JP2012031795A - Waste heat recovery system - Google Patents

Waste heat recovery system Download PDF

Info

Publication number
JP2012031795A
JP2012031795A JP2010172493A JP2010172493A JP2012031795A JP 2012031795 A JP2012031795 A JP 2012031795A JP 2010172493 A JP2010172493 A JP 2010172493A JP 2010172493 A JP2010172493 A JP 2010172493A JP 2012031795 A JP2012031795 A JP 2012031795A
Authority
JP
Japan
Prior art keywords
heat recovery
valve
exhaust gas
detour
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010172493A
Other languages
Japanese (ja)
Other versions
JP5439311B2 (en
Inventor
Toru Hisanaga
徹 久永
Teruaki Hyodo
輝章 兵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yutaka Giken Co Ltd
Original Assignee
Yutaka Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yutaka Giken Co Ltd filed Critical Yutaka Giken Co Ltd
Priority to JP2010172493A priority Critical patent/JP5439311B2/en
Publication of JP2012031795A publication Critical patent/JP2012031795A/en
Application granted granted Critical
Publication of JP5439311B2 publication Critical patent/JP5439311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a waste heat recovery system that can reduce noise such as a hammering sound by using a small number of part items.SOLUTION: The waste heat recovery system 10 is composed of: a heat recovery unit 18 which heats cooling water; a heat recovery path 15 which introduces exhaust gas into the heat recovery unit 18; a detour 16 which makes the heat recovery unit 15 make a detour; a switching valve 13 which switches flow passages of the detour 16 and the heat recovery unit 15; and an actuator 35 which operates at a temperature of the cooling water. In a valve 13, a flow-passage closing face 28 for closing an inlet of the detour 16 or an inlet of the heat recovery path 15 is spherical when viewed from a cross section. A pressure difference may be generated between the upstream and downstream of the valve 13. The flow-passage closing face 28 is spherical, and directions of forces are dispersed. The valve 13 is prevented from being opened even if the pressure difference is generated. That is, even if the pressure difference is generated between the upstream and downstream of the valve 13, since the valve 13 is not opened, it is not necessary to attach a collar at the valve 13. Since it is not necessary to attach the collar, the number of part items can be reduced.

Description

本発明は、排気ガスの熱で冷却水を温める排熱回収装置に関する。   The present invention relates to an exhaust heat recovery apparatus that warms cooling water with the heat of exhaust gas.

内燃機関を作動させることで排気ガスが生ずる。この排気ガスの熱を利用して冷却水を温めることが広く行われている。このとき、排熱回収を行う熱回収路とは別に、迂回路を設けて排気ガスを円滑に排出する排熱回収装置が知られている。このような排熱回収装置は、次図で説明するような問題点を有していた。   Exhaust gas is generated by operating the internal combustion engine. Heating the cooling water using the heat of the exhaust gas is widely performed. At this time, an exhaust heat recovery device is known in which a bypass is provided separately from the heat recovery path for performing exhaust heat recovery to smoothly exhaust the exhaust gas. Such an exhaust heat recovery apparatus has problems as described in the next figure.

図9(a)に示すように、排熱回収装置100は、排気ガス導入部材101内に設けられているセパレータ102と、このセパレータ102の上流に設けられている回転軸103と、この回転軸103に固定され回転軸103が回転することで回転するバルブ104と、バルブ104の先端が着座する着座部105とを備えている。   As shown in FIG. 9A, the exhaust heat recovery apparatus 100 includes a separator 102 provided in an exhaust gas introduction member 101, a rotating shaft 103 provided upstream of the separator 102, and the rotating shaft. A valve 104 that is fixed to 103 and rotates when the rotary shaft 103 rotates, and a seating portion 105 on which the tip of the valve 104 is seated are provided.

セパレータ102の上が、排気ガスの熱を回収するための熱回収路107である。一方、セパレータ102の下は、熱回収が必要でない場合、及び熱回収時でも排気ガスが所定の流量を超えた場合に排気ガスを逃がすための迂回路108である。   Above the separator 102 is a heat recovery path 107 for recovering the heat of the exhaust gas. On the other hand, below the separator 102 is a bypass 108 for allowing the exhaust gas to escape when heat recovery is not necessary and when the exhaust gas exceeds a predetermined flow rate even during heat recovery.

導入部材101の外部には、迂回路108を閉じる方向に回転軸103を回転させるばねが備えられている。バルブ104が迂回路108を閉じることで、排気ガスが熱回収路107に流される。   A spring that rotates the rotary shaft 103 in a direction to close the bypass circuit 108 is provided outside the introduction member 101. When the valve 104 closes the bypass circuit 108, the exhaust gas flows through the heat recovery path 107.

内燃機関を作動させると、内燃機関で生じた排気ガスが排熱回収装置100に向かって流される。
排気ガスが流されることで、バルブ104より上流側の点Aでの圧力が、バルブ104より下流側の迂回路108内の点Bでの圧力よりも大きくなることがある。即ち、点Aでの圧力>点Bでの圧力となる。
When the internal combustion engine is operated, exhaust gas generated in the internal combustion engine flows toward the exhaust heat recovery apparatus 100.
By flowing the exhaust gas, the pressure at the point A upstream of the valve 104 may become larger than the pressure at the point B in the bypass 108 on the downstream side of the valve 104. That is, the pressure at point A> the pressure at point B.

すると、(b)に示すように、バルブ104が押され、迂回路108が開放される。
迂回路108が開放された後のある瞬間では、点Aでの圧力≒点Bでの圧力となり、着座部105側へ付勢する回転軸103に取り付けられたばねで、バルブ104が迂回路108を閉じる方向に回転される。
Then, as shown in (b), the valve 104 is pushed and the detour 108 is opened.
At a certain moment after the detour circuit 108 is opened, the pressure at the point A is approximately equal to the pressure at the point B, and the valve 104 is connected to the detour circuit 108 by a spring attached to the rotating shaft 103 that is biased toward the seating portion 105 side. It is rotated in the closing direction.

さらに、点Aでの圧力<点Bでの圧力となった場合は、(a)に示すように、回転軸103が迂回路108を閉じる方向にバルブ104を付勢する上に、さらに白抜き矢印で示す圧力がバルブ104にかかる。迂回路108を閉じる方向に大きな力が加わることで、バルブ104は勢いよく閉じる。バルブ104が勢いよく着座部105に当たることで、打音等の騒音が発生する。   Further, when the pressure at the point A <the pressure at the point B, as shown in (a), in addition to energizing the valve 104 in the direction in which the rotating shaft 103 closes the detour 108, Pressure indicated by an arrow is applied to the valve 104. The valve 104 closes vigorously by applying a large force in the direction of closing the detour 108. When the valve 104 strikes the seating portion 105 vigorously, noise such as a hitting sound is generated.

ここで、内燃機関は、吸気、圧縮、燃焼、排気を繰り返している。このため、所定の回転数以下では、バルブ104の先端が着座部105に当たって騒音を出してから後に、次の燃焼による排気圧がバルブ104にかかり開こうとする。この繰り返しにより、バルブ104が着座部105に勢いよく当たることで、特に打音等の騒音が大きくなる。   Here, the internal combustion engine repeats intake, compression, combustion, and exhaust. For this reason, below the predetermined number of revolutions, after the tip of the valve 104 hits the seat 105 and makes noise, the exhaust pressure due to the next combustion is applied to the valve 104 and tries to open. By repeating this, the valve 104 strikes the seating portion 105 vigorously, so that noise such as a hitting sound becomes particularly large.

このような騒音を低減させる技術が提案されている(例えば、特許文献1(図1(b))参照。)。   A technique for reducing such noise has been proposed (see, for example, Patent Document 1 (FIG. 1B)).

特許文献1を次図に基づいて説明する。
図10に示すように、排気装置200は、図面右から左に向かって排気ガスが流される流路201と、この流路201の下流端を閉じるバルブ202と、このバルブ202の上部に取付けられているおもり203と、回転軸204を囲うように設けられ流路201を閉じる方向に付勢するばね205とを備えている。
Patent document 1 is demonstrated based on the following figure.
As shown in FIG. 10, the exhaust device 200 is attached to a flow path 201 through which exhaust gas flows from the right to the left of the drawing, a valve 202 that closes the downstream end of the flow path 201, and an upper portion of the valve 202. A weight 203 is provided, and a spring 205 is provided so as to surround the rotating shaft 204 and biases the channel 201 in a closing direction.

排気装置200によれば、バルブ202におもり203を取付けることで、バルブ202の重量を変えている。バルブ202の重量が変わることで、固有振動数を変化させ、騒音を低減させている。   According to the exhaust device 200, the weight of the valve 202 is changed by attaching the weight 203 to the valve 202. By changing the weight of the valve 202, the natural frequency is changed and the noise is reduced.

しかし、このような排気装置200は、おもり203を取付けることで、部品点数が増加し、また重量が増加する。
少ない部品点数で騒音を低減させることができる、排熱回収装置の提供が望まれる。
However, such an exhaust device 200 increases the number of parts and the weight by attaching the weight 203.
It is desired to provide an exhaust heat recovery device that can reduce noise with a small number of parts.

特許第4056227号公報Japanese Patent No. 4056227

本発明は、少ない部品点数で騒音を低減させることができる、排熱回収装置の提供を課題とする。   An object of the present invention is to provide an exhaust heat recovery apparatus that can reduce noise with a small number of parts.

請求項1に係る発明は、排気ガスの熱で冷却水を温める熱回収器と、この熱回収器に繋げられ熱回収器内に排気ガスを導く熱回収路と、この熱回収路を迂回するように設けられる迂回路と、これらの迂回路及び熱回収路の上流に回動可能に設けられ迂回路又は熱回収路を閉じることで排気ガスの流路を切替えるバルブと、このバルブを回動させる回動軸に接続され冷却水の温度が所定の温度に達することで作動するサーモアクチュエータとからなる排熱回収装置であって、
バルブは、迂回路の入口又は熱回収路の入口を閉じる流路閉じ面の少なくとも一部が、断面視で球面であることを特徴とする。
According to the first aspect of the present invention, a heat recovery unit that warms the cooling water using the heat of the exhaust gas, a heat recovery path that is connected to the heat recovery unit and guides the exhaust gas into the heat recovery unit, and bypasses the heat recovery path. Detours, and a valve that is pivotably provided upstream of these detours and the heat recovery path and switches the exhaust gas flow path by closing the detour or the heat recovery path, and the valve An exhaust heat recovery device comprising a thermoactuator connected to a rotating shaft to be operated and operating when the temperature of the cooling water reaches a predetermined temperature,
The valve is characterized in that at least a part of a flow path closing surface that closes an inlet of a bypass or an inlet of a heat recovery path is a spherical surface in a cross-sectional view.

請求項2に係る発明は、バルブの回動する軌跡に沿ってバルブの下流側にカバー部材が設けられ、
このカバー部材に、迂回路に向かって開けられる第1開口部及び熱回収路に向かって開けられる第2開口部が備えられ、
第1開口部を迂回路の入口とし、第2開口部を熱回収路の入口としたことを特徴とする。
The invention according to claim 2 is provided with a cover member on the downstream side of the valve along the trajectory of the rotation of the valve,
The cover member is provided with a first opening opened toward the detour and a second opening opened toward the heat recovery path,
The first opening is an entrance to the bypass, and the second opening is an entrance to the heat recovery path.

請求項3に係る発明は、カバー部材は、熱回収路側の先端部から軌跡を延長するようにして延ばされる延長部を、一体的に備えていることを特徴とする。   The invention according to claim 3 is characterized in that the cover member is integrally provided with an extension portion extended so as to extend the locus from the tip portion on the heat recovery path side.

請求項4に係る発明は、回動軸に基部が取付けられると共に、バルブが迂回路を閉じている場合に、迂回路の軸に対して略垂直に設けられ、排気ガスを通すための通し穴が空けられている板状部材を備えたことを特徴とする。   According to a fourth aspect of the present invention, when the base is attached to the rotation shaft and the valve closes the detour, the through hole is provided substantially perpendicular to the detour shaft and allows exhaust gas to pass therethrough. It is characterized by comprising a plate-like member having a gap.

請求項1に係る発明では、流路閉じ面が、断面視で球面である。バルブが迂回路を開いている場合において、バルブの上流と下流とで圧力の差が生じることがある。この圧力の差により、流路閉じ面に所定の力が加わる。流路閉じ面は球面であるため、力の向きが分散されると同時にバルブの着座方向に力が働きにくい。そのため、勢いよくバルブが閉じることを防止することができる。バルブが勢いよく閉じることを防止することで、打音等の騒音の発生を抑える。   In the invention according to claim 1, the flow path closing surface is a spherical surface in a cross-sectional view. When the valve opens a bypass, a pressure difference may occur upstream and downstream of the valve. Due to this pressure difference, a predetermined force is applied to the flow path closing surface. Since the flow path closing surface is a spherical surface, the direction of the force is dispersed, and at the same time, the force hardly acts in the seating direction of the valve. Therefore, it is possible to prevent the valve from closing vigorously. By preventing the valve from closing violently, the generation of noise such as hammering is suppressed.

本発明によれば、流路閉じ面を球面とすることで騒音の発生を防ぐため、バルブの固有振動数の調節をする必要がない。固有振動数の調節をする必要がないから、バルブに錘を取付ける必要がなくなる。さらに錘を付けても取りきれない着座音を改善することができる。錘を取り付ける必要がないことで、部品点数を削減することができる。   According to the present invention, it is not necessary to adjust the natural frequency of the valve in order to prevent generation of noise by making the flow path closing surface spherical. Since there is no need to adjust the natural frequency, there is no need to attach a weight to the valve. Furthermore, it is possible to improve the seating sound that cannot be removed even if a weight is attached. Since there is no need to attach a weight, the number of parts can be reduced.

請求項2に係る発明では、カバー部材に、迂回路に向かって開けられる第1開口部及び熱回収路に向かって開けられる第2開口部が備えられる。流路閉じ面は、第1開口部又は第2開口部を閉じることで、排気ガスの流路を切り替える。迂回路の入口又は熱回収路の入口の全てを塞ぐ場合に比べ、排気ガスを漏らすことなく、確実に流路を切り替えることができる。   In the invention which concerns on Claim 2, the cover member is provided with the 1st opening part opened toward a detour, and the 2nd opening part opened toward a heat recovery path. The flow path closing surface switches the flow path of the exhaust gas by closing the first opening or the second opening. Compared with the case where all the entrances of the detour path or the heat recovery path are closed, the flow path can be switched reliably without leaking the exhaust gas.

請求項3に係る発明では、カバー部材は、熱回収路側の先端部から軌跡を延長するようにして延ばされる延長部を、一体的に備えている。サーモアクチュエータが所定の範囲を超えて作動する、オーバーリフトが生じることがある。オーバーリフト分を、延長部で吸収する。延長部でオーバーリフトを吸収することで、サーモアクチュエータにオーバーリフトを吸収するための部品を取付ける必要がない。部品を取付けるためのスペースが不要になり、サーモアクチュエータを小型化することができる。   In the invention which concerns on Claim 3, the cover member is integrally provided with the extension part extended so that a locus | trajectory may be extended from the front-end | tip part by the side of a heat recovery path. An overlift may occur where the thermoactuator operates beyond a predetermined range. The overlift is absorbed by the extension. By absorbing the overlift by the extension portion, it is not necessary to attach a part for absorbing the overlift to the thermoactuator. Space for mounting components is not required, and the thermoactuator can be downsized.

請求項4に係る発明では、バルブが迂回路を閉じている場合に、迂回路の軸に対して略垂直に設けられる板状部材が備えられている。迂回路の軸に対して板状部材を略垂直に設けることで、排気ガスの一部は板状部材に接触する。排気ガスの流量が一定の量を超えることで、排気ガスは、バルブの閉まろうとする力に抗してバルブを開く。冷却水の温度に関係なく、流量が多い場合に一部の排気ガスを迂回路から逃がすことで、効率よく排気を行うことができる。   In the invention which concerns on Claim 4, when the valve | bulb has closed the detour, the plate-shaped member provided substantially perpendicularly with respect to the axis | shaft of a detour is provided. By providing the plate member substantially perpendicular to the axis of the detour, a part of the exhaust gas comes into contact with the plate member. When the flow rate of the exhaust gas exceeds a certain amount, the exhaust gas opens the valve against the force of closing the valve. Regardless of the temperature of the cooling water, exhaust can be efficiently performed by allowing some exhaust gas to escape from the detour when the flow rate is large.

本発明に係る排熱回収装置の断面図である。It is sectional drawing of the waste heat recovery apparatus which concerns on this invention. 本発明に係る排熱回収装置の側面図である。It is a side view of the waste heat recovery device concerning the present invention. 実施例1に係るバルブの斜視図である。1 is a perspective view of a valve according to Example 1. FIG. カバー部材の側面図である。It is a side view of a cover member. 冷却水の温度が低い状態での作用説明図である。It is operation | movement explanatory drawing in the state where the temperature of a cooling water is low. 冷却水の温度が高い状態での作用説明図である。It is an effect explanatory view in the state where the temperature of cooling water is high. サーモアクチュエータの断面図である。It is sectional drawing of a thermo actuator. 実施例2に係るバルブの断面図である。6 is a cross-sectional view of a valve according to Embodiment 2. FIG. 従来の技術の問題点を説明する図である。It is a figure explaining the problem of the prior art. 従来の技術の基本原理を説明する図である。It is a figure explaining the basic principle of the prior art.

本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.

先ず、本発明の実施例1を図面に基づいて説明する。
図1に示されるように、排熱回収装置10は、内燃機関で発生した排気ガスが送りこまれる排ガス導入部11と、この排ガス導入部11の近傍で排気ガスの流れ方向に対して垂直(図面表裏方向)に設けられる回動軸12と、この回動軸12に支持されるバルブ13と、このバルブ13の下流側に設けられバルブ13が回動する軌跡に沿って設けられるカバー部材14と、このカバー部材14に接続されバルブ13で切替えられる一方の流路である熱回収路15と、この熱回収路15の下部に熱回収路15を迂回するように設けられる迂回路16と、この迂回路16の上面に設けられ熱回収路15から流される排気ガスの熱で冷却水を温める熱回収器18と、この熱回収器18を通過した排気ガスを迂回路16へ排出する排出穴19とからなる。
First, Embodiment 1 of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the exhaust heat recovery apparatus 10 includes an exhaust gas introduction part 11 into which exhaust gas generated in an internal combustion engine is sent, and a direction perpendicular to the exhaust gas flow direction in the vicinity of the exhaust gas introduction part 11 (drawing). A rotation shaft 12 provided in the front and back direction, a valve 13 supported by the rotation shaft 12, and a cover member 14 provided on a downstream side of the valve 13 and provided along a locus of rotation of the valve 13. A heat recovery path 15, which is one flow path connected to the cover member 14 and switched by the valve 13, a bypass circuit 16 provided to bypass the heat recovery path 15 at a lower portion of the heat recovery path 15, A heat recovery unit 18 that is provided on the upper surface of the detour 16 and heats the cooling water with the heat of the exhaust gas flowing from the heat recovery path 15, and a discharge hole 19 that discharges the exhaust gas that has passed through the heat recovery unit 18 to the detour 16. Tokara .

バルブ13は、回動軸12に取付けられる球状の本体部21と、回動軸12に基部22が取付けられ迂回路16の軸23に対して略垂直に設けられる板状部材24とからなる。   The valve 13 includes a spherical main body portion 21 attached to the rotating shaft 12 and a plate-like member 24 provided with a base portion 22 attached to the rotating shaft 12 and provided substantially perpendicular to the shaft 23 of the bypass circuit 16.

熱回収器18は、本体としてのコアケース26と、このコアケース26内に複数設けられ排気ガスが流されるヒートプレート27とからなる。
コアケース26内に流される冷却水は、ヒートプレート27内を流される排気ガスの熱によって温められる。
The heat recovery unit 18 includes a core case 26 as a main body, and a heat plate 27 provided in the core case 26 and through which exhaust gas flows.
The cooling water that flows in the core case 26 is warmed by the heat of the exhaust gas that flows in the heat plate 27.

回動軸12は、ばね等により、矢印(1)で示すように時計回り方向に付勢される。回動軸12が時計回り方向に付勢されることで、本体部21は迂回路16を閉じる。即ち、回動軸12はバルブ13が迂回路16を閉じるよう、付勢される。このとき迂回路16に臨み、迂回路16を閉じる面を流路閉じ面28という。   The rotating shaft 12 is urged clockwise by a spring or the like as indicated by an arrow (1). The main body portion 21 closes the detour 16 by the rotation shaft 12 being urged clockwise. That is, the rotating shaft 12 is biased so that the valve 13 closes the bypass circuit 16. At this time, the surface that faces the detour 16 and closes the detour 16 is called a flow path closing surface 28.

バルブ13は、カバー部材14の下部に設けられたストッパ29によって、迂回路16を閉じる方向への移動が規制される。
バルブ13は、冷却水の温度が高くなることで、回動し熱回収路15を閉じる。詳細を次図で説明する。
The valve 13 is restricted from moving in a direction to close the detour 16 by a stopper 29 provided at a lower portion of the cover member 14.
The valve 13 rotates and closes the heat recovery path 15 when the temperature of the cooling water increases. Details are described in the following figure.

図2に示すように、熱回収器18は、冷却水を導入する冷却水導入部32と、コアケース26内を通過した冷却水を排出する冷却水排出部33とがコアケース26に接続される。   As shown in FIG. 2, the heat recovery unit 18 includes a cooling water introduction part 32 that introduces cooling water and a cooling water discharge part 33 that discharges the cooling water that has passed through the core case 26. The

サーモアクチュエータ35は、冷却水排出部33に基部が支持され、冷却水排出部33から排出される冷却水の一部が送られる。
サーモアクチュエータ35のロッド36は、回動軸12に支持されるリンク部材37に先端が接触する。
The thermoactuator 35 is supported at the base by the cooling water discharge portion 33 and a part of the cooling water discharged from the cooling water discharge portion 33 is sent.
The tip of the rod 36 of the thermoactuator 35 contacts the link member 37 supported by the rotating shaft 12.

冷却水の温度が上がることで、サーモアクチュエータ35のロッド36が、矢印(2)で示すように図左側に向かって進出する。ロッド36が進出することで、リンク部材37は矢印(3)で示すように反時計回りに回転させられる。リンク部材37に支持される回動軸12及びバルブ13も反時計回りに回転し、バルブ13が熱回収路15を閉じる。   As the temperature of the cooling water rises, the rod 36 of the thermoactuator 35 advances toward the left side of the drawing as shown by the arrow (2). As the rod 36 advances, the link member 37 is rotated counterclockwise as indicated by the arrow (3). The rotating shaft 12 and the valve 13 supported by the link member 37 also rotate counterclockwise, and the valve 13 closes the heat recovery path 15.

バルブ13が熱回収路15を閉じている状態から、冷却水の温度が低下すると、ロッド36が後退する。ロッド36が後退することで、時計回り方向に付勢される回動軸12は、バルブ13を時計回りに回動させる。回動されたバルブ13は、迂回路16を閉じる。即ち、図に示すような状態となる。
このようにして回転されるバルブ13について次図で詳細に説明する。
When the temperature of the cooling water decreases from the state in which the valve 13 closes the heat recovery path 15, the rod 36 moves backward. As the rod 36 moves backward, the rotating shaft 12 biased in the clockwise direction rotates the valve 13 clockwise. The rotated valve 13 closes the bypass 16. That is, the state is as shown in the figure.
The valve 13 thus rotated will be described in detail with reference to the next figure.

図3に示すように、バルブ13の本体部21は、球を分割した分割球状を呈する。板状部材24は、基部22が回動軸12に取付けられ、本体部21の内周に沿って半円形状を呈する。   As shown in FIG. 3, the main body 21 of the valve 13 has a divided spherical shape obtained by dividing a sphere. The plate-like member 24 has a base 22 attached to the rotating shaft 12 and has a semicircular shape along the inner periphery of the main body 21.

本体部21と板状部材24は、図に示す分割球状と半円形状の他、分割円柱状と長方形の組み合わせであってもよい。即ち、回動軸12に対して垂直に断面した場合に、本体部21の流路閉じ面28が球面であればよい。また、板状部材24は、本体部21の内周に沿う形状であればよい。   The main body 21 and the plate-like member 24 may be a combination of a divided columnar shape and a rectangular shape in addition to the divided spherical shape and semicircular shape shown in the drawing. That is, when the cross section is perpendicular to the rotation shaft 12, the flow path closing surface 28 of the main body 21 may be a spherical surface. Moreover, the plate-shaped member 24 should just be a shape in alignment with the inner periphery of the main-body part 21. FIG.

板状部材24は、排気ガスを通すための複数の異なる形状の通し穴39a〜cが設けられる。これらの通し穴39a〜cの面積の合計が大きいほど、排気ガスの通りがよくなる。排気ガスの通りがよくなることで、排気ガスの流量が増えた場合でも、円滑に排気ガスを熱回収路へ流すことができる。   The plate-like member 24 is provided with a plurality of differently shaped through holes 39a to 39c through which exhaust gas passes. The larger the sum of the areas of these through holes 39a to 39c, the better the passage of exhaust gas. By improving the flow of the exhaust gas, even when the flow rate of the exhaust gas increases, the exhaust gas can smoothly flow to the heat recovery path.

一方、通し穴39の面積の合計が小さいほど、板状部材24に接触する排気ガスの量が増加する。板状部材24に接触する排気ガスの量が増加することで、バルブ13が回転しやすくなる。
このようなバルブ13を覆うカバー部材について次図で説明する。
On the other hand, the smaller the total area of the through holes 39, the greater the amount of exhaust gas that contacts the plate member 24. By increasing the amount of exhaust gas in contact with the plate member 24, the valve 13 is easily rotated.
A cover member for covering such a valve 13 will be described with reference to the next drawing.

図4に示すように、カバー部材14は、迂回路(図1、符号16)に向かって開けられる第1開口部41が備えられると共に、熱回収路(図1、符号15)に向かって開けられる第2開口部42が備えられる。   As shown in FIG. 4, the cover member 14 is provided with a first opening 41 that opens toward the detour (FIG. 1, reference numeral 16), and opens toward the heat recovery path (FIG. 1, reference numeral 15). The second opening 42 is provided.

バルブ13a(aは、バルブが第1開口部41を閉じる位置にあることを示す添え字。以下同じ。)が第1開口部41を閉じることで、排気ガスは、第2開口部42から熱回収路に流れる。   When the valve 13a (a is a subscript indicating that the valve is in a position to close the first opening 41; the same applies hereinafter) closes the first opening 41, the exhaust gas is heated from the second opening 42. It flows into the collection path.

一方、バルブ13b(bは、バルブが第2開口部42を閉じる位置にあることを示す添え字。以下同じ。)が第2開口部42を閉じることで、排気ガスは、第1開口部41から迂回路に流れる。
即ち、第1開口部41は迂回路への入口とされ、第2開口部42は熱回収路への入口とされる。
On the other hand, the valve 13b (b is a subscript indicating that the valve is in a position to close the second opening 42; the same shall apply hereinafter) closes the second opening 42, so that the exhaust gas is supplied to the first opening 41. To the detour.
That is, the first opening 41 is an entrance to the detour, and the second opening 42 is an entrance to the heat recovery path.

ところで、バルブ13a、bは想像線で示す範囲を回動し、排気ガスの流路を切り替える。このため、バルブ13a、bを覆うカバー部材14は、P1からP2までの区間に設けられればよい。カバー部材14のうち、P1からP2までをベース部44と呼ぶことにする。   By the way, the valves 13a and 13b rotate within a range indicated by an imaginary line to switch the exhaust gas flow path. For this reason, the cover member 14 that covers the valves 13a and 13b may be provided in the section from P1 to P2. Of the cover member 14, P1 to P2 are referred to as a base portion 44.

一方で、冷却水の温度が所定の温度を超えた場合に、バルブ13bがP2からさらにP3に向かって移動することがある。バルブ13bの過移動を吸収するために、カバー部材14はP3まで設けられることが望ましい。即ち、P2からP3までをベース部44から延長された延長部45と呼ぶ。
即ち、カバー部材14は、ベース部44の先端部P2から、バルブ13bの軌跡に沿って延長される延長部45を、一体的に備えている。
On the other hand, when the temperature of the cooling water exceeds a predetermined temperature, the valve 13b may move further from P2 toward P3. In order to absorb the excessive movement of the valve 13b, the cover member 14 is desirably provided up to P3. That is, P2 to P3 are referred to as an extended portion 45 extended from the base portion 44.
That is, the cover member 14 is integrally provided with an extended portion 45 that extends from the distal end portion P2 of the base portion 44 along the locus of the valve 13b.

流路閉じ面28は、第1開口部41又は第2開口部42を閉じることで、排気ガスの流路を切り替える。迂回路の入口又は熱回収路の入口の全てを塞ぐ場合に比べ、排気ガスを漏らすことなく、確実に流路を切り替えることができる。簡単な構成で確実に流路を切り替えることができ望ましい。   The flow path closing surface 28 switches the flow path of the exhaust gas by closing the first opening 41 or the second opening 42. Compared with the case where all the entrances of the detour path or the heat recovery path are closed, the flow path can be switched reliably without leaking the exhaust gas. It is desirable that the flow path can be reliably switched with a simple configuration.

特に本発明では、流路閉じ面28の断面が球面である。球面である流路閉じ面28で確実に流路を閉じるために、バルブ13a、bの軌跡に沿った形状のカバー部材14を設けることは望ましい。
排熱回収装置の作用について次図以降で詳細に説明する。
Particularly in the present invention, the cross section of the flow path closing surface 28 is a spherical surface. In order to reliably close the flow path with the spherical flow path closing surface 28, it is desirable to provide the cover member 14 having a shape along the locus of the valves 13a and 13b.
The operation of the exhaust heat recovery device will be described in detail in the following figures.

図5(a)に示すように、冷却水の温度がT1と低い場合は、バルブ13が迂回路16を閉じる。迂回路16を閉じることで、排気ガスは熱回収路15を通過し、熱回収器18で冷却水と熱交換を行い、冷却水を温める。熱回収器18を通過した排気ガスは、排出穴19を通じて外部へ排出される。   As shown in FIG. 5A, when the temperature of the cooling water is as low as T1, the valve 13 closes the bypass 16. By closing the bypass 16, the exhaust gas passes through the heat recovery path 15, and heat exchange with the cooling water is performed by the heat recovery unit 18 to warm the cooling water. The exhaust gas that has passed through the heat recovery unit 18 is discharged to the outside through the discharge hole 19.

バルブ13が迂回路16を閉じている場合に、瞬間的に排気ガスの流量が増加することがある。(b)に示すように、排気ガスの一部は板状部材24に接触する。排気ガスの流量が一定の量を超えることで、板状部材24に接触した排気ガス(白抜き矢印(4)参照。)は、バルブ13の閉まろうとする力に抗してバルブ13を開く。バルブ13を開くことで、白抜き矢印(5)で示すように、排気ガスを迂回路16へ逃がすことができる。   When the valve 13 closes the bypass 16, the exhaust gas flow rate may increase instantaneously. As shown in (b), a part of the exhaust gas contacts the plate member 24. When the flow rate of the exhaust gas exceeds a certain amount, the exhaust gas in contact with the plate-like member 24 (see the white arrow (4)) opens the valve 13 against the force to close the valve 13. By opening the valve 13, the exhaust gas can escape to the detour 16 as indicated by the white arrow (5).

排気ガスを迂回路16へ逃がした後に、バルブ13より上流Cの圧力がバルブ13より下流Dの圧力とほぼ同等になることがある。流路閉じ面28は球面であるため、白抜き矢印(6)、(6)で示すように、力の向きが分散される。即ち、バルブ13が閉じる方向へ圧力が加わることを防止することができる。力の向きを分散させ、勢いよくバルブ13が閉じることを防止することで、騒音の発生を抑える。   After the exhaust gas has escaped to the bypass route 16, the pressure upstream of the valve 13 may be substantially equal to the pressure downstream of the valve 13. Since the flow path closing surface 28 is a spherical surface, the direction of force is dispersed as indicated by the white arrows (6) and (6). That is, it is possible to prevent pressure from being applied in the direction in which the valve 13 is closed. Generation of noise is suppressed by dispersing the direction of the force and preventing the valve 13 from closing forcefully.

本発明によれば、流路閉じ面28を球面とすることで騒音の発生を防ぐため、バルブ13の固有振動数の調節をする必要がない。固有振動数の調節をする必要がないから、バルブ13に錘を取付ける必要がなくなる。さらに錘を取り付けてもとりきれない着座音を改善することができる。錘を取り付ける必要がないことで、部品点数を削減することができる。   According to the present invention, since the generation of noise is prevented by making the flow path closing surface 28 a spherical surface, it is not necessary to adjust the natural frequency of the valve 13. Since there is no need to adjust the natural frequency, there is no need to attach a weight to the valve 13. Furthermore, it is possible to improve seating sound that cannot be removed even if a weight is attached. Since there is no need to attach a weight, the number of parts can be reduced.

加えて、冷却水の温度に関係なく、排気ガスの流量が多い場合に一部の排気ガスを迂回路16から逃がす。流路抵抗の高い熱回収路15を迂回することで、効率よく排気を行うことができる。   In addition, a part of the exhaust gas is allowed to escape from the bypass 16 when the flow rate of the exhaust gas is large regardless of the temperature of the cooling water. By bypassing the heat recovery path 15 having a high flow path resistance, exhaust can be efficiently performed.

さらに、通し穴39の総面積を調節することで、バルブ13が開く際の排気ガスの流量を調節することができる。即ち、通し穴39の総面積が大きければバルブ13が開きにくくなり、通し穴39の総面積が小さければバルブ13が開きやすくなる。通し穴39を設けるだけで調節を行うことができ、調節にかかる労力を低減させることができる。
冷却水を温め続けることで、冷却水の温度が所定の温度まで上昇する。所定の温度まで冷却水が上昇した際の作用を次図で説明する。
Furthermore, by adjusting the total area of the through holes 39, the flow rate of the exhaust gas when the valve 13 is opened can be adjusted. That is, if the total area of the through holes 39 is large, the valve 13 is difficult to open, and if the total area of the through holes 39 is small, the valve 13 is easy to open. Adjustment can be performed simply by providing the through hole 39, and the labor required for adjustment can be reduced.
By continuing to warm the cooling water, the temperature of the cooling water rises to a predetermined temperature. The operation when the cooling water rises to a predetermined temperature will be described with reference to the next figure.

図6(a)に示すように、冷却水の温度が所定の温度T2まで上昇することで、バルブ13は熱回収路15を閉じ、熱交換を停止する。排気ガスは、迂回路16を流れる。   As shown in FIG. 6A, when the temperature of the cooling water rises to a predetermined temperature T2, the valve 13 closes the heat recovery path 15 and stops heat exchange. The exhaust gas flows through the bypass 16.

ところで、冷却水の温度が当初想定していた最高の温度T2よりも上昇することがある。T2よりも高い温度T3まで上昇することで、サーモアクチュエータのロッド(図2、符号36)が所定の範囲を超えて前進することがある。   By the way, the temperature of the cooling water may rise higher than the highest temperature T2 that is initially assumed. When the temperature rises to a temperature T3 higher than T2, the rod (36 in FIG. 2) of the thermoactuator may advance beyond a predetermined range.

(b)に示すように、サーモアクチュエータのロッドが所定の範囲を超えて前進するオーバーリフトが生じた場合に、延長部45でバルブ13の過移動を吸収する。延長部45でオーバーリフトを吸収することで、次図で説明するような効果を得ることができる。   As shown in (b), when an overlift occurs in which the rod of the thermoactuator moves forward beyond a predetermined range, the extension 45 absorbs the excessive movement of the valve 13. By absorbing the overlift by the extension portion 45, it is possible to obtain an effect as described in the next figure.

図7(a)に示すように、比較例に係るサーモアクチュエータ300は、冷却水導入部301及び冷却水排出部302が設けられ内部にワックスが収納されるケース303と、このケース303内に収納されワックスによって作動されるピストン304と、このピストン304の先端に吸収ばね305を介して配置されるロッド306と、このロッド306の一部を収納しケース303に接続される蓋体307と、この蓋体307に収納されワックスの収縮時にロッド306を戻すための戻しばね308とからなる。   As shown in FIG. 7A, the thermoactuator 300 according to the comparative example includes a case 303 in which a cooling water introduction unit 301 and a cooling water discharge unit 302 are provided and wax is stored therein, and the case 303 stores therein. A piston 304 that is actuated by wax, a rod 306 disposed at the tip of the piston 304 via an absorption spring 305, a lid 307 that houses a part of the rod 306 and is connected to the case 303, A return spring 308 is housed in the lid 307 and returns the rod 306 when the wax contracts.

比較例に係るサーモアクチュエータ300は、オーバーリフトを吸収するために吸収ばね305が設けられる。   The thermoactuator 300 according to the comparative example is provided with an absorption spring 305 to absorb overlift.

一方、(b)に示す、実施例に係るサーモアクチュエータ35は、オーバーリフトをカバー部材(図1、符号カバー部材14)に設けられた、延長部(図1、符号延長部45)で吸収する。このため、サーモアクチュエータ35に、吸収ばねを用いる必要がない。吸収ばねを配置しない分、サーモアクチュエータ35をαだけ小型化することができる。   On the other hand, the thermoactuator 35 according to the embodiment shown in (b) absorbs the overlift by the extension part (FIG. 1, sign extension part 45) provided in the cover member (FIG. 1, sign cover member 14). . For this reason, it is not necessary to use an absorption spring for the thermoactuator 35. The thermoactuator 35 can be reduced in size by α because the absorption spring is not disposed.

次に、本発明の実施例2を図面に基づいて説明する。
図8に示されるように、バルブ50は、板状部材51の基部52から折曲げるようにして延長支持部53を延ばすことで、V字状の支持部材54を形成し、この支持部材54を回動軸55に取付け、支持部材54に流路閉じ面57を備えた本体部58を取付ける。
Next, a second embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 8, the valve 50 forms a V-shaped support member 54 by extending the extension support portion 53 so as to be bent from the base portion 52 of the plate-like member 51. The main body 58 provided with the flow path closing surface 57 is attached to the support shaft 54.

61、62は、排気ガスを通すための通し穴である。通し穴は、板状部材51と延長支持部53の両方に設けられる。   61 and 62 are through holes for allowing exhaust gas to pass therethrough. The through hole is provided in both the plate-like member 51 and the extended support portion 53.

このようなバルブ50を用いた場合も、流路閉じ面57が断面視で球面とされ、力の向きが分散される。バルブ50が勢いよく閉じることを防止し、打音等の騒音の発生を防ぐ。騒音の発生を防ぐために、錘を取り付ける必要がないため、部品点数を削減することができる。   Even when such a valve 50 is used, the flow path closing surface 57 is a spherical surface in a sectional view, and the direction of the force is dispersed. The valve 50 is prevented from closing vigorously and noise such as hitting is prevented. Since it is not necessary to attach a weight to prevent the generation of noise, the number of parts can be reduced.

加えて、V字形状の支持部材54に本体部58を取付けるため、バルブ50の組立作業が容易である。   In addition, since the main body 58 is attached to the V-shaped support member 54, the assembly work of the valve 50 is easy.

尚、本発明に係る排熱回収装置は、排熱回収器の他、EGR(Exhaust Gas Recirculation)クーラ等にも適用可能であり、その他の用途に適用することは差し支えない。   The exhaust heat recovery apparatus according to the present invention can be applied not only to an exhaust heat recovery device but also to an EGR (Exhaust Gas Recirculation) cooler or the like, and may be applied to other uses.

本発明の排熱回収装置は、ハイブリッド車に好適である。   The exhaust heat recovery apparatus of the present invention is suitable for a hybrid vehicle.

10…排熱回収装置、12、55…回動軸、13、50…バルブ、14…カバー部材、15…熱回収路、16…迂回路、18…熱回収器、22、52…基部、23…(迂回路の)軸、24、51…板状部材、28…流路閉じ面、35…サーモアクチュエータ、39…通し穴、41…第1開口部、42…第2開口部、45…延長部。   DESCRIPTION OF SYMBOLS 10 ... Waste heat recovery apparatus, 12, 55 ... Turning shaft, 13, 50 ... Valve, 14 ... Cover member, 15 ... Heat recovery path, 16 ... Detour, 18 ... Heat recovery device, 22, 52 ... Base, 23 ... (bypass) shaft, 24, 51 ... plate-like member, 28 ... flow path closing surface, 35 ... thermoactuator, 39 ... through hole, 41 ... first opening, 42 ... second opening, 45 ... extension Department.

Claims (4)

排気ガスの熱で冷却水を温める熱回収器と、この熱回収器に繋げられ前記熱回収器内に前記排気ガスを導く熱回収路と、この熱回収路を迂回するように設けられる迂回路と、これらの迂回路及び熱回収路の上流に回動可能に設けられ前記迂回路又は熱回収路を閉じることで前記排気ガスの流路を切替えるバルブと、このバルブを回動させる回動軸に接続され前記冷却水の温度が所定の温度に達することで作動するサーモアクチュエータとからなる排熱回収装置であって、
前記バルブは、前記迂回路の入口又は前記熱回収路の入口を閉じる流路閉じ面が、断面視で球面であることを特徴とする排熱回収装置。
A heat recovery unit that heats the cooling water with the heat of the exhaust gas, a heat recovery path that is connected to the heat recovery unit and guides the exhaust gas into the heat recovery unit, and a detour that is provided to bypass the heat recovery path A valve that is rotatably provided upstream of the bypass and the heat recovery path and that switches the exhaust gas flow path by closing the bypass or the heat recovery path, and a rotary shaft that rotates the valve. An exhaust heat recovery device comprising a thermoactuator connected to the thermoactuator and operating when the temperature of the cooling water reaches a predetermined temperature,
The exhaust heat recovery apparatus according to claim 1, wherein a flow path closing surface that closes the inlet of the bypass or the inlet of the heat recovery path is a spherical surface in a sectional view.
前記バルブの回動する軌跡に沿って前記バルブの下流側にカバー部材が設けられ、
このカバー部材に、前記迂回路に向かって開けられる第1開口部及び前記熱回収路に向かって開けられる第2開口部が備えられ、
前記第1開口部を前記迂回路の入口とし、前記第2開口部を前記熱回収路の入口としたことを特徴とする請求項1記載の排熱回収装置。
A cover member is provided on the downstream side of the valve along the locus of rotation of the valve,
The cover member includes a first opening that opens toward the detour and a second opening that opens toward the heat recovery path,
The exhaust heat recovery apparatus according to claim 1, wherein the first opening is an inlet of the bypass and the second opening is an inlet of the heat recovery path.
前記カバー部材は、前記熱回収路側の先端部から前記軌跡を延長するようにして延ばされる延長部を、一体的に備えていることを特徴とする請求項2記載の排熱回収装置。   The exhaust heat recovery apparatus according to claim 2, wherein the cover member is integrally provided with an extension portion extending so as to extend the locus from the tip portion on the heat recovery path side. 前記回動軸に基部が取付けられると共に、前記バルブが前記迂回路を閉じている場合に、前記迂回路の軸に対して略垂直に設けられ、前記排気ガスを通すための通し穴が空けられている板状部材を備えたことを特徴とする請求項1〜3のいずれか1項記載の排熱回収装置。   When the base is attached to the rotating shaft and the valve closes the bypass, the base is provided substantially perpendicular to the shaft of the bypass, and a through hole for passing the exhaust gas is formed. The exhaust heat recovery apparatus according to claim 1, further comprising a plate-like member.
JP2010172493A 2010-07-30 2010-07-30 Waste heat recovery device Expired - Fee Related JP5439311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010172493A JP5439311B2 (en) 2010-07-30 2010-07-30 Waste heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172493A JP5439311B2 (en) 2010-07-30 2010-07-30 Waste heat recovery device

Publications (2)

Publication Number Publication Date
JP2012031795A true JP2012031795A (en) 2012-02-16
JP5439311B2 JP5439311B2 (en) 2014-03-12

Family

ID=45845495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010172493A Expired - Fee Related JP5439311B2 (en) 2010-07-30 2010-07-30 Waste heat recovery device

Country Status (1)

Country Link
JP (1) JP5439311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155885A (en) * 2016-03-03 2017-09-07 株式会社デンソー Valve device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10584623B2 (en) * 2017-06-09 2020-03-10 Faurecia Emissions Control Technologies, Usa, Llc Exhaust heat recovery and acoustic valve

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147339A (en) * 1992-11-06 1994-05-27 Maezawa Ind Inc Selector valve
JP2002048251A (en) * 2000-08-07 2002-02-15 Kubota Corp Flow control valve
JP2002228023A (en) * 2001-01-30 2002-08-14 Teikoku Piston Ring Co Ltd Three-way valve
JP2003194244A (en) * 2001-12-28 2003-07-09 Osame Kogyo Kk Y-form three-way ball valve
JP2004347101A (en) * 2003-05-20 2004-12-09 Yoshio Ishibashi Structure of stop valve
JP2007231820A (en) * 2006-02-28 2007-09-13 Toyota Motor Corp Variable exhaust device
JP2008157211A (en) * 2006-12-22 2008-07-10 Sango Co Ltd Exhaust heat recovery device
JP2010285971A (en) * 2009-06-15 2010-12-24 Honda Motor Co Ltd Exhaust gas recirculation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147339A (en) * 1992-11-06 1994-05-27 Maezawa Ind Inc Selector valve
JP2002048251A (en) * 2000-08-07 2002-02-15 Kubota Corp Flow control valve
JP2002228023A (en) * 2001-01-30 2002-08-14 Teikoku Piston Ring Co Ltd Three-way valve
JP2003194244A (en) * 2001-12-28 2003-07-09 Osame Kogyo Kk Y-form three-way ball valve
JP2004347101A (en) * 2003-05-20 2004-12-09 Yoshio Ishibashi Structure of stop valve
JP2007231820A (en) * 2006-02-28 2007-09-13 Toyota Motor Corp Variable exhaust device
JP2008157211A (en) * 2006-12-22 2008-07-10 Sango Co Ltd Exhaust heat recovery device
JP2010285971A (en) * 2009-06-15 2010-12-24 Honda Motor Co Ltd Exhaust gas recirculation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155885A (en) * 2016-03-03 2017-09-07 株式会社デンソー Valve device

Also Published As

Publication number Publication date
JP5439311B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP4825303B2 (en) Automotive cooling system
EP1970548A2 (en) Cooling apparatus for internal combustion engine
US8950731B2 (en) Exhaust valve structure
JP2013136260A (en) Shutter apparatus
US20100108041A1 (en) Valve arrangement for an exhaust gas recirculation device
JP5001752B2 (en) EGR cooler bypass switching system
JP4821816B2 (en) Exhaust heat recovery unit
JP2007107389A (en) Egr valve device for engine
JP5222977B2 (en) Waste heat recovery device
JP2009541119A (en) Automotive cooling system
JP6464860B2 (en) Exhaust gas recirculation device
JP5439311B2 (en) Waste heat recovery device
JP2011214529A (en) Exhaust heat recovery device
JP5074317B2 (en) Flow path switching valve
JP5439312B2 (en) Waste heat recovery device
JP4409564B2 (en) Fuel injection device
JP2018071414A (en) Exhaust heat recovery device
JP5581246B2 (en) Waste heat recovery device
JP2007170241A (en) Engine cover structure
JP5088751B2 (en) Waste heat recovery unit
JP2006313011A (en) Flow regulating valve and bush for flow regulating valve
JP5439258B2 (en) Waste heat recovery device
CN210941334U (en) Front panel module for a motor vehicle
KR101928512B1 (en) Valve assembly for egr coolers
KR20100064977A (en) Intercooler assembly for a vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5439311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees