JP2012031046A - Crystal growth method, method of manufacturing semiconductor device, and high-pressure device used for implementation of the crystal growth method - Google Patents

Crystal growth method, method of manufacturing semiconductor device, and high-pressure device used for implementation of the crystal growth method Download PDF

Info

Publication number
JP2012031046A
JP2012031046A JP2011040345A JP2011040345A JP2012031046A JP 2012031046 A JP2012031046 A JP 2012031046A JP 2011040345 A JP2011040345 A JP 2011040345A JP 2011040345 A JP2011040345 A JP 2011040345A JP 2012031046 A JP2012031046 A JP 2012031046A
Authority
JP
Japan
Prior art keywords
pressure
vessel
crystal
crystal growth
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011040345A
Other languages
Japanese (ja)
Inventor
Osamu Oda
小田  修
Takashi Egawa
孝志 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2011040345A priority Critical patent/JP2012031046A/en
Publication of JP2012031046A publication Critical patent/JP2012031046A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To grow a crystal at further high temperature and high pressure, in crystal growth using a solvothermal method.SOLUTION: In a so-called solvothermal method for growing a crystal by putting an appropriate solvent in a high-pressure vessel, and putting appropriate basic, neutral and acidic mineralizers and a compound therein to pressurize and heat them, a high-pressure vessel of a double structure including an internal vessel 1 for heating and an external vessel 9 for placing the internal vessel 1 therein to pressurize the outside thereof is used for the high-pressure vessel; the internal vessel 1 is heated; the external vessel 9 is pressurized with the increase of the internal pressure of the internal vessel 1 by the heating to prevent generation of a difference between the pressure of the internal vessel 1 and that of the external vessel 9; and, when the temperature of the internal vessel 1 reaches a predetermined value, crystal growth is performed by keeping that condition.

Description

本発明は、ソルボサーマル法による結晶成長方法、半導体装置の製造方法および結晶成長方法の実施に用いる高圧装置に関する。   The present invention relates to a crystal growth method by a solvothermal method, a semiconductor device manufacturing method, and a high-pressure apparatus used for carrying out the crystal growth method.

ソルボサーマル法により成長できる水晶をはじめとする単結晶は、圧電素子など様々な機能的素子として応用されている。特に最近は酸化亜鉛やGaNなどのIII族窒化物半導体の単結晶が注目を浴びている。これらの半導体は、バンドギャップが大きく、破壊電界強度が高く、かつ高融点であることから、そうした物性を活かすデバイスとして、圧電素子、電子デバイス、発光素子、レーザーなどさまざまな応用が研究、開発されている。   Single crystals including quartz that can be grown by a solvothermal method are applied as various functional elements such as piezoelectric elements. Recently, group III nitride semiconductor single crystals such as zinc oxide and GaN have attracted attention. Since these semiconductors have a large band gap, high breakdown electric field strength, and high melting point, various applications such as piezoelectric elements, electronic devices, light emitting elements, and lasers have been researched and developed as devices that make use of these physical properties. ing.

ソルボサーマル法では、高圧容器の中に適切な溶媒を入れ、これに適当な塩基性、中性、酸性の鉱化剤と原料となる元素または化合物を入れて、これを加圧、加熱して結晶を成長させる。   In the solvothermal method, an appropriate solvent is placed in a high-pressure vessel, an appropriate basic, neutral or acidic mineralizer and a raw material element or compound are added, and this is pressurized and heated. Grow crystals.

実際、溶媒を水とした水熱合成法では、水晶、酸化亜鉛などの単結晶が成長され、水晶は工業的に製造されている。また、溶媒をアンモニアとしたアモノサーマル法では、GaNの単結晶の成長について研究開発されている(例えば、特許文献1−6、非特許文献1−6参照)。   Actually, in a hydrothermal synthesis method using water as a solvent, single crystals such as quartz and zinc oxide are grown, and quartz is manufactured industrially. In addition, the ammonothermal method using ammonia as a solvent has been researched and developed for the growth of GaN single crystals (see, for example, Patent Documents 1-6 and 1-6).

特開2003−277182号公報JP 2003-277182 A 特開2004−2152号公報Japanese Patent Laid-Open No. 2004-2152 特開2007−39321号公報JP 2007-39321 A 特開2007−238347号公報JP 2007-238347 A 特開2008−143778号公報JP 2008-143778 A 特許4229624号Japanese Patent No. 4229624

K. Byrappa, "Hydrothermal Growth of Crystals", Handbook of Crystal Growth, Vol.2, ed. By D.T.J. Hurle, (1994, Elsebvier Science), Ch.9, pp. 465-562.K. Byrappa, "Hydrothermal Growth of Crystals", Handbook of Crystal Growth, Vol.2, ed. By D.T.J.Hurle, (1994, Elsebvier Science), Ch.9, pp. 465-562. 吉川彰ほか、「ソルボサーマル法によるZnOパルク結晶作製とそのGaN結晶への応用」、日本結晶成長学会誌、Vol3(2005) p.15-19.Akira Yoshikawa et al., “Preparation of ZnO Parc Crystal by Solvothermal Method and Its Application to GaN Crystal”, Journal of Crystal Growth Society of Japan, Vol3 (2005) p.15-19. D. Ehrentraut et al., "Solvothermal Growth of ZnO", Prog.Crystal Growth Charact. Mater., 52(2006), 280-335.D. Ehrentraut et al., "Solvothermal Growth of ZnO", Prog. Crystal Growth Charact. Mater., 52 (2006), 280-335. R. Swilinski et al., "Bulk Ammonothermal GaN", J. Crystal Growth, 31(2009), 3015-3018.R. Swilinski et al., "Bulk Ammonothermal GaN", J. Crystal Growth, 31 (2009), 3015-3018. T. Hashimoto et al. "Growth of Bulk GaN Crystals by the Basit Ammonothermal Method", Jpn. J. Appl. Phys., 46(2007), L889-891.T. Hashimoto et al. "Growth of Bulk GaN Crystals by the Basit Ammonothermal Method", Jpn. J. Appl. Phys., 46 (2007), L889-891. D. Ehrentraut et al., "Physico-chemical Featuers of the Acid Ammonothermal Growth of GaN", J. Crystal Growth, 310(2008) 891-895.D. Ehrentraut et al., "Physico-chemical Featuers of the Acid Ammonothermal Growth of GaN", J. Crystal Growth, 310 (2008) 891-895.

ソルボサーマル法では、加圧、加熱するために高圧容器を用いるが、これらの高圧容器は高圧ガス法の認可が必要である。実際、これまで工業的、あるいは研究開発に使われていた高圧容器は全て、高圧ガス法に基づいて実施されてきた。このため、高圧装置の製造コストがかかり、製品のコスト削減に限界があった。   In the solvothermal method, high-pressure vessels are used for pressurization and heating, but these high-pressure vessels require the approval of the high-pressure gas method. In fact, all high-pressure vessels that have been used industrially or for research and development have been carried out based on the high-pressure gas method. For this reason, the manufacturing cost of the high pressure device is high, and there is a limit to the cost reduction of the product.

従来の方法では、高圧容器の圧力を高圧として、その容器の外側から加熱して結晶成長をしていた。このため、容器材料の温度、圧力が高くなり、破壊の恐れがあるため、高圧ガス法上、容器の大きさにもよるが、所定の温度、圧力以上に加圧、加熱ができなかった。   In the conventional method, the pressure of the high-pressure vessel is set to a high pressure and the crystal is grown by heating from the outside of the vessel. For this reason, since the temperature and pressure of the container material are increased and there is a risk of destruction, the high-pressure gas method could not be pressurized or heated above a predetermined temperature and pressure, depending on the size of the container.

また、加圧、加熱条件が、高圧ガス法上認められない場合にあっては、実験そのものも実施することができず、新規の材料の結晶成長の研究開発に支障をきたしていた。   In addition, when the pressurization and heating conditions were not recognized by the high pressure gas method, the experiment itself could not be carried out, which hindered the research and development of crystal growth of a new material.

本発明は上記点に鑑みてなされたものであり、ソルボサーマル法を用いた結晶成長において、より高温、高圧で結晶成長ができるようにすることを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to enable crystal growth at higher temperatures and pressures in crystal growth using the solvothermal method.

上記目的を達成するため、請求項1に記載の発明では、高圧容器の中に結晶と溶媒を入れ、加圧、加熱して結晶を成長させるソルボサーマル法を用いた結晶成長方法において、
前記高圧容器として、前記結晶と溶媒を入れる内部容器と、この内部容器を入れてその外側を加圧するための外部容器とを有する二重構造の高圧容器を用い、
前記内部容器を加熱し、この加熱による前記内部容器の内部の圧力の上昇に伴い、前記外部容器を加圧して、前記内部容器と前記外部容器の圧力差が生じないようにし、前記内部容器の温度が所定の温度に達したら、その状態を保持して結晶成長を行うことを特徴とする。
In order to achieve the above object, in the invention described in claim 1, in a crystal growth method using a solvothermal method in which a crystal and a solvent are put in a high-pressure vessel, and the crystal is grown by pressurization and heating.
As the high-pressure vessel, using a double-structured high-pressure vessel having an inner vessel for containing the crystal and solvent, and an outer vessel for putting the inner vessel and pressurizing the outside thereof,
The inner container is heated, and as the internal pressure of the inner container increases due to the heating, the outer container is pressurized to prevent a pressure difference between the inner container and the outer container. When the temperature reaches a predetermined temperature, the state is maintained and crystal growth is performed.

この発明によれば、高圧容器として、結晶と溶媒を入れる内部容器と、この内部容器を入れてその外側を加圧するための外部容器とを有する二重構造の高圧容器を用いているから、加熱中に内部容器を外部容器とほとんど同じ圧力とすることができるため、従来よりも高温、高圧で結晶成長ができる。このため、従来よりもより成長速度が速くできるほか、結晶品質も向上できる。   According to this invention, as the high-pressure vessel, a double-structured high-pressure vessel having an inner vessel for containing crystals and a solvent and an outer vessel for putting the inner vessel and pressurizing the outside thereof is used. Since the inner container can be almost at the same pressure as the outer container, crystals can be grown at a higher temperature and pressure than in the prior art. For this reason, the growth rate can be made faster than before and the crystal quality can be improved.

請求項2に記載の発明では、請求項1に記載の結晶成長方法により得られた結晶から半導体装置を製造する半導体装置の製造方法を特徴とする。   According to a second aspect of the present invention, there is provided a semiconductor device manufacturing method for manufacturing a semiconductor device from a crystal obtained by the crystal growth method according to the first aspect.

この発明によれば、請求項1に記載の結晶成長方法により得られた、結晶品質が向上した結晶を用いてウェーハ、デバイスなどの半導体装置を製造することができる。   According to the present invention, a semiconductor device such as a wafer and a device can be manufactured using the crystal having improved crystal quality obtained by the crystal growth method according to claim 1.

請求項3に記載の発明では、高圧容器の中に結晶と溶媒を入れ、加圧、加熱して結晶を成長させるソルボサーマル法を用いた結晶成長方法の実施に用いる高圧装置であって、
前記高圧容器は、結晶と溶媒を入れる内部容器と、この内部容器を入れてその外側を加圧するための外部容器とを有する二重構造の高圧容器であり、
当該高圧装置は、さらに
前記内部容器を加熱する加熱手段と、
前記外部容器を加圧する加圧手段と、
前記内部容器と前記外部容器の圧力差を得るための圧力検出手段と、を備えることを特徴とする。
The invention described in claim 3 is a high-pressure apparatus used for carrying out a crystal growth method using a solvothermal method in which a crystal and a solvent are placed in a high-pressure vessel, and pressurized and heated to grow the crystal.
The high-pressure vessel is a double-structured high-pressure vessel having an inner vessel for containing crystals and a solvent, and an outer vessel for putting the inner vessel and pressurizing the outside thereof,
The high-pressure device further includes heating means for heating the inner container,
A pressurizing means for pressurizing the external container;
Pressure detecting means for obtaining a pressure difference between the inner container and the outer container.

この発明によれば、請求項1に記載の結晶成長方法を適切に実施することができる。   According to the present invention, the crystal growth method according to claim 1 can be appropriately performed.

なお、加熱手段としては、請求項4に記載の発明のように、外部容器の中に設置された電気炉とし、この電気炉内に内部容器を設置して内部容器を加熱するようにすることができる。また、外部容器を加圧する加圧手段としては、後述する実施の形態に示すように、コンプレッサ、高圧バルブなどを用いたものとすることができる。また、内部容器と外部容器の圧力差を得るための圧力検出手段としては、後述する実施の形態に示すように、内部容器と外部容器のそれぞれの圧力を検出する圧力計のほか、内部容器と外部容器の圧力差を検出する差圧計などを用いることができる。   The heating means is an electric furnace installed in an external container as in the invention described in claim 4, and the internal container is installed in the electric furnace to heat the internal container. Can do. Moreover, as a pressurizing means for pressurizing the external container, a compressor, a high-pressure valve, or the like can be used as shown in an embodiment described later. In addition, as a pressure detection means for obtaining a pressure difference between the inner container and the outer container, as shown in an embodiment described later, in addition to a pressure gauge for detecting the respective pressures of the inner container and the outer container, A differential pressure gauge or the like that detects the pressure difference of the external container can be used.

本発明によるソルボサーマル法の構成(高圧装置)を示す概要図である。It is a schematic diagram which shows the structure (high pressure apparatus) of the solvothermal method by this invention. 従来のソルボサーマル法の構成(高圧装置)を示す概要図である。It is a schematic diagram which shows the structure (high pressure apparatus) of the conventional solvothermal method.

従来のソルボサーマル法では、全て図2のように、高圧容器を加圧した状態で、高圧容器の外側から加熱していた。本実施の形態においては、図1のように、高圧容器を二重にする。すなわち、高圧容器を、内部容器(内部高圧容器)1と、この内部容器1を入れてその外側を加圧するための外部容器(外部高圧容器)9とを有する二重構造の高圧容器とする。外部容器1には、コンプレッサ12、高圧バルブ11などの加圧手段および容器内部の圧力を検出するための圧力計10が備えられている。なお、図1、図2において、2は種結晶、3は原料、4はバッフル板、5は上部ヒーター、6は下部ヒーター、7は圧力計、8は高圧バルブである。   In the conventional solvothermal method, as shown in FIG. 2, heating is performed from the outside of the high-pressure vessel in a state where the high-pressure vessel is pressurized. In the present embodiment, as shown in FIG. That is, the high-pressure vessel is a double-structured high-pressure vessel having an inner vessel (internal high-pressure vessel) 1 and an outer vessel (external high-pressure vessel) 9 for putting the inner vessel 1 and pressurizing the outside thereof. The external container 1 is provided with pressurizing means such as a compressor 12 and a high-pressure valve 11 and a pressure gauge 10 for detecting the pressure inside the container. In FIGS. 1 and 2, 2 is a seed crystal, 3 is a raw material, 4 is a baffle plate, 5 is an upper heater, 6 is a lower heater, 7 is a pressure gauge, and 8 is a high-pressure valve.

図1に示す高圧装置において、内側の内部容器1には溶媒として、水ないしはアンモニアなどを充填する。この際、溶媒は、所定の温度で所定の圧力となるように高圧バルブ8を介して充填する。加熱していない状態では、内部容器1に圧力がかかっても、容器の大きさにもよるが室温であるため高圧法上かなり高い圧力まで加圧することが可能である。実際は、加熱したときの圧力上昇を鑑みて所定の温度になった時に許容される圧力まで加圧することになる。あるいは、所定の温度になった時に許容される圧力となるように、溶媒を充填する。   In the high-pressure apparatus shown in FIG. 1, the inner container 1 is filled with water or ammonia as a solvent. At this time, the solvent is filled through the high-pressure valve 8 so as to reach a predetermined pressure at a predetermined temperature. In an unheated state, even if pressure is applied to the inner container 1, it can be pressurized to a considerably high pressure in the high pressure method because it is at room temperature depending on the size of the container. Actually, the pressure is increased to an allowable pressure when the temperature reaches a predetermined temperature in view of the pressure increase when heated. Alternatively, the solvent is filled so that an allowable pressure is reached when a predetermined temperature is reached.

上記の状態で、内部容器1の加熱を開始するが、加熱とともに内部容器1の内部の圧力が上昇する。この圧力の上昇に伴い、外部容器9に加圧する。この加圧のためには窒素ないしはアルゴンなどの不活性ガスを用いると良い。結晶成長するための所定の温度まで内部容器1の内部の圧力が上昇するが、内部容器1と外部容器9の圧力差が生じないように、外部容器9を加圧する。この際、コンプレッサ12により例えば2000気圧まで圧力を高めた不活性ガスを用いて外部容器9を加圧する。そして、内部容器1の温度が所定の温度に達したら、その状態を保持して結晶成長を行う。冷却するときも逆の手順で内部容器1と外部容器9の圧力差が生じないように減圧するため、内部容器1に圧力がほとんどかからないため、容器破損の心配がなく、従来よりより高い圧力、高い温度で結晶育成が可能となる。
(実施例)
以下に本発明を実施するための具体的な態様について述べる。本発明はこれらの方法に限定されず、これらに類する方法でも実施できる。所定の高圧容器用合金で作製された内部容器1(オートクレーブ)の底部に、原料3として粒径が0.05〜5mm程度のGaN多結晶を充填し、さらにGaをその10%程度添加する。次に開口率6%程度のバッフル板4を内部容器1の中間に設置し、内部容器を原料充填部と結晶成長部に区分する。次いで種結晶2としてC軸方向に垂直な面で切り出し鏡面研磨された100mm×150mm程度の板状GaN単結晶をPt製の枠にC軸が水平方向を向くよう上下数段程度に吊り下げ、この枠を上記結晶成長部に配置する。溶媒であるNH3を酸性硬化剤であるNH4Clとともに充填率80%程度で内部容器1に注入し、キャップにより封止する。
In the above state, heating of the inner container 1 is started, but the pressure inside the inner container 1 increases with heating. As the pressure increases, the external container 9 is pressurized. For this pressurization, an inert gas such as nitrogen or argon is preferably used. Although the internal pressure of the internal container 1 rises to a predetermined temperature for crystal growth, the external container 9 is pressurized so that a pressure difference between the internal container 1 and the external container 9 does not occur. At this time, the outer container 9 is pressurized using an inert gas whose pressure has been increased to, for example, 2000 atmospheres by the compressor 12. Then, when the temperature of the inner container 1 reaches a predetermined temperature, the state is maintained and crystal growth is performed. Since the pressure is reduced so that the pressure difference between the inner container 1 and the outer container 9 does not occur in the reverse procedure when cooling, the inner container 1 is hardly pressurized, so there is no risk of container breakage, higher pressure than before, Crystal growth is possible at a high temperature.
(Example)
Specific embodiments for carrying out the present invention will be described below. The present invention is not limited to these methods and can be carried out by methods similar to these. A GaN polycrystal having a particle size of about 0.05 to 5 mm is filled as a raw material 3 at the bottom of an inner vessel 1 (autoclave) made of a predetermined high-pressure vessel alloy, and about 10% of Ga is added. Next, a baffle plate 4 having an aperture ratio of about 6% is placed in the middle of the inner vessel 1 and the inner vessel is divided into a raw material filling portion and a crystal growth portion. Next, a plate-like GaN single crystal of about 100 mm × 150 mm cut and mirror-polished as a seed crystal 2 in a plane perpendicular to the C-axis direction is suspended on a Pt frame in several steps so that the C-axis faces the horizontal direction. This frame is disposed in the crystal growth part. NH3 as a solvent is poured into the inner container 1 together with NH4Cl as an acidic curing agent at a filling rate of about 80% and sealed with a cap.

この内部容器1を、外部容器9の中に設置された上下二段に分かれたヒーター5、6で構成された電気炉内に設置し、外部容器9に接続された高圧配管、ヒーター電極に接続する。この後、外部容器9を封止して加圧できるように配管する。   This inner container 1 is installed in an electric furnace composed of two upper and lower heaters 5 and 6 installed in an outer container 9 and connected to high-pressure piping and heater electrodes connected to the outer container 9. To do. Thereafter, piping is performed so that the outer container 9 can be sealed and pressurized.

内部容器1を結晶成長部の温度が原料充填部の温度より常に高くなるよう保ったまま、原料充填部を650℃程度、結晶成長部を700℃程度まで昇温する。この時の内部容器1の圧力は約3000気圧程度まで昇圧するが、内部容器1の温度上昇に即して、外部容器9を加圧し、内部容器1内の圧力と外部容器9内の圧力がほぼ同じとなるように圧力計7と圧力計10を見て調整しながら、内部容器1を昇温する。所定の温度に達したら、その状態を90日程度保持して結晶を育成する。この際、常時、内部容器1内の圧力と外部容器9内の圧力がほぼ同じとなるように圧力計7と圧力計10を見て調整する。この調整は、圧力計の信号をもとに自動調整しても構わない。   While keeping the temperature of the crystal growth part always higher than the temperature of the raw material filling part, the temperature of the raw material filling part is raised to about 650 ° C. and the crystal growth part is raised to about 700 ° C. At this time, the pressure of the inner container 1 is increased to about 3000 atm. However, the outer container 9 is pressurized in accordance with the temperature rise of the inner container 1, and the pressure in the inner container 1 and the pressure in the outer container 9 are increased. The inner container 1 is heated while adjusting the pressure gauge 7 and the pressure gauge 10 so as to be substantially the same. When a predetermined temperature is reached, the state is maintained for about 90 days to grow crystals. At this time, the pressure gauge 7 and the pressure gauge 10 are always adjusted so that the pressure in the inner container 1 and the pressure in the outer container 9 are substantially the same. This adjustment may be automatically adjusted based on the signal from the pressure gauge.

冷却する際は、昇温したときと同様に、内部容器1内の圧力と外部容器9内の圧力がほぼ同じとなるように圧力計7と圧力計10を見て調整しながら冷却する。室温まで冷却し、育成したGaN単結晶を取り出す。この方法により、種結晶2の裏表にそれぞれ長さ約100mmのGaN単結晶が得られるため、バルク単結晶として、100×150×200mmの大型結晶が得られる。このバルク結晶は円筒研削した後、厚さ400μm厚程度でスライス後、コロイダルシリカにて鏡面研磨し、素子作製用のウエハーを得ることができる。通常はC面で切り出すが、切り出す方位を選べば、反極性、非極性いずれのGaN単結晶ウエハーも得ることができる。
(比較例)
図2に示すように内部容器1だけで結晶育成する。原料の充填については、上記した実施例と同じに行う。この際、高圧容器1はそのまま加熱されるため、高圧法上、内部容器の材質にもよるが、約1500気圧程度が上限であり、このため、溶媒であるNH3と酸性鉱化剤であるNH4Clとともに充填率65%程度とする。また、圧力に制限があるため、温度も550℃程度までしか上げることができない。結晶成長は500℃程度でこの温度で、上記した実施例と同じく90日程度保持して結晶を育成する。室温まで冷却し育成したGaN単結晶は、結晶成長温度が非常に低いので、種結晶2の裏表にそれぞれわずか長さ約3mmのGaN単結晶しか育成できていなかった。同様な条件で育成した例は、文献にも多数記載されているが、全て、単一容器で加熱、加圧するため、成長温度が高くできないため、最高温度成長速度が遅く、小さい結晶しか得られなかった。
When cooling, the pressure gauge 7 and the pressure gauge 10 are viewed and adjusted so that the pressure in the inner container 1 and the pressure in the outer container 9 are substantially the same as when the temperature is raised. Cool to room temperature and take out the grown GaN single crystal. By this method, a GaN single crystal having a length of about 100 mm is obtained on both sides of the seed crystal 2, so that a large crystal of 100 × 150 × 200 mm is obtained as a bulk single crystal. This bulk crystal is cylindrically ground, sliced to a thickness of about 400 μm, and then mirror-polished with colloidal silica to obtain a wafer for device fabrication. Usually, the GaN single crystal wafer is cut out at the C-plane. However, if the orientation to be cut out is selected, a GaN single crystal wafer of either antipolarity or nonpolarity can be obtained.
(Comparative example)
As shown in FIG. 2, crystals are grown only in the inner container 1. About filling of a raw material, it carries out similarly to the above-mentioned Example. At this time, since the high-pressure vessel 1 is heated as it is, depending on the material of the inner vessel in the high-pressure method, the upper limit is about 1500 atm. Therefore, NH3 as a solvent and NH4Cl as an acidic mineralizer are used. At the same time, the filling rate is about 65%. In addition, since the pressure is limited, the temperature can only be increased to about 550 ° C. Crystal growth is carried out at about 500 ° C., and this temperature is maintained for about 90 days as in the above-described embodiment to grow crystals. Since the GaN single crystal grown by cooling to room temperature has a very low crystal growth temperature, only a GaN single crystal having a length of about 3 mm could be grown on both sides of the seed crystal 2. Many examples of growth under similar conditions are described in the literature, but since all growth is performed by heating and pressurizing in a single container, the growth temperature cannot be increased, so the maximum temperature growth rate is slow and only small crystals can be obtained. There wasn't.

このように従来の方法では、高圧容器の圧力を高圧として、その容器の外側から加熱して結晶成長をしていた。このため、容器材料の温度、圧力が高くなり、破壊の恐れがあるため、高圧ガス法上、容器の大きさにもよるが、所定の温度、圧力以上に昇温、加圧ができなかったが、上記した本実施の形態による方法を用いれば、加熱中に内部容器を外部容器とほとんど同じ圧力とすることができるため、従来の温度、圧力以上に昇温、加圧できるようになった。   Thus, in the conventional method, the pressure of the high-pressure vessel is set to a high pressure, and the crystal is grown from the outside of the vessel. For this reason, the temperature and pressure of the container material become high and there is a risk of destruction. Depending on the size of the container in the high-pressure gas method, the temperature could not be raised or pressurized above the predetermined temperature and pressure. However, if the method according to the present embodiment described above is used, the inner container can be brought to almost the same pressure as the outer container during the heating, so that the temperature can be raised and pressurized above the conventional temperature and pressure. .

このため、より高い温度、圧力で結晶成長できるようになったため、従来よりもより成長速度が速くできるほか、結晶品質も向上できるようになった。   As a result, the crystal can be grown at a higher temperature and pressure, so that the growth rate can be made faster than before and the crystal quality can be improved.

1 内部容器
2 種結晶
3 原料
4 パッフル板
5 上部ヒーター
6 下部ヒーター
7 圧力計
8 高圧バルブ
9 外部容器
10 圧力計
11 高圧バルブ
12 コンプレッサ
DESCRIPTION OF SYMBOLS 1 Internal container 2 Seed crystal 3 Raw material 4 Paffle board 5 Upper heater 6 Lower heater 7 Pressure gauge 8 High pressure valve 9 External container 10 Pressure gauge 11 High pressure valve 12 Compressor

Claims (5)

高圧容器の中に結晶と溶媒を入れ、加圧、加熱して結晶を成長させるソルボサーマル法を用いた結晶成長方法において、
前記高圧容器として、前記結晶と溶媒を入れる内部容器と、この内部容器を入れてその外側を加圧するための外部容器とを有する二重構造の高圧容器を用い、
前記内部容器を加熱し、この加熱による前記内部容器の内部の圧力の上昇に伴い、前記外部容器を加圧して、前記内部容器と前記外部容器の圧力差が生じないようにし、前記内部容器の温度が所定の温度に達したら、その状態を保持して結晶成長を行うことを特徴とする結晶成長方法。
In a crystal growth method using a solvothermal method in which a crystal and a solvent are placed in a high-pressure vessel, and the crystal is grown by pressurization and heating.
As the high-pressure vessel, using a double-structured high-pressure vessel having an inner vessel for containing the crystal and solvent, and an outer vessel for putting the inner vessel and pressurizing the outside thereof,
The inner container is heated, and as the internal pressure of the inner container increases due to the heating, the outer container is pressurized to prevent a pressure difference between the inner container and the outer container. When the temperature reaches a predetermined temperature, crystal growth is performed while maintaining the state.
請求項1に記載の結晶成長方法により得られた結晶から半導体装置を製造する半導体装置の製造方法。   A semiconductor device manufacturing method for manufacturing a semiconductor device from a crystal obtained by the crystal growth method according to claim 1. 高圧容器の中に結晶と溶媒を入れ、加圧、加熱して結晶を成長させるソルボサーマル法を用いた結晶成長方法の実施に用いる高圧装置であって、
前記高圧容器は、結晶と溶媒を入れる内部容器と、この内部容器を入れてその外側を加圧するための外部容器とを有する二重構造の高圧容器であり、
当該高圧装置は、さらに
前記内部容器を加熱する加熱手段と、
前記外部容器を加圧する加圧手段と、
前記内部容器と前記外部容器の圧力差を得るための圧力検出手段と、を備えることを特徴とする高圧装置。
A high-pressure apparatus used for carrying out a crystal growth method using a solvothermal method in which a crystal and a solvent are placed in a high-pressure vessel, and pressurized and heated to grow the crystal,
The high-pressure vessel is a double-structured high-pressure vessel having an inner vessel for containing crystals and a solvent, and an outer vessel for putting the inner vessel and pressurizing the outside thereof,
The high-pressure device further includes heating means for heating the inner container,
A pressurizing means for pressurizing the external container;
And a pressure detection means for obtaining a pressure difference between the inner container and the outer container.
請求項3に記載の高圧装置において、前記加熱手段は、前記外部容器の中に設置された電気炉であり、この電気炉内に前記内部容器が設置されることを特徴とする高圧装置。   4. The high-pressure apparatus according to claim 3, wherein the heating means is an electric furnace installed in the outer container, and the inner container is installed in the electric furnace. 請求項1−4に記載の内容において、溶媒としてアンモニアを用い、鉱化剤として酸性鉱化剤を用いてGaN単結晶を結晶成長する際に、温度を580℃以上、圧力を1700気圧以上とすることを特徴とする結晶成長方法、半導体装置の製造方法および高圧装置。   In the content of Claim 1-4, when growing a GaN single crystal using ammonia as a solvent and an acidic mineralizer as a mineralizer, the temperature is 580 ° C. or higher and the pressure is 1700 atmospheres or higher. A crystal growth method, a semiconductor device manufacturing method, and a high-pressure apparatus.
JP2011040345A 2010-06-28 2011-02-25 Crystal growth method, method of manufacturing semiconductor device, and high-pressure device used for implementation of the crystal growth method Withdrawn JP2012031046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040345A JP2012031046A (en) 2010-06-28 2011-02-25 Crystal growth method, method of manufacturing semiconductor device, and high-pressure device used for implementation of the crystal growth method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010146452 2010-06-28
JP2010146452 2010-06-28
JP2011040345A JP2012031046A (en) 2010-06-28 2011-02-25 Crystal growth method, method of manufacturing semiconductor device, and high-pressure device used for implementation of the crystal growth method

Publications (1)

Publication Number Publication Date
JP2012031046A true JP2012031046A (en) 2012-02-16

Family

ID=45844932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040345A Withdrawn JP2012031046A (en) 2010-06-28 2011-02-25 Crystal growth method, method of manufacturing semiconductor device, and high-pressure device used for implementation of the crystal growth method

Country Status (1)

Country Link
JP (1) JP2012031046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111485289A (en) * 2020-04-13 2020-08-04 上海玺唐半导体科技有限公司 Heating device and heating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111485289A (en) * 2020-04-13 2020-08-04 上海玺唐半导体科技有限公司 Heating device and heating method

Similar Documents

Publication Publication Date Title
TWI402217B (en) Method for growing group iii-nitride crystals in supercritical ammonia using an autoclave
JP5377521B2 (en) Method for testing group III nitride wafers and group III nitride wafers with test data
JP4942270B2 (en) Crystalline gallium nitride and method of forming crystalline gallium nitride
US11913136B2 (en) Thermal control for formation and processing of aluminum nitride
WO2008044744A1 (en) Process for producing single crystal of silicon carbide
EP2733239A1 (en) Sic single crystal and manufacturing process therefor
US11555256B2 (en) Aluminum nitride crystals having low urbach energy and high transparency to deep-ultraviolet wavelengths
JP2012012259A (en) Nitride crystal and method for producing the same
JP4083449B2 (en) CdTe single crystal manufacturing method
EP2264227A1 (en) Zinc oxide single crystal and method for producing the same
JP2002241112A (en) Method for manufacturing group xiii nitride crystal
JP2007204324A (en) Manufacturing method of high purity zinc oxide single crystal, and high purity zinc oxide single crystal
EP2639345A1 (en) Apparatus and method for production of aluminum nitride single crystal
JP2012031046A (en) Crystal growth method, method of manufacturing semiconductor device, and high-pressure device used for implementation of the crystal growth method
Jin et al. Industrial growth and characterization of Si‐doped GaAs crystal by a novel multi‐crucible Bridgman method
WO2015012190A1 (en) METHOD FOR PRODUCING SiC SUBSTRATES
JP2012171863A (en) Method for producing nitride crystal, and crystal production apparatus
US20130263775A1 (en) Apparatus used for the growth of group-iii nitride crystals utilizing carbon fiber containing materials and group-iii nitride grown therewith
JP4936829B2 (en) Method for growing zinc oxide crystals
WO2020235315A1 (en) Crystal growth apparatus and crystal growth method
JP2010070424A (en) Method for producing high resistivity and high purity zinc oxide single crystal
JP5751182B2 (en) Nitride crystal manufacturing method, reaction vessel and crystal manufacturing apparatus
EP2133450A1 (en) Substrate for epitaxial growth and method for producing nitride compound semiconductor single crystal
JP2014227313A (en) Installation method of reaction vessel, and production method of nitride semiconductor crystal of group 13 metal in periodic table using pressure-resistant container with reaction vessel installed therein by installation method
JP2012136423A (en) Method for producing nitride crystal and apparatus for producing crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513