JP2012032576A - Variable power optical system for endoscope and endoscope - Google Patents

Variable power optical system for endoscope and endoscope Download PDF

Info

Publication number
JP2012032576A
JP2012032576A JP2010171548A JP2010171548A JP2012032576A JP 2012032576 A JP2012032576 A JP 2012032576A JP 2010171548 A JP2010171548 A JP 2010171548A JP 2010171548 A JP2010171548 A JP 2010171548A JP 2012032576 A JP2012032576 A JP 2012032576A
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
endoscope
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010171548A
Other languages
Japanese (ja)
Other versions
JP5601924B2 (en
Inventor
Sachiko Nasu
幸子 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2010171548A priority Critical patent/JP5601924B2/en
Publication of JP2012032576A publication Critical patent/JP2012032576A/en
Application granted granted Critical
Publication of JP5601924B2 publication Critical patent/JP5601924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable power optical system for endoscope suitable for changing magnification into high magnification while keeping a constant observation distance at a telephoto end, while maintaining satisfactory optical performance at each variable power position from a wide angle end to the telephoto end.SOLUTION: In the variable power optical system which includes: a first lens group G1 having a first cemented lens CL1 formed by cementing a negative lens L1 turning its concave surface to an image side, a positive lens L2 turning its convex surface to the image side, a negative lens L3 and a positive lens L4, and has positive power; a second lens group G2 having a second cemented lens CL2 formed by cementing a negative lens L5 and a positive lens L6, and has negative power; and a third lens group G3 having a third cemented lens CL3 formed by cementing a positive lens L7, a negative lens L8 and a positive lens L9, and is an optical system for variably magnifying an optical image due to the movement of the second lens group, the focal lengths of the entire system and each group satisfy prescribed conditions.

Description

本発明は、内視鏡用変倍光学系、及び内視鏡用変倍光学系が組み込まれた内視鏡に関連する。   The present invention relates to an endoscope variable magnification optical system and an endoscope incorporating the endoscope variable magnification optical system.

医療分野において、患者の体腔内を診断するための機器として、内視鏡(ファイバスコープ又は電子スコープ)が一般に知られ、実用に供されている。この種の内視鏡には、病変観察を精細に行うため、変倍機能を持つ変倍光学系を搭載したものがある。変倍光学系を搭載した内視鏡の具体的構成例は、特許文献1に記載されている。特許文献1に記載の内視鏡は、広角端から望遠端までの各変倍位置で十分な焦点深度を確保するため、各レンズ群の焦点距離が所定の条件を満たすように設定されている。   In the medical field, endoscopes (fiberscopes or electronic scopes) are generally known as devices for diagnosing the inside of a body cavity of a patient and are put into practical use. Some endoscopes of this type are equipped with a variable magnification optical system having a variable magnification function in order to precisely observe a lesion. A specific configuration example of an endoscope equipped with a variable magnification optical system is described in Patent Document 1. The endoscope described in Patent Document 1 is set so that the focal length of each lens group satisfies a predetermined condition in order to ensure a sufficient depth of focus at each zoom position from the wide-angle end to the telephoto end. .

ところで、内視鏡先端面が管壁に接触すると、粘液、残渣等の異物が対物レンズ面に付着して、良好な診断の妨げになることがある。また、配光レンズ面が管壁に接触するため、照明光の熱によって管壁に負担がかかる。そこで、内視鏡に搭載される一般的な変倍光学系は、特許文献1に示されるように、第一のレンズ群(最も物体側に位置するレンズ群)以外を可動群とした3群構成となっている。すなわち、この種の変倍光学系は、全長(最も物体側のレンズ面から像面までの長さ)が倍率に拘わらず不変であるように設計されている。カメラ用レンズ鏡筒のような繰り出しがなく、内視鏡先端面が内視鏡の先端部本体に対して不動であるため、内視鏡先端面と管壁との不用意な接触が有効に避けられる。   By the way, if the distal end surface of the endoscope comes into contact with the tube wall, foreign matters such as mucus and residue may adhere to the objective lens surface and hinder good diagnosis. Further, since the light distribution lens surface is in contact with the tube wall, the tube wall is burdened by the heat of the illumination light. Therefore, as shown in Patent Document 1, a general variable magnification optical system mounted on an endoscope includes three groups including a movable group other than the first lens group (the lens group positioned closest to the object side). It has a configuration. In other words, this type of variable magnification optical system is designed such that the total length (the length from the lens surface closest to the object side to the image plane) is invariant regardless of the magnification. There is no extension like a camera lens barrel, and the distal end surface of the endoscope is immovable with respect to the body of the distal end of the endoscope, so inadvertent contact between the distal end surface of the endoscope and the tube wall is effective. can avoid.

内視鏡用変倍光学系の3群構成には、負−正−負又は正−負−正が想定される。負−正−負の3群構成において正のパワーを持つ第二のレンズ群だけを可動群として構成すると、各変倍位置での諸収差の変化が大きい。そのため、第三のレンズ群も可動群として構成し、両群の移動によって各変倍位置での収差変化を抑える必要がある。しかし、可動群が多いほど可動機構が複雑化するという問題がある。正−負−正の3群構成では、各正レンズ群による諸収差の補正が比較的容易である。そのため、第二のレンズ群だけを可動群として構成しても各変倍位置での収差変化が抑えられる。   Negative-positive-negative or positive-negative-positive is assumed for the three-group configuration of the endoscope variable magnification optical system. If only the second lens group having a positive power in the negative-positive-negative three-group configuration is configured as a movable group, changes in various aberrations at each zoom position are large. Therefore, it is necessary to configure the third lens group as a movable group, and to suppress the aberration change at each zooming position by moving both groups. However, there is a problem that the more movable groups, the more complicated the movable mechanism. In the positive-negative-positive three-group configuration, correction of various aberrations by each positive lens group is relatively easy. For this reason, even if only the second lens group is configured as a movable group, a change in aberration at each zoom position can be suppressed.

特開2007−233036号公報JP 2007-233303 A

しかし、正−負−正の3群構成では、特許文献1に示されるように、高倍率設計が難しい。そのため、望遠端での観察時に精細な被写体像を得ることが難しい。精細な被写体像を得るには、内視鏡先端面を管壁に物理的に近付ける必要がある。しかし、内視鏡先端面を管壁に近付けると、対物レンズ面への残渣の付着や照明光の熱による管壁への負担が懸念される。また、内視鏡は、照明光学系と内視鏡用変倍光学系とが同軸に配置されていない。照明範囲と撮影範囲がずれているため、内視鏡先端面と管壁との距離が近いほど配光ムラが生じやすい。   However, in the positive-negative-positive three-group configuration, as disclosed in Patent Document 1, it is difficult to design a high magnification. Therefore, it is difficult to obtain a fine subject image during observation at the telephoto end. In order to obtain a fine subject image, it is necessary to physically bring the distal end surface of the endoscope close to the tube wall. However, when the distal end surface of the endoscope is brought close to the tube wall, there is a concern about the adhesion of the residue to the objective lens surface and the burden on the tube wall due to the heat of the illumination light. In the endoscope, the illumination optical system and the endoscope variable power optical system are not arranged coaxially. Since the illumination range and the photographing range are deviated, the light distribution unevenness is likely to occur as the distance between the endoscope distal end surface and the tube wall is shorter.

すなわち、内視鏡による管腔観察においては、望遠端での観察時であっても内視鏡先端面を管壁からできる限り離すことが望ましい。内視鏡先端面を管壁から離しつつ精細な被写体像を得るためには、望遠端での倍率を上げる必要がある。   That is, in luminal observation with an endoscope, it is desirable to keep the distal end surface of the endoscope as far as possible from the tube wall even during observation at the telephoto end. In order to obtain a fine subject image while separating the endoscope front end surface from the tube wall, it is necessary to increase the magnification at the telephoto end.

本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、広角端から望遠端までの各変倍位置で光学性能を良好に維持しつつ望遠端で一定の観察距離を保ちながら倍率を高倍率にするのに好適な内視鏡用変倍光学系、及び内視鏡を提供することである。   The present invention has been made in view of the above circumstances, and its purpose is to maintain a constant observation distance at the telephoto end while maintaining good optical performance at each zoom position from the wide-angle end to the telephoto end. An object of the present invention is to provide an endoscopic variable magnification optical system and an endoscope suitable for increasing the magnification while maintaining it.

上記の課題を解決する本発明の一形態に係る内視鏡用変倍光学系は、物体側から順に、正のパワーを持つ第一のレンズ群、負のパワーを持つ第二のレンズ群、正のパワーを持つ第三のレンズ群を有し、該第二のレンズ群の移動によって光学像を変倍する光学系である。第一のレンズ群は、物体側から順に、像側に凹面を向けた負レンズ、像側に凸面を向けた正レンズ、負レンズと正レンズとを接合した第一の接合レンズを少なくとも有する。第二のレンズ群は、物体側から順に、負レンズと正レンズとを接合した第二の接合レンズを少なくとも有する。第三のレンズ群は、物体側から順に、正レンズ、負レンズと正レンズとを接合した第三の接合レンズを少なくとも有する。本発明に係る内視鏡用変倍光学系は、第一のレンズ群の焦点距離をf(単位:mm)と定義し、第二のレンズ群の焦点距離をf(単位:mm)と定義し、第三のレンズ群の焦点距離をf(単位:mm)と定義し、広角端での第一から第三のレンズ群の合成焦点距離をf(単位:mm)と定義した場合に、次の条件式(1)、(2)
−1.8≦f/f≦−1.2・・・(1)
0.5≦f/f≦0.65・・・(2)
を満たす。
The variable power optical system for an endoscope according to an aspect of the present invention that solves the above problems is, in order from the object side, a first lens group having a positive power, a second lens group having a negative power, The optical system includes a third lens group having a positive power, and zooms the optical image by moving the second lens group. The first lens group includes, in order from the object side, at least a negative lens having a concave surface facing the image side, a positive lens having a convex surface facing the image side, and a first cemented lens in which the negative lens and the positive lens are cemented. The second lens group includes at least a second cemented lens in which a negative lens and a positive lens are cemented in order from the object side. The third lens group has at least a third cemented lens in which a positive lens, a negative lens, and a positive lens are cemented in order from the object side. In the variable magnification optical system for an endoscope according to the present invention, the focal length of the first lens group is defined as f 1 (unit: mm), and the focal length of the second lens group is f 2 (unit: mm). The focal length of the third lens group is defined as f 3 (unit: mm), and the combined focal length of the first to third lens groups at the wide angle end is defined as f W (unit: mm). The following conditional expressions (1) and (2)
−1.8 ≦ f 2 / f W ≦ −1.2 (1)
0.5 ≦ f 1 / f 3 ≦ 0.65 (2)
Meet.

条件式(1)の上限を上回ると、ペッツバール和が負に大きいため、像面湾曲の補正が困難である。条件式(1)の下限を下回ると、第二のレンズ群のパワーが弱いため、変倍に伴う第二のレンズ群の移動距離が長い。従って、内視鏡用変倍光学系の全長を抑える設計が難しい。また、第二のレンズ群の移動に伴うコマ収差の変化が大きい。そのため、広角端から望遠端までの全変倍範囲に亘ってコマ収差をバランス良く補正するのが難しい。例えば広角端を基準にコマ収差を補正すると、望遠端におけるコマ収差の発生が大きい。   If the upper limit of conditional expression (1) is exceeded, the Petzval sum is negatively large, making it difficult to correct field curvature. If the lower limit of conditional expression (1) is not reached, the power of the second lens group is weak, and the movement distance of the second lens group accompanying zooming is long. Therefore, it is difficult to design to reduce the overall length of the endoscope variable magnification optical system. In addition, the change in coma accompanying the movement of the second lens group is large. For this reason, it is difficult to correct coma with a good balance over the entire zooming range from the wide-angle end to the telephoto end. For example, when coma is corrected with reference to the wide-angle end, the occurrence of coma at the telephoto end is large.

条件式(2)の上限を上回ると、第一のレンズ群のパワーが弱すぎる。第一のレンズ群のパワーを確保するためには、第一のレンズ群の有効光束径を大きく設定せざるを得ない。また、全系の倍率を確保するため、第二のレンズ群のパワーを弱める必要がある。しかし、第二のレンズ群のパワーを弱めた代償として、変倍に伴う第二のレンズ群の移動距離が長くなる。そのため、内視鏡用変倍光学系の全長を抑える設計が難しい。条件式(2)の下限を下回ると、第一のレンズ群のパワーが強いため、第一のレンズ群の有効光束径を小さく設定するのに有利である。しかし、第二のレンズ群以降のレンズの倍率が大きいため、組立誤差又は部品個体差に起因する群間隔の変化に伴う倍率変化が大きい。そのため、仕様を満足する視野角の保証が難しい。また、第一のレンズ群のパワーを強くするため、第一のレンズ群内の負レンズのパワーを強める必要がある。しかし、負レンズのパワーを強めた代償として、第一のレンズ群で発生するコマ収差量が増加する。広角端では第二のレンズ群への入射角度が特に大きいため、コマ収差が大きく発生する。   If the upper limit of conditional expression (2) is exceeded, the power of the first lens group is too weak. In order to ensure the power of the first lens group, the effective light beam diameter of the first lens group must be set large. Moreover, in order to ensure the magnification of the entire system, it is necessary to weaken the power of the second lens group. However, as a compensation for weakening the power of the second lens group, the moving distance of the second lens group accompanying zooming becomes longer. Therefore, it is difficult to design to reduce the overall length of the endoscope variable magnification optical system. If the lower limit of conditional expression (2) is not reached, the power of the first lens group is strong, which is advantageous for setting the effective light beam diameter of the first lens group small. However, since the magnification of the lenses after the second lens group is large, the magnification change accompanying the change of the group interval due to the assembly error or individual component difference is large. Therefore, it is difficult to guarantee a viewing angle that satisfies the specifications. Further, in order to increase the power of the first lens group, it is necessary to increase the power of the negative lens in the first lens group. However, as a compensation for increasing the power of the negative lens, the amount of coma generated in the first lens group increases. Since the angle of incidence on the second lens group is particularly large at the wide-angle end, coma is greatly generated.

条件式(1)、(2)を同時に満たすと、広角端から望遠端までの全変倍範囲に亘って諸収差を良好に補正しつつも高い変倍比が得られる。広角端を広視野にしつつも望遠端で一定の観察距離を保ちながら倍率を高倍率にすることができる。そのため、望遠端での観察時においても内視鏡先端面を管壁に近付けることなく、精細な被写体像を得ることができる。従って、対物レンズ面への残渣の付着や照明光の熱による管壁への負担が有効に避けられる。更に、観察視野内での配光ムラが抑えられる。また、条件式(1)、(2)を同時に満たすと、内視鏡用変倍光学系の小型化設計に有利であると共に、組立誤差又は部品個体差に起因する視野角変化が抑えられる。   When conditional expressions (1) and (2) are satisfied at the same time, a high zoom ratio can be obtained while satisfactorily correcting various aberrations over the entire zoom range from the wide-angle end to the telephoto end. The magnification can be increased while maintaining a constant observation distance at the telephoto end while making the wide-angle end a wide field of view. Therefore, a fine subject image can be obtained without bringing the distal end surface of the endoscope close to the tube wall even during observation at the telephoto end. Accordingly, it is possible to effectively avoid the burden on the tube wall due to the adhesion of residues on the objective lens surface and the heat of the illumination light. Furthermore, uneven light distribution within the observation field is suppressed. Further, satisfying the conditional expressions (1) and (2) simultaneously is advantageous for downsizing design of the variable magnification optical system for endoscopes and suppresses changes in the viewing angle due to assembly errors or individual component differences.

本発明に係る内視鏡用変倍光学系は、第一のレンズ群の有効光束径をより一層抑えるため、次の条件式(3)
−0.85≦f/f≦−0.65・・・(3)
を満たす構成としてもよい。
In order to further suppress the effective light beam diameter of the first lens group, the variable magnification optical system for an endoscope according to the present invention has the following conditional expression (3).
−0.85 ≦ f 1 / f 2 ≦ −0.65 (3)
It is good also as composition which satisfies.

条件式(3)の上限を上回ると、第一のレンズ群内の負レンズのパワーが強いため、第一のレンズ群で発生するコマ収差量が大きい。広角端では第二のレンズ群への入射角度が特に大きいため、コマ収差が大きく発生する。条件式(3)の下限を下回ると、第一のレンズ群のパワーが弱すぎる。第一のレンズ群のパワーを確保するためには、第一のレンズ群の有効光束径を大きく設定せざるを得ない。第一のレンズ群の有効光束径が大きい場合、内視鏡用変倍光学系が大型化するだけでなく、第二のレンズ群の移動に伴うコマ収差の発生が大きい。例えば広角端を基準にコマ収差を補正すると、望遠端におけるコマ収差の発生が大きい。   If the upper limit of conditional expression (3) is exceeded, the power of the negative lens in the first lens group is strong, so the amount of coma generated in the first lens group is large. Since the angle of incidence on the second lens group is particularly large at the wide-angle end, coma is greatly generated. Below the lower limit of conditional expression (3), the power of the first lens group is too weak. In order to ensure the power of the first lens group, the effective light beam diameter of the first lens group must be set large. When the effective light beam diameter of the first lens group is large, not only the enlargement / reduction optical system for the endoscope is enlarged, but also coma aberration is generated due to the movement of the second lens group. For example, when coma is corrected with reference to the wide-angle end, the occurrence of coma at the telephoto end is large.

内視鏡用変倍光学系の射出角度は、変倍に伴い変化する。射出角度によっては、結像面上での受光量の損失が大きくなる。本発明に係る内視鏡用変倍光学系は、変倍に伴う射出角度の変化を抑えるため、次の条件式(4)
−0.9≦f/f≦−0.6・・・(4)
を満たす構成としてもよい。
The exit angle of the endoscope variable power optical system changes with zooming. Depending on the emission angle, the loss of the amount of light received on the imaging surface increases. The variable power optical system for endoscopes according to the present invention has the following conditional expression (4) in order to suppress a change in the emission angle accompanying the variable power.
−0.9 ≦ f 2 / f 3 ≦ −0.6 (4)
It is good also as composition which satisfies.

条件式(4)の上限を上回ると、第二のレンズ群のパワーが第三のレンズ群に対して強すぎる。そのため、変倍位置が望遠端に近いほど全系の射出角度が大きくなり、固体撮像素子の受光量が減少する。望遠端での観察時における受光量の減少は著しい。また、第三のレンズ群への入射角度が大きいため、コマ収差の発生が大きい。条件式(4)の下限を下回ると、第二のレンズ群のパワーが弱いため、変倍に伴う第二のレンズ群の移動距離が長くなる。そのため、内視鏡用変倍光学系の全長を抑える設計が難しい。   If the upper limit of conditional expression (4) is exceeded, the power of the second lens group is too strong for the third lens group. Therefore, the closer the zoom position is to the telephoto end, the larger the emission angle of the entire system, and the amount of light received by the solid-state image sensor decreases. The decrease in the amount of light received during observation at the telephoto end is significant. In addition, since the incident angle to the third lens group is large, the occurrence of coma aberration is large. If the lower limit of conditional expression (4) is not reached, the power of the second lens group is weak, and the movement distance of the second lens group accompanying zooming becomes long. Therefore, it is difficult to design to reduce the overall length of the endoscope variable magnification optical system.

本発明に係る内視鏡用変倍光学系は、外形寸法を小さくしつつ組立誤差又は部品個体差に起因する視野角変化をより一層抑えるため、次の条件式(5)
0.53≦f/f≦0.61・・・(5)
を満たす構成としてもよい。
The variable magnification optical system for an endoscope according to the present invention further satisfies the following conditional expression (5) in order to further suppress a viewing angle change caused by an assembly error or an individual component difference while reducing the outer dimension.
0.53 ≦ f 1 / f 3 ≦ 0.61 (5)
It is good also as composition which satisfies.

条件式(5)の上限を上回ると、第一のレンズ群のパワーが弱すぎる。第一のレンズ群のパワーを確保するためには、第一のレンズ群の有効光束径を大きく設定せざるを得ない。また、全系の倍率を確保するため、第二のレンズ群のパワーを弱める必要がある。しかし、第二のレンズ群のパワーを弱めた代償として、変倍に伴う第二のレンズ群の移動距離が長くなる。そのため、内視鏡用変倍光学系の全長を抑える設計が難しい。条件式(5)の下限を下回ると、第二のレンズ群以降のレンズの倍率が大きいため、組立誤差又は部品個体差に起因する群間隔の変化に伴う倍率変化が大きい。そのため、仕様を満足する視野角の保証が難しい。また、第一のレンズ群のパワーを強くするため、第一のレンズ群内の負レンズのパワーを強める必要がある。しかし、負レンズのパワーを強めた代償として、第一のレンズ群で発生するコマ収差量が増加する。広角端では第二のレンズ群への入射角度が特に大きいため、コマ収差が大きく発生する。   If the upper limit of conditional expression (5) is exceeded, the power of the first lens group is too weak. In order to ensure the power of the first lens group, the effective light beam diameter of the first lens group must be set large. Moreover, in order to ensure the magnification of the entire system, it is necessary to weaken the power of the second lens group. However, as a compensation for weakening the power of the second lens group, the moving distance of the second lens group accompanying zooming becomes longer. Therefore, it is difficult to design to reduce the overall length of the endoscope variable magnification optical system. If the lower limit of conditional expression (5) is not reached, the magnification of the lenses after the second lens group is large, so that the magnification change accompanying the change in group spacing due to assembly errors or individual component differences is large. Therefore, it is difficult to guarantee a viewing angle that satisfies the specifications. Further, in order to increase the power of the first lens group, it is necessary to increase the power of the negative lens in the first lens group. However, as a compensation for increasing the power of the negative lens, the amount of coma generated in the first lens group increases. Since the angle of incidence on the second lens group is particularly large at the wide-angle end, coma is greatly generated.

本発明に係る内視鏡用変倍光学系は、第三のレンズ群を構成する単レンズ又は接合レンズの焦点距離のうち絶対値が最も大きい焦点距離をf(単位:mm)と定義した場合に、次の条件式(6)
|f/f|<5.0・・・(6)
を満たす構成としてもよい。
In the endoscope variable magnification optical system according to the present invention, the focal length having the largest absolute value among the focal lengths of the single lens or the cemented lens constituting the third lens group is defined as f X (unit: mm). If the following conditional expression (6)
| F X / f 3 | <5.0 (6)
It is good also as composition which satisfies.

条件式(6)を満たすと、厳格な公差管理による対策を行うことなく、第三のレンズ群を構成するレンズの偏心による像面倒れ量を抑えることができる。ここで、像面倒れは、理想的には光軸を基準に対称に残存する像面湾曲が、結像レンズの組立時の偏心量及び偏心方向に依存して光軸を基準に非対称に残存する現象である。条件式(6)の上限を上回ると、第三のレンズ群を構成するレンズの倍率が高い。そのため、第三のレンズ群が光軸に対して偏心して組み付けられた際の像面倒れが大きく、観察視野周辺で画質劣化が生じやすい。特に、広角端での観察時における像面倒れ量の発生が大きい。広角端での観察時において像面倒れが発生すると、望遠端に至る各変倍位置でも像面倒れが顕著に現れる。   When the conditional expression (6) is satisfied, the amount of image plane tilt due to the eccentricity of the lenses constituting the third lens group can be suppressed without taking measures by strict tolerance management. Here, the image plane tilting ideally remains symmetrically with respect to the optical axis, but remains asymmetric with respect to the optical axis depending on the amount and direction of eccentricity when the imaging lens is assembled. It is a phenomenon. If the upper limit of conditional expression (6) is exceeded, the magnification of the lenses constituting the third lens group is high. For this reason, the image plane is greatly tilted when the third lens group is assembled eccentrically with respect to the optical axis, and image quality deterioration tends to occur around the observation field. In particular, the amount of image plane tilt during observation at the wide-angle end is large. When image plane tilting occurs during observation at the wide-angle end, the image plane tilting is prominent at each zoom position reaching the telephoto end.

本発明に係る内視鏡用変倍光学系は、術者による病変部等の見落としを減らすため、広角端での最大像高における画角をω(単位:deg)と定義した場合に、次の条件式(7)
ω≧120・・・(7)
を満たす構成としてもよい。
The variable magnification optical system for an endoscope according to the present invention has the following when the angle of view at the maximum image height at the wide-angle end is defined as ω (unit: deg) in order to reduce oversight of a lesioned part or the like by an operator. Conditional expression (7)
ω ≧ 120 (7)
It is good also as composition which satisfies.

本発明に係る内視鏡用変倍光学系は、第一と第二のレンズ群との間に光軸上を該第二のレンズ群と一体に移動する絞りを有する構成としてもよい。第二のレンズ群と絞りを一体に移動させることにより、望遠端にしたときの非点収差の発生が効果的に抑えられる。   The variable power optical system for an endoscope according to the present invention may be configured to have a diaphragm that moves integrally with the second lens group on the optical axis between the first and second lens groups. By moving the second lens group and the aperture together, the generation of astigmatism when the telephoto end is set can be effectively suppressed.

上記の課題を解決する本発明の一形態に係る内視鏡は、上記内視鏡用変倍光学系を先端に搭載したことを特徴とした機器である。   An endoscope according to an embodiment of the present invention that solves the above-described problems is a device that includes the above-described endoscope variable power optical system mounted on a distal end.

本発明によれば、広角端から望遠端までの各変倍位置で光学性能を良好に維持しつつ望遠端で一定の観察距離を保ちながら倍率を高倍率にするのに好適な内視鏡用変倍光学系、及び内視鏡が提供される。   According to the present invention, it is suitable for an endoscope suitable for increasing the magnification while maintaining a constant observation distance at the telephoto end while maintaining good optical performance at each zoom position from the wide-angle end to the telephoto end. A variable magnification optical system and an endoscope are provided.

本発明の実施形態の電子スコープの外観を示す外観図である。It is an external view which shows the external appearance of the electronic scope of embodiment of this invention. 本発明の実施形態(実施例1)の内視鏡用変倍光学系及びその後段に配置された光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the variable magnification optical system for endoscopes of embodiment (Example 1) of this invention, and the optical component arrange | positioned in the back | latter stage. 本発明の実施例1の内視鏡用変倍光学系の各種収差図である。FIG. 6 is a diagram illustrating various aberrations of the variable magnification optical system for an endoscope according to Example 1 of the present invention. 本発明の実施例2の内視鏡用変倍光学系及びその後段に配置された光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the variable magnification optical system for endoscopes of Example 2 of this invention, and the optical component arrange | positioned in the back | latter stage. 本発明の実施例2の内視鏡用変倍光学系の各種収差図である。FIG. 6 is a diagram showing various aberrations of the variable magnification optical system for an endoscope according to Example 2 of the present invention. 本発明の実施例3の内視鏡用変倍光学系及びその後段に配置された光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the variable power optical system for endoscopes of Example 3 of this invention, and the optical component arrange | positioned in the back | latter stage. 本発明の実施例3の内視鏡用変倍光学系の各種収差図である。It is various aberrational figures of the variable power optical system for endoscopes of Example 3 of the present invention. 本発明の実施例4の内視鏡用変倍光学系及びその後段に配置された光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the variable power optical system for endoscopes of Example 4 of this invention, and the optical component arrange | positioned in the back | latter stage. 本発明の実施例4の内視鏡用変倍光学系の各種収差図である。It is various aberrational figures of the variable power optical system for endoscopes of Example 4 of the present invention. 本発明の実施例5の内視鏡用変倍光学系及びその後段に配置された光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the variable magnification optical system for endoscopes of Example 5 of this invention, and the optical component arrange | positioned in the back | latter stage. 本発明の実施例5の内視鏡用変倍光学系の各種収差図である。It is various aberrational figures of the variable power optical system for endoscopes of Example 5 of the present invention. 本発明の実施例6の内視鏡用変倍光学系及びその後段に配置された光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the variable magnification optical system for endoscopes of Example 6 of this invention, and the optical component arrange | positioned in the back | latter stage. 本発明の実施例6の内視鏡用変倍光学系の各種収差図である。It is various aberrational figures of the variable power optical system for endoscopes of Example 6 of the present invention.

以下、図面を参照して、本発明の実施形態の内視鏡用変倍光学系、及び内視鏡用変倍光学系を有する電子スコープについて説明する。   Hereinafter, an endoscope variable magnification optical system and an electronic scope having an endoscope variable magnification optical system according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態の電子スコープ1の外観を示す外観図である。図1に示されるように、電子スコープ1は、可撓性を有するシース(外皮)11aによって外装された可撓管11を有している。可撓管11の先端には、硬質性を有する樹脂製筐体によって外装された先端部12が連結されている。可撓管11と先端部12との連結箇所にある湾曲部14は、可撓管11の基端に連結された手元操作部13からの遠隔操作(具体的には、湾曲操作ノブ13aの回転操作)によって屈曲自在に構成されている。この屈曲機構は、一般的な電子スコープに組み込まれている周知の機構であり、湾曲操作ノブ13aの回転操作に連動した操作ワイヤの牽引によって湾曲部14を屈曲させるように構成されている。先端部12の方向が上記操作による屈曲動作に応じて変わることにより、電子スコープ1による撮影領域が移動する。   FIG. 1 is an external view showing the external appearance of the electronic scope 1 of the present embodiment. As shown in FIG. 1, the electronic scope 1 has a flexible tube 11 covered with a flexible sheath (outer skin) 11a. Connected to the distal end of the flexible tube 11 is a distal end portion 12 that is sheathed by a rigid resin casing. The bending portion 14 at the connecting portion between the flexible tube 11 and the distal end portion 12 is remotely operated from the hand operating portion 13 connected to the proximal end of the flexible tube 11 (specifically, the rotation of the bending operation knob 13a). The operation is flexible. This bending mechanism is a well-known mechanism incorporated in a general electronic scope, and is configured to bend the bending portion 14 by pulling the operation wire in conjunction with the rotation operation of the bending operation knob 13a. By changing the direction of the distal end portion 12 according to the bending operation by the above operation, the imaging region by the electronic scope 1 moves.

先端部12の樹脂製筐体の内部には、内視鏡用変倍光学系100(図1中斜線で示されたブロック)が組み込まれている。内視鏡用変倍光学系100は、撮影領域中の被写体の画像データを採取するため、被写体からの散乱光を固体撮像素子(図示省略)の受光面上に結像させる。固体撮像素子には、例えばCCD(Charge Coupled Device)イメージセンサ、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサが想定される。   An endoscope variable magnification optical system 100 (blocks indicated by diagonal lines in FIG. 1) is incorporated in the resin casing of the distal end portion 12. The endoscope variable power optical system 100 forms an image of scattered light from a subject on a light receiving surface of a solid-state imaging device (not shown) in order to collect image data of the subject in the imaging region. As the solid-state imaging device, for example, a CCD (Charge Coupled Device) image sensor and a CMOS (Complementary Metal Oxide Semiconductor) image sensor are assumed.

図2(a)は、本発明の実施例1(詳しくは後述)の内視鏡用変倍光学系100及びその後段に配置された光学部品の配置を示す断面図である。次においては、図2(a)を利用して、本発明の実施形態の内視鏡用変倍光学系100について詳細に説明する。   FIG. 2A is a cross-sectional view showing the arrangement of an endoscopic variable magnification optical system 100 according to Embodiment 1 (details will be described later) of the present invention and optical components arranged at the subsequent stage. Next, the variable magnification optical system 100 for an endoscope according to an embodiment of the present invention will be described in detail with reference to FIG.

内視鏡用変倍光学系100は、図2(a)に示されるように、物体(被写体)側から順に、正のパワーを持つ第一のレンズ群G1、絞りS、負のパワーを持つ第二のレンズ群G2、正のパワーを持つ第三のレンズ群G3を有している。各レンズ群G1〜G3を構成する各光学レンズは、内視鏡用変倍光学系100の光軸AXを中心として回転対称な形状を有している。第三のレンズ群G3の後段には、固体撮像素子用の色補正フィルタFが配置されている。色補正フィルタFは、固体撮像素子を保護するカバーガラスCGに接着されている。   As shown in FIG. 2A, the endoscope variable magnification optical system 100 has, in order from the object (subject) side, a first lens group G1 having a positive power, an aperture S, and a negative power. A second lens group G2 and a third lens group G3 having a positive power are included. Each optical lens constituting each lens group G1 to G3 has a rotationally symmetric shape about the optical axis AX of the zooming optical system 100 for endoscope. A color correction filter F for a solid-state image sensor is disposed at the subsequent stage of the third lens group G3. The color correction filter F is bonded to a cover glass CG that protects the solid-state image sensor.

第一のレンズ群G1は、絞りSよりも物体側に配置された正のパワーを持つレンズ群である。第一のレンズ群G1は、物体側から順に、像側に凹面を向けた負レンズL1、像側に凸面を向けた正レンズL2、負レンズL3と正レンズL4とを接合した接合レンズCL1を少なくとも有している。「少なくとも有している」と記載したのは、本発明の技術的思想の範囲において、別の光学素子を追加配置する構成例もあり得るからである。第二のレンズ群G2、第三のレンズ群G3の説明においても、同様の理由で「少なくとも有している」と表現している。   The first lens group G1 is a lens group having a positive power and disposed closer to the object side than the stop S. The first lens group G1 includes, in order from the object side, a negative lens L1 having a concave surface directed to the image side, a positive lens L2 having a convex surface directed to the image side, and a cemented lens CL1 in which the negative lens L3 and the positive lens L4 are cemented. Have at least. The reason for having “at least” is that there may be a configuration example in which another optical element is additionally arranged within the scope of the technical idea of the present invention. In the description of the second lens group G2 and the third lens group G3, it is expressed as “having at least” for the same reason.

第二のレンズ群G2は、負のパワーを持つレンズ群であり、色収差の変化を抑えるため、負レンズL5と正レンズL6とを接合した接合レンズCL2を少なくとも有している。負レンズL5が物体側に配置され、正レンズL6が像側に配置されている。第二のレンズ群G2は、固体撮像素子の受光面上に結像される光学像を変倍するため、絞りSと一体に光軸AX方向に移動する。第二のレンズ群G2と絞りSとを一体に移動させることにより、望遠端にしたときの非点収差の発生が効果的に抑えられる。   The second lens group G2 is a lens group having negative power, and has at least a cemented lens CL2 in which a negative lens L5 and a positive lens L6 are cemented in order to suppress a change in chromatic aberration. The negative lens L5 is disposed on the object side, and the positive lens L6 is disposed on the image side. The second lens group G2 moves in the direction of the optical axis AX together with the stop S in order to change the optical image formed on the light receiving surface of the solid-state imaging device. By moving the second lens group G2 and the stop S together, the occurrence of astigmatism when the telephoto end is set can be effectively suppressed.

第三のレンズ群G3は、正のパワーを持つレンズ群であり、物体側から順に、正レンズL7、負レンズL8と正レンズL9とを接合した接合レンズCL3を少なくとも有している。正レンズL7は、主に球面収差を補正する目的で配置され、接合レンズCL3は、主に倍率色収差を補正する目的で配置されている。   The third lens group G3 is a lens group having positive power, and has at least a cemented lens CL3 in which a positive lens L7, a negative lens L8, and a positive lens L9 are cemented in order from the object side. The positive lens L7 is arranged mainly for the purpose of correcting spherical aberration, and the cemented lens CL3 is arranged mainly for the purpose of correcting lateral chromatic aberration.

以下において、説明の便宜上、各光学部品の物体側の面、像側の面をそれぞれ、第一面、第二面と記す。また、絞りSは、光軸AXを中心とした所定の円形開口を有する板状部材、又は第二のレンズ群G2の絞りSに最も近いレンズ面(図2(a)の構成例においては、負レンズL5の第一面r9)であって光軸AXを中心とした所定の円形領域以外にコーティングされた遮光膜である。絞りSの厚みは、内視鏡用変倍光学系100を構成する各光学レンズの厚みと比べて非常に薄く、内視鏡用変倍光学系100の光学性能を計算する上で無視しても差し支えない。そのため、本明細書においては、絞りSの厚みを0とみなして説明を進める。   In the following, for convenience of explanation, the object-side surface and the image-side surface of each optical component are referred to as a first surface and a second surface, respectively. The diaphragm S is a plate-like member having a predetermined circular opening centered on the optical axis AX, or the lens surface closest to the diaphragm S of the second lens group G2 (in the configuration example of FIG. 2A). This is a light-shielding film coated on the first surface r9) of the negative lens L5 except for a predetermined circular area centered on the optical axis AX. The thickness of the diaphragm S is very thin compared to the thickness of each optical lens constituting the endoscope variable magnification optical system 100, and is ignored in calculating the optical performance of the endoscope variable magnification optical system 100. There is no problem. Therefore, in the present specification, the description will be made assuming that the thickness of the diaphragm S is 0.

内視鏡用変倍光学系100は、第一のレンズ群G1の焦点距離をf(単位:mm)と定義し、第二のレンズ群G2の焦点距離をf(単位:mm)と定義し、第三のレンズ群G3の焦点距離をf(単位:mm)と定義し、広角端での全系の焦点距離(第一のレンズ群G1から第三のレンズ群G3の合成焦点距離)をf(単位:mm)と定義した場合に、次の条件式(1)、(2)
−1.8≦f/f≦−1.2・・・(1)
0.5≦f/f≦0.65・・・(2)
を満たすように構成されている。
The variable magnification optical system 100 for endoscope defines the focal length of the first lens group G1 as f 1 (unit: mm), and the focal length of the second lens group G2 as f 2 (unit: mm). And the focal length of the third lens group G3 is defined as f 3 (unit: mm), and the focal length of the entire system at the wide-angle end (the combined focal point of the first lens group G1 to the third lens group G3). When the distance is defined as f W (unit: mm), the following conditional expressions (1) and (2)
−1.8 ≦ f 2 / f W ≦ −1.2 (1)
0.5 ≦ f 1 / f 3 ≦ 0.65 (2)
It is configured to satisfy.

条件式(1)は、第二のレンズ群G2の焦点距離fと広角端での全系の焦点距離fとの比を規定する。条件式(1)の上限を上回ると、第二のレンズ群G2のパワーが強いため、変倍に伴う第二のレンズ群G2の移動距離が短い。従って、内視鏡用変倍光学系100の全長を短く設計するのに有利である。しかし、ペッツバール和が負に大きいため、像面湾曲の補正が困難である。 Condition (1) defines the ratio between the focal length f W of the entire system at a focal length f 2 and the wide-angle end of the second lens group G2. If the upper limit of conditional expression (1) is exceeded, the power of the second lens group G2 is strong, and the moving distance of the second lens group G2 due to zooming is short. Therefore, it is advantageous to design the total length of the endoscope variable magnification optical system 100 to be short. However, since the Petzval sum is negatively large, it is difficult to correct field curvature.

条件式(1)の下限を下回ると、第二のレンズ群G2のパワーが弱いため、変倍に伴う第二のレンズ群G2の移動距離が長い。従って、内視鏡用変倍光学系100の全長を抑える設計が難しい。また、第二のレンズ群G2の移動に伴うコマ収差の変化が大きい。そのため、広角端から望遠端までの全変倍範囲に亘ってコマ収差をバランス良く補正するのが難しい。例えば広角端を基準にコマ収差を補正すると、望遠端におけるコマ収差の発生が大きい。   If the lower limit of conditional expression (1) is not reached, the power of the second lens group G2 is weak, so that the moving distance of the second lens group G2 accompanying zooming is long. Therefore, it is difficult to design to reduce the overall length of the endoscope variable magnification optical system 100. In addition, the change in coma accompanying the movement of the second lens group G2 is large. For this reason, it is difficult to correct coma with a good balance over the entire zooming range from the wide-angle end to the telephoto end. For example, when coma is corrected with reference to the wide-angle end, the occurrence of coma at the telephoto end is large.

条件式(2)は、第一のレンズ群G1の焦点距離fと第三のレンズ群G3の焦点距離fとの比を規定する。条件式(2)の上限を上回ると、第一のレンズ群G1のパワーが弱すぎる。第一のレンズ群G1のパワーを確保するためには、第一のレンズ群G1の有効光束径を大きく設定せざるを得ない。また、全系の倍率を確保するため、第二のレンズ群G2のパワーを弱める必要がある。しかし、第二のレンズ群G2のパワーを弱めた代償として、変倍に伴う第二のレンズ群G2の移動距離が長くなる。そのため、内視鏡用変倍光学系100の全長を抑える設計が難しい。 Condition (2) defines the ratio between the focal length f 1 and the focal length f 3 of the third lens group G3 of the first lens group G1. If the upper limit of conditional expression (2) is exceeded, the power of the first lens group G1 is too weak. In order to ensure the power of the first lens group G1, the effective light beam diameter of the first lens group G1 must be set large. Moreover, in order to ensure the magnification of the entire system, it is necessary to weaken the power of the second lens group G2. However, as a compensation for weakening the power of the second lens group G2, the moving distance of the second lens group G2 accompanying zooming becomes long. Therefore, it is difficult to design to reduce the overall length of the endoscope variable magnification optical system 100.

条件式(2)の下限を下回ると、第一のレンズ群G1のパワーが強いため、第一のレンズ群G1の有効光束径を小さく設定するのに有利である。しかし、第二のレンズ群G2以降のレンズの倍率が大きいため、組立誤差又は部品個体差に起因する群間隔の変化に伴う倍率変化が大きい。言い換えると、組立誤差又は部品個体差に起因する視野角変化が大きいため、仕様を満足する視野角の保証が難しい。また、第一のレンズ群G1のパワーを強くするため、負レンズL1のパワーを強める必要がある。しかし、負レンズL1のパワーを強めた代償として、第一のレンズ群G1で発生するコマ収差量が増加する。広角端では第一のレンズ群G1への入射角度が特に大きいため、コマ収差が大きく発生する。   If the lower limit of conditional expression (2) is not reached, the power of the first lens group G1 is strong, which is advantageous for setting the effective light beam diameter of the first lens group G1 small. However, since the magnification of the lenses after the second lens group G2 is large, the magnification change accompanying the change in the group interval due to the assembly error or individual component difference is large. In other words, it is difficult to guarantee the viewing angle satisfying the specifications because the viewing angle change due to assembly errors or individual component differences is large. Further, in order to increase the power of the first lens group G1, it is necessary to increase the power of the negative lens L1. However, as a price for increasing the power of the negative lens L1, the amount of coma generated in the first lens group G1 increases. Since the angle of incidence on the first lens group G1 is particularly large at the wide-angle end, coma is greatly generated.

条件式(1)、(2)を同時に満たすと、広角端から望遠端までの全変倍範囲に亘って諸収差を良好に補正しつつも高い変倍比が得られる。広角端を広視野にしつつも望遠端で一定の観察距離を保ちながら倍率を高倍率にすることができる。そのため、望遠端での観察時においても先端部12の先端面を管壁に近付けることなく、精細な被写体像を得ることができる。従って、対物レンズ面への残渣の付着や照明光の熱による管壁への負担が有効に避けられる。更に、観察視野内での配光ムラが抑えられる。また、条件式(1)、(2)を同時に満たすと、内視鏡用変倍光学系100の小型化設計に有利であると共に、組立誤差又は部品個体差に起因する視野角変化が抑えられる。   When conditional expressions (1) and (2) are satisfied at the same time, a high zoom ratio can be obtained while satisfactorily correcting various aberrations over the entire zoom range from the wide-angle end to the telephoto end. The magnification can be increased while maintaining a constant observation distance at the telephoto end while making the wide-angle end a wide field of view. Therefore, a fine subject image can be obtained without bringing the distal end surface of the distal end portion 12 close to the tube wall even during observation at the telephoto end. Accordingly, it is possible to effectively avoid the burden on the tube wall due to the adhesion of residues on the objective lens surface and the heat of the illumination light. Furthermore, uneven light distribution within the observation field is suppressed. Further, satisfying the conditional expressions (1) and (2) simultaneously is advantageous for downsizing design of the variable magnification optical system 100 for an endoscope, and suppresses a change in viewing angle due to an assembly error or individual component differences. .

内視鏡用変倍光学系100は、第一のレンズ群G1の有効光束径をより一層抑えるため、次の条件式(3)
−0.85≦f/f≦−0.65・・・(3)
を満たす構成としてもよい。
In order to further suppress the effective light beam diameter of the first lens group G1, the variable power optical system for endoscope 100 satisfies the following conditional expression (3).
−0.85 ≦ f 1 / f 2 ≦ −0.65 (3)
It is good also as composition which satisfies.

条件式(3)は、第一のレンズ群G1の焦点距離fと第二のレンズ群G2の焦点距離fとの比を規定する。条件式(3)の上限を上回ると、第一のレンズ群G1のパワーが強いため、第一のレンズ群G1の有効光束径を小さく設定するのに有利である。しかし、負レンズL1のパワーが強いため、第一のレンズ群G1で発生するコマ収差量が大きい。広角端では第二のレンズ群G2への入射角度が特に大きいため、コマ収差が大きく発生する。 Condition (3) defines the ratio between the focal length f 1 and the focal length f 2 of the second lens group G2 of the first lens group G1. If the upper limit of conditional expression (3) is exceeded, the power of the first lens group G1 is strong, which is advantageous for setting the effective light beam diameter of the first lens group G1 small. However, since the power of the negative lens L1 is strong, the amount of coma generated in the first lens group G1 is large. Since the angle of incidence on the second lens group G2 is particularly large at the wide-angle end, coma is greatly generated.

条件式(3)の下限を下回ると、第一のレンズ群G1のパワーが弱すぎる。第一のレンズ群G1のパワーを確保するためには、第一のレンズ群G1の有効光束径を大きく設定せざるを得ない。第一のレンズ群G1の有効光束径が大きい場合、内視鏡用変倍光学系100が大型化するだけでなく、第二のレンズ群G2の移動に伴うコマ収差の発生が大きい。例えば広角端を基準にコマ収差を補正すると、望遠端におけるコマ収差の発生が大きい。   If the lower limit of conditional expression (3) is not reached, the power of the first lens group G1 is too weak. In order to ensure the power of the first lens group G1, the effective light beam diameter of the first lens group G1 must be set large. When the effective light beam diameter of the first lens group G1 is large, not only the enlargement / reduction optical system 100 for an endoscope is enlarged, but also coma aberration is generated due to the movement of the second lens group G2. For example, when coma is corrected with reference to the wide-angle end, the occurrence of coma at the telephoto end is large.

固体撮像素子の受光面には入射角度依存性がある。そのため、受光面への入射角度(内視鏡用変倍光学系100の射出角度)によっては、有効画素領域の周辺で光量が大きく損失することがある。そこで、内視鏡用変倍光学系100は、変倍に伴う射出角度の変化を抑えるため、次の条件式(4)
−0.9≦f/f≦−0.6・・・(4)
を満たす構成としてもよい。
The light receiving surface of the solid-state imaging device has an incident angle dependency. Therefore, depending on the incident angle to the light receiving surface (the exit angle of the endoscope variable magnification optical system 100), the amount of light may be greatly lost around the effective pixel region. Therefore, in order to suppress the change in the emission angle that accompanies zooming, the zooming optical system 100 for endoscopes satisfies the following conditional expression (4).
−0.9 ≦ f 2 / f 3 ≦ −0.6 (4)
It is good also as composition which satisfies.

条件式(4)は、第二のレンズ群G2の焦点距離fと第三のレンズ群G3の焦点距離fとの比を規定する。条件式(4)の上限を上回ると、第二のレンズ群G2のパワーが第三のレンズ群G3に対して強すぎる。そのため、変倍位置が望遠端に近いほど全系の射出角度が大きくなり、固体撮像素子の受光量が減少する。望遠端での観察時における受光量の減少は著しい。また、第三のレンズ群G3への入射角度が大きいため、コマ収差の発生が大きい。 Condition (4) defines the focal length f 2 of the second lens group G2 and the ratio between the focal length f 3 of the third lens group G3. If the upper limit of conditional expression (4) is exceeded, the power of the second lens group G2 is too strong for the third lens group G3. Therefore, the closer the zoom position is to the telephoto end, the larger the emission angle of the entire system, and the amount of light received by the solid-state image sensor decreases. The decrease in the amount of light received during observation at the telephoto end is significant. Further, since the incident angle to the third lens group G3 is large, the occurrence of coma aberration is large.

条件式(4)の下限を下回ると、第二のレンズ群G2のパワーが第三のレンズ群G3に対して弱いため、広角端での観察時における全系の射出角度が小さい。しかし、第二のレンズ群G2のパワーが弱すぎるため、変倍に伴う第二のレンズ群G2の移動距離が長くなる。そのため、内視鏡用変倍光学系100の全長を抑える設計が難しい。   If the lower limit of conditional expression (4) is surpassed, the power of the second lens group G2 is weaker than that of the third lens group G3, so the exit angle of the entire system during observation at the wide angle end is small. However, since the power of the second lens group G2 is too weak, the moving distance of the second lens group G2 due to zooming becomes long. Therefore, it is difficult to design to reduce the overall length of the endoscope variable magnification optical system 100.

内視鏡用変倍光学系100は、外形寸法を小さくしつつ組立誤差又は部品個体差に起因する視野角変化をより一層抑えるため、次の条件式(5)
0.53≦f/f≦0.61・・・(5)
を満たす構成としてもよい。
In order to further suppress the viewing angle change caused by the assembly error or the individual component difference while reducing the external dimension, the variable power optical system for endoscope 100 satisfies the following conditional expression (5).
0.53 ≦ f 1 / f 3 ≦ 0.61 (5)
It is good also as composition which satisfies.

条件式(5)は、第一のレンズ群G1の焦点距離fと第三のレンズ群G3の焦点距離fとの比を規定する。条件式(5)の上限を上回ると、第一のレンズ群G1のパワーが弱すぎる。第一のレンズ群G1のパワーを確保するためには、第一のレンズ群G1の有効光束径を大きく設定せざるを得ない。また、全系の倍率を確保するため、第二のレンズ群G2のパワーを弱める必要がある。しかし、第二のレンズ群G2のパワーを弱めた代償として、変倍に伴う第二のレンズ群G2の移動距離が長くなる。そのため、内視鏡用変倍光学系100の全長を抑える設計が難しい。 Condition (5) defines the ratio between the focal length f 1 and the focal length f 3 of the third lens group G3 of the first lens group G1. If the upper limit of conditional expression (5) is exceeded, the power of the first lens group G1 is too weak. In order to ensure the power of the first lens group G1, the effective light beam diameter of the first lens group G1 must be set large. Moreover, in order to ensure the magnification of the entire system, it is necessary to weaken the power of the second lens group G2. However, as a compensation for weakening the power of the second lens group G2, the moving distance of the second lens group G2 accompanying zooming becomes long. Therefore, it is difficult to design to reduce the overall length of the endoscope variable magnification optical system 100.

条件式(5)の下限を下回ると、第一のレンズ群G1のパワーが強いため、第一のレンズ群G1の有効光束径を小さく設定するのに有利である。しかし、第二のレンズ群G2以降のレンズの倍率が大きいため、組立誤差又は部品個体差に起因する群間隔の変化に伴う倍率変化が大きい。そのため、仕様を満足する視野角の保証が難しい。また、第一のレンズ群G1のパワーを強くするため、負レンズL1のパワーを強める必要がある。しかし、負レンズL1のパワーを強めた代償として、第一のレンズ群G1で発生するコマ収差量が増加する。広角端では第二のレンズ群G2への入射角度が特に大きいため、コマ収差が大きく発生する。   If the lower limit of conditional expression (5) is not reached, the power of the first lens group G1 is strong, which is advantageous for setting the effective light beam diameter of the first lens group G1 small. However, since the magnification of the lenses after the second lens group G2 is large, the magnification change accompanying the change in the group interval due to the assembly error or individual component difference is large. Therefore, it is difficult to guarantee a viewing angle that satisfies the specifications. Further, in order to increase the power of the first lens group G1, it is necessary to increase the power of the negative lens L1. However, as a price for increasing the power of the negative lens L1, the amount of coma generated in the first lens group G1 increases. Since the angle of incidence on the second lens group G2 is particularly large at the wide-angle end, coma is greatly generated.

小型かつ広視野角な内視鏡用変倍光学系においては、レンズが光軸に対して偏心して組み付けられた際の像面倒れが大きく、観察視野周辺で画質劣化が生じやすい。像面倒れ量を抑えるには、例えば厳格な公差管理を行って製造誤差の少ない光学レンズ又は光学レンズ周辺の部品(例えばレンズ保持枠)を製造する製造管理上の対策が考えられる。しかし、この場合、歩留まりの低下や製造単価の増加等の弊害が生じる。また、小型な光学レンズにおいては、誤差発生量の把握及び管理が技術上難しい問題もある。そのため、厳格な公差管理による対策は、安易には採用できない。   In a variable magnification optical system for an endoscope having a small size and a wide viewing angle, the image plane is greatly tilted when the lens is assembled decentered with respect to the optical axis, and image quality is likely to deteriorate around the observation field. In order to suppress the image plane tilt amount, for example, a measure in manufacturing management in which strict tolerance management is performed to manufacture an optical lens or a component around the optical lens (for example, a lens holding frame) with a small manufacturing error can be considered. However, in this case, adverse effects such as a decrease in yield and an increase in manufacturing unit cost occur. Further, in a small optical lens, there is a problem that it is technically difficult to grasp and manage an error generation amount. Therefore, measures based on strict tolerance management cannot be easily adopted.

そこで、内視鏡用変倍光学系100は、第三のレンズ群G3を構成するレンズの焦点距離のうち絶対値が最も大きい焦点距離をf(単位:mm)と定義した場合に、次の条件式(6)
次の条件式(6)
|f/f|<5.0・・・(6)
を満たす構成としてもよい。
Therefore, the variable magnification optical system 100 for endoscopes has the following when the focal length having the largest absolute value among the focal lengths of the lenses constituting the third lens group G3 is defined as f X (unit: mm). Conditional expression (6)
The following conditional expression (6)
| F X / f 3 | <5.0 (6)
It is good also as composition which satisfies.

第三のレンズ群G3は、レンズの偏心に対する像面倒れの発生感度が他のレンズ群における発生感度と比べて高い。条件式(6)を満たすと、厳格な公差管理による対策を行うまでもなく、第三のレンズ群G3を構成するレンズの偏心による像面倒れ量を抑えることができる。   The third lens group G3 is higher in the occurrence sensitivity of image plane tilt with respect to the decentration of the lens than in other lens groups. When the conditional expression (6) is satisfied, it is possible to suppress the amount of image plane tilt due to the eccentricity of the lenses constituting the third lens group G3 without taking measures by strict tolerance management.

条件式(6)の上限を上回ると、第三のレンズ群G3を構成するレンズの倍率が高い。そのため、第三のレンズ群G3が光軸AXに対して偏心して組み付けられた際の像面倒れが大きく、観察視野周辺で画質劣化が生じやすい。特に、広角端での観察時における像面倒れ量の発生が大きい。広角端での観察時において像面倒れが発生すると、望遠端に至る各変倍位置でも像面倒れが顕著に現れる。   If the upper limit of conditional expression (6) is exceeded, the magnification of the lenses constituting the third lens group G3 is high. Therefore, when the third lens group G3 is assembled with being decentered with respect to the optical axis AX, the image plane is greatly tilted, and image quality deterioration is likely to occur around the observation field. In particular, the amount of image plane tilt during observation at the wide-angle end is large. When image plane tilting occurs during observation at the wide-angle end, the image plane tilting is prominent at each zoom position reaching the telephoto end.

広角端での最大像高における画角ω(単位:deg)を狭く設定すると、諸収差を補正しやすくなる。そのため、各変倍位置での光学性能を良好に維持するという設計が容易である。しかし、本実施形態に想定される内視鏡は、下部消化器観察に用いられるため、狭い視野角では病変部等の見落としが懸念される。そこで、内視鏡用変倍光学系100は、次の条件式(7)
ω≧120・・・(7)
を満たす構成としてもよい。
When the angle of view ω (unit: deg) at the maximum image height at the wide-angle end is set narrow, various aberrations can be easily corrected. Therefore, it is easy to design to maintain good optical performance at each zoom position. However, since the endoscope assumed in the present embodiment is used for lower digestive organ observation, there is a concern that a lesioned part or the like may be overlooked at a narrow viewing angle. Therefore, the variable magnification optical system 100 for an endoscope has the following conditional expression (7):
ω ≧ 120 (7)
It is good also as composition which satisfies.

次に、これまで説明した内視鏡用変倍光学系100の具体的数値実施例を6例説明する。各数値実施例1〜6の内視鏡用変倍光学系100は、図1に示される電子スコープ1の先端部12に配置されている。   Next, six specific numerical examples of the endoscope variable magnification optical system 100 described so far will be described. The variable magnification optical system 100 for endoscopes of each numerical example 1 to 6 is disposed at the distal end portion 12 of the electronic scope 1 shown in FIG.

上述したように、本発明の実施例1の内視鏡用変倍光学系100の構成は、図2(a)に示される通りである。図2(a)は、変倍位置が広角端にあるときのレンズ配置を示す断面図である。変倍位置が望遠端にあるときのレンズ配置を示す断面図は、図2(b)に示される。   As described above, the configuration of the variable magnification optical system 100 for endoscope according to the first embodiment of the present invention is as shown in FIG. FIG. 2A is a cross-sectional view showing the lens arrangement when the zoom position is at the wide-angle end. A cross-sectional view showing the lens arrangement when the zoom position is at the telephoto end is shown in FIG.

本実施例1の内視鏡用変倍光学系100(及びその後段に配置された光学部品)の具体的数値構成(設計値)は、表1に示される。表1に示される面番号NOは、絞りSに対応する面番号8を除き、図2中の面符号rn(nは自然数)に対応する。表1において、R(単位:mm)は光学部材の各面の曲率半径を、D(単位:mm)は光軸AX上の光学部材厚又は光学部材間隔を、N(d)はd線(波長588nm)の屈折率を、νdはd線のアッベ数を、それぞれ示す。表2は、内視鏡用変倍光学系100の仕様(実効Fナンバー、全系の焦点距離(単位:mm)、光学倍率、半画角(単位:deg)、像高(単位:mm)、群間隔D7(単位:mm)、群間隔D11(単位:mm))を広角端、望遠端それぞれについて示す。群間隔D7は、第一のレンズ群G1と第二のレンズ群G2との群間隔である。群間隔D11は、第一のレンズ群G1と第三のレンズ群G3との群間隔である。群間隔D7、群間隔D11は、変倍位置に応じて変わる。   Table 1 shows specific numerical configurations (design values) of the variable magnification optical system 100 for an endoscope according to the first embodiment (and optical components arranged at the subsequent stage). The surface number NO shown in Table 1 corresponds to the surface code rn (n is a natural number) in FIG. 2 except for the surface number 8 corresponding to the stop S. In Table 1, R (unit: mm) is the radius of curvature of each surface of the optical member, D (unit: mm) is the optical member thickness or optical member interval on the optical axis AX, and N (d) is the d line ( The refractive index at a wavelength of 588 nm), and νd, the Abbe number of the d line. Table 2 shows the specifications of the variable magnification optical system 100 for an endoscope (effective F number, focal length (unit: mm) of the entire system, optical magnification, half angle of view (unit: deg), and image height (unit: mm). , Group spacing D7 (unit: mm) and group spacing D11 (unit: mm) are shown for the wide-angle end and the telephoto end, respectively. The group interval D7 is a group interval between the first lens group G1 and the second lens group G2. The group interval D11 is a group interval between the first lens group G1 and the third lens group G3. The group interval D7 and the group interval D11 change according to the zoom position.

Figure 2012032576
Figure 2012032576
Figure 2012032576
Figure 2012032576

図3(a)のグラフA〜Dは、本実施例1の内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図3(b)のグラフA〜Dは、本実施例1の内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。図3(a)、(b)のグラフAは、d線、g線、C線での球面収差及び軸上色収差を示す。図3(a)、(b)のグラフBは、d線、g線、C線での倍率色収差を示す。グラフA、B中、実線はd線での収差を、点線はg線での収差を、一点鎖線はC線での収差を、それぞれ示す。図3(a)、(b)のグラフCは、非点収差を示す。グラフC中、実線はサジタル成分を、点線はメリディオナル成分を、それぞれ示す。図3(a)、(b)のグラフDは、歪曲収差を示す。グラフA〜Cの縦軸は像高を、横軸は収差量を、それぞれ示す。グラフDの縦軸は像高を、横軸は歪曲率を、それぞれ示す。なお、本実施例1の各表又は各図面についての説明は、以降の各数値実施例で提示される各表又は各図面においても適用する。   Graphs A to D in FIG. 3A are various aberration diagrams when the zooming position is at the wide-angle end in the zooming optical system 100 for an endoscope according to the first embodiment. Graphs A to D in FIG. 3B are various aberration diagrams when the zooming position is at the telephoto end in the zooming optical system 100 for an endoscope according to the first embodiment. Graphs A in FIGS. 3A and 3B show spherical aberration and axial chromatic aberration at d-line, g-line, and C-line. Graphs B in FIGS. 3A and 3B show lateral chromatic aberration at d-line, g-line, and C-line. In the graphs A and B, the solid line indicates the aberration at the d line, the dotted line indicates the aberration at the g line, and the alternate long and short dash line indicates the aberration at the C line. Graph C in FIGS. 3A and 3B shows astigmatism. In the graph C, a solid line indicates a sagittal component, and a dotted line indicates a meridional component. A graph D in FIGS. 3A and 3B shows distortion. In the graphs A to C, the vertical axis represents the image height, and the horizontal axis represents the aberration amount. The vertical axis of the graph D represents the image height, and the horizontal axis represents the distortion. In addition, the description about each table | surface or each drawing of the present Example 1 is applied also to each table | surface or each drawing shown by each subsequent numerical example.

本実施例1の内視鏡用変倍光学系100は、表1、2に示されるように、小型かつ広視野角でありつつも望遠端での倍率が高い。また、図3(a)、(b)に示されるように、広角端、望遠端の何れにおいても諸収差が良好に補正される。広角端と望遠端との中間域においては、図3(a)と図3(b)とが示す範囲内で各種収差が変化する。すなわち、本実施例1の内視鏡用変倍光学系100は、小型かつ広視野角でありつつも広角端から望遠端までの各変倍位置で光学性能が良好であると共に望遠端で一定の観察距離を保ちつつ倍率が高い。   As shown in Tables 1 and 2, the variable magnification optical system 100 for endoscope according to the first embodiment has a high magnification at the telephoto end while being small and having a wide viewing angle. Further, as shown in FIGS. 3A and 3B, various aberrations are satisfactorily corrected at both the wide-angle end and the telephoto end. In the intermediate region between the wide-angle end and the telephoto end, various aberrations change within the range shown in FIGS. 3 (a) and 3 (b). In other words, the variable magnification optical system 100 for endoscope according to the first embodiment is small and has a wide viewing angle, but has good optical performance at each variable magnification position from the wide angle end to the telephoto end and is constant at the telephoto end. The magnification is high while maintaining the observation distance.

図4(a)、(b)は、本実施例2の内視鏡用変倍光学系100を含む各光学部品の配置を示す断面図である。図4(a)は、変倍位置が広角端にあるときのレンズ配置を示す。図4(b)は、変倍位置が望遠端にあるときのレンズ配置を示す。本実施例2の内視鏡用変倍光学系100は、図4(a)、(b)に示されるように、接合レンズCL3と色補正フィルタFとの間に正レンズL10を有している。すなわち、本実施例2において第三のレンズ群G3は、物体側から順に、正レンズL7、接合レンズCL3、正レンズL10の三枚構成である。第一のレンズ群G1、第二のレンズ群G2については、本実施例1と同じ枚数構成である。   FIGS. 4A and 4B are cross-sectional views illustrating the arrangement of optical components including the endoscope variable magnification optical system 100 according to the second embodiment. FIG. 4A shows the lens arrangement when the zoom position is at the wide angle end. FIG. 4B shows the lens arrangement when the zoom position is at the telephoto end. The variable magnification optical system 100 for endoscope according to the second embodiment includes a positive lens L10 between the cemented lens CL3 and the color correction filter F as shown in FIGS. 4 (a) and 4 (b). Yes. That is, in the second embodiment, the third lens group G3 has a three-lens configuration in order from the object side, that is, a positive lens L7, a cemented lens CL3, and a positive lens L10. The first lens group G1 and the second lens group G2 have the same configuration as that of the first embodiment.

図5(a)のグラフA〜Dは、本実施例2の内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図5(b)のグラフA〜Dは、本実施例2の内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。表3は、本実施例2の内視鏡用変倍光学系100を含む各光学部品の具体的数値構成を、表4は、本実施例2の内視鏡用変倍光学系100の仕様を、それぞれ示す。本実施例2の内視鏡用変倍光学系100は、表3、4、図5(a)、(b)に示されるように、小型かつ広視野角でありつつも広角端から望遠端までの各変倍位置で光学性能が良好であると共に望遠端で一定の観察距離を保ちつつ倍率が高い。   Graphs A to D in FIG. 5A are various aberration diagrams when the zooming position is at the wide angle end in the zooming optical system 100 for an endoscope according to the second embodiment. Graphs A to D in FIG. 5B are various aberration diagrams when the zooming position is at the telephoto end in the zooming optical system 100 for an endoscope according to the second embodiment. Table 3 shows specific numerical configurations of optical components including the endoscope variable magnification optical system 100 of the second embodiment, and Table 4 shows specifications of the endoscope variable magnification optical system 100 of the second embodiment. Are shown respectively. As shown in Tables 3 and 4 and FIGS. 5A and 5B, the variable magnification optical system 100 for endoscope according to the second embodiment is small and has a wide viewing angle, but also from the wide-angle end to the telephoto end. The optical performance is good at each zooming position up to and the magnification is high while maintaining a constant observation distance at the telephoto end.

Figure 2012032576
Figure 2012032576
Figure 2012032576
Figure 2012032576

図6(a)、(b)は、本実施例3の内視鏡用変倍光学系100を含む各光学部品の配置を示す断面図である。図6(a)は、変倍位置が広角端にあるときのレンズ配置を示す。図6(b)は、変倍位置が望遠端にあるときのレンズ配置を示す。本実施例3の内視鏡用変倍光学系100は、図6(a)、(b)に示されるように、本実施例1と同じ枚数構成である。   6A and 6B are cross-sectional views showing the arrangement of optical components including the endoscope variable magnification optical system 100 according to the third embodiment. FIG. 6A shows the lens arrangement when the zoom position is at the wide angle end. FIG. 6B shows the lens arrangement when the zoom position is at the telephoto end. The endoscope variable power optical system 100 of the third embodiment has the same number of sheets as that of the first embodiment, as shown in FIGS.

図7(a)のグラフA〜Dは、本実施例3の内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図7(b)のグラフA〜Dは、本実施例3の内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。表5は、本実施例3の内視鏡用変倍光学系100を含む各光学部品の具体的数値構成を、表6は、本実施例3の内視鏡用変倍光学系100の仕様を、それぞれ示す。本実施例3の内視鏡用変倍光学系100は、表5、6、図7(a)、(b)に示されるように、小型かつ広視野角でありつつも広角端から望遠端までの各変倍位置で光学性能が良好であると共に望遠端で一定の観察距離を保ちつつ倍率が高い。   Graphs A to D in FIG. 7A are various aberration diagrams when the zooming position is at the wide-angle end in the zooming optical system 100 for an endoscope according to the third embodiment. Graphs A to D in FIG. 7B are various aberration diagrams when the zooming position is at the telephoto end in the zooming optical system 100 for an endoscope according to the third embodiment. Table 5 shows the specific numerical configuration of each optical component including the endoscope variable magnification optical system 100 of the third embodiment, and Table 6 shows the specifications of the endoscope variable magnification optical system 100 of the third embodiment. Are shown respectively. As shown in Tables 5 and 6 and FIGS. 7A and 7B, the variable magnification optical system 100 for endoscope according to the third embodiment is small and has a wide viewing angle, but also from the wide-angle end to the telephoto end. The optical performance is good at each zooming position up to and the magnification is high while maintaining a constant observation distance at the telephoto end.

Figure 2012032576
Figure 2012032576
Figure 2012032576
Figure 2012032576

図8(a)、(b)は、本実施例4の内視鏡用変倍光学系100を含む各光学部品の配置を示す断面図である。図8(a)は、変倍位置が広角端にあるときのレンズ配置を示す。図8(b)は、変倍位置が望遠端にあるときのレンズ配置を示す。本実施例4の内視鏡用変倍光学系100は、図8(a)、(b)に示されるように、本実施例2と同じ枚数構成である。   FIGS. 8A and 8B are sectional views showing the arrangement of optical components including the endoscope variable magnification optical system 100 according to the fourth embodiment. FIG. 8A shows the lens arrangement when the zoom position is at the wide angle end. FIG. 8B shows the lens arrangement when the zoom position is at the telephoto end. The endoscope variable magnification optical system 100 of the fourth embodiment has the same number of sheets as that of the second embodiment, as shown in FIGS.

図9(a)のグラフA〜Dは、本実施例4の内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図9(b)のグラフA〜Dは、本実施例4の内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。表7は、本実施例4の内視鏡用変倍光学系100を含む各光学部品の具体的数値構成を、表8は、本実施例4の内視鏡用変倍光学系100の仕様を、それぞれ示す。本実施例4の内視鏡用変倍光学系100は、表7、8、図9(a)、(b)に示されるように、小型かつ広視野角でありつつも広角端から望遠端までの各変倍位置で光学性能が良好であると共に望遠端で一定の観察距離を保ちつつ倍率が高い。   Graphs A to D in FIG. 9A are various aberration diagrams when the zooming position is at the wide-angle end in the zooming optical system 100 for an endoscope according to the fourth embodiment. Graphs A to D in FIG. 9B are various aberration diagrams when the zooming position is at the telephoto end in the zooming optical system 100 for an endoscope according to the fourth embodiment. Table 7 shows specific numerical configurations of optical components including the endoscope variable magnification optical system 100 of the fourth embodiment, and Table 8 shows specifications of the endoscope variable magnification optical system 100 of the fourth embodiment. Are shown respectively. As shown in Tables 7 and 8 and FIGS. 9A and 9B, the variable magnification optical system 100 for endoscope according to the fourth embodiment is small and has a wide viewing angle, but from the wide-angle end to the telephoto end. The optical performance is good at each zooming position up to and the magnification is high while maintaining a constant observation distance at the telephoto end.

Figure 2012032576
Figure 2012032576
Figure 2012032576
Figure 2012032576

図10(a)、(b)は、本実施例5の内視鏡用変倍光学系100を含む各光学部品の配置を示す断面図である。図10(a)は、変倍位置が広角端にあるときのレンズ配置を示す。図10(b)は、変倍位置が望遠端にあるときのレンズ配置を示す。本実施例5の内視鏡用変倍光学系100は、図10(a)、(b)に示されるように、本実施例2と同じ枚数構成である。   FIGS. 10A and 10B are cross-sectional views showing the arrangement of optical components including the endoscope variable magnification optical system 100 according to the fifth embodiment. FIG. 10A shows the lens arrangement when the zoom position is at the wide angle end. FIG. 10B shows the lens arrangement when the zoom position is at the telephoto end. The variable magnification optical system 100 for an endoscope of the fifth embodiment has the same number of sheets as that of the second embodiment, as shown in FIGS. 10 (a) and 10 (b).

図11(a)のグラフA〜Dは、本実施例5の内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図11(b)のグラフA〜Dは、本実施例5の内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。表9は、本実施例5の内視鏡用変倍光学系100を含む各光学部品の具体的数値構成を、表10は、本実施例5の内視鏡用変倍光学系100の仕様を、それぞれ示す。本実施例5の内視鏡用変倍光学系100は、表9、10、図11(a)、(b)に示されるように、小型かつ広視野角でありつつも広角端から望遠端までの各変倍位置で光学性能が良好であると共に望遠端で一定の観察距離を保ちつつ倍率が高い。   Graphs A to D in FIG. 11A are various aberration diagrams when the zooming position is at the wide-angle end in the zooming optical system 100 for an endoscope according to the fifth embodiment. Graphs A to D in FIG. 11B are various aberration diagrams when the zooming position is at the telephoto end in the zooming optical system 100 for an endoscope according to the fifth embodiment. Table 9 shows specific numerical configurations of optical components including the endoscope variable magnification optical system 100 according to the fifth embodiment, and Table 10 shows specifications of the endoscope variable magnification optical system 100 according to the fifth embodiment. Are shown respectively. As shown in Tables 9 and 10 and FIGS. 11A and 11B, the variable magnification optical system 100 for an endoscope according to the fifth embodiment is small and has a wide viewing angle but also from the wide-angle end to the telephoto end. The optical performance is good at each zooming position up to and the magnification is high while maintaining a constant observation distance at the telephoto end.

Figure 2012032576
Figure 2012032576
Figure 2012032576
Figure 2012032576

図12(a)、(b)は、本実施例6の内視鏡用変倍光学系100を含む各光学部品の配置を示す断面図である。図12(a)は、変倍位置が広角端にあるときのレンズ配置を示す。図12(b)は、変倍位置が望遠端にあるときのレンズ配置を示す。本実施例6の内視鏡用変倍光学系100は、図12(a)、(b)に示されるように、正レンズL7と接合レンズCL3との間に正レンズL10を有している。すなわち、本実施例6において第三のレンズ群G3は、物体側から順に、正レンズL7、正レンズL10、接合レンズCL3の三枚構成である。第一のレンズ群G1、第二のレンズ群G2については、本実施例1と同じ枚数構成である。   FIGS. 12A and 12B are cross-sectional views showing the arrangement of optical components including the endoscope variable magnification optical system 100 according to the sixth embodiment. FIG. 12A shows the lens arrangement when the zoom position is at the wide angle end. FIG. 12B shows the lens arrangement when the zoom position is at the telephoto end. As shown in FIGS. 12A and 12B, the variable magnification optical system 100 for endoscope according to the sixth embodiment includes a positive lens L10 between the positive lens L7 and the cemented lens CL3. . That is, in Example 6, the third lens group G3 has a three-lens configuration in order from the object side: a positive lens L7, a positive lens L10, and a cemented lens CL3. The first lens group G1 and the second lens group G2 have the same configuration as that of the first embodiment.

図13(a)のグラフA〜Dは、本実施例6の内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図13(b)のグラフA〜Dは、本実施例6の内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。表11は、本実施例6の内視鏡用変倍光学系100を含む各光学部品の具体的数値構成を、表12は、本実施例6の内視鏡用変倍光学系100の仕様を、それぞれ示す。本実施例6の内視鏡用変倍光学系100は、表11、12、図13に示されるように、小型かつ広視野角でありつつも広角端から望遠端までの各変倍位置で光学性能が良好であると共に望遠端で一定の観察距離を保ちつつ倍率が高い。   Graphs A to D in FIG. 13A are various aberration diagrams when the zooming position is at the wide-angle end in the zooming optical system 100 for an endoscope according to the sixth embodiment. Graphs A to D in FIG. 13B are various aberration diagrams when the zooming position is at the telephoto end in the zooming optical system 100 for an endoscope according to the sixth embodiment. Table 11 shows specific numerical configurations of optical components including the endoscope variable magnification optical system 100 according to the sixth embodiment, and Table 12 shows specifications of the endoscope variable magnification optical system 100 according to the sixth embodiment. Are shown respectively. As shown in Tables 11 and 12 and FIG. 13, the zooming optical system 100 for an endoscope of Example 6 is small and has a wide viewing angle, but at each zooming position from the wide-angle end to the telephoto end. The optical performance is good and the magnification is high while maintaining a constant observation distance at the telephoto end.

Figure 2012032576
Figure 2012032576
Figure 2012032576
Figure 2012032576

(比較検証)
表13は、本実施例1〜6に比較例1〜3を加えた9つの各例において、条件式(1)〜(7)の各条件式を適用したときに算出される値の一覧表である。比較例1、2、3はそれぞれ、特許文献1の実施例1、2、4である。
(Comparison verification)
Table 13 is a list of values calculated when the conditional expressions (1) to (7) are applied in the nine examples in which the first to third comparative examples are added to the first to sixth examples. It is. Comparative Examples 1, 2, and 3 are Examples 1, 2, and 4 of Patent Document 1, respectively.

Figure 2012032576
Figure 2012032576

本実施例1〜6の内視鏡用変倍光学系100は、表13に示されるように、条件式(1)、(2)を同時に満たすことにより、各本実施例の説明で提示した図又は表に示す通り、小型かつ広視野角でありつつも広角端から望遠端までの各変倍位置で光学性能が良好であると共に望遠端で一定の観察距離を保ちつつ倍率が高い。これに対して、比較例1〜3の内視鏡用変倍光学系は、表13に示されるように、条件式(1)又は(2)の少なくとも一方を満たさない。そのため、比較例1〜3においては、外形寸法、視野角、倍率、各変倍位置での光学性能の少なくとも一つが良好な管腔観察を行うに足る水準を満たさない。   As shown in Table 13, the variable magnification optical system 100 for endoscopes of Examples 1 to 6 is presented in the description of each Example by satisfying conditional expressions (1) and (2) at the same time. As shown in the figure or table, the optical performance is good at each zoom position from the wide-angle end to the telephoto end, and the magnification is high while maintaining a constant observation distance at the telephoto end, while being small and having a wide viewing angle. On the other hand, the variable power optical system for endoscopes of Comparative Examples 1 to 3 does not satisfy at least one of conditional expressions (1) and (2) as shown in Table 13. Therefore, in Comparative Examples 1 to 3, at least one of the external dimensions, the viewing angle, the magnification, and the optical performance at each zoom position does not satisfy a level sufficient for performing good lumen observation.

本実施例1〜6の内視鏡用変倍光学系100は、表13に示されるように、条件式(3)、(4)、(7)も満たす。本実施例1及び3は条件式(5)及び(6)を、本実施例2及び6は条件式(5)を、それぞれ更に満たす。そのため、本実施例1〜6では、各条件式を満たすことによる更なる効果が奏される。   As shown in Table 13, the endoscope variable magnification optical system 100 of Examples 1 to 6 also satisfies the conditional expressions (3), (4), and (7). Examples 1 and 3 further satisfy conditional expressions (5) and (6), and Examples 2 and 6 further satisfy conditional expression (5). Therefore, in the first to sixth embodiments, further effects are achieved by satisfying each conditional expression.

以上が本発明の実施形態の説明である。本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲において様々な変形が可能である。   The above is the description of the embodiment of the present invention. The present invention is not limited to the above-described configuration, and various modifications can be made within the scope of the technical idea of the present invention.

1 電子スコープ
100 内視鏡用変倍光学系
1 Electronic scope 100 Variable magnification optical system for endoscope

Claims (8)

物体側から順に、正のパワーを持つ第一のレンズ群、負のパワーを持つ第二のレンズ群、正のパワーを持つ第三のレンズ群を有し、該第二のレンズ群の移動によって光学像を変倍する内視鏡用変倍光学系において、
前記第一のレンズ群は、物体側から順に、像側に凹面を向けた負レンズ、像側に凸面を向けた正レンズ、負レンズと正レンズとを接合した第一の接合レンズを少なくとも有し、
前記第二のレンズ群は、物体側から順に、負レンズと正レンズとを接合した第二の接合レンズを少なくとも有し、
前記第三のレンズ群は、物体側から順に、正レンズ、負レンズと正レンズとを接合した第三の接合レンズを少なくとも有し、
前記第一のレンズ群の焦点距離をf(単位:mm)と定義し、前記第二のレンズ群の焦点距離をf(単位:mm)と定義し、前記第三のレンズ群の焦点距離をf(単位:mm)と定義し、広角端での前記第一から前記第三のレンズ群の合成焦点距離をf(単位:mm)と定義した場合に、次の条件式(1)、(2)
−1.8≦f/f≦−1.2・・・(1)
0.5≦f/f≦0.65・・・(2)
を満たすことを特徴とする内視鏡用変倍光学系。
In order from the object side, a first lens group having a positive power, a second lens group having a negative power, and a third lens group having a positive power, and by moving the second lens group In a variable magnification optical system for an endoscope that changes an optical image,
The first lens group includes, in order from the object side, at least a negative lens having a concave surface facing the image side, a positive lens having a convex surface facing the image side, and a first cemented lens in which the negative lens and the positive lens are cemented. And
The second lens group has at least a second cemented lens in which a negative lens and a positive lens are cemented in order from the object side,
The third lens group has at least a third cemented lens in which a positive lens, a negative lens and a positive lens are cemented in order from the object side,
The focal length of the first lens group is defined as f 1 (unit: mm), the focal length of the second lens group is defined as f 2 (unit: mm), and the focal point of the third lens group. When the distance is defined as f 3 (unit: mm) and the combined focal length of the first to third lens groups at the wide angle end is defined as f W (unit: mm), the following conditional expression ( 1), (2)
−1.8 ≦ f 2 / f W ≦ −1.2 (1)
0.5 ≦ f 1 / f 3 ≦ 0.65 (2)
A variable power optical system for an endoscope characterized by satisfying the above.
次の条件式(3)
−0.85≦f/f≦−0.65・・・(3)
を満たすことを特徴とする、請求項1に記載の内視鏡用変倍光学系。
The following conditional expression (3)
−0.85 ≦ f 1 / f 2 ≦ −0.65 (3)
The variable power optical system for an endoscope according to claim 1, wherein:
次の条件式(4)
−0.9≦f/f≦−0.6・・・(4)
を満たすことを特徴とする、請求項1又は請求項2に記載の内視鏡用変倍光学系。
The following conditional expression (4)
−0.9 ≦ f 2 / f 3 ≦ −0.6 (4)
The variable power optical system for an endoscope according to claim 1 or 2, wherein:
次の条件式(5)
0.53≦f/f≦0.61・・・(5)
を満たすことを特徴とする、請求項1から請求項3の何れか一項に記載の内視鏡用変倍光学系。
The following conditional expression (5)
0.53 ≦ f 1 / f 3 ≦ 0.61 (5)
The variable power optical system for an endoscope according to any one of claims 1 to 3, wherein:
前記第三のレンズ群を構成する単レンズ又は接合レンズの焦点距離のうち絶対値が最も大きい焦点距離をf(単位:mm)と定義した場合に、次の条件式(6)
|f/f|<5.0・・・(6)
を満たすことを特徴とする、請求項1から請求項4の何れか一項に記載の内視鏡用変倍光学系。
When the focal length having the largest absolute value among the focal lengths of the single lens or the cemented lens constituting the third lens group is defined as f X (unit: mm), the following conditional expression (6)
| F X / f 3 | <5.0 (6)
The variable power optical system for an endoscope according to any one of claims 1 to 4, wherein:
広角端での最大像高における画角をω(単位:deg)と定義した場合に、次の条件式(7)
ω≧120・・・(7)
を満たすことを特徴とする、請求項1から請求項5の何れか一項に記載の内視鏡用変倍光学系。
When the angle of view at the maximum image height at the wide angle end is defined as ω (unit: deg), the following conditional expression (7)
ω ≧ 120 (7)
The variable power optical system for an endoscope according to any one of claims 1 to 5, wherein:
前記第一と前記第二のレンズ群との間に光軸上を該第二のレンズ群と一体に移動する絞りを有することを特徴とする、請求項1から請求項6の何れか一項に記載の内視鏡用変倍光学系。   7. The diaphragm according to claim 1, further comprising a diaphragm that moves integrally with the second lens group on the optical axis between the first lens group and the second lens group. 8. A variable magnification optical system for an endoscope according to 1. 請求項1から請求項7の何れか一項に記載の内視鏡用変倍光学系を先端に搭載したことを特徴とする内視鏡。   An endoscope comprising the endoscope variable magnification optical system according to any one of claims 1 to 7 mounted at a tip thereof.
JP2010171548A 2010-07-30 2010-07-30 Endoscope variable magnification optical system and endoscope Active JP5601924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171548A JP5601924B2 (en) 2010-07-30 2010-07-30 Endoscope variable magnification optical system and endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171548A JP5601924B2 (en) 2010-07-30 2010-07-30 Endoscope variable magnification optical system and endoscope

Publications (2)

Publication Number Publication Date
JP2012032576A true JP2012032576A (en) 2012-02-16
JP5601924B2 JP5601924B2 (en) 2014-10-08

Family

ID=45846056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171548A Active JP5601924B2 (en) 2010-07-30 2010-07-30 Endoscope variable magnification optical system and endoscope

Country Status (1)

Country Link
JP (1) JP5601924B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045800A1 (en) 2012-09-18 2014-03-27 オリンパスメディカルシステムズ株式会社 Endoscope objective lens
JP5580956B1 (en) * 2013-03-26 2014-08-27 オリンパスメディカルシステムズ株式会社 Endoscope optical system
WO2014132494A1 (en) 2013-02-28 2014-09-04 オリンパスメディカルシステムズ株式会社 Objective optical system
WO2014155821A1 (en) 2013-03-26 2014-10-02 オリンパスメディカルシステムズ株式会社 Optical system for endoscope
CN104516095A (en) * 2013-10-07 2015-04-15 株式会社腾龙 Camera lens and camera device
JP2016007374A (en) * 2014-06-25 2016-01-18 富士フイルム株式会社 Imaging apparatus
WO2017043351A1 (en) * 2015-09-07 2017-03-16 Hoya株式会社 Variable power optical system for endoscope, and endoscope
CN106597638A (en) * 2016-12-19 2017-04-26 福建福光股份有限公司 Wide spectrum low light camera lens with ultra large aperture
JP2019008251A (en) * 2017-06-28 2019-01-17 オリンパス株式会社 Endoscope objective optical system
JP2019032407A (en) * 2017-08-07 2019-02-28 オリンパス株式会社 Endoscope objective optical system
CN110146970A (en) * 2019-06-27 2019-08-20 深圳市永诺摄影器材股份有限公司 A kind of imaging lens and imaging device
US10914935B2 (en) 2016-05-16 2021-02-09 Olympus Corporation Objective optical system
CN117192755A (en) * 2023-11-08 2023-12-08 国药新光医疗科技有限公司 Zoom lens assembly for endoscope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233036A (en) * 2006-03-01 2007-09-13 Olympus Medical Systems Corp Enlarging endoscopic optical system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233036A (en) * 2006-03-01 2007-09-13 Olympus Medical Systems Corp Enlarging endoscopic optical system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5580953B1 (en) * 2012-09-18 2014-08-27 オリンパスメディカルシステムズ株式会社 Endoscope objective lens
WO2014045800A1 (en) 2012-09-18 2014-03-27 オリンパスメディカルシステムズ株式会社 Endoscope objective lens
US9097850B2 (en) 2012-09-18 2015-08-04 Olympus Medical System Corp. Endoscope objective lens
US9341838B2 (en) 2013-02-28 2016-05-17 Olympus Corporation Objective optical system
WO2014132494A1 (en) 2013-02-28 2014-09-04 オリンパスメディカルシステムズ株式会社 Objective optical system
CN104937470A (en) * 2013-02-28 2015-09-23 奥林巴斯株式会社 Objective optical system
JP5802847B2 (en) * 2013-02-28 2015-11-04 オリンパス株式会社 Objective optical system
JPWO2014132494A1 (en) * 2013-02-28 2017-02-02 オリンパス株式会社 Objective optical system
JP5580956B1 (en) * 2013-03-26 2014-08-27 オリンパスメディカルシステムズ株式会社 Endoscope optical system
WO2014155821A1 (en) 2013-03-26 2014-10-02 オリンパスメディカルシステムズ株式会社 Optical system for endoscope
CN104254799A (en) * 2013-03-26 2014-12-31 奥林巴斯医疗株式会社 Optical system for endoscope
US9110302B2 (en) 2013-03-26 2015-08-18 Olympus Medical Systems Corp. Endoscope optical system
CN104516095A (en) * 2013-10-07 2015-04-15 株式会社腾龙 Camera lens and camera device
JP2016007374A (en) * 2014-06-25 2016-01-18 富士フイルム株式会社 Imaging apparatus
WO2017043351A1 (en) * 2015-09-07 2017-03-16 Hoya株式会社 Variable power optical system for endoscope, and endoscope
CN106716214A (en) * 2015-09-07 2017-05-24 Hoya株式会社 Variable power optical system for endoscope, and endoscope
DE112016000122B4 (en) 2015-09-07 2019-07-04 Hoya Corporation Endoscope magnifying optics and endoscope
US10914935B2 (en) 2016-05-16 2021-02-09 Olympus Corporation Objective optical system
CN106597638A (en) * 2016-12-19 2017-04-26 福建福光股份有限公司 Wide spectrum low light camera lens with ultra large aperture
JP2019008251A (en) * 2017-06-28 2019-01-17 オリンパス株式会社 Endoscope objective optical system
JP2019032407A (en) * 2017-08-07 2019-02-28 オリンパス株式会社 Endoscope objective optical system
CN110146970A (en) * 2019-06-27 2019-08-20 深圳市永诺摄影器材股份有限公司 A kind of imaging lens and imaging device
CN110146970B (en) * 2019-06-27 2023-08-18 深圳市永诺电器有限公司 Imaging lens and imaging equipment
CN117192755A (en) * 2023-11-08 2023-12-08 国药新光医疗科技有限公司 Zoom lens assembly for endoscope
CN117192755B (en) * 2023-11-08 2024-01-05 国药新光医疗科技有限公司 Zoom lens assembly for endoscope

Also Published As

Publication number Publication date
JP5601924B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5601924B2 (en) Endoscope variable magnification optical system and endoscope
JP6636128B2 (en) Variable magnification optical system for endoscope, endoscope and endoscope system
JP5668059B2 (en) Endoscope objective lens and endoscope
JP6674450B2 (en) Variable magnification optical system for endoscope, and endoscope
JP6126812B2 (en) Endoscope objective lens and endoscope system
JP5653243B2 (en) Endoscope optical system and endoscope
US8243129B2 (en) Objective lens and endoscope apparatus
JP6046322B1 (en) Endoscope variable magnification optical system and endoscope
JP6195808B2 (en) Endoscope objective lens and endoscope
JP5567224B2 (en) Endoscope objective lens and endoscope
WO2017043351A1 (en) Variable power optical system for endoscope, and endoscope
JP2008257108A (en) Objective lens for endoscope, and endoscope
JP2008257109A (en) Objective lens for endoscope, and endoscope
WO2018235352A1 (en) Objective optical system for endoscope
JP2018138983A (en) Imaging device
JP6774811B2 (en) Objective optical system for endoscopes and endoscopes
JP6754916B2 (en) Variable magnification optics for endoscopes and endoscopes
WO2019159778A1 (en) Endoscopic optical system and endoscope
JP2005148508A (en) Objective lens for endoscope

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent or registration of utility model

Ref document number: 5601924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250