JP2012031004A - SEMI-INSULATIVE GaAs SINGLE CRYSTAL WAFER - Google Patents

SEMI-INSULATIVE GaAs SINGLE CRYSTAL WAFER Download PDF

Info

Publication number
JP2012031004A
JP2012031004A JP2010171268A JP2010171268A JP2012031004A JP 2012031004 A JP2012031004 A JP 2012031004A JP 2010171268 A JP2010171268 A JP 2010171268A JP 2010171268 A JP2010171268 A JP 2010171268A JP 2012031004 A JP2012031004 A JP 2012031004A
Authority
JP
Japan
Prior art keywords
semi
single crystal
gaas single
dislocation density
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010171268A
Other languages
Japanese (ja)
Inventor
Koji Taiho
幸司 大宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010171268A priority Critical patent/JP2012031004A/en
Publication of JP2012031004A publication Critical patent/JP2012031004A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semi-insulative GaAs single crystal wafer which can prevent slip dislocations and cracks generated in a manufacturing step of a semiconductor device.SOLUTION: A semi-insulative GaAs single crystal wafer having a diameter of ≥6 inches is taken as an object. The dislocation density of the peripheral part beyond 0.9R from the center of the wafer is made ≥1.5 times the average value of the dislocation density of the central part located inside 0.9R therefrom, and the dislocation density of the peripheral part is made 120,000 pieces/cm.

Description

本発明は直径が6インチ以上の半絶縁性GaAs単結晶ウエハに関するもので、特に半導体装置の性能向上及び製造歩留まり向上に寄与する半絶縁性GaAs単結晶ウエハを提供するものである。   The present invention relates to a semi-insulating GaAs single crystal wafer having a diameter of 6 inches or more. In particular, the present invention provides a semi-insulating GaAs single crystal wafer that contributes to improving the performance of a semiconductor device and manufacturing yield.

半絶縁性GaAs単結晶ウエハはシリコンウエハに比較して電子移動度が高いこと、シート抵抗が数MΩ/口と高いためリーク電流や寄生容量が低減できることから高速動作及び低消費電力が要求される半導体装置例えばGaAsFET GaAsIC等に広く使用されている。   Semi-insulating GaAs single crystal wafers have higher electron mobility than silicon wafers and high sheet resistance of several MΩ / port, so that leakage current and parasitic capacitance can be reduced, so high speed operation and low power consumption are required. Widely used in semiconductor devices such as GaAsFET GaAsIC and the like.

半絶縁性GaAs単結晶ウエハを使用した半導体装置が期待する性能を発揮すると共に高い製造歩留まりを実現するためには、結晶性の高い半絶縁性GaAs単結晶ウエハが必要になる。半絶縁性GaAs単結晶ウエハは、例えばLEC法と称する技術で製造された柱状の半絶縁性GaAs単結晶を薄い円盤状にスライスすることによって製造している。LEC法は、高圧の不活性ガス雰囲気に維持された坩堝中に保持され表面封止液体で覆われたGaAs原料融液に種結晶を接触させ、この種結晶を引き上げつつ種結晶の鉛直下方に単結晶を成長させる技術である(特許文献1)。このLEC法は種結晶の引き上げ時に1200度を超える高温のGaAs原料融液を低率で降温すること、種結晶及び坩堝を互いに反対方向に低速で回転すること、柱状の半絶縁性GaAs単結晶の外径を所定値に制御すること、結晶成長後に室温まで冷却すること等複雑な制御を必要としている。特に、単結晶の成長、冷却の過程で結晶中心部と外周部の温度差に起因して熱応力が加わることにより、ウエハ面内で転位密度に特定のパターン、即ちウエハの面内において外周部より中央部において転移密度が高くなることが知られている。本発明者は、この点に注目してウエハの外周部の転位密度を中央部のそれより高くする方法を提案した(特許文献2)。具体的には、成長時における結晶の成長方向における温度勾配を規定することにより、ウエハの半径をRとした時、中心から2/3Rまでの領域の転位密度を他の領域のそれより小さくすることが可能になり、これによって半導体装置の製造工程の歩留まり向上及び半導体装置のリーク電流低減を実現できることを見出した。   A semi-insulating GaAs single crystal wafer having high crystallinity is required in order to exhibit the performance expected by a semiconductor device using a semi-insulating GaAs single crystal wafer and realize a high manufacturing yield. A semi-insulating GaAs single crystal wafer is manufactured by, for example, slicing a columnar semi-insulating GaAs single crystal manufactured by a technique called LEC method into a thin disk shape. In the LEC method, a seed crystal is brought into contact with a GaAs raw material melt held in a crucible maintained in a high-pressure inert gas atmosphere and covered with a surface sealing liquid, and the seed crystal is pulled up vertically below the seed crystal. This is a technique for growing a single crystal (Patent Document 1). This LEC method lowers the temperature of a high-temperature GaAs raw material melt exceeding 1200 ° C. at a low rate when pulling up the seed crystal, rotates the seed crystal and the crucible at low speeds in opposite directions, and columnar semi-insulating GaAs single crystal Therefore, complicated control such as controlling the outer diameter to a predetermined value and cooling to room temperature after crystal growth is required. In particular, when a single crystal is grown and cooled, thermal stress is applied due to the temperature difference between the crystal central portion and the outer peripheral portion, so that a specific pattern of dislocation density in the wafer surface, that is, the outer peripheral portion in the wafer surface. It is known that the transition density is higher in the central part. The inventor has paid attention to this point and proposed a method of making the dislocation density at the outer peripheral portion of the wafer higher than that at the central portion (Patent Document 2). Specifically, by defining the temperature gradient in the crystal growth direction during growth, when the radius of the wafer is R, the dislocation density in the region from the center to 2 / 3R is made smaller than that in other regions. Thus, it has been found that this can improve the yield of the manufacturing process of the semiconductor device and reduce the leakage current of the semiconductor device.

特開2009−23867号JP 2009-23867 特開2008−273804号JP 2008-273804 A

特許文献2に開示された半絶縁性GaAs単結晶の製造方法を用いても、そのGaAs単結晶ウエハを使用する半導体装置の製造工程の歩留まり向上及び半導体装置のリーク電流低減は十分でなかった。例えば、直径6インチ以上の半絶縁性GaAs単結晶をウエハとして用いる半導体装置の製造において、転位密度の影響でイオン注入後の活性化アニール処理及び気相エピタキシャル法(MOVPE法)によるエピ成長後に、GaAs単結晶ウエハにスリップ転位の発生やウエハ割れが発生し、半導体装置として使用できないという不都合がある。   Even when the method for manufacturing a semi-insulating GaAs single crystal disclosed in Patent Document 2 is used, improvement in the yield of the manufacturing process of a semiconductor device using the GaAs single crystal wafer and reduction in leakage current of the semiconductor device are not sufficient. For example, in the manufacture of a semiconductor device using a semi-insulating GaAs single crystal having a diameter of 6 inches or more as a wafer, after the epitaxial annealing by activation annealing treatment after ion implantation and vapor phase epitaxial method (MOVPE method) due to the influence of dislocation density, Slip dislocations and wafer cracks occur in a GaAs single crystal wafer, which is disadvantageous in that it cannot be used as a semiconductor device.

本発明の1つの目的は、上記不都合を解決する半絶縁性GaAs単結晶ウエハを提供することにある。
本発明の別の目的は実施例の説明から明らかになろう。
One object of the present invention is to provide a semi-insulating GaAs single crystal wafer that solves the above disadvantages.
Other objects of the present invention will become clear from the description of the embodiments.

上述の目的を達成する本発明半絶縁性GaAs単結晶ウエハの特徴とするところは、直径6インチ以上の半絶縁性GaAs単結晶ウエハであって、その面内において最も転位密度の高い個所が外周部に位置する点にある。具体的には、直径6インチ以上の半絶縁性GaAs単結晶ウエハの半径をRとしたとき半絶縁性GaAs単結晶ウエハの中心から0.9Rより外側に位置している領域を外周部といい、半絶縁性GaAs単結晶ウエハ面内において最も転位密度の高い個所が外周部に位置する点にある。   The semi-insulating GaAs single crystal wafer of the present invention that achieves the above-described object is characterized by a semi-insulating GaAs single crystal wafer having a diameter of 6 inches or more, and the portion having the highest dislocation density in the plane is the outer periphery. The point is located in the section. Specifically, a region located outside 0.9R from the center of the semi-insulating GaAs single crystal wafer when the radius of the semi-insulating GaAs single crystal wafer having a diameter of 6 inches or more is R is referred to as an outer peripheral portion. In the semi-insulating GaAs single crystal wafer surface, the place with the highest dislocation density is located at the outer peripheral portion.

上述の目的を達成する本発明半絶縁性GaAs単結晶ウエハの他の特徴とするところは、直径6インチ以上の半絶縁性GaAs単結晶ウエハの外周部の転位密度が、ウエハの中心から0.9Rより内側の転位密度の平均値の1.5倍以上である点にある。これによって、スリップ発生率を略0%にすることが可能になる。   Another feature of the semi-insulating GaAs single crystal wafer of the present invention that achieves the above-described object is that the dislocation density in the outer peripheral portion of the semi-insulating GaAs single crystal wafer having a diameter of 6 inches or more is 0. 0 from the center of the wafer. It is in the point which is 1.5 times or more of the average value of dislocation density inside 9R. This makes it possible to reduce the slip occurrence rate to approximately 0%.

上述の目的を達成する本発明半絶縁性GaAs単結晶ウエハの別の特徴とするところは、直径6インチ以上の半絶縁性GaAs単結晶ウエハの外周部の転位密度が、120,000個/cm以上である点にある。 Another feature of the semi-insulating GaAs single crystal wafer of the present invention that achieves the above object is that the dislocation density at the outer periphery of the semi-insulating GaAs single crystal wafer having a diameter of 6 inches or more is 120,000 / cm 2. It is in the point which is 2 or more.

本発明によれば、直径6インチ以上の半絶縁性GaAs単結晶ウエハの外周部の転位密度が、ウエハの中心から0.9Rより内側の転位密度の平均値の1.5倍以上になっているため、半絶縁性GaAs単結晶ウエハを利用して半導体装置を製造する工程において、ウエハ周縁に発生するスリップSや、ウエハの湾曲及び割れを防止出来る。これによって、半導体装置の製造工程における歩留まりが大幅に向上する。   According to the present invention, the dislocation density in the outer peripheral portion of a semi-insulating GaAs single crystal wafer having a diameter of 6 inches or more is 1.5 times or more the average value of dislocation density inside 0.9R from the center of the wafer. Therefore, in the process of manufacturing a semiconductor device using a semi-insulating GaAs single crystal wafer, it is possible to prevent the slip S generated at the periphery of the wafer and the bending and cracking of the wafer. This significantly improves the yield in the manufacturing process of the semiconductor device.

本発明半絶縁性GaAs単結晶ウエハの概略平面図である。1 is a schematic plan view of a semi-insulating GaAs single crystal wafer of the present invention. 本発明は半絶縁性GaAs単結晶ウエハに発生するスリップを説明する概略平面図である。The present invention is a schematic plan view illustrating slip generated in a semi-insulating GaAs single crystal wafer. 外周部の転位密度と、転位密度比率(外周部の転位密度/中心部の転位密度)とスリップ発生率との関係を示す概略図である。It is the schematic which shows the relationship between the dislocation density of an outer peripheral part, a dislocation density ratio (dislocation density of an outer peripheral part / dislocation density of center part), and a slip generation rate. 本発明半絶縁性GaAs単結晶ウエハの製造に使用する成長炉の概略構成図である。It is a schematic block diagram of the growth furnace used for manufacture of this invention semi-insulating GaAs single crystal wafer.

本発明の最良の実施形態は、直径6インチ以上の半絶縁性GaAs単結晶ウエハを対象とし、ウエハの中心から0.9Rを超える外周部の転位密度をウエハの中心から0.9Rより内側に位置する中心部の転位密度の平均値の1.5倍以上にすると共に外周部の転位密度を120,000個/cm以上にした構成である。
以下、本発明半絶縁性GaAs単結晶ウエハの好ましい実施形態を図面を用いて詳細に説明する。
The best mode of the present invention is directed to a semi-insulating GaAs single crystal wafer having a diameter of 6 inches or more, and has a dislocation density of more than 0.9R from the center of the wafer to the inside of 0.9R from the center of the wafer. The dislocation density is 1.5 times or more of the average value of the dislocation density in the central portion, and the dislocation density in the outer peripheral portion is 120,000 pieces / cm 2 or more.
Hereinafter, preferred embodiments of the semi-insulating GaAs single crystal wafer of the present invention will be described in detail with reference to the drawings.

図1は本発明半絶縁性GaAs単結晶ウエハを説明するための概略平面図で、図において、Wは直径6インチ以上の円形を有する半絶縁性GaAs単結晶ウエハで、その半径をRとすると中心から0.9Rまでの領域を中心部W1、それより外周側の領域即ち中心から0.9Rを超える領域を外周部W2と称す。外周部W2の転位密度は中心部W1の転位密度より高く、具体的には外周部W2の転位密度は中心部W1の転位密度の1.5倍になっている。また、半絶縁性GaAs単結晶ウエハの外周部の転位密度は120,000個/cm以上で、中心部の転位密度の平均は80,000個/cmになっている。転位密度をこのようにすることにより、半絶縁性GaAs単結晶ウエハを利用して半導体装置を製造する工程において、図2に示すようなウエハ周縁に発生するスリップSや、ウエハの湾曲及び割れを防止することが出来る。 FIG. 1 is a schematic plan view for explaining a semi-insulating GaAs single crystal wafer of the present invention. In the figure, W is a semi-insulating GaAs single crystal wafer having a circular shape with a diameter of 6 inches or more, and its radius is R. A region from the center to 0.9R is referred to as a center portion W1, and a region on the outer peripheral side, that is, a region exceeding 0.9R from the center is referred to as an outer periphery portion W2. The dislocation density of the outer peripheral portion W2 is higher than the dislocation density of the central portion W1, and specifically, the dislocation density of the outer peripheral portion W2 is 1.5 times the dislocation density of the central portion W1. Further, the dislocation density in the outer peripheral portion of the semi-insulating GaAs single crystal wafer is 120,000 / cm 2 or more, and the average dislocation density in the central portion is 80,000 / cm 2 . By making the dislocation density in this way, in the process of manufacturing a semiconductor device using a semi-insulating GaAs single crystal wafer, slip S generated at the wafer periphery as shown in FIG. Can be prevented.

半絶縁性GaAs単結晶ウエハについて、外周部の転位密度と、転位密度比率(外周部の転位密度/中心部の転位密度)とスリップ発生率との関係を調査したところ図3に示す関係が得られた。図3は横軸に外周部の転位密度、縦軸に転位密度比率(外周部の転位密度/中心部の転位密度)を取り、スリップ発生率をファクターにして関係を示してある。この図の破線で示した領域、即ち、外周部の転位密度を120,000個/cm以上にし、転位密度比率(外周部の転位密度/中心部の転位密度)を1.5以上にすることによりスリップ発生率を0%にすることが可能であることが理解できる。 For the semi-insulating GaAs single crystal wafer, the relationship between the dislocation density in the outer peripheral portion, the dislocation density ratio (dislocation density in the outer peripheral portion / dislocation density in the central portion) and the slip occurrence rate was investigated, and the relationship shown in FIG. 3 was obtained. It was. FIG. 3 shows the relationship with the dislocation density in the outer peripheral portion on the horizontal axis and the dislocation density ratio (dislocation density in the outer peripheral portion / dislocation density in the central portion) on the vertical axis, and the slip occurrence rate as a factor. The region indicated by the broken line in this figure, that is, the dislocation density in the outer peripheral portion is 120,000 / cm 2 or more, and the dislocation density ratio (dislocation density in the outer peripheral portion / dislocation density in the central portion) is 1.5 or more. It can be understood that the slip occurrence rate can be reduced to 0%.

図4は本発明半絶縁性GaAs単結晶ウエハの製造に使用する成長炉(LEC炉)の概略構成図である。図において、1は圧力容器、2は圧力容器1内に配置された原料を溶融するPBN製の坩堝、3は上端が圧力容器1外に設置された駆動装置(図示せず)に連なり、下方先端に種結晶4を保持する引上げ軸、5は坩堝2をグラファイト製のサセプタ6で支持して回転すると共に上下移動するグラファイト製のペデスタル、7は坩堝2内の原料を加熱するヒーター、8はペデスタル5内に熱電対である。ペデスタル5の下端は圧力容器1外に設置された駆動装置(図示せず)に連なっている。   FIG. 4 is a schematic configuration diagram of a growth furnace (LEC furnace) used for manufacturing the semi-insulating GaAs single crystal wafer of the present invention. In the figure, 1 is a pressure vessel, 2 is a crucible made of PBN that melts the raw material disposed in the pressure vessel 1, 3 is connected to a drive device (not shown) installed outside the pressure vessel 1, A pulling shaft 5 that holds the seed crystal 4 at the tip, 5 is a graphite pedestal that supports the crucible 2 by a graphite susceptor 6 and rotates and moves up and down, 7 is a heater that heats the raw material in the crucible 2, and 8 is Inside the pedestal 5 is a thermocouple. The lower end of the pedestal 5 is connected to a drive device (not shown) installed outside the pressure vessel 1.

図4は成長炉を用いて半絶縁性GaAs単結晶を製造する方法を説明する。先ず場合には、まず圧力容器1内を所定圧力の不活性ガス雰囲気に保持し、坩堝2内に原料としてのIII族元素Ga及びV族元素Asと液体封止材を案内し、ヒーター7で加熱溶融する。具体的には、ヒーター8の温度が液体封止材の溶融温度に達すると液体封止材が溶融し、次に原料の溶融温度に達すると原料が溶融する。一般に、GaAs融液9の比重が液体封止材2の融液10より大きいので、GaAs融液9の表面が液体封止材の融液10で被覆された状態で坩堝2内に保持される。これによって、GaAs融液9からAs元素の解離が防止される。この状態で、引上げ軸3を下降して種結晶4をGaAs融液9に接触させて結晶成長を開始する。種結晶4をGaAs融液9に接触させた状態で、GaAs融液9の温度を徐々に下げながら引上げ軸3をゆっくり引上げることにより種結晶の下端面に半絶縁性GaAs単結晶が成長する。結晶成長時には引上げ軸3と坩堝2を互いに反対方向に回転させる。   FIG. 4 illustrates a method of manufacturing a semi-insulating GaAs single crystal using a growth furnace. In the first case, first, the inside of the pressure vessel 1 is maintained in an inert gas atmosphere at a predetermined pressure, and the group III element Ga and group V element As and the liquid sealing material as raw materials are guided into the crucible 2, and the heater 7 Melt by heating. Specifically, the liquid sealing material is melted when the temperature of the heater 8 reaches the melting temperature of the liquid sealing material, and then the raw material is melted when the melting temperature of the raw material is reached. Generally, since the specific gravity of the GaAs melt 9 is larger than the melt 10 of the liquid sealing material 2, the surface of the GaAs melt 9 is held in the crucible 2 in a state of being covered with the liquid sealing material melt 10. . Thereby, dissociation of the As element from the GaAs melt 9 is prevented. In this state, the pulling shaft 3 is lowered and the seed crystal 4 is brought into contact with the GaAs melt 9 to start crystal growth. While the seed crystal 4 is in contact with the GaAs melt 9, the semi-insulating GaAs single crystal grows on the lower end surface of the seed crystal by slowly pulling up the pulling shaft 3 while gradually lowering the temperature of the GaAs melt 9. . During crystal growth, the pulling shaft 3 and the crucible 2 are rotated in opposite directions.

図4に示す成長炉を用いて本発明半絶縁性GaAs単結晶ウエハを製造する方法を説明する。直径300mmの坩堝2に40kgのGaAsの多結晶原料と液体封止材としてのBを4kgチャージし、圧力容器内の雰囲気を不活性ガスで置換する。具体的には真空引きにより排気した後、不活性ガスを充填する方法で実施する。この状態で、坩堝2をヒーター7により加熱してGaAsの融点である1238℃以上に昇温し、GaAsの多結晶原料を融解した。次に、引上げ軸3を下降して、下端に取り付けた種結晶4の先端を原料融液9に接触させ、温度に十分なじませた後、温度コントローラによりヒーター7の設定温度を3℃/hの割合で下げながら、種結晶4を6〜10mm/hの速度でゆっくりと引上げた。結晶成長時は、引上げ軸3及びペデスタル5により種結晶4は時計廻りに5rpmで、坩堝2は反時計廻りに20rpmでそれぞれ回転した。結晶肩部の成長が終了して直径が約160mmになった時に、外部コントローラにより成長結晶の外径の自動制御を開始した。外径の自動制御とは、成長した結晶の重量を引上げ軸3に設置したロードセルによりリアルタイムで計測し、単位時間当たりの重量の増加分と引上げ軸3の移動量から成長結晶の外径をモニタし、成長結晶の外径が設定した値になるようにヒーター7の温度制御を行う温度コントローラにフィードバックを行う制御である。結晶成長中は成長量の増加に伴い原料融液9の量が徐々に減少し、原料融液9の液面位置が低下する。この原料融液9の液面位置低下を補正するべく、引上げ軸3に設置したロードセルの出力から液面の低下量を計算し、常に原料融液9の液面がヒーター7に対して定位置に来るように坩堝2を自動で上昇させる制御を行っている。成長させた結晶をチャージしたGaAsの多結晶原料の所定の重量まで引上げられた時点でヒーター7の温度を上昇させ、結晶の尾部形状を形成した後、結晶を原料融液9から切り離して室温まで冷却し、直径160mmの柱状の半絶縁性GaAs単結晶インゴットを得た。この柱状の半絶縁性GaAs単結晶インゴットは、通常の加工工程即ち、その円柱状の外周面を円筒研削機により研削して所定寸法の直径に仕上げ、長手方向と直角方向にスライスし、スライスされた円盤状の基板にラッピング、エッチング、ポリッシング等を施すことにより、直径152.4mm(6インチ)の半絶縁性GaAs単結晶ウエハを得た。また、半絶縁性GaAs単結晶ウエハに結晶方位を示すオリエンタルフラットを設けることがある。この半絶縁性GaAs単結晶ウエハの中心から0.9R=137.2mmより外周側の領域の転位密度を測定したところ、ウエハ面内で最高値の120,000個/cmであり、中心から0.9R=137.2mmより内側の領域の転位密度の平均は80,000個/cmであった。転位密度の測定は、半絶縁性GaAs単結晶ウエハをエッチングして生じるエッチピットの数を電子顕微鏡でカウントすることで行った。この半絶縁性GaAs単結晶ウエハを用いて気相エピタキシャル法によりエピ成長を100枚実施したが、スリップ転位やウエハ割れは発生しなかった。 A method of manufacturing the semi-insulating GaAs single crystal wafer of the present invention using the growth furnace shown in FIG. 4 will be described. A crucible 2 having a diameter of 300 mm is charged with 4 kg of 40 kg of GaAs polycrystalline material and B 2 O 3 as a liquid sealing material, and the atmosphere in the pressure vessel is replaced with an inert gas. Specifically, after exhausting by evacuation, the method is filled with an inert gas. In this state, the crucible 2 was heated by the heater 7 to raise the melting point of GaAs to 1238 ° C. or higher, thereby melting the polycrystalline raw material of GaAs. Next, the pulling shaft 3 is lowered, the tip of the seed crystal 4 attached to the lower end is brought into contact with the raw material melt 9, and the temperature is adjusted to 3 ° C./h by the temperature controller after the temperature is sufficiently adjusted. The seed crystal 4 was slowly pulled up at a speed of 6 to 10 mm / h while being lowered at a rate of. During crystal growth, the seed crystal 4 was rotated clockwise by 5 rpm by the pulling shaft 3 and the pedestal 5, and the crucible 2 was rotated counterclockwise by 20 rpm. When the growth of the crystal shoulder was completed and the diameter became about 160 mm, automatic control of the outer diameter of the grown crystal was started by an external controller. The automatic control of the outer diameter is a real-time measurement of the weight of the grown crystal using a load cell installed on the pulling shaft 3, and the outer diameter of the growing crystal is monitored from the increase in weight per unit time and the amount of movement of the pulling shaft 3. In this control, feedback is made to a temperature controller that controls the temperature of the heater 7 so that the outer diameter of the grown crystal becomes a set value. During crystal growth, the amount of the raw material melt 9 gradually decreases as the growth amount increases, and the liquid surface position of the raw material melt 9 decreases. In order to correct the lowering of the liquid surface position of the raw material melt 9, the amount of lowering of the liquid surface is calculated from the output of the load cell installed on the pulling shaft 3. The crucible 2 is automatically raised so as to come to When the grown crystal is pulled up to a predetermined weight of the charged GaAs polycrystal raw material, the temperature of the heater 7 is increased to form the tail shape of the crystal, and then the crystal is separated from the raw material melt 9 to room temperature. After cooling, a columnar semi-insulating GaAs single crystal ingot having a diameter of 160 mm was obtained. This columnar semi-insulating GaAs single crystal ingot is usually processed, that is, its cylindrical outer peripheral surface is ground by a cylindrical grinder to finish to a predetermined size diameter, sliced in a direction perpendicular to the longitudinal direction, and sliced. A semi-insulating GaAs single crystal wafer having a diameter of 152.4 mm (6 inches) was obtained by lapping, etching, polishing, etc. on the disk-shaped substrate. In addition, an oriental flat indicating a crystal orientation may be provided on a semi-insulating GaAs single crystal wafer. When the dislocation density in the region on the outer peripheral side from 0.9R = 137.2 mm from the center of this semi-insulating GaAs single crystal wafer was measured, it was 120,000 pieces / cm 2 which was the highest value in the wafer surface, and from the center The average dislocation density in the region inside 0.9R = 137.2 mm was 80,000 pieces / cm 2 . The dislocation density was measured by counting the number of etch pits generated by etching a semi-insulating GaAs single crystal wafer with an electron microscope. Using this semi-insulating GaAs single crystal wafer, 100 epitaxial growths were carried out by vapor phase epitaxy, but no slip dislocation or wafer cracking occurred.

W 半絶縁性GaAs単結晶ウエハ
W1 中心部
W2 外周部
S スリット
R ウエハの半径
1 圧力容器
2 坩堝
3 引上げ軸
4 種結晶4
5 ペデスタル
6 サセプタ
7 ヒーター
8 熱電対
9 原料融液
10 液体封止材の融液
W Semi-insulating GaAs single crystal wafer W1 Center portion W2 Outer peripheral portion S Slit R Wafer radius
1 pressure vessel 2 crucible 3 pulling shaft 4 seed crystal 4
5 Pedestal 6 Susceptor 7 Heater 8 Thermocouple 9 Raw material melt 10 Liquid sealant melt

Claims (4)

直径6インチ以上の半絶縁性GaAs単結晶ウエハであって、その面内において最も転位密度の高い個所が外周部に位置することを特徴とする半絶縁性GaAs単結晶ウエハ。   A semi-insulating GaAs single crystal wafer having a diameter of 6 inches or more, wherein a portion having the highest dislocation density in the plane is located on the outer periphery. 前記外周部が、前記ウエハの半径をRとしたとき前記ウエハの中心から0.9Rより
外側に位置していることを特徴とする請求項1記載の半絶縁性GaAs単結晶ウエハ。
2. The semi-insulating GaAs single crystal wafer according to claim 1, wherein the outer peripheral portion is located outside 0.9R from the center of the wafer when the radius of the wafer is R.
前記外周部の転位密度が、前記ウエハの中心から0.9Rより内側の転位密度の平均値の1.5倍以上であることを特徴とする請求項1記載の半絶縁性GaAs単結晶ウエハ。   2. The semi-insulating GaAs single crystal wafer according to claim 1, wherein the dislocation density in the outer peripheral portion is 1.5 times or more the average value of the dislocation density inside 0.9 R from the center of the wafer. 前記外周部の転位密度が、120,000個/cm2以上であることを特徴とする請求項1乃至3記載の半絶縁性GaAs単結晶ウエハ。   4. The semi-insulating GaAs single crystal wafer according to claim 1, wherein a dislocation density in the outer peripheral portion is 120,000 / cm 2 or more.
JP2010171268A 2010-07-30 2010-07-30 SEMI-INSULATIVE GaAs SINGLE CRYSTAL WAFER Pending JP2012031004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171268A JP2012031004A (en) 2010-07-30 2010-07-30 SEMI-INSULATIVE GaAs SINGLE CRYSTAL WAFER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171268A JP2012031004A (en) 2010-07-30 2010-07-30 SEMI-INSULATIVE GaAs SINGLE CRYSTAL WAFER

Publications (1)

Publication Number Publication Date
JP2012031004A true JP2012031004A (en) 2012-02-16

Family

ID=45844899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171268A Pending JP2012031004A (en) 2010-07-30 2010-07-30 SEMI-INSULATIVE GaAs SINGLE CRYSTAL WAFER

Country Status (1)

Country Link
JP (1) JP2012031004A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014202284A1 (en) * 2013-06-21 2014-12-24 Forschungsverbund Berlin E.V. Crystallisation system and crystallisation method for crystallisation from electrically conductive melts, and ingots that can be obtained by means of the method
JP6521198B1 (en) * 2018-02-23 2019-05-29 住友電気工業株式会社 Indium phosphide crystal substrate
WO2019163081A1 (en) * 2018-02-23 2019-08-29 住友電気工業株式会社 Gallium arsenide crystal substrate
CN111902573A (en) * 2018-08-07 2020-11-06 住友电气工业株式会社 Gallium arsenide single crystal and gallium arsenide single crystal substrate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014202284A1 (en) * 2013-06-21 2014-12-24 Forschungsverbund Berlin E.V. Crystallisation system and crystallisation method for crystallisation from electrically conductive melts, and ingots that can be obtained by means of the method
JP6521198B1 (en) * 2018-02-23 2019-05-29 住友電気工業株式会社 Indium phosphide crystal substrate
WO2019163081A1 (en) * 2018-02-23 2019-08-29 住友電気工業株式会社 Gallium arsenide crystal substrate
WO2019163082A1 (en) * 2018-02-23 2019-08-29 住友電気工業株式会社 Indium phosphide crystal substrate
CN111263833A (en) * 2018-02-23 2020-06-09 住友电气工业株式会社 Indium phosphide crystal substrate
CN111263833B (en) * 2018-02-23 2020-10-16 住友电气工业株式会社 Indium phosphide crystal substrate
JPWO2019163081A1 (en) * 2018-02-23 2020-12-17 住友電気工業株式会社 Gallium arsenide crystal substrate
US11408091B2 (en) 2018-02-23 2022-08-09 Sumitomo Electric Industries, Ltd. Gallium arsenide crystal substrate
US11456363B2 (en) 2018-02-23 2022-09-27 Sumitomo Electric Industries, Ltd. Indium phosphide crystal substrate
CN111902573A (en) * 2018-08-07 2020-11-06 住友电气工业株式会社 Gallium arsenide single crystal and gallium arsenide single crystal substrate
CN111902573B (en) * 2018-08-07 2024-03-08 住友电气工业株式会社 Gallium arsenide single crystal and gallium arsenide single crystal substrate

Similar Documents

Publication Publication Date Title
JP6584428B2 (en) Method for producing silicon carbide single crystal and silicon carbide single crystal substrate
KR101893278B1 (en) METHOD FOR REMOVING WORK-AFFECTED LAYER ON SiC SEED CRYSTAL, SiC SEED CRYSTAL, AND SiC SUBSTRATE MANUFACTURING METHOD
CN106715765B (en) Method for producing single crystal and method for producing silicon wafer
WO2011001905A1 (en) Method for producing sapphire single crystal, and sapphire single crystal obtained by the method
WO2017069112A1 (en) Silicon single crystal ingot pull-up device and silicon single crystal ingot production method
JP2003277197A (en) CdTe SINGLE CRYSTAL, CdTe POLYCRYSTAL AND METHOD FOR PRODUCING THE SINGLE CRYSTAL
TW201842245A (en) Compound semiconductor and method for producing single crystal of compound semiconductor
JP2012031004A (en) SEMI-INSULATIVE GaAs SINGLE CRYSTAL WAFER
TW202113167A (en) Scalmgo4 single crystal, preparation method for same, and free-standing substrate
JP6631460B2 (en) Method for producing silicon single crystal and silicon single crystal
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP4060106B2 (en) Unidirectionally solidified silicon ingot, manufacturing method thereof, silicon plate, solar cell substrate and sputtering target material
JP6300786B2 (en) Method for producing indium phosphide single crystal
JP5761264B2 (en) Method for manufacturing SiC substrate
JP6645409B2 (en) Silicon single crystal manufacturing method
JP2007070131A (en) Method of manufacturing epitaxial wafer, and epitaxial wafer
CN102465344B (en) The manufacture method of GaAs wafer and GaAs wafer
JP5489064B2 (en) Method for growing silicon single crystal
JP4655861B2 (en) Manufacturing method of substrate for electronic device
JP4184622B2 (en) Method for producing silicon carbide single crystal ingot
WO2004025001A1 (en) Single crystal, single crystal wafer, epitaxial wafer and method of growing single crystal
JP7247949B2 (en) Method for producing silicon single crystal
KR20190100653A (en) Method for correcting shape of silicon single crystal ingot
JP4200690B2 (en) GaAs wafer manufacturing method