JP2012035161A - Soil purification apparatus - Google Patents

Soil purification apparatus Download PDF

Info

Publication number
JP2012035161A
JP2012035161A JP2010175525A JP2010175525A JP2012035161A JP 2012035161 A JP2012035161 A JP 2012035161A JP 2010175525 A JP2010175525 A JP 2010175525A JP 2010175525 A JP2010175525 A JP 2010175525A JP 2012035161 A JP2012035161 A JP 2012035161A
Authority
JP
Japan
Prior art keywords
container
anode electrode
cathode electrode
tank
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010175525A
Other languages
Japanese (ja)
Inventor
Masanori Okazaki
正規 岡崎
Rea Borinesu Maria
マリア・レア・ボリネス
Masayuki Oishi
正行 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Daiki Rika Kogyo Co Ltd
Original Assignee
Tokyo University of Agriculture and Technology NUC
Daiki Rika Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC, Daiki Rika Kogyo Co Ltd filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2010175525A priority Critical patent/JP2012035161A/en
Publication of JP2012035161A publication Critical patent/JP2012035161A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a soil purification apparatus capable of efficiently purifying soil.SOLUTION: The purification apparatus 10 includes a cathode electrode tank 12A, an anode electrode tank 12B and a voltage application device 14. The cathode electrode tank 12A includes: a first container 16A storing weak acid solution 20A; and a cathode electrode 18A arranged within the first container 16A and immersed in the weak acid solution 20A. The anode electrode tank 12B includes: a second container 16B storing electrolyte solution 20B; and an anode electrode 18B arranged within the second container 16B and immersed in the electrolyte solution 20B. The first container 16A and the second container 16B are constituted of porous ceramic in which a rate of gas cavities having 2 μm or less of diameter with respect to all gas cavities is 40% or more and a water permeability coefficient is ≥10cm/sec and ≤10cm/sec.

Description

本発明は、土壌の浄化装置に関する。   The present invention relates to a soil purification apparatus.

カドミウム、銅、ヒ素等の重金属や有機化合物等の汚染物質により汚染された土壌がそのまま放置されていると、土壌内に含有されている汚染物質が地下水や生物連鎖等によって拡散するおそれがある。特に、水田におけるカドミウム等の重金属による汚染は深刻であり、その対策が求められている。   If soil contaminated with heavy metals such as cadmium, copper, arsenic, and pollutants such as organic compounds is left as it is, the pollutants contained in the soil may be diffused by groundwater, biological chains, or the like. In particular, contamination by heavy metals such as cadmium in paddy fields is serious, and countermeasures are required.

このような汚染物質で汚染された土壌を浄化する方法としては、浄化対象の土壌を掘削し、そこに電解質溶液を満たして一対の電極を挿入し、この電極間に電圧を印加することで、汚染物質を回収する方法が知られている(例えば、特許文献1〜特許文献4参照)。 As a method of purifying soil contaminated with such pollutants, excavating the soil to be purified, filling the electrolyte solution there and inserting a pair of electrodes, and applying a voltage between the electrodes, Methods for recovering contaminants are known (see, for example, Patent Documents 1 to 4).

特許文献1には、土壌中に挿入する電極の周囲に通水性を有する電極槽を設け、電極槽内のpHを測定し、該電解槽内のpHが一定範囲内に維持されるように、電極槽内のpHに応じて中和剤を供給する浄化装置が提案されている。
また、特許文献2には、通水性を有する濾紙や織布で構成された電解槽内に電極を配置し、この電解槽内に電圧を印加して土壌中の汚染物質を水に溶出させて、この汚染物質の溶出された水溶液の汚染物質を吸着剤に吸着させて除去した後に、電解槽容器内に戻す装置が提案されている。
In Patent Document 1, an electrode tank having water permeability is provided around an electrode to be inserted into soil, the pH in the electrode tank is measured, and the pH in the electrolytic tank is maintained within a certain range. A purification device that supplies a neutralizing agent according to the pH in the electrode tank has been proposed.
In Patent Document 2, an electrode is placed in an electrolytic cell composed of water-permeable filter paper or woven fabric, and a voltage is applied to the electrolytic cell to elute contaminants in the soil into water. An apparatus has been proposed in which the contaminants in the aqueous solution from which the contaminants are eluted are adsorbed and removed by an adsorbent and then returned to the electrolytic cell container.

また、特許文献3には、陰極電極の周囲に通水性を有する電解槽を設け、この電解槽内にpH高緩衝能材料を充填し、陽極電極との間に電圧を印加することで、土壌を浄化する装置が提案されている。
また、特許文献4には、重金属で汚染された土壌中に錯化剤を混入して該重金属を錯化し、この錯化した重金属を含む土壌中に、吸着剤で覆われた一対の電極を配置して電極間に電圧を印加することで、錯化された重金属を吸着材に吸着させる装置が提案されている。
Further, in Patent Document 3, an electrolytic cell having water permeability is provided around the cathode electrode, a pH high buffering capacity material is filled in the electrolytic cell, and a voltage is applied between the anode electrode and the soil. An apparatus for purifying the water has been proposed.
In Patent Document 4, a complexing agent is mixed in soil contaminated with heavy metal to complex the heavy metal, and a pair of electrodes covered with an adsorbent is formed in the soil containing the complexed heavy metal. An apparatus has been proposed in which a complex heavy metal is adsorbed on an adsorbent by arranging and applying a voltage between electrodes.

特開2003−260458号公報JP 2003-260458 A 特開2004−25149号公報JP 2004-25149 A 特開2000−84366号公報JP 2000-84366 A 特開2000−218261号公報JP 2000-218261 A

しかしながら、浄化対象の土壌中に吸着剤や通水性を有する容器で覆われた一対の電極を挿入し、これらの電極に電圧を印加しても、土壌中に含まれる粘土等の、除去対象外の成分によって、除去対象の汚染物質の電極への移動が阻害され、土壌の浄化が十分に行われない場合があった。
本発明は上記に鑑みなされたものであり、以下の目的を達成することを課題とする。
即ち、本発明の目的は、土壌を効率よく浄化することができる浄化装置を提供することである。
However, even if a pair of electrodes covered with an adsorbent or a water-permeable container is inserted into the soil to be purified and a voltage is applied to these electrodes, such as clay contained in the soil is not subject to removal. In some cases, the contamination of the soil is not sufficiently performed due to the movement of the pollutant to be removed to the electrode.
This invention is made | formed in view of the above, and makes it a subject to achieve the following objectives.
That is, an object of the present invention is to provide a purification device that can efficiently purify soil.

本発明者等は鋭意検討した結果、第1容器及び第2容器として、本発明における特有の多孔質セラミックを用いることで、土壌が効率よく浄化されることを見いだし、本発明を完成させた。
即ち、前記課題を解決するための具体的手段は以下のとおりである。
<1> 内部に弱酸性溶液を収容した第1容器、及び該第1容器内に配置され前記弱酸性溶液中に浸漬された陰極電極、を備えた陰極電解槽と、
内部に電解質溶液を収容した第2容器、及び該第2容器内に配置され前記電解質溶液内に浸漬された陽極電極、を備えた陽極電極槽と、
前記陰極電極及び前記陽極電極の電極間に直流電圧を印加する電圧印加手段と、
を備え、
前記第1容器及び前記第2容器が、全気孔に対する直径2μm以下の気孔の割合が40%以上であり、且つ透水係数が10−4cm/sec以上10−7cm/sec以下の多孔質セラミックからなる、土壌の浄化装置。
<2> 前記弱酸性溶液が酢酸である前記<1>に記載の土壌の浄化装置。
As a result of intensive studies, the present inventors have found that the soil is efficiently purified by using the unique porous ceramic according to the present invention as the first container and the second container, and have completed the present invention.
That is, specific means for solving the above-described problems are as follows.
<1> a cathode electrolytic cell comprising a first container containing a weakly acidic solution therein, and a cathode electrode disposed in the first container and immersed in the weakly acidic solution;
An anode electrode tank comprising: a second container containing an electrolyte solution therein; and an anode electrode disposed in the second container and immersed in the electrolyte solution;
Voltage application means for applying a DC voltage between the cathode electrode and the electrode of the anode electrode;
With
The first container and the second container are porous ceramics in which the ratio of pores having a diameter of 2 μm or less to the total pores is 40% or more and the water permeability is 10 −4 cm / sec or more and 10 −7 cm / sec or less. A soil purification device consisting of
<2> The soil purification apparatus according to <1>, wherein the weakly acidic solution is acetic acid.

本発明によれば、本発明における第1容器及び第2容器を用いない場合に比べて、土壌を効率よく浄化することができる浄化装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the purification apparatus which can purify | clean soil efficiently can be provided compared with the case where the 1st container and 2nd container in this invention are not used.

本実施の形態に係る浄化装置を概略的に示す模式図である。It is a mimetic diagram showing roughly the purification device concerning this embodiment. 本実施の形態における浄化装置を適用した実験装置を概略的に示す模式図である。It is a schematic diagram which shows roughly the experimental apparatus to which the purification apparatus in this Embodiment is applied. 実施例における、電圧印加日数に対する、乾燥土壌におけるカドミウム含有量を示す線図である。It is a diagram which shows the cadmium content in dry soil with respect to the voltage application days in an Example.

以下、本発明の土壌の浄化装置の一の実施の形態について詳細に説明する。   Hereinafter, an embodiment of the soil purification apparatus of the present invention will be described in detail.

図1には、本実施の形態の土壌の浄化装置10(以下、単に「浄化装置」と称する)の一の実施態様を示す模式図を示した。
なお、本実施の形態の浄化装置10において浄化する対象の汚染土壌30は、カドミウムを汚染物質として含む汚染土壌である場合を説明するが、これに限られない。
例えば、本実施の形態の浄化装置10において浄化する対象の汚染土壌30は、汚染物質として、カドミウムの他に、銅、鉛、クロム等の他の重金属や、ヒ素、セレンなどの汚染物質を含んだ土壌であってもよい。
In FIG. 1, the schematic diagram which shows one embodiment of the soil purification apparatus 10 (henceforth a "purification apparatus" only) of this Embodiment was shown.
In addition, although the case where the contaminated soil 30 to be purified in the purification apparatus 10 of the present embodiment is a contaminated soil containing cadmium as a contaminant is described, it is not limited thereto.
For example, the contaminated soil 30 to be purified by the purification apparatus 10 of the present embodiment includes, as a contaminant, other heavy metals such as copper, lead, and chromium, and contaminants such as arsenic and selenium, in addition to cadmium. It may be soil.

図1に示すように、本実施の形態の浄化装置10は、陰極電極槽12Aと、陽極電極槽12Bと、電圧印加装置14と、を含んで構成されている。   As shown in FIG. 1, the purification device 10 according to the present embodiment includes a cathode electrode tank 12A, an anode electrode tank 12B, and a voltage application device 14.

陰極電極槽12Aは、円筒状の第1容器16A、及び第1容器16Aの内部に配置された長尺状の陰極電極18Aを含んで構成されている。第1容器16A及び後述する第2容器16Bは、少なくとも一部が互いに連通した複数の気孔を有する多孔質セラミックで構成されている(詳細後述)。   The cathode electrode tank 12A includes a cylindrical first container 16A and a long cathode electrode 18A disposed inside the first container 16A. The first container 16A and the second container 16B, which will be described later, are composed of a porous ceramic having a plurality of pores at least partially communicating with each other (details will be described later).

本実施の形態においては、この円筒状の第1容器16Aの底部は、底部材24Aによって閉塞状態とされており、この第1容器16Aの内部には、弱酸性溶液20Aが収容されている。また、この円筒状の第1容器16Aにおける、底部材24Aに対向する開口側には、蓋部材22Aが設けられている。 In the present embodiment, the bottom of the cylindrical first container 16A is closed by the bottom member 24A, and the weakly acidic solution 20A is accommodated inside the first container 16A. A lid member 22A is provided on the opening side of the cylindrical first container 16A facing the bottom member 24A.

なお、本実施の形態において、「弱酸性」とは、pH4以下であることを示している。この陰極電極槽12A(第1容器16A)内に収容される弱酸性溶液20Aとしては、酢酸、シュウ酸、塩酸、硫酸等が挙げられるが、これらの中でも、汚染土壌30中に含まれるアニオン成分の浄化効率を向上させる観点から、酢酸を用いることが好ましい。 In the present embodiment, “weakly acidic” indicates that the pH is 4 or less. Examples of the weakly acidic solution 20A accommodated in the cathode electrode tank 12A (first container 16A) include acetic acid, oxalic acid, hydrochloric acid, sulfuric acid, and the like. Among these, anionic components contained in the contaminated soil 30 From the viewpoint of improving the purification efficiency, acetic acid is preferably used.

一方、陽極電極槽12Bは、円筒状の第2容器16B、及び第2容器16Bの内部に配置された長尺状の陽極電極18Bを含んで構成されている。この円筒状の第2容器16Bの底部は、蓋部材22Bによって閉塞状態とされており、この第2容器16Bの内部には、電解質溶液20Bが収容されている。また、この円筒状の第2容器16Bにおける、底部材24Bに対向する開口側には、蓋部材22Bが設けられている。   On the other hand, the anode electrode tank 12B includes a cylindrical second container 16B and a long anode electrode 18B disposed inside the second container 16B. The bottom of the cylindrical second container 16B is closed by a lid member 22B, and the electrolyte solution 20B is accommodated in the second container 16B. Further, a lid member 22B is provided on the opening side of the cylindrical second container 16B facing the bottom member 24B.

第2容器16B内に収容されている電解質溶液20Bとしては、公知の電解質溶液が挙げられ、具体的には、硫酸溶液、シュウ酸溶液、水酸化ナトリウム(NaOH)等が挙げられる。これらの中でも、陽極電極槽12B(第2容器16B)内に収容される電解質溶液としては、詳細を後述する汚染土壌30の浄化において、汚染土壌30中に含まれるカチオン成分の浄化効率を向上させる観点から、アルカリ性溶液を用いることが好ましい。   Examples of the electrolyte solution 20B accommodated in the second container 16B include known electrolyte solutions, and specific examples include a sulfuric acid solution, an oxalic acid solution, sodium hydroxide (NaOH), and the like. Among these, as the electrolyte solution accommodated in the anode electrode tank 12B (second container 16B), the purification efficiency of the cation component contained in the contaminated soil 30 is improved in the purification of the contaminated soil 30 described later in detail. From the viewpoint, it is preferable to use an alkaline solution.

なお、本実施の形態では、第1容器16A及び第2容器16Bは、円筒状である場合を説明するが、内部に電極(陰極電極18Aまたは陽極電極18B)が配置され且つ内部に液体(弱酸性溶液20Aまたは電解質溶液20B)が収容される中空状の構成であればよく、円筒状に限られない。また、本実施の形態では、第1容器16A及び第2容器16Bは、円筒状とされ、長尺方向両端部の開口を、蓋部材(蓋部材22A、蓋部材22B)と底部材(底部材24A、底部材24B)によって封鎖されている場合を説明したが、蓋部材(蓋部材22A、蓋部材22B)が設けられておらず、長尺方向一端側(汚染土壌30への挿入方向とは反対側)が開口した構成であってもよい。また、第2容器16Bと底部材24B、及び第1容器16Aと底部材24A、の各々が一体的に構成されていてもよい。   In the present embodiment, the case where the first container 16A and the second container 16B are cylindrical will be described. However, an electrode (cathode electrode 18A or anode electrode 18B) is disposed inside and a liquid (weak) is formed inside. A hollow configuration in which the acidic solution 20A or the electrolyte solution 20B) is accommodated may be used, and the configuration is not limited to a cylindrical shape. Further, in the present embodiment, the first container 16A and the second container 16B are formed in a cylindrical shape, and the openings at both ends in the longitudinal direction are provided with a lid member (lid member 22A, lid member 22B) and a bottom member (bottom member). 24A, the bottom member 24B) has been described as being sealed, but the lid member (the lid member 22A, the lid member 22B) is not provided, and is one end in the longitudinal direction (the insertion direction into the contaminated soil 30) The structure which the other side) opened may be sufficient. Moreover, each of the 2nd container 16B, the bottom member 24B, and the 1st container 16A and the bottom member 24A may be comprised integrally.

電圧印加装置14は、陰極電極18A及び陽極電極18Bに電気的に接続されており、陰極電極18A側が陰極、陽極電極18B側が陽極となるように、直流電圧を印加する。このため、陰極電極18Aは、電圧印加装置14から電圧を印加されることで、陰極の電極として機能する。一方、陽極電極18Bは、電圧印加装置14から電圧を印加されることで、陽極の電極として機能する。   The voltage application device 14 is electrically connected to the cathode electrode 18A and the anode electrode 18B, and applies a DC voltage so that the cathode electrode 18A side becomes a cathode and the anode electrode 18B side becomes an anode. Therefore, the cathode electrode 18A functions as a cathode electrode when a voltage is applied from the voltage application device 14. On the other hand, the anode electrode 18B functions as an anode electrode when a voltage is applied from the voltage application device 14.

なお、これらの陰極電極18A及び陽極電極18Bは、陰極電極槽12A及び陽極電極槽12Bの各々内に収容されており、且つ電圧印加装置14からの電圧印加が可能な構成であればよいが、より効率よく汚染土壌30を浄化する観点から、陰極電極18Aは、陰極電極槽12Aの蓋部材22A側から底部材24Bに到達する位置にまで延伸した長さであることが好ましい。同様に、陽極電極18Bについても、陽極電極槽12Bの蓋部材22B側から底部材24Aに到達する位置にまで延伸した長さであることが好ましい。   The cathode electrode 18A and the anode electrode 18B may be housed in each of the cathode electrode tank 12A and the anode electrode tank 12B, and may be configured to be able to apply a voltage from the voltage applying device 14. From the viewpoint of purifying the contaminated soil 30 more efficiently, the cathode electrode 18A preferably has a length that extends from the lid member 22A side of the cathode electrode tank 12A to a position that reaches the bottom member 24B. Similarly, the anode electrode 18B preferably has a length that extends from the lid member 22B side of the anode electrode tank 12B to a position that reaches the bottom member 24A.

これらの陰極電極18A及び陽極電極18Bは、電極として用いうる材料であれば如何なる材料で構成してもよいが、特に、白金等のイオン化傾向の低い貴金属を用いることが好ましい。   The cathode electrode 18A and the anode electrode 18B may be made of any material that can be used as an electrode, but it is particularly preferable to use a noble metal having a low ionization tendency such as platinum.

本実施の形態の浄化装置10によって汚染土壌30の浄化を行うときには、まず、水等の電解質溶液を加えた汚染土壌30中に、陰極電極槽12A及び陽極電極槽12Bを差し込み、これらの陰極電極槽12A及び陽極電極槽12Bが対向するように間隔を空けて配置する。なお、この陰極電極槽12A及び陽極電極槽12Bの、汚染土壌30への挿入深さは、浄化する対象の汚染土壌30の用途に応じて適宜調整すればよい。例えば、本実施の形態の浄化装置10によって浄化する対象の汚染土壌30が、水田等の作物を栽培するための土壌である場合には、少なくとも栽培対象の作物の根の深さを超える深さにまで挿入することが好ましい。また、浄化装置10によって浄化する対象の汚染土壌30が、水田等の作物を栽培するための土壌である場合には、栽培対象の作物の根の深さを大幅に超える(例えば、根の深さの2倍以上)深さにまで陰極電極槽12A及び陽極電極槽12Bを挿入する必要はないと考えられるため、陰極電極槽12A及び陽極電極槽12Bの小型化が図れると考えられる。
これらの陰極電極槽12A及び陽極電極槽12Bの汚染土壌30への挿入深さとしては、具体的には、12cm以上15cm以下の深さが挙げられる。
When the contaminated soil 30 is purified by the purification apparatus 10 of the present embodiment, first, the cathode electrode tank 12A and the anode electrode tank 12B are inserted into the contaminated soil 30 to which an electrolyte solution such as water is added, and these cathode electrodes are inserted. It arrange | positions at intervals so that the tank 12A and the anode electrode tank 12B may oppose. In addition, what is necessary is just to adjust suitably the insertion depth to the contaminated soil 30 of this cathode electrode tank 12A and the anode electrode tank 12B according to the use of the contaminated soil 30 of the object to be purified. For example, when the contaminated soil 30 to be purified by the purification apparatus 10 of the present embodiment is soil for cultivating crops such as paddy fields, the depth exceeds at least the root depth of the crop to be cultivated. It is preferable to insert up to. Moreover, when the contaminated soil 30 to be purified by the purification apparatus 10 is soil for cultivating crops such as paddy fields, the depth of the root of the crop to be cultivated is significantly exceeded (for example, the depth of the roots). It is considered that it is not necessary to insert the cathode electrode tank 12A and the anode electrode tank 12B to a depth of at least twice the depth), and it is considered that the cathode electrode tank 12A and the anode electrode tank 12B can be downsized.
Specific examples of the insertion depth of the cathode electrode tank 12A and the anode electrode tank 12B into the contaminated soil 30 include a depth of 12 cm to 15 cm.

また、陰極電極槽12A及び陽極電極槽12Bの、汚染土壌30への挿入方向における長さ(本実施の形態では、円筒状の第1容器16A及び第2容器16Bの周方向に交差する方向の長さ)は、この汚染土壌30への挿入深さ以上の長さとなるように、予め調整されていればよい。具体的には、上述の水田などの作物を栽培するための土壌を浄化対象の汚染土壌30とし、この汚染土壌30への挿入対象の深さを15cm以下とした浄化装置10とする場合には、汚染土壌30への挿入方向における長さが15cmを超える長さとなるように、第1容器16A及び第2容器16Bの長さを調整すればよい。 Further, the length of the cathode electrode tank 12A and the anode electrode tank 12B in the direction of insertion into the contaminated soil 30 (in the present embodiment, in the direction intersecting the circumferential direction of the cylindrical first container 16A and the second container 16B). The length) only needs to be adjusted in advance so as to be longer than the depth of insertion into the contaminated soil 30. Specifically, when the soil for cultivating crops such as the above-mentioned paddy field is the contaminated soil 30 to be purified, and the purification apparatus 10 has a depth of 15 cm or less to be inserted into the contaminated soil 30, The lengths of the first container 16A and the second container 16B may be adjusted so that the length in the insertion direction into the contaminated soil 30 exceeds 15 cm.

汚染土壌30の浄化を行うときには、この浄化対象の汚染土壌30中に差し込まれた陰極電極槽12A及び陽極電極槽12B内の陰極電極18A及び陽極電極18Bに、陰極電極18Aが陰極となり且つ陽極電極18Bが陽極となるように、電圧印加装置14から直流電圧を印加する。なお、この電圧印加装置14から陰極電極18A及び陽極電極18Bに印加される直流電圧の電圧値は、電圧の印加によって陰極電極槽12A及び陽極電極槽12Bの間の汚染土壌30中で電気分解が生じ、これらの電極間(陰極電極18Aと陽極電極18Bとの電極間)で電気浸透流が発生し、且つ汚染土壌30中に含まれるイオン化された汚染成分が該電極間を電気泳動しうる電圧値であればよく、汚染土壌30中に差し込んだ陰極電極槽12A及び陽極電極槽12Bにおける該電極間の距離や陰極電極18A及び陽極電極18Bの直径等に応じて適宜調整すればよい。   When the contaminated soil 30 is purified, the cathode electrode 18A becomes the cathode and the cathode electrode 18A and the anode electrode 18B in the cathode electrode tank 12A and the anode electrode tank 12B inserted into the contaminated soil 30 to be purified, and the anode electrode A DC voltage is applied from the voltage application device 14 so that 18B becomes an anode. The voltage value of the DC voltage applied from the voltage application device 14 to the cathode electrode 18A and the anode electrode 18B is electrolyzed in the contaminated soil 30 between the cathode electrode tank 12A and the anode electrode tank 12B. A voltage that is generated and an electroosmotic flow is generated between these electrodes (between the cathode electrode 18A and the anode electrode 18B), and ionized contamination components contained in the contaminated soil 30 can be electrophoresed between the electrodes. Any value may be used, and it may be appropriately adjusted according to the distance between the electrodes in the cathode electrode tank 12A and the anode electrode tank 12B inserted into the contaminated soil 30, the diameter of the cathode electrode 18A and the anode electrode 18B, and the like.

浄化対象の汚染土壌30中に差し込まれた陰極電極槽12A及び陽極電極槽12Bにおける、陰極電極18A及び陽極電極18Bに、電圧印加装置14から直流電圧が印加されると、陽極電極槽12B側では、水の電気分解によって水素イオン(H)が生成され、陽極電極槽12B周辺の汚染土壌30は酸性へ変性していく。一方、陰極電極槽12A側では、水酸化物イオン(OH)が生成されて、陰極電極槽12A周辺の汚染土壌30はアルカリ性へ変性していく。そして、陰極電極槽12A及び陽極電極槽12Bの槽間の汚染土壌30内に含まれている汚染成分であるカチオン成分(陽イオン化した重金属成分)は、陰極電極槽12A側へ電気泳動し、アニオン成分(陰イオン化した重金属成分)は、陽極電極槽12B側へ電気泳動する。例えば、汚染土壌30内のCd2+、Cu2+、Pb2+等のカチオン成分は、陰極電極槽12A側へ電気泳動し、汚染土壌30内においてアニオン成分として存在するCrO 2−、Cr 2−、AsO 3−、SeO 2−等は、陽極電極槽12B側へ電気泳動する。 When a DC voltage is applied from the voltage application device 14 to the cathode electrode 18A and the anode electrode 18B in the cathode electrode tank 12A and the anode electrode tank 12B inserted into the contaminated soil 30 to be purified, on the anode electrode tank 12B side, Then, hydrogen ions (H + ) are generated by electrolysis of water, and the contaminated soil 30 around the anode electrode tank 12B is denatured into acid. On the other hand, hydroxide ions (OH ) are generated on the cathode electrode tank 12A side, and the contaminated soil 30 around the cathode electrode tank 12A is denatured to be alkaline. And the cation component (cationized heavy metal component) which is a contaminating component contained in the contaminated soil 30 between the cathode electrode tank 12A and the anode electrode tank 12B is electrophoresed to the cathode electrode tank 12A side, and the anion The component (anionized heavy metal component) is electrophoresed to the anode electrode tank 12B side. For example, cation components such as Cd 2+ , Cu 2+ , and Pb 2+ in the contaminated soil 30 are electrophoresed to the cathode electrode tank 12 </ b > A side, and CrO 4 2− and Cr 2 O 7 exist as anion components in the contaminated soil 30. 2− , AsO 4 3− , SeO 3 2− and the like are electrophoresed to the anode electrode tank 12B side.

陰極電極槽12Aに到達したカチオン成分は、陰極電極槽12Aの第1容器16Aの気孔を通過して、第1容器16A内に到る。なお、第1容器16A内に到ったカチオン成分は、水酸化物イオンと反応して第1容器16Aの底部に沈殿する。
ここで、陰極電極槽12A周辺の汚染土壌30は、電圧印加装置14からの上記直流電圧の印加によってアルカリ性へ変性していくことから、第1容器16A内に上述のように弱酸性溶液20Aが収容されていることで、汚染土壌30中に含まれるカチオン成分の浄化が促進されると考えられる。
The cationic component that has reached the cathode electrode tank 12A passes through the pores of the first container 16A of the cathode electrode tank 12A and reaches the first container 16A. The cation component that has reached the first container 16A reacts with the hydroxide ions and precipitates at the bottom of the first container 16A.
Here, since the contaminated soil 30 around the cathode electrode tank 12A is denatured by application of the DC voltage from the voltage application device 14, the weakly acidic solution 20A is contained in the first container 16A as described above. It is considered that the cation component contained in the contaminated soil 30 is promoted by being contained.

一方、陽極電極槽12Bに到達したアニオン成分は、陽極電極槽12Bの第2容器16Bの気孔を通過して、第2容器16B内に到る。なお、第2容器16B内に到ったアニオン成分は、水素イオンと反応して第2容器16Bの底部に沈殿する。   On the other hand, the anion component reaching the anode electrode tank 12B passes through the pores of the second container 16B of the anode electrode tank 12B and reaches the second container 16B. The anion component that has reached the second container 16B reacts with the hydrogen ions and precipitates at the bottom of the second container 16B.

上記のように、電圧印加装置14から陰極電極18A及び陽極電極18Bに直流電圧が印加されることで、汚染土壌30内の汚染成分が第1容器16A及び第2容器16B内に収容されることとなる。   As described above, the contamination component in the contaminated soil 30 is accommodated in the first container 16A and the second container 16B by applying a DC voltage from the voltage application device 14 to the cathode electrode 18A and the anode electrode 18B. It becomes.

ここで、汚染土壌30中には、粘土成分等の除去対象外の成分が含まれることから、陰極電極18A及び陽極電極18Bへの上記の電圧印加によって、第1容器16A及び第2容器16Bの容器内部にまで、この粘土成分等の除去対象外の成分が入りこむ場合があり、汚染土壌30の浄化が阻害される場合があった。   Here, since the contaminated soil 30 includes components that are not to be removed such as clay components, the application of the voltage to the cathode electrode 18A and the anode electrode 18B causes the first container 16A and the second container 16B. In some cases, components that are not subject to removal, such as clay components, may enter the container, and purification of the contaminated soil 30 may be impeded.

そこで、本実施の形態の浄化装置10では、陰極電極槽12A及び陽極電極槽12Bの各々に用いられる第1容器16A及び第2容器16Bとして、多孔質セラミックに含まれる全気孔に対する直径2μm以下の気孔の割合が40%以上であり、且つ透水係数が10−4cm/sec以上10−7cm/sec以下である特有の多孔質セラミック(以下、本実施の形態の第1容器16A及び第2容器16Bに用いられる多孔質セラミックを「特有の多孔質セラミック」と称する)を用いている。 Therefore, in the purification device 10 of the present embodiment, the first container 16A and the second container 16B used in each of the cathode electrode tank 12A and the anode electrode tank 12B have a diameter of 2 μm or less with respect to all pores included in the porous ceramic. A specific porous ceramic having a porosity of 40% or more and a water permeability of 10 −4 cm / sec or more and 10 −7 cm / sec or less (hereinafter, the first container 16A and the second container of the present embodiment) The porous ceramic used for the container 16B is referred to as “specific porous ceramic”).

本実施の形態では、全気孔に対する直径2μ以下の気孔の割合が40%以上であり、且つ透水係数が10−4cm/sec以上10−7cm/sec以下とされた特有の多孔質セラミックを、第1容器16A及び第2容器16Bとして用いることで、汚染土壌30中に含まれる粘土成分等の除去対象外の成分が多孔質セラミックの気孔を通過して第1容器16A及び第2容器16B内へと到ることが抑制され、且つ汚染土壌30中に含まれる除去対象の汚染成分が選択的に第1容器16A及び第2容器16B内へ到ると考えられる。
このため、上記特有の多孔質セラミックで第1容器16A及び第2容器16Bを構成することによって、本実施の形態の浄化装置10では、汚染土壌30を効率良く浄化することができると考えられる。
In the present embodiment, a specific porous ceramic in which the ratio of pores having a diameter of 2 μm or less to the total pores is 40% or more and the water permeability is 10 −4 cm / sec or more and 10 −7 cm / sec or less is used. By using as the first container 16A and the second container 16B, components that are not to be removed, such as clay components, contained in the contaminated soil 30 pass through the pores of the porous ceramic and pass through the first container 16A and the second container 16B. It is considered that the contamination component to be removed contained in the contaminated soil 30 selectively enters the first container 16A and the second container 16B.
For this reason, it is considered that the contaminated soil 30 can be efficiently purified by the purification device 10 of the present embodiment by configuring the first container 16A and the second container 16B with the above-described unique porous ceramic.

なお、上記特有の多孔質セラミックに含まれる全気孔に対する直径2μm以下の気孔の割合は、40%以上であることが必須であるが、より粘土等の除去対象外の粘土等の成分が第1容器16A及び第2容器16B内に侵入することを抑制する観点から、該割合は、45%以上であることが好ましい。   The ratio of the pores having a diameter of 2 μm or less to the total pores contained in the specific porous ceramic is essential to be 40% or more, but the components such as clay that are not to be removed such as clay are the first. From the viewpoint of suppressing entry into the container 16A and the second container 16B, the ratio is preferably 45% or more.

なお、この特有の多孔質セラミックに含まれる「全気孔に対する直径2μm以下の気孔の割合」とは、多孔質セラミックに含まれる全気孔の容積(体積)に対する、直径2μmの気孔の容積の占める割合を示している。
この特有の多孔質セラミックに含まれる全気孔における、直径2μm以下の気孔の割合は、細孔分布測定装置によって測定される。
詳細には、この、「全気孔に対する直径2μm以下の気孔の割合」は、Washburnによって提案された水銀圧入法(「表面」第13巻第10号第588頁に記載の浦野紘平著による「多孔質材料の細孔分布測定法の理論、装置及び問題点(その1)」)によって測定される。測定装置としては、具体的には、(株)島津製作所の細孔分布測定装置(商品名:オートポアIV9500)が用いられる。なお、直径2μm以外の気孔の割合についても、同様の方法で測定される。
The “ratio of pores having a diameter of 2 μm or less with respect to the total pores” included in this specific porous ceramic is the ratio of the volume of pores with a diameter of 2 μm to the volume (volume) of all the pores included in the porous ceramic. Is shown.
The proportion of pores having a diameter of 2 μm or less in all pores contained in this specific porous ceramic is measured by a pore distribution measuring device.
Specifically, this “ratio of pores having a diameter of 2 μm or less with respect to the total pores” is determined by the mercury intrusion method proposed by Washburn (“Surface”, Vol. 13, No. 10, p. Measured by the theory, apparatus and problem of the pore distribution measurement method of the material (Part 1) ”). Specifically, a pore distribution measuring device (trade name: Autopore IV9500) manufactured by Shimadzu Corporation is used as the measuring device. The ratio of pores other than the diameter of 2 μm is also measured by the same method.

また、この特有の多孔質セラミックにおける、直径2μmを超える気孔の割合に対する、直径2μm以下の気孔の割合の比は、特有の多孔質セラミックの透水係数が上記範囲を満たす比率であればよい。直径2μmを超える気孔の割合に対する、直径2μm以下の気孔の割合(直径2μm以下の気孔の割合/直径2μmを超える気孔の割合)は、具体的には、1/2以下であることが好ましい。   Further, the ratio of the ratio of pores having a diameter of 2 μm or less to the ratio of pores having a diameter exceeding 2 μm in the specific porous ceramic may be a ratio in which the water permeability coefficient of the specific porous ceramic satisfies the above range. Specifically, the ratio of the pores having a diameter of 2 μm or less (the ratio of the pores having a diameter of 2 μm or less / the ratio of the pores having a diameter exceeding 2 μm) to the ratio of the pores having a diameter exceeding 2 μm is preferably 1/2 or less.

第1容器16A及び第2容器16Bを構成する多孔質セラミックの透水係数は、上述のように、10−4cm/sec以上10−7cm/sec以下であることが必須であるが、除去対象の汚染物質を、より選択的に第1容器16A及び第2容器16Bの内側へ到達させる観点から、10−4cm/sec以上10−5cm/sec以下の範囲が好ましく、10−4cm/secが特に好ましい。 As described above, the water permeability of the porous ceramic constituting the first container 16A and the second container 16B is in the range of 10 −4 cm / sec or more and 10 −7 cm / sec or less. of contaminants, from the viewpoint to reach more selectively to the inside of the first container 16A and the second container 16B, preferably 10 -4 cm / sec or more 10 -5 cm / sec or less in the range, 10 -4 cm / sec is particularly preferred.

なお、多孔質セラミックの「透水係数」は、下記試験によって測定される。
具体的には、この多孔質セラミックの透水係数kは、JIS_A_1218(土の透水試験方法)により測定することで得られる。透水係数kの単位はcm/secである。ここで、JIS_A_1218の土の透水試験方法は、定水位透水試験と変水位透水試験の2種類であるが、本実施の形態では変水位透水試験を用いた。
The “water permeability” of the porous ceramic is measured by the following test.
Specifically, the permeability coefficient k of this porous ceramic is obtained by measuring according to JIS_A — 1218 (soil permeability test method). The unit of the water permeability coefficient k is cm / sec. Here, there are two types of soil permeability test methods of JIS_A — 1218, namely, a constant water level permeability test and a variable water level permeability test, but in this embodiment, a water level permeability test was used.

なお、定水位透水試験とは、一定の断面と長さをもつ供試体(本実施の形態では、特有の多孔質セラミック)の中を、一定の水位差の下で一定時間内に浸透する水量を測定する試験である。具体的には、越流水槽の内側に透水円筒を配置し、透水円筒の中に供試体(特有の多孔質セラミック)を配置すると共に該供試体の上下を金網、フィルター、及び有孔板で挟み、越流水槽内の水位と透水円筒内の水位との差が一定(ただし、越流水槽内の水位<透水円筒内の水位)となるように透水円筒内に注水し、時間を計測しながら越流水槽から溢れた水量をメスシリンダーで測定する試験である。   The constant water level permeability test is the amount of water that permeates within a certain time under a certain water level difference in a specimen (specific porous ceramic in the present embodiment) having a certain cross section and length. It is a test to measure. Specifically, a permeable cylinder is arranged inside the overflow tank, a specimen (specific porous ceramic) is arranged in the permeable cylinder, and a metal mesh, a filter, and a perforated plate are used above and below the specimen. Insert the water into the permeable cylinder so that the difference between the water level in the overflow tank and the water level in the permeable cylinder is constant (however, the water level in the overflow tank <the water level in the permeable cylinder) and measure the time. In this test, the amount of water overflowing from the overflow tank was measured with a graduated cylinder.

また、変水位透水試験とは、一定の断面と長さをもつ供試体(本実施の形態では、特有の多孔質セラミック)の中を、ある水位差を初期状態として浸透するときの水位の降下量と、その経過時間を測定する試験である。具体的には、越流水槽の内側に透水円筒を配置し、透水円筒の中に供試体(特有の多孔質セラミック)を配置すると共に該供試体の上下を金網、フィルター、及び有孔板で挟み、透水円筒の上部に真っ直ぐにスタンドパイプを配置して、スタンドパイプから透水円筒内に水を供給したときの時刻t1での越流水槽内の水位とスタンドパイプ中の水位との差h1を測定し、さらに水を供給したままで、時刻t2での越流水槽内の水位とスタンドパイプ中の水位との差h2を測定する試験である。   Further, the water level permeation test is a drop in water level when penetrating a specimen having a certain cross section and length (in this embodiment, a specific porous ceramic) with a certain water level difference as an initial state. It is a test to measure the quantity and its elapsed time. Specifically, a permeable cylinder is arranged inside the overflow tank, a specimen (specific porous ceramic) is arranged in the permeable cylinder, and a metal mesh, a filter, and a perforated plate are used above and below the specimen. The difference h1 between the water level in the overflow tank and the water level in the standpipe at time t1 when the standpipe is placed straight above the permeable cylinder and water is supplied from the standpipe to the permeable cylinder. This is a test in which the difference h2 between the water level in the overflow tank and the water level in the standpipe at time t2 is measured while measuring and supplying water.

本実施の形態の第1容器16A及び第2容器16Bを構成する、上記条件を満たす特有の多孔質セラミックとしては、金属酸化物系セラミック及び非酸化物系セラミックの粉体を用いて作られるものが挙げられる。金属酸化物系セラミックとしては、アルミナ、コージライト、ムライト、ジルコニア、シリカ、マグネシア等や、これらの混合物が挙げられる。非酸化物系セラミックとしては、炭化ケイ素、窒化ケイ素等が挙げられる。   The specific porous ceramic that satisfies the above conditions and that constitutes the first container 16A and the second container 16B of the present embodiment is made using metal oxide ceramic powder and non-oxide ceramic powder. Is mentioned. Examples of the metal oxide ceramic include alumina, cordierite, mullite, zirconia, silica, magnesia, and a mixture thereof. Non-oxide ceramics include silicon carbide and silicon nitride.

本実施の形態の第1容器16A及び第2容器16Bを構成する、上記条件を満たす特有の多孔質セラミックの組成としては、具体的には、SiO2及びAlを含んだ構成が挙げられる。 As the composition of the specific porous ceramic that satisfies the above-described conditions and that constitutes the first container 16A and the second container 16B of the present embodiment, specifically, a composition containing SiO 2 and Al 2 O 3 is given. It is done.

本実施の形態で用いられる上記特有の多孔質セラミックの製造方法としては、例えば、本実施の形態で用いられる特有の多孔質セラミックの構成材料として挙げた上記材料を、泥水状として、これを澱粉等の気孔剤に含浸させ、高温(1500℃程度)で焼結させることで製造する方法が挙げられる。   As a method for producing the above-mentioned specific porous ceramic used in the present embodiment, for example, the above-mentioned materials listed as constituent materials of the specific porous ceramic used in the present embodiment are made muddy water, and this is starch. And a method of manufacturing by impregnating with a pore agent such as, and sintering at a high temperature (about 1500 ° C.).

なお、この特有の多孔質セラミックの全気孔に対する直径2μmの気孔の割合や、上記透水率は、多孔質セラミックを構成する上記材料粒子の径や製造時に添加する気孔剤の添加量等を調整することで、調整される。   The ratio of pores having a diameter of 2 μm to the total pores of this specific porous ceramic and the water permeability adjust the diameter of the material particles constituting the porous ceramic, the amount of pore agent added at the time of production, and the like. It will be adjusted.

以上説明したように、本実施の形態の浄化装置10では、全気孔に対する直径2μ以下の気孔の割合が40%以上であり、且つ透水係数が10−4cm/sec以上10−7cm/sec以下とされた特有の多孔質セラミックを、第1容器16A及び第2容器16Bとして用いるので、浄化対象の汚染土壌30を効率良く浄化することができると考えられる。 As described above, in the purification device 10 of the present embodiment, the ratio of pores having a diameter of 2 μm or less to the total pores is 40% or more, and the water permeability is 10 −4 cm / sec or more and 10 −7 cm / sec. Since the following specific porous ceramics are used as the first container 16A and the second container 16B, it is considered that the contaminated soil 30 to be purified can be efficiently purified.

なお、以上で説明した本実施の形態の浄化装置10は、通電性を有する浄化対象物であれば、土壌に限られず浄化することができ、例えば、汚染された液体についても浄化することができることはいうまでもない。   In addition, if the purification apparatus 10 of this Embodiment demonstrated above is the purification target object which has electroconductivity, it can purify not only in soil, For example, it can purify also the contaminated liquid. Needless to say.

また、本実施の形態の浄化装置10は、特定の場所の汚染土壌30に限られず、様々な場所の汚染土壌の浄化に適用される。なお、浄化装置10における陰極電極槽12A及び陽極電極槽12Bの形状や大きさは、浄化対象物の状態や、浄化対象領域の広さ等に応じて、適宜調整すればよい。   Moreover, the purification apparatus 10 of this Embodiment is not restricted to the contaminated soil 30 of a specific place, It is applied to purification of the contaminated soil of various places. In addition, the shape and size of the cathode electrode tank 12A and the anode electrode tank 12B in the purification apparatus 10 may be adjusted as appropriate according to the state of the object to be purified, the size of the area to be purified, and the like.

以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof.

〔実施例1〕
図2には、上記に説明した浄化装置10を用いて、汚染土壌30の浄化を実施するための実験装置50の模式図を示した。
[Example 1]
In FIG. 2, the schematic diagram of the experimental apparatus 50 for implementing purification | cleaning of the contaminated soil 30 using the purification apparatus 10 demonstrated above was shown.

―実験槽の調整―
まず、容積約24L(長さ380mm、幅260mm、高さ235mm)のプラスチック製の容器40を用意した(図2参照)。そして、この容器40内に、浄化対象の汚染土壌30を深さ(容器40の底面からの高さ)12cmとなるまで満たし、さらに、4Lの水(水道水、図2中、符号32参照)を加えることで、水位(底面からの高さ)を15cmとし、実験槽42とした。なお、後述する浄化装置10による浄化処理の期間中、この水位が保たれるように、適宜水を加えて水位を調整した。
-Adjustment of experimental tank-
First, a plastic container 40 having a volume of about 24 L (length 380 mm, width 260 mm, height 235 mm) was prepared (see FIG. 2). Then, the container 40 is filled with the contaminated soil 30 to be purified until the depth (height from the bottom surface of the container 40) reaches 12 cm, and 4 L of water (tap water, see reference numeral 32 in FIG. 2). Was added to make the water level (height from the bottom surface) 15 cm, and the experimental tank 42 was obtained. In addition, during the period of the purification process by the purification apparatus 10 to be described later, the water level was adjusted by appropriately adding water so that the water level was maintained.

―第1容器16A及び第2容器16Bの調整―
次に、第1容器16A及び第2容器16Bとして、下記の特有の多孔質セラミックからなる容器を用意した。
-Adjustment of first container 16A and second container 16B-
Next, as the first container 16A and the second container 16B, containers made of the following specific porous ceramics were prepared.

(特有の多孔質セラミックからなる第1容器16A及び第2容器16B)
・形状:円筒状(外径30mm,内径27mm,長さ180mm)
・組成:SiO 23質量%,Al 76質量%
・気孔分布:
全気孔に対する直径1μm未満の気孔の割合 33%
全気孔に対する直径1μm以上直径2μm未満の気孔の割合 12%
全気孔に対する直径2μm以上直径5μm未満の気孔の割合 16%
全気孔に対する直径5μ以上直径10μm未満の気孔の割合 16%
全気孔に対する直径10μm以上直径20μm未満の気孔の割合 17%
全気孔に対する直径20μmを超える気孔の割合 6%
・透水係数:10−4cm/seccm/sec
なお、上記気孔分布は、(株)島津製作所の細孔分布測定装置(商品名:オートポアIV9500)によって測定した。
・耐圧 :100kPa
(First container 16A and second container 16B made of unique porous ceramic)
・ Shape: Cylindrical (outer diameter 30mm, inner diameter 27mm, length 180mm)
Composition: SiO 2 23% by mass, Al 2 O 3 76% by mass
・ Porosity distribution:
Ratio of pores with a diameter of less than 1 μm to all pores 33%
Ratio of pores with a diameter of 1 μm or more and less than 2 μm to the total pores 12%
Ratio of pores with a diameter of 2 μm or more and less than 5 μm to all pores 16%
Ratio of pores with a diameter of 5μ or more and less than 10μm to all pores 16%
Ratio of pores with a diameter of 10 μm or more and less than 20 μm to all pores 17%
Percentage of pores exceeding 20 μm in diameter with respect to all pores 6%
・ Water permeability coefficient: 10 −4 cm / sec cm / sec
The pore distribution was measured with a pore distribution measuring apparatus (trade name: Autopore IV9500) manufactured by Shimadzu Corporation.
・ Pressure resistance: 100 kPa

なお、上記気孔分布、透水係数、及び気孔率は、前述の方法により測定した。   The pore distribution, water permeability coefficient, and porosity were measured by the methods described above.

―陰極電極槽12A及び陽極電極槽12Bの作製―
次に、陰極電極18A及び陽極電極18Bとして、直径10mm、長さ270mmの銅電極を1本ずつ(合計2本)用意した。
そして、この銅電極を、上記に調整した、特有の多孔質セラミックからなる第1容器16A及び第2容器16Bの各々内に、1本ずつ設置した。そして、これらの容器(第1容器16A及び第2容器16B)の各々の底部に底部材24A及び底部材24Bを設け、これらの容器の底部を封止した。
-Production of cathode electrode tank 12A and anode electrode tank 12B-
Next, as the cathode electrode 18A and the anode electrode 18B, copper electrodes having a diameter of 10 mm and a length of 270 mm were prepared one by one (two in total).
And this copper electrode was installed one each in each of the 1st container 16A and the 2nd container 16B which consist of the characteristic porous ceramics adjusted above. And the bottom member 24A and the bottom member 24B were provided in the bottom part of each of these containers (1st container 16A and 2nd container 16B), and the bottom part of these containers was sealed.

そして、これらの銅電極(陰極電極18A及び陽極電極18B)の設置された容器(第1容器16A及び第2容器16B)内に、0.14mol/Lの酢酸溶液を満たした後に、これらの容器の開口の各々を、蓋部材22A及び蓋部材22Bで塞いだ。なお、後述する浄化装置10による浄化処理の期間中、この酢酸溶液における酢酸の濃度及び酢酸溶液の量が保たれるように、適宜酢酸を添加した。   And after filling the 0.14 mol / L acetic acid solution in the container (the 1st container 16A and the 2nd container 16B) in which these copper electrodes (cathode electrode 18A and anode electrode 18B) were installed, these containers Each of the openings was closed with a lid member 22A and a lid member 22B. Note that acetic acid was added as appropriate so that the concentration of acetic acid and the amount of acetic acid solution in the acetic acid solution were maintained during the purification process by the purification device 10 described later.

なお、この酢酸の添加は、図2に示すプラスチックチューブ44A及びプラスチックチューブ44Bを用いて行った。詳細には、陰極電極槽12Aの第1容器16A及び陽極電極槽12Bの第2容器16Bの各々に設けた蓋部材22A及び蓋部材22Bに、孔(図示省略)を空けて、該孔を介してプラスチックチューブ(図2中、プラスチックチューブ44A及びプラスチックチューブ44B参照)を挿入し、第1容器16A及び第2容器16B内の液体を採取したり、これらの容器内に酢酸を添加するために用いた。   The acetic acid was added using the plastic tube 44A and the plastic tube 44B shown in FIG. Specifically, holes (not shown) are formed in the lid member 22A and the lid member 22B provided in each of the first container 16A of the cathode electrode tank 12A and the second container 16B of the anode electrode tank 12B, and the holes are passed through the holes. Insert plastic tubes (see plastic tube 44A and plastic tube 44B in FIG. 2) to collect the liquid in first container 16A and second container 16B, and to add acetic acid into these containers. It was.

これによって、陰極電極槽12A及び陽極電極槽12Bに相当する2つの電極槽を作製した。   Thus, two electrode tanks corresponding to the cathode electrode tank 12A and the anode electrode tank 12B were produced.

―除去対象外の成分が多孔質セラミックの気孔を通過かするか否かの評価−
上記に調整した、特有の多孔質セラミックからなり、底部材24A及び底部材24Bによって容器の底部を封止された第1容器16A及び第2容器16Bの各々を、蒸留水中に12cmの深さまで浸漬させて、第1容器16A及び第2容器16Bの内側を−40kPa〜−60kPaに減圧し、容器内に溜まった液体を採取した。そして採取した液体について、665nmの波長の光に対する吸光度を測定したところ0.0000であった。
―Evaluation of whether or not components that are not subject to removal pass through the pores of porous ceramic―
Each of the first container 16A and the second container 16B made of a specific porous ceramic adjusted as described above and sealed at the bottom of the container by the bottom member 24A and the bottom member 24B is immersed in distilled water to a depth of 12 cm. Then, the insides of the first container 16A and the second container 16B were depressurized to −40 kPa to −60 kPa, and the liquid accumulated in the containers was collected. And about the extract | collected liquid, when the light absorbency with respect to the light of a wavelength of 665 nm was measured, it was 0.0000.

次に、上記に調整した、特有の多孔質セラミックからなり、底部材24A及び底部材24Bによって容器の底部を封止された第1容器16A及び第2容器16Bの各々を、上記で調整した実験槽42の汚染土壌30に、汚染土壌30の表面から12cmの深さまで挿入し、第1容器16A及び第2容器16Bの内側を−40kPa〜−60kPaに減圧し、容器内に溜まった液体を採取した。そして採取した液体について、665nmの波長の光に対する吸光度を測定したところ、0.0022であった。
この結果から、本実施例で作製した、特有の多孔質セラミックからなる第1容器16A及び第2容器16Bでは、粘土等の除去対象外の成分は、本実施例で作製した第1容器16A及び第2容器16B(多孔質セラミック)の気孔を通過せず、重金属イオン等の除去対象の汚染成分は、該第1容器16A及び第2容器16B(多孔質セラミック)の気孔を通過したといえる。
Next, each of the first container 16A and the second container 16B made of a specific porous ceramic and having the bottom member 24A and the bottom member 24B sealed with the bottom member 24A adjusted as described above was adjusted as described above. Insert into the contaminated soil 30 of the tank 42 to a depth of 12 cm from the surface of the contaminated soil 30, depressurize the inside of the first container 16A and the second container 16B to −40 kPa to −60 kPa, and collect the liquid accumulated in the container did. And about the extract | collected liquid, when the light absorbency with respect to the light of a wavelength of 665 nm was measured, it was 0.0022.
From this result, in the first container 16A and the second container 16B made of a specific porous ceramic produced in this example, the components other than the removal target such as clay are the first container 16A produced in this example and It can be said that contaminants to be removed such as heavy metal ions that have not passed through the pores of the second container 16B (porous ceramic) have passed through the pores of the first container 16A and the second container 16B (porous ceramic).

―実験装置50(浄化装置10)の作製―
上記に作製した陰極電極槽12A及び陽極電極槽12Bを、上記に用意した実験槽42の容器40内に充填された汚染土壌30内に、陰極電極18A及び陽極電極18Bの電極間距離(陰極電極18A及び陽極電極18Bの向かい合う面間の最小距離)が30cmとなるように、容器40の底面に突き当たるまで挿入した。このため、これらの陰極電極槽12A及び陽極電極槽12Bの汚染土壌30への挿入深さは、12cmであった。
-Production of experimental device 50 (purification device 10)-
The cathode electrode tank 12A and the anode electrode tank 12B produced above are placed in the contaminated soil 30 filled in the container 40 of the experimental tank 42 prepared above (the distance between the electrodes of the cathode electrode 18A and the anode electrode 18B (cathode electrode). It was inserted until it abutted against the bottom surface of the container 40 so that the minimum distance between the facing surfaces of 18A and anode electrode 18B was 30 cm. For this reason, the insertion depth to the contaminated soil 30 of these cathode electrode tank 12A and anode electrode tank 12B was 12 cm.

そして、この陰極電極槽12Aにおける陰極電極18Aと、陽極電極槽12Bにおける陽極電極18Bと、を、電圧印加装置14としての直流電源(株式会社 ジーエス・湯浅バッテリー社製:商品名 PXL 12050)に電気的に接続することで、浄化装置10の適用された実験装置50とした。   Then, the cathode electrode 18A in the cathode electrode tank 12A and the anode electrode 18B in the anode electrode tank 12B are electrically connected to a DC power source (manufactured by GS Yuasa Battery Co., Ltd .: trade name PXL 12050) as the voltage application device 14. Thus, the experimental device 50 to which the purification device 10 was applied was obtained.

<評価>
−汚染土壌の浄化の評価―
本実施例で作製した実験装置50における、浄化装置10の直流電源(電圧印加装置14)から陰極電極18A及び陽極電極18Bへ、12Vの直流電圧を印加したときの汚染土壌30中のカドミウム含有量の推移を測定した。
<Evaluation>
-Evaluation of purification of contaminated soil-
Cadmium content in the contaminated soil 30 when a DC voltage of 12 V is applied to the cathode electrode 18A and the anode electrode 18B from the DC power source (voltage application device 14) of the purification device 10 in the experimental device 50 produced in this example. The transition of was measured.

詳細には、まず、実験槽42の汚染土壌30内に挿入した陰極電極槽12Aと陽極電極槽12Bとの間の領域を、陰極電極槽12A側から陽極電極槽12Bに向かって3つの領域(同じ面積)に区切った。そして、この3つの領域を、陽極電極槽12B側から陰極電極槽12A側に向かって順に、領域Ar3、領域Ar2、及び領域Ar1とした(図2参照)。   Specifically, first, the region between the cathode electrode tank 12A and the anode electrode tank 12B inserted into the contaminated soil 30 of the experimental tank 42 is divided into three areas (from the cathode electrode tank 12A side toward the anode electrode tank 12B ( The same area). These three regions were defined as a region Ar3, a region Ar2, and a region Ar1 in order from the anode electrode tank 12B side to the cathode electrode tank 12A side (see FIG. 2).

――汚染土壌中におけるカドミウム含有量の測定――
陰極電極18Aを陰極とし、陽極電極18Bを陽極として、電圧印加装置14から直流12V(電位勾配2V/cm)の定電圧を6日間継続して印加し、該電圧の印加日数に対する、上記領域Ar1、領域Ar2、領域Ar3の各々におけるカドミウムの含有量を測定した。測定結果を図3に示した。
--Measurement of cadmium content in contaminated soil--
Using the cathode electrode 18A as a cathode and the anode electrode 18B as an anode, a constant voltage of DC 12V (potential gradient 2V / cm) is continuously applied for 6 days from the voltage application device 14, and the above-mentioned area Ar1 with respect to the applied days of the voltage The cadmium content in each of the regions Ar2 and Ar3 was measured. The measurement results are shown in FIG.

なお、上記領域Ar1、領域Ar2、領域Ar3の各々におけるカドミウムの含有量は、下記方法で測定した。
具体的には、上記定電圧の印加開始前、及び電圧印加から2日毎(48時間毎)に、実験槽42内の汚染土壌30における、各領域Ar3、領域Ar2、及び領域Ar1内の各々から土壌を10g採取した。そして、各領域(領域Ar3、領域Ar2、及び領域Ar1)から採取した10gの土壌を、105℃のオーブンで2日間かけて乾燥させて、乾燥後の重量を測定した。そして、この乾燥した各領域の土壌の各々に、0.14Mの塩酸溶液20mlを加えて、土壌団粒分析器(大起理化工業社製 DIK−2012)を用いて1時間攪拌し、領域Ar1、領域Ar2、領域Ar3の各々の土壌の混合溶液を得た。
Note that the cadmium content in each of the region Ar1, the region Ar2, and the region Ar3 was measured by the following method.
Specifically, before the start of the application of the constant voltage and every 2 days (every 48 hours) from the voltage application, from each of the regions Ar3, Ar2 and Ar1 in the contaminated soil 30 in the experimental tank 42. 10 g of soil was collected. Then, 10 g of soil collected from each region (region Ar3, region Ar2, and region Ar1) was dried in an oven at 105 ° C. for 2 days, and the weight after drying was measured. Then, 20 ml of a 0.14M hydrochloric acid solution is added to each of the dried soils in each region, and the mixture is stirred for 1 hour using a soil aggregate analyzer (DIK-2012 manufactured by Dairika Kogyo Co., Ltd.). , A mixed solution of each of the regions Ar2 and Ar3 was obtained.

次に、これらの土壌の混合溶液を、濾紙(ワットマン社製:No.5C)を用いてろ過し、ろ過液中におけるカドミウム含有量を、日立製作所社製、Z−5010形偏光ゼーマン原子吸光光度計を用いて定量した。
そして、上記領域Ar1、領域Ar2、領域Ar3の各々における、乾燥した土壌1kgあたりのカドミウムの含有量(mg)を求め、結果を図3に示した。
Next, the mixed solution of these soils is filtered using a filter paper (Whatman Co .: No. 5C), and the cadmium content in the filtrate is Z-5010 polarized Zeeman atomic absorption spectrophotometer manufactured by Hitachi, Ltd. Quantified using a meter.
And the content (mg) of cadmium per 1 kg of dry soil in each of the above-mentioned region Ar1, region Ar2, and region Ar3 was determined, and the results are shown in FIG.

図3に示されるように、領域Ar1、領域Ar2、及び領域Ar3の何れにおいても、電圧印加時間の増加に伴い、乾燥した土壌1kgあたりのカドミウムの含有量の減少が見られた。   As shown in FIG. 3, in any of the regions Ar1, Ar2, and Ar3, a decrease in the cadmium content per kg of dried soil was observed as the voltage application time increased.

10 浄化装置、12A 陽極電極槽、12B 陽極電極槽、14 電圧印加装置、16A 第1容器、16B 第2容器、18A 陰極電極、18B 陽極電極、20A 弱酸性溶液、20B 電解質溶液 DESCRIPTION OF SYMBOLS 10 Purification apparatus, 12A Anode electrode tank, 12B Anode electrode tank, 14 Voltage application apparatus, 16A 1st container, 16B 2nd container, 18A Cathode electrode, 18B Anode electrode, 20A Weak acidic solution, 20B Electrolyte solution

Claims (2)

内部に弱酸性溶液を収容した第1容器、及び該第1容器内に配置され前記弱酸性溶液中に浸漬された陰極電極、を備えた陰極電解槽と、
内部に電解質溶液を収容した第2容器、及び該第2容器内に配置され前記電解質溶液内に浸漬された陽極電極、を備えた陽極電極槽と、
前記陰極電極及び前記陽極電極の電極間に直流電圧を印加する電圧印加手段と、
を備え、
前記第1容器及び前記第2容器が、全気孔に対する直径2μm以下の気孔の割合が40%以上であり、且つ透水係数が10−4cm/sec以上10−7cm/sec以下の多孔質セラミックからなる、土壌の浄化装置。
A cathode electrolytic cell comprising a first container containing therein a weak acid solution, and a cathode electrode disposed in the first container and immersed in the weak acid solution;
An anode electrode tank comprising: a second container containing an electrolyte solution therein; and an anode electrode disposed in the second container and immersed in the electrolyte solution;
Voltage application means for applying a DC voltage between the cathode electrode and the electrode of the anode electrode;
With
The first container and the second container are porous ceramics in which the ratio of pores having a diameter of 2 μm or less to the total pores is 40% or more and the water permeability is 10 −4 cm / sec or more and 10 −7 cm / sec or less. A soil purification device consisting of
前記弱酸性溶液が酢酸である請求項1に記載の土壌の浄化装置。   The soil purification apparatus according to claim 1, wherein the weakly acidic solution is acetic acid.
JP2010175525A 2010-08-04 2010-08-04 Soil purification apparatus Pending JP2012035161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010175525A JP2012035161A (en) 2010-08-04 2010-08-04 Soil purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175525A JP2012035161A (en) 2010-08-04 2010-08-04 Soil purification apparatus

Publications (1)

Publication Number Publication Date
JP2012035161A true JP2012035161A (en) 2012-02-23

Family

ID=45847778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175525A Pending JP2012035161A (en) 2010-08-04 2010-08-04 Soil purification apparatus

Country Status (1)

Country Link
JP (1) JP2012035161A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378622B1 (en) * 2013-05-10 2013-12-25 株式会社みらい蔵 Soil analysis method and soil evaluation method
WO2014084166A1 (en) * 2012-11-27 2014-06-05 株式会社みらい蔵 Soil analysis method, soil evaluation method, soil analysis system, and program for soil analysis
CN105436192A (en) * 2015-12-18 2016-03-30 中国天楹股份有限公司 Waste incineration fly ash treatment system based on reduction
CN106583025A (en) * 2017-01-10 2017-04-26 昆明理工大学 Tailing heavy metal pollutant electrokimtic and precipitated combined remediation method
CN106623408A (en) * 2016-12-27 2017-05-10 常州大学 Electrokinetic remediation technology and method for removing heavy metal contaminated soil
CN109396176A (en) * 2018-12-20 2019-03-01 宁波大学 A kind of temperature-control electric coupling elution method repairs Polluted Soil device and processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084166A1 (en) * 2012-11-27 2014-06-05 株式会社みらい蔵 Soil analysis method, soil evaluation method, soil analysis system, and program for soil analysis
JP5378622B1 (en) * 2013-05-10 2013-12-25 株式会社みらい蔵 Soil analysis method and soil evaluation method
CN105436192A (en) * 2015-12-18 2016-03-30 中国天楹股份有限公司 Waste incineration fly ash treatment system based on reduction
CN106623408A (en) * 2016-12-27 2017-05-10 常州大学 Electrokinetic remediation technology and method for removing heavy metal contaminated soil
CN106583025A (en) * 2017-01-10 2017-04-26 昆明理工大学 Tailing heavy metal pollutant electrokimtic and precipitated combined remediation method
CN109396176A (en) * 2018-12-20 2019-03-01 宁波大学 A kind of temperature-control electric coupling elution method repairs Polluted Soil device and processing method
CN109396176B (en) * 2018-12-20 2023-08-25 宁波大学 Device for repairing polluted soil by temperature-controlled electric coupling leaching method and treatment method

Similar Documents

Publication Publication Date Title
JP2012035161A (en) Soil purification apparatus
Li et al. Changing conventional blending photocatalytic membranes (BPMs): Focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method
Kumar et al. Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization
Shao et al. Defect-rich porous carbon with anti-interference capability for adsorption of bisphenol A via long-range hydrophobic interaction synergized with short-range dispersion force
CN103767465B (en) Purified cup
JP4116726B2 (en) Electrochemical treatment method and apparatus
ES2927118T3 (en) Device for the production of energy by salinity gradient through nanofluidic membranes based on titanium oxide
CN105692806A (en) Hydrogen-rich drinking cup
ES2759992T3 (en) Procedure for electrosorption and electrofiltration using a metal-coated polymer membrane, and procedure therefor
US20140322632A1 (en) Electrode for electrochemistry and manufacturing method for the same
He et al. A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation
CN105858819B (en) The tea maker of degradable remains of pesticide
US20220033288A1 (en) Device for purifying a fluid, in particular waste water
Gupta et al. Graphene-based aerogels with carbon nanotubes as ultrahigh-performing mesoporous capacitive deionization electrodes for brackish and seawater desalination
Choo et al. Study on the electrochemical characteristics of porous ceramic spacers in a capacitive deionization cell using slurry electrodes
KR101352939B1 (en) Apparatus of purifying water
KR20160066176A (en) Apparatus for manufacturing hydrogen water
KR20030066901A (en) Development of electrode compartment for enhanced electrokinetic remediation and post-treatment of waste water
CN105731608A (en) Floating sterile drinking water storage device
CN105692816B (en) Urban Roof water storage device
CN205528170U (en) Discharge water purification machine a little
Faisal et al. Enhancement solution to improve remediation of soil contaminated with lead by electrical field
CN205527888U (en) Water purifying kettle
Cong et al. Preparing a dual-function BiVO 4/NiFe-LDH composite photoanode for enhanced photoelectrocatalytic wastewater treatment and simultaneous hydrogen evolution
US11407665B2 (en) Method for purifying fresh, combined and saline wastewater from radioactive heavy metals