JP2012031491A - Sputtering target for forming transparent conductive film, and method for manufacturing the same - Google Patents

Sputtering target for forming transparent conductive film, and method for manufacturing the same Download PDF

Info

Publication number
JP2012031491A
JP2012031491A JP2010173691A JP2010173691A JP2012031491A JP 2012031491 A JP2012031491 A JP 2012031491A JP 2010173691 A JP2010173691 A JP 2010173691A JP 2010173691 A JP2010173691 A JP 2010173691A JP 2012031491 A JP2012031491 A JP 2012031491A
Authority
JP
Japan
Prior art keywords
oxide
transparent conductive
sputtering target
sputtering
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010173691A
Other languages
Japanese (ja)
Other versions
JP5613926B2 (en
Inventor
Shuhin Cho
守斌 張
Yuya Rikuta
雄也 陸田
Takeshi Yamaguchi
山口  剛
Yuichi Kondo
佑一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010173691A priority Critical patent/JP5613926B2/en
Priority to CN201080052554.6A priority patent/CN102666910B/en
Priority to KR1020127015378A priority patent/KR20120094035A/en
Priority to PCT/JP2010/072844 priority patent/WO2011074694A1/en
Priority to EP10837718.5A priority patent/EP2514851B1/en
Priority to TW099143981A priority patent/TWI504771B/en
Publication of JP2012031491A publication Critical patent/JP2012031491A/en
Application granted granted Critical
Publication of JP5613926B2 publication Critical patent/JP5613926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sputtering target for forming a transparent conductive film with higher conductivity, and to provide a method for manufacturing the same.SOLUTION: A method for producing a sputtering target for forming a transparent conductive film includes: a step for blending an oxide of Al, an oxide of Mg, an oxide of Ga, and an oxide of Zn, wherein the content ratio of metal component elements is 0.5-8 atom% Al, 5-30 atom% Mg, 0.01-0.15 atom% Ga, and the balance Zn, and pulverizing and mixing the oxides to produce a mixed powder; and a step for heating and sintering the mixed powder while being pressurized in a vacuum or an inert gas atmosphere.

Description

本発明は、液晶表示装置、有機エレクトロルミネッセンス表示装置、帯電防止導電膜コーティング、ガスセンサー、太陽電池などに用いられる透明導電膜を形成するためのスパッタリングターゲットおよびそれを製造する方法に関するものである。   The present invention relates to a sputtering target for forming a transparent conductive film used for a liquid crystal display device, an organic electroluminescence display device, an antistatic conductive film coating, a gas sensor, a solar cell, and the like, and a method of manufacturing the same.

従来、液晶表示装置、エレクトロルミネッセンス表示装置、帯電防止導電膜コーティング、ガスセンサー、太陽電池などに用いられる透明導電膜の一種として、Al−Mg−Zn系酸化物からなる透明導電膜が知られている。特に、AlをドープしたZn1−XMgOで表されるAl−Mg−Zn系酸化物膜は、Mgの添加量によってバンドギャップが3.5〜3.97eVで意図的に制御できるため、太陽電池、UV光デバイス用透明導電膜としての応用が期待されている。 Conventionally, a transparent conductive film made of an Al-Mg-Zn-based oxide has been known as a kind of transparent conductive film used for liquid crystal display devices, electroluminescence display devices, antistatic conductive film coatings, gas sensors, solar cells, and the like. Yes. In particular, an Al—Mg—Zn-based oxide film represented by Zn 1-X Mg X O doped with Al can be intentionally controlled with a band gap of 3.5 to 3.97 eV depending on the amount of Mg added. Application as a transparent conductive film for solar cells and UV light devices is expected.

国際公開第2006/129410号International Publication No. 2006/129410

APPLIED PHYSICS LETTERS,Vol.85,No.8,p.1374〜1376APPLIED PHYSICS LETTERS, Vol. 85, no. 8, p. 1374 to 1376

上記従来の技術には、以下の課題が残されている。
すなわち、従来の特許文献1に記載のAl−Mg−Zn系酸化物からなるスパッタリングターゲットでは、30〜60×10−3Ω・cmのバルク抵抗が得られているが、より成膜速度が高く安定したDCスパッタリングを行うには、さらに高い導電性が要望されている。
The following problems remain in the conventional technology.
That is, in the sputtering target made of the Al—Mg—Zn-based oxide described in the conventional patent document 1, a bulk resistance of 30 to 60 × 10 −3 Ω · cm is obtained, but the deposition rate is higher. In order to perform stable DC sputtering, higher conductivity is required.

本発明は、前述の課題に鑑みてなされたもので、さらに高い導電性を有する透明導電膜用スパッタリングターゲットおよびその製造方法を提供することを目的とする。   This invention is made | formed in view of the above-mentioned subject, and it aims at providing the sputtering target for transparent conductive films which has still higher electroconductivity, and its manufacturing method.

一般的なAlドープ酸化亜鉛緻密焼結体(例えばAlを2〜3wt%添加したZnOの焼結体)の電気抵抗が4〜8×10−4Ω・cmであるのに対し、特許文献1に記載の実施例中のAl−Mg−Zn系酸化物ターゲットの電気抵抗が30〜60×10−3Ω・cmとなっており、100倍近く高くなっている。本出願の発明者らは、Al−Mg−Zn系酸化物ターゲットの導電性が劣化した主の原因の一つが、AlとMgOとの反応による焼結体中のキャリアの減少であることを見出した。 The electric resistance of a general Al-doped zinc oxide dense sintered body (for example, a sintered body of ZnO added with 2 to 3 wt% of Al 2 O 3 ) is 4 to 8 × 10 −4 Ω · cm, The electric resistance of the Al—Mg—Zn-based oxide target in the example described in Patent Document 1 is 30 to 60 × 10 −3 Ω · cm, which is nearly 100 times higher. One of the main causes of the deterioration of the conductivity of the Al—Mg—Zn-based oxide target by the inventors of the present application is a decrease in carriers in the sintered body due to the reaction between Al 2 O 3 and MgO. I found out.

AlとMgOとの反応を抑えるために、特許文献1ではAlとZnOとの混合粉を仮焼し、ある程度先に反応させてからMgOと高温焼結させる方法を提案している。しかし、AlとZnOとの反応を十分にするために仮焼の温度を高くせざるを得なく、一方、高温で仮焼したAlとZnOとの混合物は、MgOと混合し本焼結される際、緻密に焼結できる温度がより高くなる。この高い焼結温度で焼結すると、MgOとAlの反応及びMgOとZnOとの反応が激しくなり、AlとZnOとを仮焼しても焼結体は導電性を失う。 In order to suppress the reaction between Al 2 O 3 and MgO, Patent Document 1 proposes a method in which a mixed powder of Al 2 O 3 and ZnO is calcined, reacted to some extent first, and then sintered with MgO at a high temperature. ing. However, in order to make the reaction between Al 2 O 3 and ZnO sufficiently, the temperature of calcination must be increased, while the mixture of Al 2 O 3 and ZnO calcined at high temperature is mixed with MgO. However, when the main sintering is performed, the temperature at which the sintering can be performed densely becomes higher. When sintered at this high sintering temperature, the reaction between MgO and Al 2 O 3 and the reaction between MgO and ZnO become intense, and even if Al 2 O 3 and ZnO are calcined, the sintered body loses its conductivity. .

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の透明導電膜用スパッタリングターゲットの製造方法は、Alの酸化物とMgの酸化物とGaの酸化物とZnの酸化物とを、金属成分元素の含有割合が、Al:0.5〜8原子%、Mg:5〜30原子%、Ga:0.01〜0.15原子%、残部:Znからなるように配合し、前記酸化物を粉砕混合して混合粉末を作製する工程と、前記混合粉末を真空または不活性ガス雰囲気中で圧力を加えながら加熱して焼結させる工程と、を有していることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, according to the method for manufacturing a sputtering target for a transparent conductive film of the present invention, an Al oxide, a Mg oxide, a Ga oxide, and a Zn oxide have a metal component element content ratio of Al: 0. The process which mix | blends so that it may consist of 5-8 atomic%, Mg: 5-30 atomic%, Ga: 0.01-0.15 atomic%, remainder: Zn, and pulverize-mixes the said oxide, and produces mixed powder. And heating and sintering the mixed powder while applying pressure in a vacuum or an inert gas atmosphere.

また、本発明の透明導電膜用スパッタリングターゲットは、金属成分元素の含有割合が、Al:0.5〜8原子%、Mg:5〜30原子%、Ga:0.01〜0.15原子%、残部:Znからなる酸化物ターゲットであって、体積抵抗が、1×10−2Ω・cm以下であることを特徴とする。 Moreover, as for the sputtering target for transparent conductive films of this invention, the content rate of a metal component element is Al: 0.5-8 atomic%, Mg: 5-30 atomic%, Ga: 0.01-0.15 atomic%. The balance is an oxide target made of Zn, and has a volume resistance of 1 × 10 −2 Ω · cm or less.

この透明導電膜用スパッタリングターゲットの製造方法では、Alの酸化物とMgの酸化物とGaの酸化物とZnの酸化物とを上記含有割合で配合した混合粉末を加圧焼結させるので、Gaが拡散助剤としてAlのZn酸化物への拡散を促進し、導電性がさらに向上したAl−Mg−Ga−Zn系酸化物スパッタリングターゲットを得ることができる。すなわち、体積抵抗が、1×10−2Ω・cm以下のAl−Mg−Ga−Zn系酸化物スパッタリングターゲットが得られる。 In this method of manufacturing a sputtering target for a transparent conductive film, a mixed powder in which Al oxide, Mg oxide, Ga oxide, and Zn oxide are mixed in the above content ratio is pressure-sintered. Promotes diffusion of Al into Zn oxide as a diffusion aid, and an Al—Mg—Ga—Zn-based oxide sputtering target with further improved conductivity can be obtained. That is, an Al—Mg—Ga—Zn-based oxide sputtering target having a volume resistance of 1 × 10 −2 Ω · cm or less is obtained.

本発明の発明者の研究成果によれば、GaはZnO中での拡散速度がAlより早く、Gaの拡散に伴い、ZnO結晶中Zn2+サイトへのAlイオンの置換も活発になる。よって、比較的に低い温度で焼結が進み、特許文献1よりも低い温度で高密度の焼結体を得ることができる。一方、GaイオンとMgOとの反応が確認されなかったため、Gaの添加によるAlとMgOとの反応、及びMgOとZnOとの反応が促進されていない。すなわち、Gaの添加により、AlとZnOとの焼結温度が低くなり、比較的低い温度でも緻密な焼結体を得ることができる。従来の比較的高い焼結温度に比べ、AlとMgOとの反応、およびMgOとZnOとの反応が抑制され、焼結体の導電性が確保できる。 According to the research result of the inventors of the present invention, Ga has a faster diffusion rate in ZnO than Al, and with the diffusion of Ga, substitution of Al ions to Zn 2+ sites in the ZnO crystal becomes active. Therefore, sintering proceeds at a relatively low temperature, and a high-density sintered body can be obtained at a temperature lower than that of Patent Document 1. On the other hand, since the reaction between Ga ions and MgO was not confirmed, the reaction between Al 2 O 3 and MgO and the reaction between MgO and ZnO due to the addition of Ga were not promoted. That is, by adding Ga, the sintering temperature of Al 2 O 3 and ZnO is lowered, and a dense sintered body can be obtained even at a relatively low temperature. Compared to the conventional relatively high sintering temperature, the reaction between Al 2 O 3 and MgO and the reaction between MgO and ZnO are suppressed, and the conductivity of the sintered body can be ensured.

さらに、本発明では、ホットプレス等の加圧焼結を行い、焼結温度をより低くすることで、ターゲットの高密度化と高導電性化を実現した。すなわち、加圧焼結を行なうことにより緻密化温度を下げ、比較的低い焼結温度でスパッタに適した高密度の焼結体を製造し、高温での焼結時に生じるAlとMgOとの反応、及びMgOとZnOとの反応を抑制した。
すなわち、Ga添加による焼結促進効果、緻密化温度低減効果とホットプレス等の加圧焼結による、緻密化温度の低減効果とを同時に利用し、スパッタに適した高密度で、高い導電性を有するターゲットを実現する。
Furthermore, in the present invention, pressure sintering such as hot pressing is performed to lower the sintering temperature, thereby realizing high density and high conductivity of the target. That is, by performing pressure sintering, the densification temperature is lowered, a high-density sintered body suitable for sputtering is manufactured at a relatively low sintering temperature, and Al 2 O 3 and MgO produced during sintering at a high temperature are produced. And the reaction between MgO and ZnO were suppressed.
In other words, by simultaneously using the sintering enhancement effect by Ga addition, the densification temperature reduction effect and the densification temperature reduction effect by pressure sintering such as hot pressing, etc., high density and high conductivity suitable for sputtering are obtained. Realize the target you have.

ここで、本発明の金属成分元素の含有割合を上記のごとく限定した理由は、以下のとおりである。
Al:
Alは、スパッタリングすることにより得られた透明導電膜のキャリア密度を向上させ、膜に導電性を付与させる作用を有するので添加するが、その含有量が0.5原子%未満では導電性向上効果が十分でなく、一方、Alを8原子%を超えて含有させるとターゲットの焼結性が劣化するので好ましくない。したがって、このスパッタリングターゲットに含まれる全金属成分元素に占めるAlの含有割合を、Al:0.5〜8原子%に定めた。
Here, the reason for limiting the content ratio of the metal component element of the present invention as described above is as follows.
Al:
Al is added because it has a function of improving the carrier density of the transparent conductive film obtained by sputtering and imparting conductivity to the film, but if the content is less than 0.5 atomic%, the conductivity improving effect is added. On the other hand, if the Al content exceeds 8 atomic%, the sinterability of the target deteriorates, which is not preferable. Therefore, the content ratio of Al in all the metal component elements contained in this sputtering target is set to Al: 0.5 to 8 atomic%.

Mg:
Mgは、スパッタリングすることにより得られた透明導電膜のバンドギャップを調整し、短波長の光に対する透明性の向上及び近赤外波長の光に対する透明性向上に有効である。Mg含有量が5原子%未満であると、短波長領域の透過率が低下してしまい、一方、Mg含有量が30原子%を超えると、透明導電膜の導電性が著しく低下するようになることから、全金属成分元素に占めるMgの含有割合をMg:5〜30原子%に定めた。
Mg:
Mg is effective in adjusting the band gap of the transparent conductive film obtained by sputtering and improving the transparency with respect to light having a short wavelength and the transparency with respect to light having a near infrared wavelength. When the Mg content is less than 5 atomic%, the transmittance in the short wavelength region is reduced. On the other hand, when the Mg content exceeds 30 atomic%, the conductivity of the transparent conductive film is significantly reduced. Therefore, the content ratio of Mg in all metal component elements was determined to be Mg: 5 to 30 atomic%.

Ga:
Gaは、透明導電膜中の金属成分元素としてGaを0.01原子%以上含有させることによって、膜の透明性を損なうことなく且つバンドギャップを維持しつつ、高い導電性を得ることができる。Ga含有量が0.01原子%未満であると、AlのZn酸化物への拡散助剤としての機能が十分に得られず、一方、Ga含有量が0.15原子%を超えると、焼結後のターゲットの結晶粒子が異常成長しやすく、焼結体としての強度が低下しスパッタ中にターゲットが割れやすくなることから、透明導電膜中に含まれる全金属成分元素に占めるGaの含有割合をGa:0.01〜0.15原子%と定めた。
Ga:
By containing 0.01 atomic% or more of Ga as a metal component element in the transparent conductive film, high conductivity can be obtained while maintaining the band gap without impairing the transparency of the film. When the Ga content is less than 0.01 atomic%, the function of Al as a diffusion aid for Zn oxide cannot be sufficiently obtained. On the other hand, when the Ga content exceeds 0.15 atomic%, Since the crystal grains of the target after the sintering tend to abnormally grow, the strength as a sintered body is reduced and the target is easily cracked during sputtering, the Ga content ratio in the total metal component elements contained in the transparent conductive film Was determined as Ga: 0.01 to 0.15 atomic%.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る透明導電膜用スパッタリングターゲットの製造方法によれば、Alの酸化物とMgの酸化物とGaの酸化物とZnの酸化物とを上記含有割合で配合した混合粉末を加圧焼結させるので、Gaが拡散助剤として作用しAlのZn酸化物への拡散を促進し、導電性がさらに向上したAl−Mg−Ga−Zn系酸化物スパッタリングターゲットを得ることができる。
したがって、本発明の製造方法で作製した透明導電膜用スパッタリングターゲットは、高い導電性を有しているので、安定したDCスパッタリングを可能とし、また透明性および導電性に優れた透明導電膜を成膜することができる。
The present invention has the following effects.
That is, according to the method for manufacturing a sputtering target for a transparent conductive film according to the present invention, a mixed powder in which Al oxide, Mg oxide, Ga oxide, and Zn oxide are mixed in the above content ratio is added. Since pressure sintering is performed, Ga acts as a diffusion aid, promotes diffusion of Al into Zn oxide, and an Al—Mg—Ga—Zn-based oxide sputtering target with further improved conductivity can be obtained.
Therefore, since the sputtering target for transparent conductive film produced by the production method of the present invention has high conductivity, stable DC sputtering is possible, and a transparent conductive film excellent in transparency and conductivity is formed. Can be membrane.

本発明に係る透明導電膜用スパッタリングターゲットおよびその製造方法の実施例において、作製した焼結体についてEPMAによる元素分布マッピングを示す画像である。In the Example of the sputtering target for transparent conductive films which concerns on this invention, and its manufacturing method, it is an image which shows element distribution mapping by EPMA about the produced sintered compact.

以下、本発明に係る透明導電膜用スパッタリングターゲットおよびその製造方法の一実施形態を説明する。
本実施形態の透明導電膜用スパッタリングターゲットの製造方法は、Alの酸化物とMgの酸化物とGaの酸化物とZnの酸化物とを、金属成分元素の含有割合が、Al:0.5〜8原子%、Mg:5〜30原子%、Ga:0.01〜0.15原子%、残部:Znからなるように配合し、前記酸化物を粉砕混合して混合粉末を作製する工程と、この混合粉末を真空または不活性ガス雰囲気中で圧力を加えながら加熱して焼結させる工程と、を有している。
Hereinafter, an embodiment of a sputtering target for a transparent conductive film and a method for producing the same according to the present invention will be described.
The manufacturing method of the sputtering target for transparent conductive films of this embodiment has Al oxide, Mg oxide, Ga oxide, and Zn oxide, and the content rate of a metal component element is Al: 0.5. ~ 8 atomic%, Mg: 5-30 atomic%, Ga: 0.01-0.15 atomic%, the balance: a step of preparing a mixed powder by pulverizing and mixing the oxides, and Zn And heating and sintering the mixed powder while applying pressure in a vacuum or an inert gas atmosphere.

上記製法の一例について詳述すれば、例えば、まず原料粉末として、純度99.9%以上および平均粒径0.05〜1μmを有した市販のAl粉、MgO粉、Ga粉およびZnO粉を、所定の組成となるように秤量・配合する。平均粒径0.05μm未満の原料粉は、焼結性がよいが、加圧による圧粉体密度が低く、焼結時の収縮率が大きく、割れを生じることがあり、一方、平均粒径1μmを超える原料粉は、加圧による圧粉体密度は高いが、焼結性に乏しい。従って、低い焼結温度で高密度の焼結体を得るには平均粒径0.05〜1μmの原料粉が好ましい。これら粉末を、混合助剤のアルコールと共にボールミル用ポットに装入し、直径5mmのジルコニアボールを用いて、好ましくは24時間以上湿式混合する。得られた混合粉末は80℃で5時間真空乾燥した。 If described in detail an example of the above process, for example, first as a raw material powder, a commercially available Al 2 O 3 powder having a purity of 99.9% or higher and an average particle diameter of 0.05 to 1 [mu] m, MgO powder, Ga 2 O 3 Powder and ZnO powder are weighed and blended so as to have a predetermined composition. Raw material powder having an average particle size of less than 0.05 μm has good sinterability, but the density of the green compact by pressurization is low, the shrinkage rate during sintering is large, and cracks may occur. Raw material powder exceeding 1 μm has a high density of green compacts by pressurization, but has poor sinterability. Therefore, raw material powder having an average particle size of 0.05 to 1 μm is preferable for obtaining a high-density sintered body at a low sintering temperature. These powders are charged into a ball mill pot together with alcohol as a mixing aid, and wet-mixed preferably using a zirconia ball having a diameter of 5 mm for 24 hours or more. The obtained mixed powder was vacuum-dried at 80 ° C. for 5 hours.

作製した混合粉末を、黒鉛のモールドに充填し、真空中で10℃/minの昇温温度、最高温度1000〜1350℃、150〜500kgf/cmの圧力でホットプレスすることにより焼結体を作製し、この焼結体を機械加工により所定形状として透明導電膜形成用スパッタリングターゲットを作製する。また、焼結体に電流を通しながら加熱加圧する方法(プラズマ加圧焼結法)は焼結温度を更に低下させ、焼結時間を短縮する効果があり、より好ましい。このようにして作製された透明導電膜形成用スパッタリングターゲットは、金属成分元素の含有割合が、原子比で、Al:0.5〜8原子%、Mg:5〜30原子%、Ga:0.01〜0.15原子%、残部Znからなる酸化物スパッタリングターゲットである。また、この透明導電膜形成用スパッタリングターゲットは、体積抵抗が、1×10−2Ω・cm以下、すなわち0.0001〜0.01Ω・cmの良好な導電性を有している。 The prepared mixed powder is filled into a graphite mold and hot-pressed in vacuum at a temperature rising temperature of 10 ° C./min, a maximum temperature of 1000 to 1350 ° C., and a pressure of 150 to 500 kgf / cm 2. The sputtering target for transparent conductive film formation is produced by making this sintered body into a predetermined shape by machining. Further, a method of heating and pressing while passing an electric current through the sintered body (plasma pressure sintering method) is more preferable because it has an effect of further lowering the sintering temperature and shortening the sintering time. In the sputtering target for forming a transparent conductive film thus produced, the content ratio of the metal component elements is Al: 0.5 to 8 atomic%, Mg: 5 to 30 atomic%, Ga: 0.00. It is an oxide sputtering target composed of 01 to 0.15 atomic% and the balance Zn. Moreover, this sputtering target for transparent conductive film formation has favorable electroconductivity whose volume resistance is 1 * 10 <-2 > ohm * cm or less, ie, 0.0001-0.01 ohm * cm.

スパッタリングを行う際の好ましいスパッタ条件は、例えば、以下のとおりである。
まず、スパッタリングターゲットの相対密度は90%以上であることが好ましく、相対密度が90%未満では、成膜速度が低下する他、得られる膜の膜質が低下する。スパッタリングターゲットの相対密度は95%以上であることがより好ましく、97%以上であることがさらに好ましい。
なお、上記のスパッタリングターゲットの純度は、99%以上であることが好ましい。純度が99%未満では、不純物により、得られる膜の導電性や化学的安定性が低下する。さらに、スパッタリングターゲットの純度は99.9%以上であることがより好ましく、99.99%以上であることがさらに好ましい。
Preferred sputtering conditions for performing sputtering are, for example, as follows.
First, the relative density of the sputtering target is preferably 90% or more. When the relative density is less than 90%, the film formation rate is lowered and the film quality of the obtained film is lowered. The relative density of the sputtering target is more preferably 95% or more, and still more preferably 97% or more.
Note that the purity of the sputtering target is preferably 99% or more. If the purity is less than 99%, the conductivity and chemical stability of the resulting film are reduced due to impurities. Furthermore, the purity of the sputtering target is more preferably 99.9% or more, and further preferably 99.99% or more.

さらに、上述したスパッタリングターゲットを用いてDCスパッタリングを行うにあたっては、まず、スパッタリング装置の真空槽内に成膜用の基板(以下「成膜基板」という。)およびスパッタリングターゲットを装着し、装置,成膜基板,スパッタリングターゲット等に吸着されている水分の除去を行うことが望ましい。   Further, in performing DC sputtering using the above-described sputtering target, first, a film-forming substrate (hereinafter referred to as “film-forming substrate”) and a sputtering target are mounted in a vacuum chamber of the sputtering apparatus, and the apparatus, the substrate is formed. It is desirable to remove moisture adsorbed on the film substrate, sputtering target, or the like.

上記水分の除去は、例えば、真空槽の到達真空圧力が5×10−4Pa以下(5×10−4Pa以下の低圧)になるまで真空引きすることによって行うことができる。真空引きの間は加熱することが好ましく、この加熱によって、水分の除去をより確実に行うことが可能になると共に、真空引きの時間を短縮することが可能になる。このときの到達真空圧力が5×10−4Paを超える(5×10−4Paより圧力が高い)と、装置,成膜基板,スパッタリングターゲット等に吸着されている水分の除去が不十分となり易いことから、得られる膜の緻密性が低下し、膜の導電性および耐湿性に影響を与える。なお、使用するスパッタリング装置の排気系は、クライオポンプを用いたり水分を除去するためのトラップまたはゲッタを有していることが好ましい。 The removal of the water can be performed, for example, by evacuating until the ultimate vacuum pressure of the vacuum chamber is 5 × 10 −4 Pa or less (low pressure of 5 × 10 −4 Pa or less). Heating is preferably performed during evacuation, and this heating makes it possible to more reliably remove moisture and shorten the time for evacuation. The ultimate vacuum pressure at this time is more than 5 × 10 -4 Pa (the pressure higher than 5 × 10 -4 Pa), apparatus, film formation substrate, removal of moisture adsorbed on the sputtering target or the like becomes insufficient Since it is easy, the denseness of the obtained film is lowered, which affects the conductivity and moisture resistance of the film. Note that the exhaust system of the sputtering apparatus to be used preferably has a trap or getter for removing moisture by using a cryopump.

上記の真空引きを行った後、透明導電膜の成膜を行うが、成膜時のスパッタガス圧は1×10−2〜2×10Paとすることが好ましい。このスパッタガス圧が1×10−2Pa未満(1×10−2Paより低圧)では成膜時の放電安定性が低下し、1×10Paを超える(1×10Paより圧力が高い)とスパッタリングターゲットへの印加電圧を高くすることが困難になる。成膜時のスパッタガス圧は0.1〜1Paとすることがさらに好ましい。 After performing the above-described evacuation, a transparent conductive film is formed. The sputtering gas pressure during film formation is preferably 1 × 10 −2 to 2 × 10 0 Pa. The sputtering gas pressure is decreased discharge stability of 1 × 10 -2 less than Pa (1 × 10 -2 lower pressure than Pa) at the time of film formation, 1 × more than 10 0 Pa (1 × 10 0 pressure than Pa is High), it becomes difficult to increase the voltage applied to the sputtering target. The sputtering gas pressure during film formation is more preferably 0.1 to 1 Pa.

また、平板型ターゲットを用いて成膜時の直流電源出力は1W/cm以上10W/cm以下にすることが好ましい。この出力が10W/cmを超えると、得られる膜の緻密性が低下する。そして、成膜時の出力は3〜8W/cmとすることがより好ましい。また、成膜時のスパッタ電圧は200〜500Vとすることが好ましい。 Moreover, it is preferable that the direct-current power output during film formation is 1 W / cm 2 or more and 10 W / cm 2 or less using a flat target. When this output exceeds 10 W / cm 2 , the denseness of the resulting film decreases. The output during film formation is more preferably 3 to 8 W / cm 2 . Moreover, it is preferable that the sputtering voltage at the time of film-forming shall be 200-500V.

成膜時の雰囲気ガスとしては、通常、アルゴンガス(Arガス)のみでも十分な高透明性膜が得られるが、アルゴンガス(Arガス)と酸素ガス(Oガス)との混合ガスを用いることも可能である。ArガスとOガスの混合比は、用いるスパッタリングターゲットの酸化状態や成膜時の真空状態および出力により異なってくるが、雰囲気ガスに占めるOガスの体積濃度が5%を超えると、得られる膜の導電性が低下し易くなる。したがって、成膜時の雰囲気ガスに占めるOガスの体積濃度は5%以下とすることが好ましく、3%以下とすることがより好ましい。
なお、雰囲気ガスの純度は99.991%以上とすることが好ましく、99.995%以上とすることがより好ましく、99.999%以上とすることが特に好ましい。
As the atmospheric gas during the film formation, a sufficient highly transparent film is usually obtained only with argon gas (Ar gas), but a mixed gas of argon gas (Ar gas) and oxygen gas (O 2 gas) is used. It is also possible. The mixing ratio of Ar gas and O 2 gas varies depending on the oxidation state of the sputtering target to be used, the vacuum state at the time of film formation, and the output, but when the volume concentration of O 2 gas in the atmospheric gas exceeds 5%, The conductivity of the resulting film tends to decrease. Therefore, the volume concentration of O 2 gas in the atmospheric gas during film formation is preferably 5% or less, and more preferably 3% or less.
Note that the purity of the atmospheric gas is preferably 99.991% or more, more preferably 99.995% or more, and particularly preferably 99.999% or more.

成膜時の基板温度は、室温〜成膜基板の耐熱温度の範囲内で適宜選択可能であるが、基板温度が200℃を超えると、多くの樹脂基板ではその耐熱温度を超えるため、使用できる基板の種類が強く制限される。また、基板温度が50℃未満では、得られる膜の緻密性が低下するので、成膜時の基板温度は50〜200℃とすることが好ましく、80〜200℃とすることがより好ましく、100〜200℃とすることが特に好ましい。   The substrate temperature at the time of film formation can be appropriately selected within the range of room temperature to the heat resistant temperature of the film formed substrate, but if the substrate temperature exceeds 200 ° C., it can be used because many resin substrates exceed the heat resistant temperature. The type of substrate is strongly limited. Further, if the substrate temperature is less than 50 ° C., the denseness of the resulting film is lowered, so that the substrate temperature during film formation is preferably 50 to 200 ° C., more preferably 80 to 200 ° C., 100 It is especially preferable to set it to -200 degreeC.

成膜基板は、目的とする透明導電膜の用途等に応じて適宜選択可能であり、ガラス基板,金属基板,耐熱性樹脂基板,太陽電池(作製途中のもの)等、特に制限はない。前記のガラス基板の具体例としては、ソーダ石灰ガラス,鉛ガラス,硼硅酸ガラス、高硅酸ガラス,無アルカリガラス等からなるガラス基板や、これらのガラス基板上にSiO,SiO(1≦x<2),TiO(1≦x≦2)等をコートしたものが挙げられる。 The film formation substrate can be appropriately selected depending on the intended use of the transparent conductive film, and there is no particular limitation such as a glass substrate, a metal substrate, a heat-resistant resin substrate, a solar cell (in the process of production), and the like. Specific examples of the glass substrate include glass substrates made of soda lime glass, lead glass, borosilicate glass, high oxalate glass, non-alkali glass, etc., and SiO 2 , SiO x (1 ≦ x <2), TiO x (1 ≦ x ≦ 2), etc. are coated.

また、前記の金属基板の具体例としては、ステンレス箔,銅箔,アルミ箔等の金属箔の他、こられの金属箔と同質の金属板,金属シート等が挙げられる。そして、前記の耐熱性樹脂基板の具体例としては、ポリエチレンテレフタレート等のポリエステル樹脂,ポリカーボネート樹脂,ポリアリレート樹脂,ポリエーテルスルホン樹脂,アモルファスポリオレフィン樹脂,ポリスチレン樹脂,アクリル樹脂等、熱変形温度が概ね70℃以上の樹脂からなる成形体,フィルム,シート等や、これらの表面にガスバリヤ層,耐溶剤層,ハードコート層等を形成したものが挙げられる。   Specific examples of the metal substrate include metal foils such as stainless steel foil, copper foil, and aluminum foil, as well as metal plates and metal sheets having the same quality as the metal foil. Specific examples of the heat-resistant resin substrate include a polyester resin such as polyethylene terephthalate, a polycarbonate resin, a polyarylate resin, a polyethersulfone resin, an amorphous polyolefin resin, a polystyrene resin, an acrylic resin, and the like. Examples thereof include a molded body, a film, a sheet, and the like made of a resin having a temperature equal to or higher than ° C., and a gas barrier layer, a solvent resistant layer, a hard coat layer, and the like formed on these surfaces.

このように本実施形態の透明導電膜用スパッタリングターゲットの製造方法では、Alの酸化物とMgの酸化物とGaの酸化物とZnの酸化物とを上記含有割合で配合した混合粉末を加圧焼結させるので、Gaが拡散助剤としてAlのZn酸化物への拡散を促進し、導電性がさらに向上したAl−Mg−Ga−Zn系酸化物スパッタリングターゲットを得ることができる。すなわち、体積抵抗が、1×10−2Ω・cm以下のAl−Mg−Ga−Zn系酸化物スパッタリングターゲットが得られる。
また、本実施形態では、Gaを添加すると共にホットプレス等の加圧焼結を行うので、Ga添加による焼結促進、緻密化温度低減の効果とホットプレス等の加圧焼結による焼結促進、緻密化温度低減の効果とを同時に利用し、その相乗効果でスパッタに適した高密度、高電気伝導性のターゲットを得ることができる。
Thus, in the manufacturing method of the sputtering target for transparent conductive films of this embodiment, the mixed powder which mix | blended Al oxide, Mg oxide, Ga oxide, and Zn oxide in the said content rate is pressurized. Since sintering is performed, Ga can promote diffusion of Al into Zn oxide as a diffusion aid, and an Al—Mg—Ga—Zn-based oxide sputtering target with further improved conductivity can be obtained. That is, an Al—Mg—Ga—Zn-based oxide sputtering target having a volume resistance of 1 × 10 −2 Ω · cm or less is obtained.
Further, in this embodiment, Ga is added and pressure sintering such as hot pressing is performed. Therefore, sintering enhancement by adding Ga, the effect of reducing the densification temperature, and sintering promotion by pressure sintering such as hot pressing are performed. In addition, by utilizing the effect of reducing the densification temperature at the same time, a high density and high electrical conductivity target suitable for sputtering can be obtained by the synergistic effect.

上記本実施形態に基づいて、実際に透明導電膜用スパッタリングターゲットを製造した際の実施例について以下に説明する。   Based on the said embodiment, the Example at the time of actually manufacturing the sputtering target for transparent conductive films is demonstrated below.

本発明の実施例の原料粉末として、純度99.9%以上平均粒子径0.4μmのAl原料粉、純度99.9%以上平均粒子径1μmのMgO原料粉、純度99.9%以上平均粒子径0.3μmのGa原料粉および純度99.9%以上平均粒子径0.4μmのZnO原料粉を表1の所定の組成となるように秤量・配合した。この配合した粉末を、ポリエチレン製ポットに投入し、直径3mmのジルコニアボールを使用してボールミルを行い、混合、粉砕(なお、ボールミルに使用する溶媒はエタノールであり、分散剤や他の助剤は添加せず)し、目標平均粒子径(0.3μm)に到達したスラリーを真空乾燥機にて80℃で5時間真空乾燥した。500μmの篩いの目を用いた篩い分けを行って、混合粉の平均粒子径を500μm以下に造粒した。 As raw material powders of examples of the present invention, Al 2 O 3 raw material powder having a purity of 99.9% or more and an average particle diameter of 0.4 μm, MgO raw material powder having a purity of 99.9% or more and an average particle diameter of 1 μm, purity of 99.9% The Ga 2 O 3 raw material powder having an average particle diameter of 0.3 μm and the ZnO raw material powder having a purity of 99.9% or more and an average particle diameter of 0.4 μm were weighed and blended so as to have the predetermined composition shown in Table 1. The blended powder is put into a polyethylene pot, ball milled using zirconia balls with a diameter of 3 mm, mixed and pulverized (note that the solvent used in the ball mill is ethanol, and the dispersant and other auxiliaries are The slurry that reached the target average particle size (0.3 μm) was vacuum-dried at 80 ° C. for 5 hours in a vacuum dryer. Sieving using a 500 μm sieve mesh was performed to granulate the mixed powder to an average particle size of 500 μm or less.

この乾燥した混合粉を黒鉛のモールドに充填し、真空中で10℃/minの昇温温度、最高温度1000〜1350℃、150〜500kgf/cmの圧力でホットプレスすることにより、直径165×厚さ9mmの焼結体を作製し、その後、機械加工により、直径152.4×厚さ6mmのサイズの透明導電膜形成用スパッタリングターゲット(本実施例1〜6)を作製した。
さらに、比較例として、上記同様な方法で、Al、Ga、Mg添加量が当該範囲を超える組成を用いて、ターゲットを作製した(比較例1〜5)。
The dried mixed powder is filled into a graphite mold and hot-pressed in vacuum at a temperature rising temperature of 10 ° C./min, a maximum temperature of 1000 to 1350 ° C., and a pressure of 150 to 500 kgf / cm 2 , thereby obtaining a diameter of 165 × A sintered body having a thickness of 9 mm was prepared, and thereafter, a sputtering target for forming a transparent conductive film having a diameter of 152.4 × thickness of 6 mm (Examples 1 to 6) was prepared by machining.
Furthermore, as a comparative example, a target was prepared by a method similar to the above using a composition in which the added amount of Al, Ga, and Mg exceeded the range (Comparative Examples 1 to 5).

また、比較のため、特許文献1と同様の製法で透明導電膜形成用スパッタリングターゲット(表1の従来例1〜4)を作製した。   For comparison, a transparent conductive film forming sputtering target (conventional examples 1 to 4 in Table 1) was produced by the same production method as in Patent Document 1.

まず、従来例の原料粉末として、純度99.9%以上平均粒子径0.4μmのAl原料粉、純度99.9%以上平均粒子径1μmのMgO原料粉および純度99.9%以上平均粒子径0.4μmのZnO原料粉を所定の組成となるように秤量した。秤量した原料粉のうち、AlとZnOとを配合し、配合した粉末を、ポリエチレン製ポットに投入し、直径3mmのジルコニアボールを使用してボールミルを8時間行い、混合、粉砕した(なお、ボールミルに使用する溶媒はエタノールであり、分散剤や他の助剤は添加せず)。この後、真空乾燥機にて80℃で5時間真空乾燥した後に、500μmの篩いの目を用いた篩い分けを行って、混合粉の平均粒子径を500μm以下にした。 First, as a raw material powder of a conventional example, an Al 2 O 3 raw material powder having a purity of 99.9% or more and an average particle diameter of 0.4 μm, an MgO raw material powder having a purity of 99.9% or more and an average particle diameter of 1 μm, and a purity of 99.9% or more ZnO raw material powder having an average particle size of 0.4 μm was weighed so as to have a predetermined composition. Among the weighed raw material powders, Al 2 O 3 and ZnO were blended, the blended powder was put into a polyethylene pot, and ball milling was performed for 8 hours using zirconia balls having a diameter of 3 mm, followed by mixing and grinding ( The solvent used for the ball mill is ethanol, and no dispersant or other auxiliary agent is added). Then, after vacuum-drying at 80 degreeC with a vacuum dryer for 5 hours, sieving using a 500 micrometers sieve was performed, and the average particle diameter of mixed powder was 500 micrometers or less.

次に、この造粒した混合粉を、大気中にて1000℃で3時間仮焼してAlとZnOとの仮焼粉を作製し、この仮焼粉にさらに上述のMgO原料粉を加え、直径3mmのジルコニアボールを使用してボールミルを8時間行い、混合、粉砕した(なお、ボールミルに使用する溶媒はエタノールであり、分散剤や他の助剤は添加せず)。この後、真空乾燥機にて80℃で5時間真空乾燥した後に、500μmの篩いの目を用いた篩い分けを行って、混合粉の平均粒子径を500μm以下に造粒した。 Next, this granulated mixed powder is calcined in the atmosphere at 1000 ° C. for 3 hours to prepare a calcined powder of Al 2 O 3 and ZnO, and the above-mentioned MgO raw material powder is further added to the calcined powder. Was added, and ball milling was performed for 8 hours using zirconia balls having a diameter of 3 mm, followed by mixing and pulverization (note that the solvent used in the ball mill was ethanol, and no dispersant or other auxiliary agent was added). Then, after vacuum-drying at 80 degreeC with a vacuum dryer for 5 hours, sieving using a 500 micrometers sieve was performed, and the average particle diameter of mixed powder was granulated to 500 micrometers or less.

次に、この造粒した混合粉を、1000℃で3時間仮焼してAlとZnOとMgOとの仮焼粉を作製し、直径3mmのジルコニアボールを使用してボールミルを24時間行い、混合、粉砕した(なお、ボールミルに使用する溶媒はエタノールであり、分散剤や他の助剤は添加せず)。この後、この仮焼粉を真空乾燥機にて80℃で5時間真空乾燥した後に、500μmの篩いの目を用いた篩い分けを行って、混合粉の平均粒子径を500μm以下に造粒した。 Next, the granulated mixed powder is calcined at 1000 ° C. for 3 hours to prepare a calcined powder of Al 2 O 3 , ZnO and MgO, and a ball mill is used for 24 hours using zirconia balls having a diameter of 3 mm. (The solvent used in the ball mill is ethanol, and no dispersant or other auxiliary agent is added). Thereafter, the calcined powder was vacuum-dried at 80 ° C. for 5 hours in a vacuum dryer, and then sieved using a 500 μm sieve mesh to granulate the mixed powder to an average particle size of 500 μm or less. .

次に、この造粒した仮焼粉を、圧力500kgf/cmの金型プレスで加圧成形し、さらに1400℃、5時間、酸素雰囲気中で焼成することにより、焼結体を作製し、その後、機械加工により、本発明の実施例と同様のサイズの透明導電膜形成用スパッタリングターゲット(従来例1〜4)を作製した。 Next, the granulated calcined powder is pressure-molded with a die press having a pressure of 500 kgf / cm 2 and further fired in an oxygen atmosphere at 1400 ° C. for 5 hours to produce a sintered body. Then, the transparent conductive film formation sputtering target (conventional examples 1-4) of the same size as the Example of this invention was produced by machining.

このように従来例および本発明の実施例、比較例の製法で作製したそれぞれの焼結体の理論密度比を計算し、表1に記載した。理論密度比は、以下のように計算した
理論密度比%=(焼結体の体積密度/理論密度)×100
理論密度=1/(原料中Alの重量%/Alの密度+原料中Gaの重量%/Gaの密度+原料中MgOの重量%/MgOの密度+原料中ZnOの重量%/ZnOの密度)
Thus, the theoretical density ratios of the respective sintered bodies produced by the production methods of the conventional example, the examples of the present invention, and the comparative examples were calculated and listed in Table 1. The theoretical density ratio was calculated as follows: theoretical density ratio% = (volume density of sintered body / theoretical density) × 100
Density weight% / MgO of the theoretical density = 1 / (weight of raw material Al 2 O 3% / Al 2 O 3 of the weight of the density + raw material Ga 2 O 3% / Ga 2 O 3 of density + raw material MgO + Wt% of ZnO in raw material / ZnO density)

さらに、ターゲットの比抵抗を、三菱化学製抵抗測定器ロレスターを用いて測定した。測定の結果、従来例1〜4による焼結体では比抵抗が高くレンジオーバーとなり測定できず、導電性がなかったのに対し、本発明の実施例1〜6による焼結体は、最大7×10−3Ω・cmと良好な導電性が得られた。なお、特許文献1では、30〜60×10−3Ω・cmのバルク抵抗が得られたと記載されているが、上記のように追試の結果、従来例1〜4による焼結体では導電性を得ることができなかった。たとえ従来例による焼結体が特許文献1に記載のような比抵抗であっても、本発明の実施例による焼結体では、従来例に比べて1桁以上低い比抵抗が得られていることがわかる。 Furthermore, the specific resistance of the target was measured using a Mitsubishi Chemical resistance measuring instrument Lorestar. As a result of the measurement, the sintered bodies according to the conventional examples 1 to 4 had a high specific resistance and could not be measured, and were not electrically conductive. On the other hand, the sintered bodies according to the examples 1 to 6 of the present invention had a maximum of 7 Good conductivity of × 10 −3 Ω · cm was obtained. In Patent Document 1, it is described that a bulk resistance of 30 to 60 × 10 −3 Ω · cm was obtained. However, as a result of additional tests as described above, the sintered bodies according to Conventional Examples 1 to 4 are conductive. Could not get. Even if the sintered body according to the conventional example has a specific resistance as described in Patent Document 1, the sintered body according to the example of the present invention has a specific resistance that is lower by one digit or more than the conventional example. I understand that.

このように、本発明の実施例の製造方法では、Gaが拡散助剤としてAlのZn酸化物への拡散を促進し、Zn2+中にAl3+が固溶することで、導電性がさらに向上したAl−Mg−Ga−Zn系酸化物スパッタリングターゲットが得られるものと考えられる。
なお、図1に本発明の実施例の製法で作製した焼結体について、EPMA(電子線マイクロアナライザ)測定による元素分布マッピングを示す画像を示す。このEPMA画像からも、Alが組織中に分散していることがわかる。
Thus, in the manufacturing method of the embodiment of the present invention, Ga promotes diffusion of Al into Zn oxide as a diffusion aid, and Al 3+ dissolves in Zn 2+ to further improve conductivity. An Al—Mg—Ga—Zn-based oxide sputtering target is considered to be obtained.
In addition, the image which shows element distribution mapping by EPMA (electron beam microanalyzer) measurement about the sintered compact produced by the manufacturing method of the Example of this invention in FIG. 1 is shown. This EPMA image also shows that Al is dispersed in the structure.

次に、従来例及び本発明の実施例、比較例のターゲットを、直流スパッタ法を用いて評価を行った。すなわち、直流スパッタ電源(MKS社製RPG−50)を用いて、各ターゲットがスパッタ可能かどうかをテストした。   Next, the targets of the conventional example, the examples of the present invention, and the comparative example were evaluated using a direct current sputtering method. That is, it was tested whether each target can be sputtered using a DC sputtering power source (RPG-50 manufactured by MKS).

スパッタ時のスパッタガスはArのみ、スパッタ時のガス圧は0.6Pa、基板とターゲットとの間の距離は70mm、基板温度は室温とした。各ターゲット(φ152.4)に投入した電力は1200Wである。さらに、1200Wで30min連続放電を行い、電源に備えた異常放電カウンターを用いて、30min連続スパッタした際の異常放電回数を計測し、またスパッタによるターゲットの割れの有無を目視で確認した。その後、ガラス基板(コーニング1737#)上に300nm成膜し、膜の電気抵抗を四探針法を用いて(三菱化学製抵抗測定器ロレスター)測定した。全ての結果を、表2に示す。   The sputtering gas during sputtering was Ar only, the gas pressure during sputtering was 0.6 Pa, the distance between the substrate and the target was 70 mm, and the substrate temperature was room temperature. The electric power supplied to each target (φ152.4) is 1200 W. Furthermore, continuous discharge was performed at 1200 W for 30 minutes, the number of abnormal discharges during 30 minutes of continuous sputtering was measured using an abnormal discharge counter provided in the power source, and the presence or absence of target cracking due to sputtering was visually confirmed. Thereafter, a 300 nm film was formed on a glass substrate (Corning 1737 #), and the electric resistance of the film was measured using a four probe method (Mitsubishi Chemical Resistance Tester Lorestar). All results are shown in Table 2.

表2の実験結果から、従来例1〜4のターゲットは電気抵抗が高いため、直流スパッタが出来なかった。一方、比較例1はAlの添加量が少ないため、ターゲット抵抗が高く、同様に直流スパッタが出来なかった。比較例2は、Alの添加量が多いため、ターゲットの焼結性が低下し、ターゲット密度が低く、スパッタ時の異常放電が多く膜の電気抵抗も高くなった。比較例3は、Mgの含有量が多いため、ターゲットの抵抗が高くスパッタ時の異常放電も多くなった。さらに、膜の電気抵抗も高いことが判る。   From the experimental results shown in Table 2, the targets of Conventional Examples 1 to 4 could not be DC sputtered because of their high electrical resistance. On the other hand, in Comparative Example 1, since the amount of Al added was small, the target resistance was high and DC sputtering could not be performed as well. In Comparative Example 2, since the amount of Al added was large, the sinterability of the target was reduced, the target density was low, the abnormal discharge during sputtering was large, and the electrical resistance of the film was high. In Comparative Example 3, since the content of Mg was large, the resistance of the target was high, and abnormal discharge during sputtering increased. Furthermore, it can be seen that the electrical resistance of the film is also high.

比較例4は、Gaの添加が過剰に多かったため、焼結中ターゲットの結晶粒が成長し、バルクとしての強度が低下し、DC連続スパッタではターゲットにひび割れが発生し、それによって異常放電が激増した。比較例5はGaが添加されていなく、Gaの焼結促進効果が得られていない。そのため、ターゲットの密度が低く、スパッタ中に割れが発生した。   In Comparative Example 4, since Ga was excessively added, crystal grains of the target grew during sintering, the strength as a bulk decreased, and cracks occurred in the target in DC continuous sputtering, which caused a dramatic increase in abnormal discharge. did. In Comparative Example 5, Ga was not added, and the effect of promoting the sintering of Ga was not obtained. Therefore, the density of the target was low, and cracking occurred during sputtering.

以上の比較結果から、本発明の実施例による製造方法では、Gaが拡散助剤としてAlのZn酸化物への拡散を促進し、Zn2+中にAl3+が固溶することで、導電性がさらに向上したAl−Mg−Ga−Zn系酸化物スパッタリングターゲットは、長時間スパッタ時の異常放電の発生が顕著に少なく、さらに耐スパッタ割れ性が優れる。 From the above comparison results, in the manufacturing method according to the example of the present invention, Ga promotes diffusion of Al into Zn oxide as a diffusion aid, and Al 3+ dissolves in Zn 2+ so that conductivity is improved. Further improved Al—Mg—Ga—Zn-based oxide sputtering target has significantly less occurrence of abnormal discharge during long-time sputtering, and is further excellent in spatter crack resistance.

なお、本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.

以上のとおり、本発明の透明導電膜用スパッタリングターゲットの製造方法は、高い導電性を有する透明導電膜用スパッタリングターゲットを作製できるため、例えば、太陽電池用や有機EL用などの透明導電膜を高い成膜速度で安定してDCスパッタリング可能なスパッタリングターゲットを作製する方法として期待される。   As mentioned above, since the manufacturing method of the sputtering target for transparent conductive films of this invention can produce the sputtering target for transparent conductive films which has high electroconductivity, for example, the transparent conductive films for solar cells, organic EL, etc. are high. It is expected as a method for producing a sputtering target capable of DC sputtering stably at a deposition rate.

Claims (2)

金属成分元素の含有割合が、Al:0.5〜8原子%、Mg:5〜30原子%、Ga:0.01〜0.15原子%、残部:Znからなる酸化物ターゲットであって、
体積抵抗が、1×10−2Ω・cm以下であることを特徴とする透明導電膜用スパッタリングターゲット。
The content ratio of the metal component element is an oxide target composed of Al: 0.5 to 8 atom%, Mg: 5 to 30 atom%, Ga: 0.01 to 0.15 atom%, and the balance: Zn,
A sputtering target for a transparent conductive film, wherein the volume resistance is 1 × 10 −2 Ω · cm or less.
Alの酸化物とMgの酸化物とGaの酸化物とZnの酸化物とを、金属成分元素の含有割合が、Al:0.5〜8原子%、Mg:5〜30原子%、Ga:0.01〜0.15原子%、残部:Znからなるように配合し、前記酸化物を粉砕混合して混合粉末を作製する工程と、
前記混合粉末を真空または不活性ガス雰囲気中で圧力を加えながら加熱して焼結させる工程と、を有していることを特徴とする透明導電膜用スパッタリングターゲットの製造方法。
Al oxide, Mg oxide, Ga oxide, and Zn oxide have a metal component element content ratio of Al: 0.5 to 8 atomic%, Mg: 5 to 30 atomic%, Ga: 0.01-0.15 atomic%, the balance: blended to consist of Zn, pulverize and mix the oxide to produce a mixed powder;
And heating and sintering the mixed powder while applying pressure in a vacuum or an inert gas atmosphere. A method for producing a sputtering target for a transparent conductive film, comprising:
JP2010173691A 2009-12-16 2010-08-02 Sputtering target for transparent conductive film and method for producing the same Expired - Fee Related JP5613926B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010173691A JP5613926B2 (en) 2010-08-02 2010-08-02 Sputtering target for transparent conductive film and method for producing the same
CN201080052554.6A CN102666910B (en) 2009-12-16 2010-12-14 Transparent conductive film, solar cell using same, sputtering target for forming said transparent conductive film, and manufacturing method therefor
KR1020127015378A KR20120094035A (en) 2009-12-16 2010-12-14 Transparent conductive film, solar cell using same, sputtering target for forming said transparent conductive film, and manufacturing method therefor
PCT/JP2010/072844 WO2011074694A1 (en) 2009-12-16 2010-12-14 Transparent conductive film, solar cell using same, sputtering target for forming said transparent conductive film, and manufacturing method therefor
EP10837718.5A EP2514851B1 (en) 2009-12-16 2010-12-14 Transparent conductive film, solar cell using same, sputtering target for forming said transparent conductive film, and manufacturing method therefor
TW099143981A TWI504771B (en) 2009-12-16 2010-12-15 Transparent conductive film, a solar cell using the transparent conductive film, and a sputtering target for forming a transparent conductive film and a method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010173691A JP5613926B2 (en) 2010-08-02 2010-08-02 Sputtering target for transparent conductive film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012031491A true JP2012031491A (en) 2012-02-16
JP5613926B2 JP5613926B2 (en) 2014-10-29

Family

ID=45845242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010173691A Expired - Fee Related JP5613926B2 (en) 2009-12-16 2010-08-02 Sputtering target for transparent conductive film and method for producing the same

Country Status (1)

Country Link
JP (1) JP5613926B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114008000A (en) * 2019-06-27 2022-02-01 出光兴产株式会社 Oxide sintered body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111123A (en) * 1994-08-17 1996-04-30 Asahi Glass Co Ltd Transparent conductive film, producing method thereof and sputtering terget
WO2006129410A1 (en) * 2005-05-30 2006-12-07 Nippon Mining & Metals Co., Ltd. Sputtering target and process for producing the same
WO2007141994A1 (en) * 2006-06-08 2007-12-13 Sumitomo Metal Mining Co., Ltd. Oxide sinter, target, transparent conductive film obtained from the same, and transparent conductive base
WO2008018402A1 (en) * 2006-08-11 2008-02-14 Hitachi Metals, Ltd. Zinc oxide sinter, process for producing the same, and sputtering target
JP2009071034A (en) * 2007-09-13 2009-04-02 Kaneka Corp Thin film photoelectric converion device and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111123A (en) * 1994-08-17 1996-04-30 Asahi Glass Co Ltd Transparent conductive film, producing method thereof and sputtering terget
WO2006129410A1 (en) * 2005-05-30 2006-12-07 Nippon Mining & Metals Co., Ltd. Sputtering target and process for producing the same
WO2007141994A1 (en) * 2006-06-08 2007-12-13 Sumitomo Metal Mining Co., Ltd. Oxide sinter, target, transparent conductive film obtained from the same, and transparent conductive base
WO2008018402A1 (en) * 2006-08-11 2008-02-14 Hitachi Metals, Ltd. Zinc oxide sinter, process for producing the same, and sputtering target
JP2009071034A (en) * 2007-09-13 2009-04-02 Kaneka Corp Thin film photoelectric converion device and its manufacturing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6011006273; Quan-Bao MA, et al.: 'Effects of Mg doping on the properties of highly transparent conductive and near infrared reflective' Journal of Solid State Chemistry vol.181, 2008, p.525-529 *
JPN7011000413; J.G.LU, et al.: 'Carrier concentration induced band-gap shift in Al-doped Zn1-xMgxO thin films' APPLIED PHYSICS LETTERS vol.89, 2006, p.262107-1 - 262107-3 *
JPN7011000414; K.MATSUBARA, et al.: 'Band-gap modified Al-doped Zn1-xMgxO transparent conducting films deposited by pulsed laser depositi' APPLIED PHYSICS LETTERS vol.85, no.8, 2004, p.1374-1376 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114008000A (en) * 2019-06-27 2022-02-01 出光兴产株式会社 Oxide sintered body
CN114008000B (en) * 2019-06-27 2024-01-12 出光兴产株式会社 Oxide sintered body

Also Published As

Publication number Publication date
JP5613926B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP4760154B2 (en) Oxide sintered body, oxide transparent conductive film, and production method thereof
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP4552950B2 (en) Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
JP2007250369A (en) Transparent conductive film and its manufacturing method
JP2013173658A (en) Tin oxide-based sintered body and method for manufacturing the same
WO2011074694A1 (en) Transparent conductive film, solar cell using same, sputtering target for forming said transparent conductive film, and manufacturing method therefor
TWI554627B (en) Sputtering target and high resistance transparent film manufacturing method
JP5186371B2 (en) Method for forming transparent conductive film
JP5082927B2 (en) Method for producing ZnO vapor deposition material
WO2014148189A1 (en) Zinc oxide-based sintered object, process for producing same, sputtering target, and transparent conductive film
JP2007246318A (en) Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film
JP5613926B2 (en) Sputtering target for transparent conductive film and method for producing the same
JP5169313B2 (en) Method for producing ZnO vapor deposition material
JP5488970B2 (en) Transparent conductive film, solar cell using this transparent conductive film, and sputtering target for forming transparent conductive film
JP5952031B2 (en) Oxide sintered body manufacturing method and target manufacturing method
JP2008255473A (en) ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM
JP6155919B2 (en) Composite oxide sintered body and oxide transparent conductive film
JP5018552B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
KR20150039753A (en) Oxide Sintered Body and Tablet Obtained by Processing Same
JP5761253B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP2012148937A (en) Electrically conductive composite oxide, zinc oxide type sintered body, method for manufacturing it and target
JP2014097920A (en) Zinc oxide-based powder and method for producing zinc oxide-based sintered compact
WO2013042747A1 (en) Oxide sintered body, method for producing same, and oxide transparent conductive film
JP2012126619A (en) Zinc oxide sintered compact and method for producing the same
JP2014097921A (en) Method for producing zinc oxide-based sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140820

R150 Certificate of patent or registration of utility model

Ref document number: 5613926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees