 2012035252 A JP2012035252 A JP 2012035252A JP 2010247226 A JP2010247226 A JP 2010247226A JP 2010247226 A JP2010247226 A JP 2010247226A JP 2012035252 A JP2012035252 A JP 2012035252A
Authority
JP
Japan
Prior art keywords
titania
supported
ruthenium oxide
producing
supported ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010247226A
Other languages
Japanese (ja)
Other versions
JP5333413B2 (en
Inventor
Junichi Nishimoto
純一 西本
Kohei Seki
航平 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010247226A priority Critical patent/JP5333413B2/en
Priority to PCT/JP2011/066173 priority patent/WO2012008560A1/en
Publication of JP2012035252A publication Critical patent/JP2012035252A/en
Application granted granted Critical
Publication of JP5333413B2 publication Critical patent/JP5333413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/004Oxides; Hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a supported ruthenium oxide excellent in thermal stability and catalyst lifetime and a process for stably producing chlorine for a long period of time by the use of the supported ruthenium oxide obtained by the above process.SOLUTION: The process for producing the supported ruthenium oxide comprises the steps of: supporting a ruthenium compound on a powdery titania carrier; and calcining the ruthenium compound-supported powdery titania carrier in an atmosphere of an oxidizing gas, wherein the powdery titania carrier comprises titania and silica supported on the titania, and wherein a ratio of rutile type titania to the total of the rutile type titania and anatase type titania in the powdery titania carrier is ≥50%, when measured by an X-ray diffraction method. Hydrogen chloride is oxidized by oxygen in the presence of the supported ruthenium oxide thus produced, as a catalyst to produce chlorine.

Description

本発明は、酸化ルテニウムが担体に担持されてなる担持酸化ルテニウムを製造する方法に関する。また、本発明は、この方法により製造された担持酸化ルテニウムを触媒に用いて塩化水素を酸素で酸化することにより、塩素を製造する方法にも関係している。   The present invention relates to a method for producing supported ruthenium oxide in which ruthenium oxide is supported on a carrier. The present invention also relates to a method for producing chlorine by oxidizing hydrogen chloride with oxygen using the supported ruthenium oxide produced by this method as a catalyst.

担持酸化ルテニウムは、塩化水素を酸素で酸化して塩素を製造するための触媒として有用であり、その製造方法として、例えば、特許文献1及び2には、オルトけい酸テトラエチルとチタニウムテトライソプロポキシドの混合溶液に酢酸水溶液を滴下することにより生成した白色沈殿を、空気中、60℃で乾燥し、次いで550℃で焼成して得られたチタニアシリカ粉末にルテニウム化合物を担持させ、その後、空気中で焼成する方法や、成形したチタニアにルテニウム化合物を担持した後、焼成し、次いでアルコキシシラン化合物やシロキサン化合物等のケイ素化合物を担持させ、その後、空気中で焼成する方法が記載され、特許文献3には、成形したチタニアにアルコキシシラン化合物を担持した後、空気中で焼成することによりチタニアの成形体にシリカを担持し、次いでルテニウム化合物を担持させ、その後、空気中で焼成する方法や、シリカが担持され、かつX線回折法により測定されるルチル型チタニアの比率がルチル型チタニア及びアナターゼ型チタニアの合計に対し38%である粉末状のチタニアを成形した後、ルテニウム化合物を担持させ、次いで空気中で焼成する方法が提案されている。   The supported ruthenium oxide is useful as a catalyst for producing chlorine by oxidizing hydrogen chloride with oxygen. For example, Patent Documents 1 and 2 disclose tetraethyl orthosilicate and titanium tetraisopropoxide. A white precipitate formed by adding an aqueous solution of acetic acid to the mixed solution was dried at 60 ° C. in air and then calcined at 550 ° C., and then the ruthenium compound was supported on the titania silica powder obtained by calcination in the air. And a method in which a ruthenium compound is supported on a molded titania and then calcined, and then a silicon compound such as an alkoxysilane compound or a siloxane compound is supported, and then calcined in air. In the case of titania, an alkoxysilane compound is supported on the formed titania and then fired in air. Silica is supported on the molded body, and then the ruthenium compound is supported, and then calcined in air, or the ratio of rutile titania supported by silica and measured by X-ray diffractometry is rutile titania and A method has been proposed in which powdered titania, which is 38% of the total amount of anatase-type titania, is formed, a ruthenium compound is supported, and then fired in air.

特開2002−292279号公報JP 2002-292279 A 特開2004−074073号公報Japanese Patent Laid-Open No. 2004-074073 特開2008−155199号公報JP 2008-155199 A

しかしながら、上記従来の製造方法により得られる担持酸化ルテニウムは熱安定性や触媒寿命の点で必ずしも満足のいくものではなかった。   However, the supported ruthenium oxide obtained by the above conventional production method is not always satisfactory in terms of thermal stability and catalyst life.

そこで、本発明の目的は、熱安定性や触媒寿命に優れた担持酸化ルテニウムの製造方法を提供することにある。また、この方法により得られた担持酸化ルテニウムを用いて、長時間にわたり安定して塩素を製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing supported ruthenium oxide having excellent thermal stability and catalyst life. Another object of the present invention is to provide a method for producing chlorine stably over a long period of time using the supported ruthenium oxide obtained by this method.

本発明者らは、鋭意検討を行った結果、担持酸化ルテニウム触媒の製造において、チタニアにシリカが担持されてなり、かつX線回折法により測定されるルチル型チタニアの比率が、ルチル型チタニア及びアナターゼ型チタニアの合計に対し50%以上である粉末状のチタニア担体にルテニウム化合物を担持させた後、酸化性ガスの雰囲気下で焼成することにより、上記目的を達成しうることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that in the production of a supported ruthenium oxide catalyst, silica is supported on titania, and the ratio of rutile titania measured by X-ray diffractometry is such that rutile titania and The present invention has found that the above object can be achieved by supporting a ruthenium compound on a powdery titania carrier that is 50% or more of the total amount of anatase-type titania and then firing it in an oxidizing gas atmosphere. It came to complete.

すなわち、本発明は、チタニアにシリカが担持されてなり、かつX線回折法により測定されるルチル型チタニアの比率が、ルチル型チタニア及びアナターゼ型チタニアの合計に対し50%以上である粉末状のチタニア担体にルテニウム化合物を担持させた後、酸化性ガスの雰囲気下で焼成する担持酸化ルテニウムの製造方法を提供するものである。   That is, the present invention is a powdery product in which silica is supported on titania and the ratio of rutile titania measured by X-ray diffraction method is 50% or more with respect to the total of rutile titania and anatase titania. The present invention provides a method for producing supported ruthenium oxide, in which a ruthenium compound is supported on a titania carrier and then fired in an oxidizing gas atmosphere.

また、本発明によれば、上記方法により製造された担持酸化ルテニウムの存在下で、塩化水素を酸素で酸化することにより、塩素を製造する方法も提供される。   The present invention also provides a method for producing chlorine by oxidizing hydrogen chloride with oxygen in the presence of the supported ruthenium oxide produced by the above method.

本発明によれば、熱安定性や触媒寿命に優れた担持酸化ルテニウムを製造することができ、こうして得られる担持酸化ルテニウムを触媒に用いて、塩化水素を酸素で酸化することにより、塩素を製造することができる。   According to the present invention, supported ruthenium oxide having excellent thermal stability and catalyst life can be produced, and chlorine is produced by oxidizing hydrogen chloride with oxygen using the thus obtained supported ruthenium oxide as a catalyst. can do.

以下、本発明を詳細に説明する。本発明では、チタニアにシリカが担持されてなる粉末状のチタニア担体を用いる。かかるチタニア担体におけるチタニアは、ルチル型チタニア(ルチル型の結晶構造を有するチタニア)やアナターゼ型チタニア(アナターゼ型の結晶構造を有するチタニア)、非晶質のチタニア等からなるものであることができ、また、これらの混合物からなるものであってもよい。本発明では、ルチル型チタニアを主成分とするチタニア担体が好ましく、中でも、チタニア担体中のルチル型チタニア及びアナターゼ型チタニアの合計に対するルチル型チタニアの比率(以下、ルチル型チタニア比率ということがある。)が50%以上のチタニア担体が好ましく、70%以上のチタニア担体がより好ましく、90%以上のチタニア担体がさらにより好ましい。ルチル型チタニア比率が高くなるほど、得られる担持酸化ルテニウムの熱安定性が向上し触媒寿命がより良好となる。上記ルチル型チタニア比率は、X線回折法(以下XRD法)により測定でき、以下の式(1)で示される。   Hereinafter, the present invention will be described in detail. In the present invention, a powdery titania carrier in which silica is supported on titania is used. The titania in the titania carrier can be composed of rutile titania (titania having a rutile crystal structure), anatase titania (titania having an anatase crystal structure), amorphous titania, and the like. Moreover, you may consist of these mixtures. In the present invention, a titania carrier mainly composed of rutile type titania is preferable, and among them, the ratio of rutile type titania to the total of rutile type titania and anatase type titania in the titania carrier (hereinafter, referred to as a rutile type titania ratio). ) Is preferably 50% or more of a titania carrier, more preferably 70% or more of a titania carrier, and even more preferably 90% or more of a titania carrier. The higher the rutile titania ratio, the better the thermal stability of the resulting supported ruthenium oxide and the better the catalyst life. The rutile-type titania ratio can be measured by an X-ray diffraction method (hereinafter referred to as XRD method) and is represented by the following formula (1).

ルチル型チタニア比率[%]=〔I/(I+I)〕×100 (1) Rutile titania ratio [%] = [I R / (I A + I R) ] × 100 (1)

:ルチル型チタニア(110)面を示す回折線の強度
:アナターゼ型チタニア(101)面を示す回折線の強度
I R : Intensity of diffraction line showing rutile type titania (110) plane I A : Intensity of diffraction line showing anatase type titania (101) plane

本発明で用いられるチタニア担体は、粉末状であって、チタニアに予めシリカが担持されてなり、ルチル型チタニアの比率が50%以上のものである。かかるチタニア担体は、市販のものを使用してもよいし、公知の方法に準拠して調製したものを使用してもよい。市販のものとしては、例えば、堺化学工業(株)製のシリカ担持チタニア粉末(製品名:STR−100W)、テイカ(株)製シリカ担持チタニア粉末(製品名:MT−100WP)等が挙げられる。前記調製は、例えば、特開2006−182896号公報に記載の方法に準拠して行うことができる。   The titania carrier used in the present invention is in the form of a powder, in which silica is previously supported on titania, and the ratio of rutile-type titania is 50% or more. As such a titania carrier, a commercially available product may be used, or a titania carrier prepared according to a known method may be used. Examples of commercially available products include silica-supported titania powder (product name: STR-100W) manufactured by Sakai Chemical Industry Co., Ltd., silica-supported titania powder (product name: MT-100WP) manufactured by Teika Corporation, and the like. . The said preparation can be performed based on the method as described in Unexamined-Japanese-Patent No. 2006-182896, for example.

前記チタニア担体におけるシリカの含有量は、使用するチタニアの物性や、得られる担持酸化ルテニウムにおける酸化ルテニウムの含有量によって異なるが、好ましくは0.01〜10重量%、より好ましくは0.1〜5重量%である。   The content of silica in the titania support varies depending on the physical properties of titania used and the content of ruthenium oxide in the obtained supported ruthenium oxide, but is preferably 0.01 to 10% by weight, more preferably 0.1 to 5%. % By weight.

また、前記チタニア担体は、アルカリ金属元素を含有してもよい。アルカリ金属元素としては、ナトリウム、カリウム、セシウム等が挙げられ、これらの2種以上でもよい。中でも、ナトリウムが好ましい。前記アルカリ金属元素は、上述の市販のチタニア担体に含まれるものであってもよいし、上述のチタニア担体の調製時にシリカの原料としてケイ酸のアルカリ金属塩を使用することにより含まれるものであってもよいし、上述のチタニア担体の調製時に、シリカの原料とは別にアルカリ金属化合物を添加することにより含まれるものであってもよい。前記アルカリ金属化合物としては、アルカリ金属のハロゲン化物が好ましく、アルカリ金属のハロゲン化物の中でも、塩化ナトリウム、塩化カリウムが好ましく、塩化ナトリウムがより好ましい。前記アルカリ金属元素の含有量は、前記チタニア担体に対して、5重量%以下が好ましく、2重量%以下がより好ましい。2種以上のアルカリ金属元素が含まれる場合、これらの合計含有量が、前記チタニア担体に対して、上記範囲となればよい。前記チタニア担体に含まれるアルカリ金属元素の含有量は、例えば、誘導結合高周波プラズマ発光分光分析法(以下、「ICP分析法」と言う。)により定量できる。   The titania carrier may contain an alkali metal element. Examples of the alkali metal element include sodium, potassium, cesium and the like, and two or more of these may be used. Of these, sodium is preferable. The alkali metal element may be contained in the above-mentioned commercially available titania carrier, or may be contained by using an alkali metal salt of silicic acid as a silica raw material when preparing the above-mentioned titania carrier. Alternatively, it may be contained by adding an alkali metal compound separately from the silica raw material when preparing the above titania carrier. As the alkali metal compound, an alkali metal halide is preferable, and among the alkali metal halides, sodium chloride and potassium chloride are preferable, and sodium chloride is more preferable. The content of the alkali metal element is preferably 5% by weight or less, and more preferably 2% by weight or less with respect to the titania carrier. When two or more kinds of alkali metal elements are contained, the total content thereof may be in the above range with respect to the titania carrier. The content of the alkali metal element contained in the titania support can be quantified by, for example, inductively coupled high-frequency plasma emission spectrometry (hereinafter referred to as “ICP analysis”).

前記チタニア担体は、熱処理が施されてもよい。かかる熱処理は、酸化性ガス、還元性ガス又は不活性ガスの雰囲気下で行うことができ、酸化性ガスの雰囲気下に行うことが好ましい。前記酸化性ガスとは、酸化性物質を含むガスであり、例えば酸素含有ガス等が挙げられ、その酸素濃度としては、通常、1〜30容量%程度である。この酸素源としては、通常、空気や純酸素が用いられ、必要に応じて不活性ガスや水蒸気で希釈される。酸化性ガスは、中でも、空気が好ましい。前記還元性ガスとは、還元性物質を含むガスであり、例えば水素含有ガス、一酸化炭素含有ガス、炭化水素含有ガス等が挙げられる。その濃度としては、通常、1〜30容量%程度であり、例えば、不活性ガスや水蒸気で濃度調整される。還元性ガスは、中でも、水素含有ガス、一酸化炭素含有ガスが好ましい。前記不活性ガスとしては、例えば窒素、二酸化炭素、ヘリウム、アルゴン等が挙げられ、必要に応じて水蒸気で希釈される。不活性ガスは、中でも、窒素、二酸化炭素が好ましい。
前記熱処理を行う場合の処理温度は、通常、300〜1000℃、好ましくは500〜900℃である。
The titania carrier may be heat treated. Such heat treatment can be performed in an atmosphere of an oxidizing gas, a reducing gas, or an inert gas, and is preferably performed in an atmosphere of an oxidizing gas. The oxidizing gas is a gas containing an oxidizing substance, and examples thereof include an oxygen-containing gas. The oxygen concentration is usually about 1 to 30% by volume. As the oxygen source, air or pure oxygen is usually used, and diluted with an inert gas or water vapor as necessary. Of these, air is preferable as the oxidizing gas. The reducing gas is a gas containing a reducing substance, and examples thereof include a hydrogen-containing gas, a carbon monoxide-containing gas, and a hydrocarbon-containing gas. The concentration is usually about 1 to 30% by volume, and the concentration is adjusted with, for example, an inert gas or water vapor. Among them, the reducing gas is preferably a hydrogen-containing gas or a carbon monoxide-containing gas. Examples of the inert gas include nitrogen, carbon dioxide, helium, argon, and the like, and diluted with water vapor as necessary. Among these, nitrogen and carbon dioxide are preferable as the inert gas.
The treatment temperature in the case of performing the heat treatment is usually 300 to 1000 ° C, preferably 500 to 900 ° C.

こうして得られるチタニア担体に酸化ルテニウムを担持させる方法としては、チタニア担体にルテニウム化合物を担持させた後、酸化性ガスの雰囲気下で焼成する方法が挙げられる。   Examples of the method of supporting the ruthenium oxide on the titania support thus obtained include a method of supporting the ruthenium compound on the titania support and then baking in an oxidizing gas atmosphere.

前記ルテニウム化合物としては、例えば、RuCl、RuBrの如きハロゲン化物、KRuCl、KRuClの如きハロゲノ酸塩、KRuOの如きオキソ酸塩、RuOCl、RuOCl、RuOClの如きオキシハロゲン化物、K[RuCl(HO)]、[RuCl(HO)]Cl、K[RuOCl10]、Cs[RuOCl]の如きハロゲノ錯体、[Ru(NHO]Cl、[Ru(NHCl]Cl、[Ru(NH]Cl、[Ru(NH]Cl、[Ru(NH]Brの如きアンミン錯体、Ru(CO)、Ru(CO)12の如きカルボニル錯体、[RuO(OCOCH(HO)]OCOCH、[Ru(OCOR)]Cl(R=炭素数1〜3のアルキル基)の如きカルボキシラト錯体、K[RuCl(NO)]、[Ru(NH(NO)]Cl、[Ru(OH)(NH(NO)](NO、[Ru(NO)](NOの如きニトロシル錯体、ホスフィン錯体、アミン錯体、アセチルアセトナト錯体等が挙げられる。中でもハロゲン化物が好ましく用いられ、特に塩化物が好ましく用いられる。尚、ルテニウム化合物としては、必要に応じて、その水和物を使用してもよいし、また、それらの2種以上を使用してもよい。 As the ruthenium compound, for example, RuCl 3, such as halides RuBr 3, K 3 RuCl 6, K 2 RuCl such halogeno salt of 6, such as oxo acid salt of K 2 RuO 4, Ru 2 OCl 4, Ru 2 Oxyhalides such as OCl 5 and Ru 2 OCl 6 , K 2 [RuCl 5 (H 2 O) 4 ], [RuCl 2 (H 2 O) 4 ] Cl, K 2 [Ru 2 OCl 10 ], Cs 2 [ A halogeno complex such as Ru 2 OCl 4 ], [Ru (NH 3 ) 5 H 2 O] Cl 2 , [Ru (NH 3 ) 5 Cl] Cl 2 , [Ru (NH 3 ) 6 ] Cl 2 , [Ru ( NH 3 ) 6 ] Cl 3 , [Ru (NH 3 ) 6 ] Br 3 ammine complex, Ru (CO) 5 , carbonyl complex such as Ru 3 (CO) 12 , [Ru 3 O (OCO) Carboxylate complexes such as CH 3 ) 6 (H 2 O) 3 ] OCOCH 3 , [Ru 2 (OCOR) 4 ] Cl (R = C 1 -C 3 alkyl group), K 2 [RuCl 5 (NO)] , [Ru (NH 3 ) 5 (NO)] Cl 3 , [Ru (OH) (NH 3 ) 4 (NO)] (NO 3 ) 2 , [Ru (NO)] (NO 3 ) 3 Phosphine complex, amine complex, acetylacetonato complex, and the like. Of these, halides are preferably used, and chlorides are particularly preferably used. In addition, as a ruthenium compound, the hydrate may be used as needed, and those 2 or more types may be used.

ルテニウム化合物とチタニア担体の使用割合は、後述する焼成後に得られる担持酸化ルテニウム中の酸化ルテニウム/チタニア担体の重量比が、好ましくは0.1/99.9〜20.0/80.0、より好ましくは0.3/99.7〜10.0/90.0、さらに好ましくは0.5/99.5〜5.0/95.0となるように、適宜調整すればよい。酸化ルテニウムがあまり少ないと触媒活性が十分でないことがあり、あまり多いとコスト的に不利となる。加えて、チタニア担体に担持されているシリカ1モルに対し酸化ルテニウム含有量が0.10〜20モルとなるようにルテニウム化合物とチタニア担体の使用割合を調整するのが好ましく、0.20〜10モルとなるように調整するのがより好ましい。シリカ1モルに対する酸化ルテニウムのモル数が高すぎると、担持酸化ルテニウムの熱安定性が低くなることがあり、低すぎると、触媒活性が低くなることがある。   The use ratio of the ruthenium compound and the titania support is such that the weight ratio of the ruthenium oxide / titania support in the supported ruthenium oxide obtained after calcination described below is preferably 0.1 / 99.9 to 20.0 / 80.0, What is necessary is just to adjust suitably so that it may preferably become 0.3 / 99.7-10.0 / 90.0, More preferably, it will be 0.5 / 99.5-5.0 / 95.0. If there is too little ruthenium oxide, the catalytic activity may not be sufficient, and if it is too much, it will be disadvantageous in cost. In addition, it is preferable to adjust the use ratio of the ruthenium compound and the titania carrier so that the ruthenium oxide content is 0.10 to 20 mol with respect to 1 mol of silica supported on the titania carrier. It is more preferable to adjust so that it may become a mole. If the number of moles of ruthenium oxide relative to 1 mole of silica is too high, the thermal stability of the supported ruthenium oxide may be low, and if it is too low, the catalytic activity may be low.

チタニア担体にルテニウム化合物を担持させる方法としては、チタニア担体をルテニウム化合物を含む水溶液と接触処理する方法が挙げられる。接触処理において、処理時の温度は、通常0〜100℃、好ましくは0〜50℃であり、処理時の圧力は通常0.1〜1MPa、好ましくは大気圧である。また、かかる接触処理は、空気雰囲気下や、窒素、ヘリウム、アルゴン、二酸化酸素の如き不活性ガス雰囲気下で行うことができ、この際、水蒸気を含んでいてもよい。   Examples of the method for supporting the ruthenium compound on the titania carrier include a method in which the titania carrier is contacted with an aqueous solution containing the ruthenium compound. In the contact treatment, the temperature during the treatment is usually 0 to 100 ° C., preferably 0 to 50 ° C., and the pressure during the treatment is usually 0.1 to 1 MPa, preferably atmospheric pressure. Such contact treatment can be performed in an air atmosphere or in an inert gas atmosphere such as nitrogen, helium, argon, oxygen dioxide, and may contain water vapor.

接触処理としては、含浸又は浸漬が挙げられる。前記水溶液と接触処理する方法として、例えば、(A)チタニア担体にルテニウム化合物を含む水溶液を含浸させる方法、(B)チタニア担体をルテニウム化合物を含む水溶液に浸漬させる方法等が挙げられるが、前記(A)の方法が好ましい。前記水溶液には、酸が含まれてもよい。   Examples of the contact treatment include impregnation or immersion. Examples of the method for contact treatment with the aqueous solution include (A) a method in which a titania carrier is impregnated with an aqueous solution containing a ruthenium compound, and (B) a method in which the titania carrier is immersed in an aqueous solution containing a ruthenium compound. The method A) is preferred. The aqueous solution may contain an acid.

前記水溶液に含まれる水としては、蒸留水、イオン交換水、超純水などの純度の高い水が好ましい。使用する水に不純物が多く含まれると、かかる不純物が触媒に付着して、触媒の活性を低下させる場合がある。水の使用量は、前記水溶液中のルテニウム化合物1モルに対しては、通常1.5〜8000モル、好ましくは3〜2500モル、より好ましくは7〜1500モルである。チタニア担体にルテニウム化合物を担持させるのに最低限必要な水の量は、使用するチタニア担体の総細孔容積から担持に使用する水溶液に含まれるルテニウム化合物の体積を除いた量である。   The water contained in the aqueous solution is preferably high-purity water such as distilled water, ion exchange water, or ultrapure water. If the water used contains a large amount of impurities, such impurities may adhere to the catalyst and reduce the activity of the catalyst. The usage-amount of water is 1.5-8000 mol normally with respect to 1 mol of ruthenium compounds in the said aqueous solution, Preferably it is 3-2500 mol, More preferably, it is 7-1500 mol. The minimum amount of water required to support the ruthenium compound on the titania support is an amount obtained by subtracting the volume of the ruthenium compound contained in the aqueous solution used for the support from the total pore volume of the titania support used.

こうして、チタニア担体にルテニウム化合物を担持させることができる。尚、ルテニウム化合物の担持後は必要に応じて、例えば特開2000−229239号公報、特開2000−254502号公報、特開2000−281314号公報、特開2002−79093号公報等に記載される如く還元処理を行ってもよい。   Thus, the ruthenium compound can be supported on the titania carrier. In addition, after carrying | supporting a ruthenium compound, it describes in Unexamined-Japanese-Patent No. 2000-229239, Unexamined-Japanese-Patent No. 2000-254502, Unexamined-Japanese-Patent No. 2000-281314, Unexamined-Japanese-Patent No. 2002-79093 etc. as needed. The reduction treatment may be performed as described above.

前記チタニア担体にルテニウム化合物を担持させた後、酸化性ガスの雰囲気下で焼成する。かかる焼成により、担持されたルテニウム化合物は酸化ルテニウムへと変換される。酸化性ガスとは、酸化性物質を含むガスであり、例えば、酸素含有ガスが挙げられる。その酸素濃度は通常1〜30容量%程度である。この酸素源としては、通常、空気や純酸素が用いられ、必要に応じて不活性ガスで希釈される。酸化性ガスは、中でも、空気が好ましい。焼成温度は、通常100〜500℃、好ましくは200〜400℃である。   The ruthenium compound is supported on the titania carrier, and then fired in an oxidizing gas atmosphere. By this firing, the supported ruthenium compound is converted to ruthenium oxide. The oxidizing gas is a gas containing an oxidizing substance, and examples thereof include an oxygen-containing gas. The oxygen concentration is usually about 1 to 30% by volume. As the oxygen source, air or pure oxygen is usually used, and diluted with an inert gas as necessary. Of these, air is preferable as the oxidizing gas. A calcination temperature is 100-500 degreeC normally, Preferably it is 200-400 degreeC.

前記チタニア担体にルテニウム化合物を担持させた後、乾燥してから酸化性ガスの雰囲気下で焼成を行ってもよい。かかる乾燥方法としては、従来公知の方法を採用することができ、その温度は、通常、室温から100℃程度であり、その圧力は、通常0.001〜1MPa、好ましくは大気圧である。かかる乾燥は、空気雰囲気下や、窒素、ヘリウム、アルゴン、二酸化酸素の如き不活性ガス雰囲気下で行うことができ、この際、水蒸気を含んでいてもよい。   After the ruthenium compound is supported on the titania carrier, it may be dried and then calcined in an oxidizing gas atmosphere. As the drying method, a conventionally known method can be adopted, and the temperature is usually from room temperature to about 100 ° C., and the pressure is usually from 0.001 to 1 MPa, preferably atmospheric pressure. Such drying can be performed in an air atmosphere or an inert gas atmosphere such as nitrogen, helium, argon, or oxygen dioxide, and may contain water vapor.

前記焼成により、担持酸化ルテニウムを製造することができる。担持されている酸化ルテニウムにおけるルテニウムの酸化数は、通常+4であり、酸化ルテニウムとしては二酸化ルテニウム(RuO)であるが、他の酸化数のルテニウムないし他の形態の酸化ルテニウムが含まれていてもよい。 The supported ruthenium oxide can be produced by the firing. The ruthenium oxidation number in the supported ruthenium oxide is usually +4, and the ruthenium oxide is ruthenium dioxide (RuO 2 ), but other ruthenium oxides or other forms of ruthenium oxide are included. Also good.

本発明の担持酸化ルテニウムは、好ましくは成形体として使用される。成形体の担持酸化ルテニウムを得る方法として、例えば、(A)前記チタニア担体を成形後、ルテニウム化合物を担持させ、次いで酸化性ガスの雰囲気下で焼成する方法、(B)前記チタニア担体を前記熱処理後、成形し、次いでルテニウム化合物を担持させた後、酸化性ガスの雰囲気下で焼成する方法、(C)前記チタニア担体を成形後、前記熱処理を行い、次いでルテニウム化合物を担持させた後、酸化性ガスの雰囲気下で焼成する方法、(D)前記チタニア担体にルテニウム化合物を担持させた後、成形し、次いで酸化性ガスの雰囲気下で焼成する方法、(E)前記チタニア担体を前記熱処理後、ルテニウム化合物を担持させ、次いで成形後、酸化性ガスの雰囲気下で焼成する方法、(F)前記チタニア担体にルテニウム化合物を担持させた後、酸化性ガスの雰囲気下で焼成し、次いで成形する方法、(G)前記チタニア担体を前記熱処理後、ルテニウム化合物を担持させ、次いで酸化性ガスの雰囲気下で焼成後、成形する方法等が挙げられるが、前記(A)又は(B)の方法が好ましく、前記(B)の方法がより好ましい。成形は、例えば、前記チタニア担体、前記熱処理後のチタニア担体、前記チタニア担体にルテニウム化合物を担持させたもの、前記熱処理後のチタニア担体にルテニウム化合物を担持させたもの、前記チタニア担体にルテニウム化合物を担持させ酸化性ガスの雰囲気下で焼成したもの又は前記熱処理後のチタニア担体にルテニウム化合物を担持させ酸化性ガスの雰囲気下で焼成したものと、チタニアゾルと、有機バインダー等の成形助剤と、水とを混練し、ヌードル状に押出成形した後、乾燥、破砕することにより行うことができる。成形後は、引き続き酸化性ガスの雰囲気下で焼成を行うのが好ましい。酸化性ガスとは、酸化性物質を含むガスであり、例えば、酸素含有ガスが挙げられる。その酸素濃度は通常1〜30容量%程度である。この酸素源としては、通常、空気や純酸素が用いられ、必要に応じて不活性ガスで希釈される。酸化性ガスは、中でも、空気が好ましい。成形後に引き続き行う焼成における焼成温度は、通常400〜900℃、好ましくは500〜800℃である。   The supported ruthenium oxide of the present invention is preferably used as a molded body. As a method for obtaining the supported ruthenium oxide of the molded body, for example, (A) a method in which the titania carrier is molded and then a ruthenium compound is supported and then fired in an oxidizing gas atmosphere, and (B) the titania carrier is subjected to the heat treatment. After forming, and then supporting the ruthenium compound, firing in an oxidizing gas atmosphere, (C) after forming the titania support, performing the heat treatment, and then supporting the ruthenium compound, followed by oxidation. (D) A method in which a ruthenium compound is supported on the titania support and then molded and then fired in an oxidizing gas atmosphere. (E) After the heat treatment of the titania support. , A method in which a ruthenium compound is supported, and then, after molding, firing in an oxidizing gas atmosphere, (F) a ruthenium compound supported on the titania carrier And (G) a method in which the titania carrier is supported by the ruthenium compound after the heat treatment and then baked in an oxidizing gas atmosphere and then molded. The method (A) or (B) is preferable, and the method (B) is more preferable. Molding includes, for example, the titania support, the titania support after the heat treatment, a support in which the ruthenium compound is supported on the titania support, a support in which the ruthenium compound is supported on the titania support after the heat treatment, and the ruthenium compound on the titania support. Supported and fired in an oxidizing gas atmosphere or a ruthenium compound supported on the titania support after the heat treatment and fired in an oxidizing gas atmosphere, a titania sol, a molding aid such as an organic binder, and water And kneading and extruding into a noodle shape, followed by drying and crushing. After molding, it is preferable to continue firing in an oxidizing gas atmosphere. The oxidizing gas is a gas containing an oxidizing substance, and examples thereof include an oxygen-containing gas. The oxygen concentration is usually about 1 to 30% by volume. As the oxygen source, air or pure oxygen is usually used, and diluted with an inert gas as necessary. Of these, air is preferable as the oxidizing gas. The calcination temperature in the subsequent calcination performed after molding is usually 400 to 900 ° C, preferably 500 to 800 ° C.

前記(A)の方法における成形後のチタニア担体又は前記(B)の方法における熱処理後に成形したチタニア担体の比表面積は、通常5〜300m/gであり、好ましくは5〜60m/gである。成形後に引き続き焼成を行う場合は、焼成後の比表面積が前記範囲となるようにすればよい。比表面積が高すぎると、得られる担持酸化ルテニウムにおけるチタニアや酸化ルテニウムが焼結しやすくなり、熱安定性が低くなることがある。一方、比表面積が低すぎると、得られる担持酸化ルテニウムにおける酸化ルテニウムが分散しにくくなり、触媒活性が低くなることがある。比表面積は、窒素吸着法(BET法)で測定することができ、通常BET1点法で測定する。 The specific surface area of the titania carrier after molding in the method (A) or the titania carrier molded after heat treatment in the method (B) is usually 5 to 300 m 2 / g, preferably 5 to 60 m 2 / g. is there. In the case of subsequent firing after molding, the specific surface area after firing may be in the above range. When the specific surface area is too high, titania and ruthenium oxide in the obtained supported ruthenium oxide are easily sintered, and thermal stability may be lowered. On the other hand, if the specific surface area is too low, the ruthenium oxide in the obtained supported ruthenium oxide becomes difficult to disperse and the catalytic activity may be lowered. The specific surface area can be measured by a nitrogen adsorption method (BET method), and is usually measured by a BET one-point method.

かくして製造される担持酸化ルテニウムを触媒に用い、この触媒の存在下で塩化水素を酸素で酸化することにより、塩素を効率的に製造することができる。反応方式としては、流動床、固定床、移動床等の反応方式が採用可能であり、断熱方式又は熱交換方式の固定床反応器が好ましい。断熱方式の固定床反応器を用いる場合には、単管式固定床反応器、多管式固定床反応器のいずれも使用することができるが、単管式固定床反応器を好ましく使用することができる。熱交換方式の固定床反応器を用いる場合には、単管式固定床反応器、多管式固定床反応器のいずれも使用することができるが、多管式固定床反応器を好ましく使用することができる。   The supported ruthenium oxide thus produced is used as a catalyst, and chlorine can be efficiently produced by oxidizing hydrogen chloride with oxygen in the presence of this catalyst. As the reaction method, a reaction method such as a fluidized bed, a fixed bed, or a moving bed can be adopted, and an adiabatic or heat exchange type fixed bed reactor is preferable. When an adiabatic fixed bed reactor is used, either a single tube fixed bed reactor or a multitubular fixed bed reactor can be used, but a single tube fixed bed reactor is preferably used. Can do. When a heat exchange type fixed bed reactor is used, either a single-tube fixed bed reactor or a multi-tube fixed bed reactor can be used, but a multi-tube fixed bed reactor is preferably used. be able to.

この酸化反応は平衡反応であり、あまり高温で行うと平衡転化率が下がるため、比較的低温で行うのが好ましく、反応温度は、通常100〜500℃、好ましくは200〜450℃である。また、反応圧力は、通常0.1〜5MPa程度である。酸素源としては、空気を使用してもよいし、純酸素を使用してもよい。塩化水素に対する酸素の理論モル量は1/4モルであるが、通常、この理論量の0.1〜10倍の酸素が使用される。また、塩化水素の供給速度は、触媒1Lあたりのガス供給速度(L/h;0℃、1気圧換算)、すなわちGHSVで表して、通常10〜20000h−1程度である。 This oxidation reaction is an equilibrium reaction, and if it is carried out at a very high temperature, the equilibrium conversion rate is lowered. Therefore, the oxidation reaction is preferably carried out at a relatively low temperature, and the reaction temperature is usually 100 to 500 ° C., preferably 200 to 450 ° C. The reaction pressure is usually about 0.1 to 5 MPa. As the oxygen source, air or pure oxygen may be used. The theoretical molar amount of oxygen with respect to hydrogen chloride is 1/4 mole, but usually 0.1 to 10 times the theoretical amount of oxygen is used. Further, the supply rate of hydrogen chloride is usually about 10 to 20000 h −1 in terms of gas supply rate per 1 L of catalyst (L / h; 0 ° C., converted to 1 atm), that is, GHSV.

以上、本発明の好ましい実施形態を説明したが、本発明はかかる実施形態に限定されるものではない。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to this embodiment.

以下に本発明の実施例を示すが、本発明はこれらによって限定されるものではない。なお、以下の各例において、シリカ担持チタニア粉末中のナトリウム含有量は、ICP発光分析装置(日本ジャーレル・アッシュ(株)製、IRIS Advantage)を用いて分析した。   Examples of the present invention will be shown below, but the present invention is not limited thereto. In each of the following examples, the sodium content in the silica-supported titania powder was analyzed using an ICP emission analyzer (manufactured by Nippon Jarrell-Ash Co., Ltd., IRIS Advantage).

実施例1
(担体の成形)
シリカ担持チタニア粉末〔堺化学工業(株)製のSTR−100W、シリカ(SiO)含有量0.5重量%、ルチル型チタニア比率90%以上、ナトリウム含有量0.14重量%〕を空気中、室温から800℃まで3時間かけて昇温した後、同温度で3時間保持して熱処理した。得られた熱処理品100重量部と有機バインダー〔信越化学工業(株)製の65SH−400〕2重量部を混合した。次いで純水30重量部、チタニアゾル〔堺化学工業(株)製のCSB、チタニア含有量40重量%〕12.5重量部を加えて混練した。この混合物を直径3.0mmφのヌードル状に押出し、60℃で2時間乾燥した後、長さ3〜5mm程度に破砕した。得られた成形体を、空気中で室温から600℃まで1.7時間かけて昇温した後、同温度で3時間保持して焼成し、シリカの含有量が0.5重量%である白色のシリカ担持チタニアの成形品〔ルチル型チタニア比率90%以上、比表面積:25m/g〕を得た。
Example 1
(Molding of carrier)
Silica-supported titania powder [STR-100W manufactured by Sakai Chemical Industry Co., Ltd., silica (SiO 2 ) content 0.5 wt%, rutile-type titania ratio 90% or more, sodium content 0.14 wt%] in air The temperature was raised from room temperature to 800 ° C. over 3 hours, and then heat treatment was performed by maintaining the temperature at the same temperature for 3 hours. 100 parts by weight of the obtained heat-treated product and 2 parts by weight of an organic binder [65SH-400 manufactured by Shin-Etsu Chemical Co., Ltd.] were mixed. Next, 30 parts by weight of pure water and 12.5 parts by weight of titania sol [CSB manufactured by Sakai Chemical Industry Co., Ltd., titania content 40% by weight] were added and kneaded. This mixture was extruded into a noodle shape having a diameter of 3.0 mmφ, dried at 60 ° C. for 2 hours, and then crushed to a length of about 3 to 5 mm. The obtained molded body was heated in air from room temperature to 600 ° C. over 1.7 hours and then calcined by holding at the same temperature for 3 hours. The white content of silica was 0.5% by weight. Of silica-supported titania [rutile-type titania ratio 90% or more, specific surface area: 25 m 2 / g].

(担持酸化ルテニウムの製造)
塩化ルテニウム水和物〔NEケムキャット(株)製のRuCl・nHO、Ru含有量40.0重量%〕0.486gを純水4.56gに溶解して調製した水溶液を上記で得られたシリカ担持チタニアの成形品20.0gに含浸させ、空気雰囲気下、室温で2日間乾燥し、20.6gの茶色の固体を得た。得られた固体20.6gを、空気流通下、室温から300℃まで1.3時間かけて昇温した後、同温度で2時間保持して焼成し、酸化ルテニウムの含有量が1.25重量%である担持酸化ルテニウム20.1gを得た。
(Production of supported ruthenium oxide)
An aqueous solution prepared by dissolving 0.486 g of ruthenium chloride hydrate [RuCl 3 · nH 2 O manufactured by NE Chemcat Co., Ltd., Ru content 40.0 wt%] in 4.56 g of pure water is obtained above. 20.0 g of a silica-supported titania molded product was impregnated and dried in an air atmosphere at room temperature for 2 days to obtain 20.6 g of a brown solid. The obtained solid (20.6 g) was heated from room temperature to 300 ° C. over 1.3 hours under air flow, then calcined by holding at the same temperature for 2 hours, and the ruthenium oxide content was 1.25 wt. % Of supported ruthenium oxide 20.1 g was obtained.

(担持酸化ルテニウムの初期活性評価)
上記で得られた担持酸化ルテニウム1.0gを、直径2mmのα−アルミナ球〔ニッカトー(株)製のSSA995〕12gで希釈し、ニッケル製反応管(内径14mm)に充填し、さらに反応管のガス入口側に上と同じα−アルミナ球12gを予熱層として充填した。この中に、塩化水素ガスを0.214mol/h(0℃、1気圧換算で4.8L/h)、及び酸素ガスを0.107mol/h(0℃、1気圧換算で2.4L/h)の速度で常圧下に供給し、触媒層を282〜283℃に加熱して反応を行った。反応開始1.5時間後の時点で、反応管出口のガスを30%ヨウ化カリウム水溶液に流通させることによりサンプリングを20分間行い、ヨウ素滴定法により塩素の生成量を測定し、塩素の生成速度(mol/h)を求めた。この塩素の生成速度と上記の塩化水素の供給速度から、下式より塩化水素の転化率を計算し、表1に示した。
(Evaluation of initial activity of supported ruthenium oxide)
1.0 g of the supported ruthenium oxide obtained above was diluted with 12 g of α-alumina sphere having a diameter of 2 mm (SSA995 manufactured by Nikkato Co., Ltd.), filled into a nickel reaction tube (inner diameter 14 mm), The same α-alumina spheres 12 g as above were filled on the gas inlet side as a preheating layer. In this, 0.214 mol / h of hydrogen chloride gas (4.8 L / h in terms of 0 ° C. and 1 atm) and 0.107 mol / h of oxygen gas (2.4 L / h in terms of 0 atm and 1 atm) ) Under normal pressure and the catalyst layer was heated to 282 to 283 ° C. to carry out the reaction. At 1.5 hours after the start of the reaction, sampling was performed for 20 minutes by circulating the gas at the outlet of the reaction tube through a 30% aqueous solution of potassium iodide, the amount of chlorine produced was measured by iodine titration, and the chlorine production rate. (Mol / h) was determined. The conversion rate of hydrogen chloride was calculated from the following formula from the chlorine production rate and the above-mentioned hydrogen chloride supply rate, and is shown in Table 1.

塩化水素の転化率(%)=〔塩素の生成速度(mol/h)×2÷塩化水素の供給速度(mol/h)〕×100   Hydrogen chloride conversion rate (%) = [chlorine production rate (mol / h) × 2 ÷ hydrogen chloride supply rate (mol / h)] × 100

(担持酸化ルテニウムの熱安定性試験)
上記で得られた担持酸化ルテニウム1.2gを、石英製反応管(内径21mm)に充填した。この中に、塩化水素ガスを0.086mol/h(0℃、1気圧換算で1.9L/h)、及び酸素ガスを0.075mol/h(0℃、1気圧換算で1.7L/h)、塩素ガスを0.064mol/h(0℃、1気圧換算で1.4L/h)、水蒸気を0.064mol/h(0℃、1気圧換算で1.4L/h)の速度で常圧下に供給し、触媒層を435〜440℃に加熱して反応を行った。反応開始50時間後の時点で、反応を停止し、窒素ガスを0.214mol/h(0℃、1気圧換算で4.8L/h)の速度で供給しながら冷却した。
(Thermal stability test of supported ruthenium oxide)
A quartz reaction tube (21 mm inner diameter) was charged with 1.2 g of the supported ruthenium oxide obtained above. In this, 0.086 mol / h of hydrogen chloride gas (1.9 L / h in terms of 0 ° C. and 1 atm) and 0.075 mol / h of oxygen gas (1.7 L / h in terms of 1 atm at 0 ° C.) ), Chlorine gas at a rate of 0.064 mol / h (1.4 liter / h in terms of 1 atm at 0 ° C.) and water vapor at a rate of 0.064 mol / h (1.4 liter / h in terms of 1 atm at 0 ° C.) The reaction was carried out by supplying under pressure and heating the catalyst layer to 435 to 440 ° C. At 50 hours after the start of the reaction, the reaction was stopped, and cooling was performed while supplying nitrogen gas at a rate of 0.214 mol / h (0 ° C., 4.8 L / h in terms of 1 atm).

(熱安定性試験後の担持酸化ルテニウムの活性評価)
上記熱安定性試験に付された担持酸化ルテニウム1.2gのうち、1.0gを分取し、上記初期性能評価と同様の方法で塩化水素の転化率を求め、表1に示した。
(Activity evaluation of supported ruthenium oxide after thermal stability test)
From 1.2 g of supported ruthenium oxide subjected to the thermal stability test, 1.0 g was collected, and the conversion rate of hydrogen chloride was determined in the same manner as in the initial performance evaluation.

実施例2
(担体の成形)
シリカ担持チタニア粉末〔堺化学工業(株)製のSTR−100W、シリカ(SiO)含有量0.5重量%、ルチル型チタニア比率90%以上、ナトリウム含有量0.14重量%〕に代えて、シリカ担持チタニア粉末〔堺化学工業(株)製のSTR−100W、シリカ(SiO)含有量2.0重量%、ルチル型チタニア比率90%以上、ナトリウム含有量0.26重量%〕を用いたこと以外は、実施例1と同様の方法で担体の成形を行い、シリカの含有量が2.0重量%である白色のシリカ担持チタニアの成形品〔ルチル型チタニア比率90%以上、比表面積:51m/g〕を得た。
Example 2
(Molding of carrier)
Instead of silica-supported titania powder [STR-100W manufactured by Sakai Chemical Industry Co., Ltd., silica (SiO 2 ) content 0.5 wt%, rutile-type titania ratio 90% or more, sodium content 0.14 wt%] , Silica-supported titania powder [STR-100W manufactured by Sakai Chemical Industry Co., Ltd., silica (SiO 2 ) content 2.0 wt%, rutile-type titania ratio 90% or more, sodium content 0.26 wt%] Except for the above, the carrier was molded in the same manner as in Example 1, and a white silica-supported titania molded product having a silica content of 2.0% by weight (rutilized titania ratio of 90% or more, specific surface area) : 51 m 2 / g].

(担持酸化ルテニウムの製造と評価)
実施例1と同様に、(担持酸化ルテニウムの製造)、(担持酸化ルテニウムの初期活性評価)、(担持酸化ルテニウムの熱安定性試験)、及び(熱安定性試験後の担持酸化ルテニウムの活性評価)を行い、結果を表1に示した。
(Production and evaluation of supported ruthenium oxide)
Similar to Example 1, (Production of supported ruthenium oxide), (Evaluation of initial activity of supported ruthenium oxide), (Thermal stability test of supported ruthenium oxide), and (Evaluation of the activity of supported ruthenium oxide after the thermal stability test) The results are shown in Table 1.

比較例1
(担体の成形)
特開2004−210586号公報に記載の方法に基づき、塩化チタン279重量部及び塩化ケイ素1.0重量部を熱処理して得られた粉末〔昭和タイタニウム(株)製のF−1S、シリカ含有量0.3重量%、ルチル型チタニア比率38%、比表面積:20m/g〕100重量部と、有機バインダー2重量部〔ユケン工業(株)製のYB−152A〕とを混合し、次いで純水29重量部、チタニアゾル〔堺化学工業(株)製のCSB、チタニア含有量40重量%〕12.5重量部を加えて混練した。この混合物を直径3.0mmφのヌードル状に押出し、60℃で2時間乾燥した後、長さ3〜5mm程度に破砕した。得られた成形体を、空気中で室温から600℃まで1.7時間かけて昇温した後、同温度で3時間保持して焼成し、シリカの含有量が0.3重量%である白色のシリカ担持チタニアの成形品〔ルチル型チタニア比率35%、比表面積:22m/g〕を得た。
Comparative Example 1
(Molding of carrier)
Powder obtained by heat-treating 279 parts by weight of titanium chloride and 1.0 part by weight of silicon chloride based on the method described in JP-A-2004-210586 [F-1S manufactured by Showa Titanium Co., Ltd., silica content 0.3 wt%, rutile-type titania ratio 38%, specific surface area: 20 m 2 / g] 100 parts by weight and organic binder 2 parts by weight [YB-152A manufactured by Yuken Industry Co., Ltd.] 29 parts by weight of water and 12.5 parts by weight of titania sol [CSB manufactured by Sakai Chemical Industry Co., Ltd., titania content 40% by weight] were added and kneaded. This mixture was extruded into a noodle shape having a diameter of 3.0 mmφ, dried at 60 ° C. for 2 hours, and then crushed to a length of about 3 to 5 mm. The obtained molded body was heated in air from room temperature to 600 ° C. over 1.7 hours and then calcined by holding at the same temperature for 3 hours. The white content of silica was 0.3% by weight. A molded product of silica-supported titania [rutile-type titania ratio 35%, specific surface area: 22 m 2 / g] was obtained.

(担持酸化ルテニウムの製造と評価)
実施例1と同様に、(担持酸化ルテニウムの製造)、(担持酸化ルテニウムの初期活性評価)、(担持酸化ルテニウムの熱安定性試験)、及び(熱安定性試験後の担持酸化ルテニウムの活性評価)を行い、結果を表1に示した。
(Production and evaluation of supported ruthenium oxide)
Similar to Example 1, (Production of supported ruthenium oxide), (Evaluation of initial activity of supported ruthenium oxide), (Thermal stability test of supported ruthenium oxide), and (Evaluation of the activity of supported ruthenium oxide after the thermal stability test) The results are shown in Table 1.

比較例2
(チタニアの成形)
チタニア粉末〔昭和タイタニウム(株)製のF−1R、ルチル型チタニア比率93%〕100重量部と有機バインダー2重量部〔ユケン工業(株)製のYB−152A〕とを混合し、次いで純水29重量部、チタニアゾル〔堺化学(株)製のCSB、チタニア含有量40重量%〕12.5重量部を加えて混練した。この混合物を直径3.0mmφのヌードル状に押出し、60℃で2時間乾燥した後、長さ3〜5mm程度に破砕した。得られた成形体を、空気中で室温から600℃まで1.7時間かけて昇温した後、同温度で3時間保持して焼成した。
Comparative Example 2
(Titania molding)
100 parts by weight of titania powder [F-1R manufactured by Showa Titanium Co., Ltd., rutile-type titania ratio 93%] and 2 parts by weight of organic binder [YB-152A manufactured by Yuken Industry Co., Ltd.] are mixed, and then pure water 29 parts by weight and 12.5 parts by weight of titania sol [CSB manufactured by Sakai Chemical Co., Ltd., titania content 40% by weight] were added and kneaded. This mixture was extruded into a noodle shape having a diameter of 3.0 mmφ, dried at 60 ° C. for 2 hours, and then crushed to a length of about 3 to 5 mm. The obtained molded body was heated in air from room temperature to 600 ° C. over 1.7 hours and then calcined by holding at the same temperature for 3 hours.

(チタニア成形体へのシリカの担持)
上記で得られた焼成物の内20.0gに、オルトケイ酸テトラエチル〔和光純薬工業(株)製のSi(OC〕0.36gをエタノール2.90gに溶解して調製した溶液を含浸させ、空気雰囲気下、24℃で15時間乾燥した。得られた固体20.1gを、空気流通下、室温から300℃まで0.8時間かけて昇温した後、同温度で2時間保持して焼成し、シリカの含有量が0.5重量%である白色のシリカ担持チタニアの成形品20.0g〔ルチル型チタニア比率90%以上、比表面積:17m/g〕を得た。
(Support of silica on titania molded body)
Prepared by dissolving 0.36 g of tetraethyl orthosilicate [Si (OC 2 H 5 ) 4 ] manufactured by Wako Pure Chemical Industries, Ltd.) in 2.90 g of ethanol in 20.0 g of the fired product obtained above. The solution was impregnated and dried at 24 ° C. for 15 hours in an air atmosphere. The obtained solid (20.1 g) was heated from room temperature to 300 ° C. over 0.8 hours under air flow, then calcined by holding at the same temperature for 2 hours, and the silica content was 0.5% by weight. As a result, 20.0 g of a white silica-supported titania molded product (a rutile-type titania ratio of 90% or more, a specific surface area: 17 m 2 / g) was obtained.

(担持酸化ルテニウムの製造と評価)
実施例1と同様に、(担持酸化ルテニウムの製造)、(担持酸化ルテニウムの初期活性評価)、(担持酸化ルテニウムの熱安定性試験)、及び(熱安定性試験後の担持酸化ルテニウムの活性評価)を行い、結果を表1に示した。
(Production and evaluation of supported ruthenium oxide)
Similar to Example 1, (Production of supported ruthenium oxide), (Evaluation of initial activity of supported ruthenium oxide), (Thermal stability test of supported ruthenium oxide), and (Evaluation of the activity of supported ruthenium oxide after the thermal stability test) The results are shown in Table 1.

Figure 2012035252
Figure 2012035252

Claims (11)

チタニアにシリカが担持されてなり、かつX線回折法により測定されるルチル型チタニアの比率が、ルチル型チタニア及びアナターゼ型チタニアの合計に対し50%以上である粉末状のチタニア担体にルテニウム化合物を担持させた後、酸化性ガスの雰囲気下で焼成する担持酸化ルテニウムの製造方法。   A ruthenium compound is applied to a powdery titania carrier in which silica is supported on titania and the ratio of rutile titania measured by X-ray diffraction method is 50% or more with respect to the total of rutile titania and anatase titania. A method for producing supported ruthenium oxide, which is fired in an oxidizing gas atmosphere after being supported. 前記チタニア担体を成形した後に前記ルテニウム化合物の担持を行う請求項1に記載の担持酸化ルテニウムの製造方法。   The method for producing supported ruthenium oxide according to claim 1, wherein the ruthenium compound is supported after the titania support is molded. 前記チタニア担体を熱処理した後に前記成形を行う請求項2に記載の担持酸化ルテニウムの製造方法。   The method for producing supported ruthenium oxide according to claim 2, wherein the forming is performed after the titania carrier is heat-treated. 前記熱処理を酸化性ガスの雰囲気下に行う請求項3に記載の担持酸化ルテニウムの製造方法。   The method for producing supported ruthenium oxide according to claim 3, wherein the heat treatment is performed in an atmosphere of an oxidizing gas. 前記熱処理を500〜900℃の温度で行う請求項3又は4に記載の担持酸化ルテニウムの製造方法。   The method for producing supported ruthenium oxide according to claim 3 or 4, wherein the heat treatment is performed at a temperature of 500 to 900C. 前記成形の後に、焼成を行い、次いで前記ルテニウム化合物の担持を行う請求項2〜5のいずれかに記載の担持酸化ルテニウムの製造方法。   The method for producing supported ruthenium oxide according to any one of claims 2 to 5, wherein firing is performed after the molding, and then the ruthenium compound is supported. 前記成形後の焼成を、酸化性ガスの雰囲気下に行う請求項6に記載の担持酸化ルテニウムの製造方法。   The method for producing supported ruthenium oxide according to claim 6, wherein the firing after the molding is performed in an atmosphere of an oxidizing gas. 前記成形後の焼成を、500〜800℃の温度で行う請求項6又は7に記載の担持酸化ルテニウムの製造方法。   The method for producing supported ruthenium oxide according to claim 6 or 7, wherein the firing after the molding is performed at a temperature of 500 to 800 ° C. 前記担持酸化ルテニウムにおける酸化ルテニウム/チタニア担体の重量比が、0.1/99.9〜20.0/80.0となるように前記チタニア担体と前記ルテニウム化合物との使用割合を調整する請求項1〜8のいずれかに記載の担持酸化ルテニウムの製造方法。   The use ratio of the titania support and the ruthenium compound is adjusted so that the weight ratio of the ruthenium oxide / titania support in the supported ruthenium oxide is 0.1 / 99.9 to 20.0 / 80.0. The manufacturing method of the supported ruthenium oxide in any one of 1-8. 前記担持酸化ルテニウムにおける酸化ルテニウムの含有量が、前記チタニア担体に含まれるシリカ1モルに対して0.10〜20モルとなるように前記チタニア担体と前記ルテニウム化合物との使用割合を調整する請求項1〜9のいずれかに記載の担持酸化ルテニウムの製造方法。   The use ratio of the titania support and the ruthenium compound is adjusted so that the content of ruthenium oxide in the supported ruthenium oxide is 0.10 to 20 mol with respect to 1 mol of silica contained in the titania support. The manufacturing method of the supported ruthenium oxide in any one of 1-9. 請求項1〜10のいずれかに記載の方法により製造された担持酸化ルテニウムの存在下で、塩化水素を酸素で酸化することを特徴とする塩素の製造方法。   A method for producing chlorine, comprising oxidizing hydrogen chloride with oxygen in the presence of supported ruthenium oxide produced by the method according to any one of claims 1 to 10.
JP2010247226A 2010-07-13 2010-11-04 Method for producing supported ruthenium oxide and method for producing chlorine Expired - Fee Related JP5333413B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010247226A JP5333413B2 (en) 2010-07-13 2010-11-04 Method for producing supported ruthenium oxide and method for producing chlorine
PCT/JP2011/066173 WO2012008560A1 (en) 2010-07-13 2011-07-11 Process for producing supported ruthenium oxides, and process for producing chlorine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010158481 2010-07-13
JP2010158481 2010-07-13
JP2010247226A JP5333413B2 (en) 2010-07-13 2010-11-04 Method for producing supported ruthenium oxide and method for producing chlorine

Publications (2)

Publication Number Publication Date
JP2012035252A true JP2012035252A (en) 2012-02-23
JP5333413B2 JP5333413B2 (en) 2013-11-06

Family

ID=45469555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247226A Expired - Fee Related JP5333413B2 (en) 2010-07-13 2010-11-04 Method for producing supported ruthenium oxide and method for producing chlorine

Country Status (2)

Country Link
JP (1) JP5333413B2 (en)
WO (1) WO2012008560A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292279A (en) * 2001-01-29 2002-10-08 Sumitomo Chem Co Ltd Ruthenium oxide carrying catalyst and method for producing chlorine
JP2008155199A (en) * 2006-11-27 2008-07-10 Sumitomo Chemical Co Ltd Method for manufacturing support ruthenium oxide, and method for manufacturing chlorine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292279A (en) * 2001-01-29 2002-10-08 Sumitomo Chem Co Ltd Ruthenium oxide carrying catalyst and method for producing chlorine
JP2008155199A (en) * 2006-11-27 2008-07-10 Sumitomo Chemical Co Ltd Method for manufacturing support ruthenium oxide, and method for manufacturing chlorine

Also Published As

Publication number Publication date
JP5333413B2 (en) 2013-11-06
WO2012008560A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP4935604B2 (en) Method for producing supported ruthenium oxide
US9186652B2 (en) Process for producing supported ruthenium on silica modified titania and process for producing chlorine
JP7269349B2 (en) Method for producing supported ruthenium oxide catalyst for chlorine production and catalyst produced thereby
JP2014105128A (en) Method for producing chlorine
JP4839661B2 (en) Chlorine production method
CN113164924B (en) Catalyst for hydrogen chloride oxidation reaction for preparing chlorine and preparation method thereof
JP2012161716A (en) Method for producing supported ruthenium oxide, and method for producing chlorine
JP5333413B2 (en) Method for producing supported ruthenium oxide and method for producing chlorine
JP2012161717A (en) Method for producing supported ruthenium oxide, and method for producing chlorine
JP5833467B2 (en) Method for producing supported ruthenium oxide and method for producing chlorine
JP4432876B2 (en) Catalyst for chlorine production and method for producing chlorine
JP2013146720A (en) Method for producing supported ruthenium oxide, and method for production of chlorine
JP4250969B2 (en) Method for producing supported ruthenium oxide catalyst and method for producing chlorine
WO2012133054A1 (en) Process for producing bromine
JP2011183238A (en) Method of producing carried ruthenium oxide and method of producing chlorine
JP7496421B2 (en) Molded catalyst for hydrogen chloride oxidation reaction process and its manufacturing method
JP5573237B2 (en) Method for producing supported ruthenium oxide and method for producing chlorine
JP2012135722A (en) Method for manufacturing carried ruthenium oxide and method for manufacturing chlorine
JP2019181332A (en) Catalyst for decomposing hydrogen iodide
JP2011241122A (en) Method for producing synthesis gas
JP2011162382A (en) Method for producing chlorine
JP2023508695A (en) Molded catalyst for hydrogen chloride oxidation reaction process and method for producing the same
JP2010029786A (en) Oxide and method for producing the same, and method for producing chlorine
JP2013169517A (en) Method for producing supported ruthenium oxide and method for producing chlorine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

LAPS Cancellation because of no payment of annual fees