JP2012028334A - Anisotropic conductive film and method of manufacturing connecting structure - Google Patents

Anisotropic conductive film and method of manufacturing connecting structure Download PDF

Info

Publication number
JP2012028334A
JP2012028334A JP2011195290A JP2011195290A JP2012028334A JP 2012028334 A JP2012028334 A JP 2012028334A JP 2011195290 A JP2011195290 A JP 2011195290A JP 2011195290 A JP2011195290 A JP 2011195290A JP 2012028334 A JP2012028334 A JP 2012028334A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
film
elastomer
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011195290A
Other languages
Japanese (ja)
Other versions
JP5672201B2 (en
Inventor
Yuta Araki
雄太 荒木
Shingo Deguchi
真吾 出口
Koichi Miyauchi
幸一 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2011195290A priority Critical patent/JP5672201B2/en
Publication of JP2012028334A publication Critical patent/JP2012028334A/en
Priority to KR1020120098572A priority patent/KR101393836B1/en
Application granted granted Critical
Publication of JP5672201B2 publication Critical patent/JP5672201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic conductive film which can offer both a good connection reliability and repairability in making an anisotropic conductive connection between substrate terminals and electronic component terminals.SOLUTION: An anisotropic conductive film is obtained by forming a resin composition including a film forming resin, a curable liquid compound, conductive particles, an elastomer, and a curing agent into a film. After curing, the film has a storage elastic modulus (25°C) determined by a dynamic viscoelasticity measurement in a tensile vibration mode according to JIS K7244-4 of 0.5 to 1.5 GPa. The elastomer has a breaking strength of 50 to 80 MPa, and a breaking elongation of 10% or less according to ASTM D638. The content of the elastomer in the resin composition is 20 to 50 mass% of a total mass of the film forming resin, the curable liquid compound, the conductive particles, the elastomer and the curing agent. The conductive particles to be used have a compression hardness at 10% displacement of 300 to 500 kgf/mmunder the conditions of a load of 49.035 mN and a load speed of 2.226 mN/sec.

Description

本発明は、異方性導電フィルム、この異方性導電フィルムを用いて基板の端子と電子部品の端子とを異方性導電接続して接続構造体を製造する方法に関する。   The present invention relates to an anisotropic conductive film and a method for producing a connection structure by anisotropically connecting a terminal of a substrate and a terminal of an electronic component using the anisotropic conductive film.

種々の基板の電極パッド等の端子と電子部品のバンプ等の端子とを接続する際に、熱硬化性成分に導電粒子を配合してフィルムに成形した異方性導電フィルムが利用されている。   When connecting terminals such as electrode pads of various substrates and terminals such as bumps of electronic components, anisotropic conductive films obtained by blending thermosetting components with conductive particles and forming into films are used.

このような異方性導電フィルムにおいて、異方性導電接続すべき端子の幅や端子間スペースの幅を細狭化するという時代の要請の中で、良好な電気的接続を実現するために端子上に存在させる導電粒子の数を低減させないことが必要となる。しかし、このことは、隣接する端子間に存在する導電粒子数の増加も招き、異方性導電接続の際にショートを生じさせかねないという問題がある。このため、導電粒子の周囲を絶縁樹脂で被覆することが行われているが、完全に被覆することは困難であるという問題があった。   In such an anisotropic conductive film, in order to realize a good electrical connection in the request of the times to narrow the width of the terminal to be anisotropically conductive and the width of the space between the terminals It is necessary not to reduce the number of conductive particles present above. However, this also causes an increase in the number of conductive particles existing between adjacent terminals, and there is a problem that a short circuit may occur during anisotropic conductive connection. For this reason, the periphery of the conductive particles is covered with an insulating resin, but there is a problem that it is difficult to completely cover the conductive particles.

そこで、導電粒子の周囲を絶縁樹脂で被覆しなくても、良好な電気的接続と高い接着強度とを実現するため、異方性導電フィルムの硬化後の貯蔵弾性率を、40℃で500〜3000MPaとすることを前提に、異方性導電フィルムに適用する導電粒子について、導電粒子の直径に応じてその硬度を最適化することが提案されている(特許文献1)。   Therefore, in order to achieve good electrical connection and high adhesive strength without covering the periphery of the conductive particles with an insulating resin, the storage elastic modulus after curing of the anisotropic conductive film is 500 to 500 ° C. at 40 ° C. Assuming that the pressure is 3000 MPa, it has been proposed to optimize the hardness of conductive particles applied to the anisotropic conductive film according to the diameter of the conductive particles (Patent Document 1).

特開2008−159586号公報JP 2008-159586 A

ところで、基板と高価な電子部品とを異方性導電接続する際に位置ズレが生じた場合には、異方性導電フィルムのリペア性が求められることがあるが、特許文献1の技術の場合、異方性導電フィルムの熱硬化性成分としてエポキシ樹脂ではなくアクリル系モノマーを使用し且つ異方性導電フィルムの硬化後の貯蔵弾性率が500〜1500MPa程度であれば、電子部品を硬化した異方性導電フィルムから引き剥がした際に、電子部品の端子上の異方性導電フィルムの硬化物残渣を、綿棒で軽く擦ること等により比較的容易に除去することが可能である。   By the way, in the case of the technique of patent document 1, although the repair property of an anisotropic conductive film may be calculated | required when position shift arises when connecting a board | substrate and an expensive electronic component with anisotropic conductive connection. If an anisotropic monomer is used instead of an epoxy resin as the thermosetting component of the anisotropic conductive film, and the storage elastic modulus after curing of the anisotropic conductive film is about 500 to 1500 MPa, the cured electronic component is different. When peeled from the isotropic conductive film, the cured product residue of the anisotropic conductive film on the terminals of the electronic component can be removed relatively easily by lightly rubbing with a cotton swab.

しかし、貯蔵弾性率が1500MPaを超えると、電子部品の端子上の異方性導電フィルムの硬化物残渣を綿棒で軽く擦った程度では除去できないため、溶剤を使用せざるを得ず、リペアコストや環境負荷の増大を招くという問題があった。   However, if the storage elastic modulus exceeds 1500 MPa, the cured product residue of the anisotropic conductive film on the terminal of the electronic component cannot be removed by rubbing lightly with a cotton swab, so a solvent must be used, repair cost, There was a problem of increasing the environmental load.

本発明の目的は、以上の従来の問題点を解決しようとするものであり、基板の端子と電子部品の端子とを異方性導電接続する際に、良好な接続信頼性とリペア性とを両立させた異方性導電フィルムを提供することである。   An object of the present invention is to solve the above-described conventional problems, and when connecting the terminals of the substrate and the terminals of the electronic component by anisotropic conductive connection, good connection reliability and repairability are achieved. It is to provide a compatible anisotropic conductive film.

本発明者らは、硬化後の異方性導電フィルムの貯蔵弾性率を所定範囲となるようにすると共に、異方性導電フィルムに、特定の破断強度と破断伸度とを示すエラストマーを所定量配合し、更に、配合すべき導電粒子として所定の圧縮硬さを有するものを使用することにより、上述の目的を達成できることを見出し、本発明を完成させるに至った。   The inventors set the storage elastic modulus of the anisotropic conductive film after curing to be in a predetermined range, and added a predetermined amount of elastomer showing a specific breaking strength and elongation at break to the anisotropic conductive film. It has been found that the above-mentioned object can be achieved by blending and further using conductive particles to be blended having a predetermined compression hardness, and the present invention has been completed.

即ち、本発明は、膜形成樹脂と、液状硬化性化合物と、導電粒子と、エラストマーと、硬化剤とを含有する樹脂組成物をフィルムに成形した異方性導電フィルムであって、
硬化後の異方性導電フィルムのJIS K7244−4による引張り振動モードの動的粘弾性測定における貯蔵弾性率(25℃)が、0.5〜1.5GPaであり、
エラストマーが、ASTM D638による50〜80MPaの破断強度と10%以下の破断伸度とを示すものであり、
エラストマーの樹脂組成物中の含有量が、膜形成樹脂、液状硬化性化合物、導電粒子、当該エラストマー及び硬化剤の合計全質量中の20〜50質量%であり、そして
導電粒子が、荷重49.035mN、負荷速度2.226mN/secの条件における10%変位時に300〜500kgf/mmの圧縮硬さを示すものである
異方性導電フィルムを提供する。
That is, the present invention is an anisotropic conductive film obtained by molding a resin composition containing a film-forming resin, a liquid curable compound, conductive particles, an elastomer, and a curing agent into a film,
The storage elastic modulus (25 degreeC) in the dynamic viscoelasticity measurement of the tensile vibration mode by JISK7244-4 of the anisotropic conductive film after hardening is 0.5-1.5GPa,
The elastomer exhibits a breaking strength of 50 to 80 MPa according to ASTM D638 and a breaking elongation of 10% or less,
The content of the elastomer in the resin composition is 20 to 50% by mass in the total total mass of the film-forming resin, the liquid curable compound, the conductive particles, the elastomer and the curing agent, and the conductive particles have a load of 49. An anisotropic conductive film having a compression hardness of 300 to 500 kgf / mm 2 at 10% displacement under the conditions of 035 mN and a load speed of 2.226 mN / sec is provided.

また、本発明は、基板の端子と電子部品の端子とを異方性導電接続して接続構造体を得る製造方法であって、
基板の端子に、上述の異方性導電フィルムを仮貼りする工程、
電子部品を、その端子が基板の端子に対向するように異方性導電フィルム上に配置する工程、
基板と電子部品とで挟持された異方性導電フィルムを、電子部品側からボンディングツールで加熱加圧することにより異方性導電接続を行う工程
を有する製造方法、並びにこの製造方法で得られた接続構造体を提供する。
Further, the present invention is a manufacturing method for obtaining a connection structure by anisotropically conductively connecting a terminal of a substrate and a terminal of an electronic component,
A step of temporarily attaching the above anisotropic conductive film to the terminal of the substrate;
Arranging the electronic component on the anisotropic conductive film so that the terminal faces the terminal of the substrate;
A manufacturing method including a step of performing anisotropic conductive connection by heating and pressurizing an anisotropic conductive film sandwiched between a substrate and an electronic component with a bonding tool from the electronic component side, and a connection obtained by this manufacturing method Provide a structure.

本発明の異方性導電フィルムは、その硬化後の貯蔵弾性率が所定範囲となるものであり、特定の破断強度と破断伸度とを示すエラストマーを所定量含有していると共に、配合すべき導電粒子として所定の圧縮硬さを有するものを使用している。このため、本発明の異方性導電フィルムを、基板の端子と電子部品の端子とを異方性導電接続する際に適用すると、良好な接続信頼性とリペア性とを両立させることができる。   The anisotropic conductive film of the present invention has a storage elastic modulus after curing within a predetermined range, contains a predetermined amount of elastomer showing a specific breaking strength and breaking elongation, and should be blended A conductive particle having a predetermined compression hardness is used. For this reason, when the anisotropic conductive film of the present invention is applied in anisotropic conductive connection between the terminal of the substrate and the terminal of the electronic component, both good connection reliability and repairability can be achieved.

本発明の異方性導電フィルムは、膜形成樹脂と、液状硬化性化合物と、導電粒子と、エラストマーと、硬化剤とを含有する樹脂組成物をフィルムに成形したものである。   The anisotropic conductive film of the present invention is obtained by molding a resin composition containing a film-forming resin, a liquid curable compound, conductive particles, an elastomer, and a curing agent into a film.

本発明の異方性導電フィルムを特徴付ける要素の一つは、その硬化後のJIS K7244−4による引張り振動モードの動的粘弾性測定における貯蔵弾性率(25℃)が、0.5〜1.5GPa、好ましくは0.8〜1.2GPaに調整されるということである。これは、貯蔵弾性率が0.5GPaを下回ると、電子部品の端子に付着した異方性導電フィルムの硬化物残渣が、綿棒で容易に除去できるためにリペア性には問題が生じないものの、接続信頼性が低下する傾向があり、1.5GPaを超えるとリペア性が低下する傾向が見られるからである。   One of the elements that characterize the anisotropic conductive film of the present invention is that the storage elastic modulus (25 ° C.) in the dynamic viscoelasticity measurement in the tensile vibration mode according to JIS K7244-4 after the curing is 0.5 to 1. It is adjusted to 5 GPa, preferably 0.8 to 1.2 GPa. This is because when the storage elastic modulus is less than 0.5 GPa, the cured product residue of the anisotropic conductive film attached to the terminal of the electronic component can be easily removed with a cotton swab, so there is no problem in repairability. This is because the connection reliability tends to decrease, and when it exceeds 1.5 GPa, the repair property tends to decrease.

なお、異方性導電フィルムの貯蔵弾性率の調整は、例えば、液状硬化性化合物の種類を変更することやその配合量を増減させること等により行うことができる。   In addition, adjustment of the storage elastic modulus of an anisotropic conductive film can be performed by changing the kind of liquid curable compound, increasing / decreasing the compounding quantity, etc., for example.

また、本発明の異方性導電フィルムを特徴付ける他の要素は、配合すべきエラストマーとして、ASTM D638による破断強度が、50〜80MPa、好ましくは65〜75MPaであり、且つ破断伸度が10%以下、好ましくは5〜7%であるものを使用することである。これは、破断強度が50MPaを下回ると、異方性導電フィルムのタフネスが低下してリペア性も低下する傾向があり、80MPaを超えると異方性導電フィルムの流動性が低下し、異方性導電接続の際に異方性導電フィルムを十分に押し込むことが難しくなり、接続抵抗が増大して接続信頼性が低下する傾向があり、また、破断伸度が10%を上回ると、異方性導電フィルムのタフネスが低下してリペア性も低下する傾向が見られるからである。   Another element characterizing the anisotropic conductive film of the present invention is that the elastomer to be blended has a breaking strength according to ASTM D638 of 50 to 80 MPa, preferably 65 to 75 MPa, and a breaking elongation of 10% or less. , Preferably 5-7%. This is because when the breaking strength is less than 50 MPa, the toughness of the anisotropic conductive film tends to be lowered and the repairability tends to be lowered, and when it exceeds 80 MPa, the fluidity of the anisotropic conductive film is lowered, and the anisotropic It becomes difficult to sufficiently push the anisotropic conductive film at the time of conductive connection, the connection resistance tends to increase, and the connection reliability tends to decrease. When the elongation at break exceeds 10%, the anisotropic This is because there is a tendency that the toughness of the conductive film is lowered and the repairability is also lowered.

本発明の異方性導電フィルムにおいて、このようなエラストマーの樹脂組成物中の含有量は、膜形成樹脂、液状硬化性化合物、導電粒子、当該エラストマー及び硬化剤の合計全質量中の20〜50質量%、好ましくは30〜40質量%である。これは、20質量%を下回ると、異方性導電フィルムのタフネスが低下してリペア性も低下する傾向があり、50質量%を超えると、異方性導電フィルムの流動性が低下し、異方性導電接続の際に異方性導電フィルムを十分に押し込むことが難しくなり、接続抵抗が増大して接続信頼性が低下する傾向が見られるからである。   In the anisotropic conductive film of the present invention, the content of the elastomer in the resin composition is 20 to 50 in the total total mass of the film-forming resin, the liquid curable compound, the conductive particles, the elastomer and the curing agent. % By mass, preferably 30 to 40% by mass. If the amount is less than 20% by mass, the toughness of the anisotropic conductive film tends to decrease and the repairability tends to decrease. If the amount exceeds 50% by mass, the fluidity of the anisotropic conductive film decreases, and This is because it becomes difficult to sufficiently push the anisotropic conductive film during the isotropic conductive connection, and the connection resistance increases and the connection reliability tends to decrease.

以上説明したエラストマーとしては、上述した所定の破断強度と破断伸度とを示す種々のエラストマーを使用することができ、例えば、Tgが好ましくは50℃以下、より好ましくは30℃以下の、室温でゴム弾性を有する天然または合成ゴムを使用でき、具体的には天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレン−ブタジエン−スチレンゴム(SBS)、スチレン−エチレン−ブチレン−スチレンゴム(SEBS)、スチレン−イソプレン−スチレンゴム(SIS)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等があげられる。これらのゴムは架橋されていてもよく、Tgが30℃以下であれば熱可塑性エラストマーも使用することができる。   As the elastomer described above, various elastomers exhibiting the above-mentioned predetermined breaking strength and breaking elongation can be used. For example, Tg is preferably 50 ° C. or less, more preferably 30 ° C. or less, at room temperature. Natural or synthetic rubber having rubber elasticity can be used. Specifically, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), styrene-butadiene-styrene rubber (SBS). Styrene-ethylene-butylene-styrene rubber (SEBS), styrene-isoprene-styrene rubber (SIS), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), and the like. These rubbers may be cross-linked, and thermoplastic elastomers can be used as long as Tg is 30 ° C. or lower.

なお、エラストマーの破断強度と破断伸度の調整は、ハードセグメント及びソフトセグメントのそれぞれの構造やそれらの存在比等を変化させることによって行うことができる。   It should be noted that the breaking strength and breaking elongation of the elastomer can be adjusted by changing the structure of each of the hard segment and the soft segment, their abundance ratio, and the like.

また、本発明の異方性導電フィルムを特徴づける別の要素は、導電粒子として、荷重49.035mN(5.0gf)、負荷速度2.226mN/sec(0.228gf/sec)の条件における10%変位時の圧縮硬さが300〜500kgf/mm、好ましくは350〜450kgf/mmであるものを使用することである。これは、圧縮硬さが300kgf/mmを下回ると、導電粒子の復元力が小さいため接続信頼性が低下する傾向があり、500kgf/mmを超えると、異方性導電接続の際に導電粒子を十分に押し潰すことができず、接続抵抗が増大して接続信頼性が低下する傾向が見られるからである。 Further, another element characterizing the anisotropic conductive film of the present invention is a conductive particle having a load of 49.035 mN (5.0 gf) and a load speed of 2.226 mN / sec (0.228 gf / sec). The compression hardness at the time of% displacement is 300 to 500 kgf / mm 2 , preferably 350 to 450 kgf / mm 2 . This is because if the compressive hardness is below 300 kgf / mm 2, the connection reliability for restoring force of the conductive particles is less tends to decrease, and when it exceeds 500 kgf / mm 2, conductive during anisotropic conductive connection This is because the particles cannot be sufficiently crushed, and the connection resistance increases and the connection reliability tends to decrease.

なお、導電粒子の圧縮硬さの調整は、コアである樹脂粒子の架橋密度を変化させることにより調整することができる。   The compression hardness of the conductive particles can be adjusted by changing the crosslink density of the resin particles that are the core.

このような導電粒子としては、所定の条件下での10%圧縮硬さが300〜500kgf/mmとなる導電粒子、例えばジビニルベンゼン系樹脂、ベンゾグアナミン樹脂等の樹脂粒子の表面を無電解ニッケルメッキ膜等の無電解金属メッキ膜で被覆した金属被覆樹脂粒子等を使用することができる。これらの導電粒子の平均粒径は、通常4〜15μm、好ましくは6〜10μmである。 Examples of such conductive particles include electroless nickel plating on the surface of conductive particles having a 10% compression hardness of 300 to 500 kgf / mm 2 under predetermined conditions, for example, resin particles such as divinylbenzene-based resin and benzoguanamine resin. Metal-coated resin particles coated with an electroless metal plating film such as a film can be used. The average particle size of these conductive particles is usually 4 to 15 μm, preferably 6 to 10 μm.

本発明の異方性導電フィルムにおいて、このような導電粒子の樹脂組成物中の含有量は、少なすぎると接続抵抗が高く、接続信頼性が低下する傾向があり、多すぎると隣接端子間でショートが発生することが懸念されるので、膜形成樹脂、液状硬化性化合物、導電粒子、エラストマー及び硬化剤の合計全質量中の好ましくは0.5〜10質量%、より好ましくは2〜5質量%である。   In the anisotropic conductive film of the present invention, if the content of such conductive particles in the resin composition is too small, the connection resistance tends to be high, and the connection reliability tends to decrease. Since it is feared that a short circuit occurs, it is preferably 0.5 to 10% by mass, more preferably 2 to 5% by mass in the total total mass of the film-forming resin, the liquid curable compound, the conductive particles, the elastomer and the curing agent. %.

本発明の異方性導電フィルムは、前述したように、樹脂組成物をフィルムにしたものであるが、このような樹脂組成物は、既に説明したエラストマーと導電粒子とに加えて、膜形成樹脂と、液状硬化性化合物と、硬化剤とを含有する。   As described above, the anisotropic conductive film of the present invention is obtained by forming a resin composition into a film. Such a resin composition includes a film-forming resin in addition to the elastomer and conductive particles already described. And a liquid curable compound and a curing agent.

膜形成樹脂は、樹脂組成物に成膜性を付与するものであり、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、製膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。   The film-forming resin imparts film formability to the resin composition, and includes phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin resin, etc. These can be used, and two or more of these can be used in combination. Among these, a phenoxy resin can be preferably used from the viewpoint of film forming property, workability, and connection reliability.

膜形成樹脂の樹脂組成物中の含有量は、少なすぎると樹脂組成物の成膜性が低下する傾向がり、多すぎると相対的に他の成分が少なくなり意図した性能の異方性導電フィルムを得られなくなる傾向があるので、膜形成樹脂、液状硬化性化合物、導電粒子、エラストマー及び硬化剤の合計全質量中に好ましくは5〜50質量%、より好ましくは20〜30質量%である。   If the content of the film-forming resin in the resin composition is too small, the film-forming property of the resin composition tends to decrease, and if it is too large, the other components are relatively less and the anisotropic conductive film having the intended performance. The total content of the film-forming resin, the liquid curable compound, the conductive particles, the elastomer and the curing agent is preferably 5 to 50% by mass, more preferably 20 to 30% by mass.

液状硬化性化合物は、異方性導電フィルムに熱硬化性を付与するための成分であり、室温で液状のアクリル系モノマーを使用することが好ましい。ここで、室温で液状のものを使用する理由は、異方性導電フィルムにタック性を付与させるためである。また、アクリル系モノマーを使用する理由は、エポキシ樹脂などに比べ、リペア性に優れているからである。このようなアクリル系モノマーとしては、単官能(メタ)アクリレート(ここで、(メタ)アクリレートにはアクリレートとメタクリレートとが包含される)、二官能以上の多官能(メタ)アクリレートを使用することができる。本発明においては、接着剤を熱硬化性とするために、アクリル系モノマーの少なくとも一部に多官能(メタ)アクリレートを使用することが好ましい。   The liquid curable compound is a component for imparting thermosetting properties to the anisotropic conductive film, and it is preferable to use an acrylic monomer that is liquid at room temperature. Here, the reason for using a liquid thing at room temperature is for giving an anisotropic conductive film tackiness. Moreover, the reason for using an acrylic monomer is that it is excellent in repairability compared with an epoxy resin or the like. As such an acrylic monomer, a monofunctional (meth) acrylate (here, (meth) acrylate includes acrylate and methacrylate), and a bifunctional or higher polyfunctional (meth) acrylate may be used. it can. In the present invention, it is preferable to use a polyfunctional (meth) acrylate for at least a part of the acrylic monomer in order to make the adhesive thermosetting.

単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、i−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−メチルブチル(メタ)アクリレート、n−ペンチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、n−ヘプチル(メタ)アクリレート、2−メチルヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、2−ブチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、n−ノニル(メタ)アクリレート、n−デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。二官能(メタ)アクリレートとしては、ビスフェノールF―EO変性ジ(メタ)アクリレート、ビスフェノールA―EO変性ジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート、ジシクロペンタジエン(メタ)アクリレート等が挙げられる。三官能(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンPO変性(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート等が挙げられる。四官能以上の(メタ)アクリレートとしては、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート等が挙げられる。その他に、多官能ウレタン(メタ)アクリレートも使用することができる。具体的には、M1100、M1200、M1210、M1600(以上、東亜合成工業(株))、AH−600、AT−600(以上、共栄社化学(株))等が挙げられる。   Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) ) Acrylate, t-butyl (meth) acrylate, 2-methylbutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, 2-methylhexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, 2-butylhexyl (meth) acrylate, isooctyl (meth) acrylate, isopentyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, cyclohexyl (meth) ) Acrylate, benzyl (meth) acrylate, phenoxy (meth) acrylate, n-nonyl (meth) acrylate, n-decyl (meth) acrylate, lauryl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate, etc. Can be mentioned. Bifunctional (meth) acrylates include bisphenol F-EO-modified di (meth) acrylate, bisphenol A-EO-modified di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, and tricyclodecanedi. Examples include methylol di (meth) acrylate and dicyclopentadiene (meth) acrylate. Examples of the trifunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, trimethylolpropane PO-modified (meth) acrylate, and isocyanuric acid EO-modified tri (meth) acrylate. Examples of tetrafunctional or higher functional (meth) acrylates include dipentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetraacrylate. In addition, polyfunctional urethane (meth) acrylates can also be used. Specific examples include M1100, M1200, M1210, M1600 (above, Toa Gosei Kogyo Co., Ltd.), AH-600, AT-600 (above, Kyoeisha Chemical Co., Ltd.), and the like.

液状硬化性化合物の樹脂組成物中の含有量は、少なすぎると硬化後の異方性導電フィルムに好ましい膜物性を付与することができず、多すぎると相対的に他の成分が少なくなり意図した性能の異方性導電フィルムを得られなくなる傾向があるので、膜形成樹脂100質量部に対し、好ましくは5〜35質量部、より好ましくは10〜30質量部である。   If the content of the liquid curable compound in the resin composition is too small, it is not possible to impart desirable film properties to the anisotropic conductive film after curing, and if it is too large, other components are relatively less intended. Since there is a tendency that an anisotropic conductive film having the above performance cannot be obtained, the amount is preferably 5 to 35 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the film-forming resin.

硬化剤は、液状硬化性化合物を重合させるための成分であり、液状硬化性化合物の種類等に応じて適宜選択することができる。液状硬化性化合物が、アクリル系モノマーである場合、硬化剤として、有機過酸化物やアゾ化合物等を使用することができるが、安定性の点から有機過酸化物を好ましく使用することができる。   A hardening | curing agent is a component for polymerizing a liquid curable compound, and can be suitably selected according to the kind etc. of a liquid curable compound. When the liquid curable compound is an acrylic monomer, an organic peroxide, an azo compound, or the like can be used as a curing agent, but an organic peroxide can be preferably used from the viewpoint of stability.

このような有機過酸化物としては、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド等が挙げられる。具体的には、ジイソブチリル、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、ジラウロイルパーオキサイド、ジ(3,5,5−トリメチルヘキサイノイル)パーオキサイド、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシネオヘプタノエート、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、ジ(2−エチルヘキシル)パーオキシジカーボネート、ジ(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、ジ−sec−ブチルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、クミルパーオキシネオデカノエート、ジ(4−メチルベンゾイル)パーオキサイド、ジ(3−メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、1,1−ジ(t−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ジ(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシベンゾエート、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、t−ブチルヒドロパーオキサイド、t−アミルヒドロパーオキサイド、t−ヘキシルヒドロパーオキサイド、t−オクチルヒドロパーオキサイド、2,5−ジメチル−2,5−ジヒドロパーオキシヘキサン、クメンヒドロパーオキサイド、ジイソプロピルベンゼンモノヒドロパーオキサイド、ジイソプロピルベンゼンジヒドロパーオキサイド、パラメンタンヒドロパーオキサイド等を挙げることができる。これらは、2種以上を併用することができる。また、フェニル環を有するこれらの高温分解過酸化物を使用することにより、異方性導電フィルムの凝集力を向上させることができるので接着強度を更に向上させることができる。   Examples of such organic peroxides include diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide and the like. Specifically, diisobutyryl, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, dilauroyl peroxide, di (3,5,5-trimethylhexinoyl) peroxide, t -Butylperoxypivalate, t-hexylperoxypivalate, t-butylperoxyneoheptanoate, t-butylperoxyneodecanoate, t-hexylperoxyneodecanoate, di (2-ethylhexyl) ) Peroxydicarbonate, di (4-t-butylcyclohexyl) peroxydicarbonate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, di-sec-butylperoxydicarbonate, di- n-propyl peroxydicarbonate, cumyl peroxyneodecanoate, di ( -Methylbenzoyl) peroxide, di (3-methylbenzoyl) peroxide, dibenzoyl peroxide, 1,1-di (t-butylperoxy) -2-methylcyclohexane, 1,1-di (t-hexylper) Oxy) cyclohexane, 1,1-di (t-butylperoxy) cyclohexane, t-hexylperoxybenzoate, t-butylperoxybenzoate, methyl ethyl ketone peroxide, cyclohexanone peroxide, methylcyclohexanone peroxide, t-butyl hydroper Oxide, t-amyl hydroperoxide, t-hexyl hydroperoxide, t-octyl hydroperoxide, 2,5-dimethyl-2,5-dihydroperoxyhexane, cumene hydroperoxide, diiso B pills benzene mono hydroperoxide, diisopropylbenzene-dihydro peroxide, may be mentioned p-menthane hydroperoxide and the like. Two or more of these can be used in combination. Moreover, since the cohesive force of an anisotropic conductive film can be improved by using these high-temperature decomposition peroxides having a phenyl ring, the adhesive strength can be further improved.

有機過酸化物の樹脂組成物中の配合量は、少なすぎると異方性導電フィルムの硬化が不十分となる傾向があり、多すぎると重合度が低くなりフィルム特性が悪化する傾向があるので、アクリル系モノマー100質量部に対し、好ましくは1〜40質量部、より好ましくは2〜20質量部である。   If the amount of the organic peroxide in the resin composition is too small, the anisotropic conductive film tends to be insufficiently cured, and if it is too large, the degree of polymerization tends to be low and the film characteristics tend to deteriorate. The amount is preferably 1 to 40 parts by mass, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the acrylic monomer.

本発明の異方性導電フィルムを構成する樹脂組成物は、本発明の効果を損なわない範囲で、異方性導電フィルムに従来より添加されている各種添加剤、例えば、無機フィラー、シランカップリング剤、顔料、酸化防止剤、希釈剤、溶剤、帯電防止剤等を配合することができる。   The resin composition constituting the anisotropic conductive film of the present invention is various additives conventionally added to the anisotropic conductive film within a range not impairing the effects of the present invention, for example, inorganic filler, silane coupling. An agent, a pigment, an antioxidant, a diluent, a solvent, an antistatic agent and the like can be blended.

本発明の異方性導電フィルムは、常法により製造することができる。例えば、膜形成樹脂と、液状硬化性化合物と、導電粒子と、エラストマーと、硬化剤と、必要に応じて添加される各種添加剤とを、攪拌機を用いて均一に混合してフィルム形成用の樹脂組成物を調製し、その樹脂組成物を用いて、公知のフィルム形成法を利用してフィルムに成形することにより製造することができる。このようにして得られた異方性導電フィルムの厚みは、使用目的に応じて適宜設定することができる。   The anisotropic conductive film of this invention can be manufactured by a conventional method. For example, a film-forming resin, a liquid curable compound, conductive particles, an elastomer, a curing agent, and various additives added as necessary are uniformly mixed using a stirrer for film formation. It can manufacture by preparing a resin composition and shape | molding it into a film using the resin composition using a well-known film formation method. Thus, the thickness of the anisotropic conductive film obtained can be suitably set according to the intended purpose.

以上説明した本発明の異方性導電フィルムは、基板の端子と電子部品の端子とを異方性導電接続して接続構造体を得る製造方法に好ましく適用することができる。この製造方法について、以下に、工程毎に説明する。   The anisotropic conductive film of the present invention described above can be preferably applied to a manufacturing method for obtaining a connection structure by anisotropically connecting a terminal of a substrate and a terminal of an electronic component. This manufacturing method will be described below for each process.

<フィルム仮貼り工程>
先ず、基板の端子に、本発明の異方性導電フィルムを仮貼りする。仮貼りは、半導体装置を製造する際に用いられる加熱加圧が可能なボンディングツールを使用することできる。仮貼り条件は、異方性導電フィルムの組成等に応じて適宜設定することができる。
<Temporary film sticking process>
First, the anisotropic conductive film of the present invention is temporarily attached to the terminal of the substrate. Temporary sticking can use the bonding tool in which the heating and pressurization used when manufacturing a semiconductor device is possible. Temporary sticking conditions can be appropriately set according to the composition of the anisotropic conductive film.

基板としては、ガラス基板、ガラスエポキシ基板、ポリイミドフレキシブル基板等を挙げることができる。基板の端子としては、基板ベース上に形成された銅箔をフォトリソグラフ法により形成した電極パッドを例示することができる。   Examples of the substrate include a glass substrate, a glass epoxy substrate, and a polyimide flexible substrate. Examples of the terminal of the substrate include an electrode pad formed by photolithography using a copper foil formed on the substrate base.

<電子部品配置工程>
次に、電子部品を、その端子が基板の端子に対向するように異方性導電フィルム上に配置する。この配置する方法としては、特に制限はなく、公知の手法を使用することができ、半導体装置を製造する際に用いられる加熱加圧が可能なボンディングツールを適用することができる。配置条件は、異方性導電フィルムの組成等に応じて適宜設定することができる。
<Electronic component placement process>
Next, an electronic component is arrange | positioned on an anisotropic conductive film so that the terminal may oppose the terminal of a board | substrate. The arrangement method is not particularly limited, and a known method can be used. A bonding tool capable of heating and pressing used in manufacturing a semiconductor device can be applied. The arrangement conditions can be appropriately set according to the composition of the anisotropic conductive film.

電子部品としては、半導体チップ、コンデンサ、LEDチップ、半導体モジュール、また、先に挙げた各種基板等を例示することができる。電子部品の端子としては、バンプ、電極バッドなどを挙げることができる。   Examples of the electronic component include a semiconductor chip, a capacitor, an LED chip, a semiconductor module, and various substrates mentioned above. Examples of terminals of electronic components include bumps and electrode pads.

<異方性導電接続工程>
次に、基板と電子部品とで挟持された異方性導電フィルムを、電子部品側から加熱加圧が可能なボンディングツールで加熱加圧することにより異方性導電接続を行う。これにより、基板の端子と電子部品の端子とが本発明の異方性導電フィルムを介して異方性導電接続された接続構造体が得られる。
<Anisotropic conductive connection process>
Next, anisotropic conductive connection is performed by heating and pressurizing the anisotropic conductive film sandwiched between the substrate and the electronic component with a bonding tool capable of heating and pressing from the electronic component side. Thereby, the connection structure by which the terminal of the board | substrate and the terminal of the electronic component were anisotropically conductive-connected through the anisotropic conductive film of this invention is obtained.

このようにして得られる接続構造体は、本発明の異方性導電フィルムを用いているので、良好な接続信頼性とリペア性とが両立したものとなる。   Since the connection structure obtained in this way uses the anisotropic conductive film of the present invention, both good connection reliability and repairability are achieved.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

実施例1〜11、比較例1〜10
表1に示す異方性導電フィルム成分の合計100質量部に、トルエン50質量部とを、攪拌機を用いて均一に混合してフィルム形成用の樹脂組成物を調製し、得られた樹脂組成物を、剥離フィルム上に乾燥後の厚みが35μmとなるように塗布し、80℃で5分間乾燥することにより異方性導電フィルムを得た。
Examples 1-11, Comparative Examples 1-10
A resin composition for film formation was prepared by uniformly mixing 50 parts by mass of toluene with a total of 100 parts by mass of the anisotropic conductive film components shown in Table 1 using a stirrer, and the resulting resin composition Was applied on the release film so that the thickness after drying was 35 μm, and dried at 80 ° C. for 5 minutes to obtain an anisotropic conductive film.

なお、表1中のエラストマーA〜Iとしては、それぞれ表中に示された、ASTM D638に基づく破断強度及び破断伸度を示すものを使用した。また、導電粒子A〜Eとしては、それぞれ表中に示された、荷重49.035mN、負荷速度2.226mN/secの条件における10%変位時の圧縮硬さを示すものを使用した。   As the elastomers A to I in Table 1, those showing the breaking strength and breaking elongation based on ASTM D638 shown in the table were used. In addition, as the conductive particles A to E, those showing the compression hardness at the time of 10% displacement under the conditions of a load of 49.035 mN and a load speed of 2.226 mN / sec shown in the table, respectively, were used.

得られた異方性導電フィルムの硬化後の貯蔵弾性率、使用したエラストマーの破産強度及び破断伸度、使用した導電粒子の10%変位時の圧縮強度について、以下説明するように測定した。得られた結果を表1に示す。   The storage elastic modulus after curing of the obtained anisotropic conductive film, the bankrupt strength and breaking elongation of the used elastomer, and the compressive strength at 10% displacement of the used conductive particles were measured as described below. The obtained results are shown in Table 1.

また、ボンディングツールを使用し、得られた異方性導電フィルムを用いて接続構造体を作成し、接続抵抗値、並びに本圧着後の異方性導電フィルムのリペア性を以下に説明するように試験評価した。得られた結果を表1に示す。   Also, using a bonding tool, create a connection structure using the obtained anisotropic conductive film, and explain the connection resistance value and the repair property of the anisotropic conductive film after the main pressure bonding as described below. Test evaluation. The obtained results are shown in Table 1.

なお、接続構造体は、プリント配線基板(FR4グレード、パナソニック(株):銅配線ピッチ200μm、配線高さ35μm)の端子上に、異方性導電フィルムを仮貼りし、その仮貼りした異方性導電フィルム上に、ポリイミドフレキシブル基板(ポリイミド厚38μm、銅配線ピッチ200μm、配線高さ8μm)を、その端子がプリント配線基板の端子と対向するように配置し、プリント配線基板側から、170℃、4MPa、5secという条件でボンディングツールを用いて本圧着して異方性導電接続することで製造した。   The connection structure is an anisotropic conductive film that is temporarily bonded to an anisotropic conductive film on terminals of a printed wiring board (FR4 grade, Panasonic Corporation: copper wiring pitch 200 μm, wiring height 35 μm). A polyimide flexible substrate (polyimide thickness 38 μm, copper wiring pitch 200 μm, wiring height 8 μm) is placed on the conductive conductive film so that the terminals face the terminals of the printed wiring board, and 170 ° C. from the printed wiring board side. It manufactured by carrying out this pressure bonding using the bonding tool on the conditions of 4 Mpa and 5 sec, and carrying out anisotropic conductive connection.

<硬化後の異方性導電フィルムの貯蔵弾性率の測定>
異方性導電フィルムを、200℃、3時間という条件で硬化させ、得られた異方性導電フィルムの硬化物について、導電粘弾性試験器(RHEOVIBRON DDV−01FP,ORIENTEC社)を用いて、JIS K7244−4による引張り振動モードの動的粘弾性測定における貯蔵弾性率(25℃)を測定した。
<Measurement of storage elastic modulus of anisotropic conductive film after curing>
The anisotropic conductive film was cured at 200 ° C. for 3 hours, and the cured product of the obtained anisotropic conductive film was subjected to JIS using a conductive viscoelasticity tester (RHEOVIBRON DDV-01FP, ORIENTEC). The storage elastic modulus (25 ° C.) in the dynamic viscoelasticity measurement of the tensile vibration mode by K7244-4 was measured.

<エラストマーの破断強度と破断伸度の測定>
エラストマーA〜Iのそれぞれを80mm(長さ)×15mm(幅)×0.020〜0.050mm(厚さ)の短冊状にカットして得た試験片について、引張り試験器(テンシロン、オリエンテック社)を用い、ASTM D638に従って破断強度と破断伸度とを測定した。
<Measurement of breaking strength and breaking elongation of elastomer>
Tensile testers (Tensilon, Orientec) were used for test pieces obtained by cutting each of the elastomers A to I into strips of 80 mm (length) x 15 mm (width) x 0.020 to 0.050 mm (thickness). The breaking strength and breaking elongation were measured according to ASTM D638.

<導電粒子の圧縮硬さの測定>
導電粒子の10%圧縮変位時の圧縮硬さを、微小圧縮試験器(MCT−200、島津製作所製)を用いて、荷重49.035mN、負荷速度2.226mN/secという条件で測定した。
<Measurement of compression hardness of conductive particles>
The compression hardness at the time of 10% compression displacement of the conductive particles was measured using a micro-compression tester (MCT-200, manufactured by Shimadzu Corporation) under the conditions of a load of 49.035 mN and a load speed of 2.226 mN / sec.

<接続抵抗値の測定>
接続構造体について、温度85℃、湿度85%の高温高湿環境下に500時間保存した場合の接続抵抗を測定し、以下の基準で接続信頼性を評価した。実用上、評価結果がA又はBであることが望まれる。
<Measurement of connection resistance>
About the connection structure, the connection resistance at the time of storing for 500 hours in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% was measured, and connection reliability was evaluated according to the following criteria. In practice, the evaluation result is desirably A or B.

ランク 評価基準
A: 接続抵抗値が2.0Ω未満の場合
B: 接続抵抗値が2.0Ω以上4.0Ω未満の場合
C: 接続抵抗値が4.0Ω以上の場合
Rank Evaluation Criteria A: When the connection resistance value is less than 2.0Ω B: When the connection resistance value is 2.0Ω or more and less than 4.0Ω C: When the connection resistance value is 4.0Ω or more

<異方性導電フィルムのリペア性>
接続構造体のプリント配線基板を保持固定し、ポリイミドフレキシブル基板を引きはがし、ポリイミドフレキシブル基板の端子上に残存付着した異方性導電フィルム(ACF)の硬化物を、端子と一定平行方向に綿棒で擦り、除去できるまでの擦り回数をカウントし、以下の基準でリペア性を評価した。実用上、評価結果がA又はBであることが望まれる。
<Repairability of anisotropic conductive film>
Holding and fixing the printed circuit board of the connection structure, peeling off the polyimide flexible board, and using a cotton swab in a fixed parallel direction to the terminals, the cured anisotropic conductive film (ACF) remaining on the terminals of the polyimide flexible board The number of rubs until rubbing and removal was counted, and the repairability was evaluated according to the following criteria. In practice, the evaluation result is desirably A or B.

ランク 評価基準
A: 残存付着した異方性導電フィルムの硬化物が除去できるまで綿棒で擦った回数が5回未満である場合
B: 残存付着した異方性導電フィルムの硬化物が除去できるまで綿棒で擦った回数が6回以上である場合
C: 綿棒で擦ったぐらいでは、異方性導電フィルムの硬化物が除去できない場合
Rank Evaluation Criteria A: When the number of rubbing with the cotton swab is less than 5 times until the cured product of the remaining attached anisotropic conductive film can be removed B: Cotton swab until the cured product of the remaining attached anisotropic conductive film can be removed When the number of times of rubbing is 6 times or more C: When the cured product of the anisotropic conductive film cannot be removed by rubbing with a cotton swab

Figure 2012028334
Figure 2012028334

実施例1〜11の異方性導電フィルムは、いずれも、硬化後のJIS K7244−4による引張り振動モードの動的粘弾性測定における貯蔵弾性率(25℃)が、0.5〜1.5GPaであり、使用したエラストマーのASTM D638による破断強度が50〜80MPaであり且つ破断伸度が10%以下であり、エラストマーの樹脂組成物中の含有量が、膜形成樹脂、液状硬化性化合物、導電粒子、当該エラストマー及び硬化剤の合計全質量中の20〜50質量%であり、そして導電粒子が、荷重49.035mN、負荷速度2.226mN/secの条件における10%変位時の圧縮硬さが300〜500kgf/mmであった。従って、異方性導電フィルムのリペア性及び接続構造体の接続抵抗値の評価結果が、実用上問題ないレベルであるA又はBであった。 The anisotropic conductive films of Examples 1 to 11 each have a storage elastic modulus (25 ° C.) of 0.5 to 1.5 GPa in the dynamic viscoelasticity measurement in the tensile vibration mode according to JIS K7244-4 after curing. The fracture strength according to ASTM D638 of the used elastomer is 50 to 80 MPa and the elongation at break is 10% or less, and the content of the elastomer in the resin composition is a film-forming resin, a liquid curable compound, a conductive material. 20-50% by mass of the total mass of the particles, the elastomer and the curing agent, and the conductive particles have a compressive hardness at 10% displacement under conditions of a load of 49.035 mN and a load speed of 2.226 mN / sec. It was 300 to 500 kgf / mm 2 . Therefore, the evaluation result of the repair property of the anisotropic conductive film and the connection resistance value of the connection structure was A or B which is a level with no practical problem.

特に、比較例1〜2並びに実施例1〜3の対比の結果から、硬化後の異方性導電フィルムのJIS K7244−4による引張り振動モードの動的粘弾性測定における貯蔵弾性率(25℃)の範囲が、発明の効果を得るという観点から0.5〜1.5GPaであることがわかる。   In particular, from the comparison results of Comparative Examples 1-2 and Examples 1-3, the storage elastic modulus (25 ° C.) in the dynamic viscoelasticity measurement of the tensile vibration mode according to JIS K7244-4 of the anisotropic conductive film after curing. From the viewpoint of obtaining the effects of the invention, it is understood that the range is 0.5 to 1.5 GPa.

比較例3〜4並びに実施例4〜5の対比結果から、使用すべきエラストマーのASTM D638による破断強度の範囲が、発明の効果を得るという観点から50〜80MPaであること、また、比較例5〜6並びに実施例6〜7の結果から、使用するエラストマーのASTM D638による破断伸度の範囲が、発明の効果を得るという観点から10%以下であることがわかる。   From the comparison results of Comparative Examples 3 to 4 and Examples 4 to 5, the range of the breaking strength according to ASTM D638 of the elastomer to be used is 50 to 80 MPa from the viewpoint of obtaining the effects of the invention, and Comparative Example 5 From the results of -6 and Examples 6-7, it can be seen that the range of elongation at break according to ASTM D638 of the elastomer used is 10% or less from the viewpoint of obtaining the effects of the invention.

比較例7〜8並びに実施例8〜9の対比結果から、使用すべきエラストマーの配合量の範囲が、膜形成樹脂、液状硬化性化合物、導電粒子、当該エラストマー及び硬化剤の合計全質量中、発明の効果を得るという観点から20〜50質量%であることがわかる。   From the comparison results of Comparative Examples 7 to 8 and Examples 8 to 9, the range of the amount of elastomer to be used is in the total total mass of the film-forming resin, the liquid curable compound, the conductive particles, the elastomer and the curing agent. It turns out that it is 20-50 mass% from a viewpoint of acquiring the effect of invention.

比較例9〜10並びに実施例10〜11の対比結果から、使用すべき導電粒子の圧縮硬さの範囲が、荷重49.035mN、負荷速度2.226mN/secの条件における10%変位時に、発明の効果を得るという観点から300〜500kgf/mmであることがわかる。 From the comparison results of Comparative Examples 9 to 10 and Examples 10 to 11, when the compression hardness range of the conductive particles to be used is 10% displacement under the conditions of a load of 49.035 mN and a load speed of 2.226 mN / sec, the invention it can be seen from the viewpoint of obtaining the effect which is 300~500kgf / mm 2.

本発明の異方性導電フィルムは、その硬化後の貯蔵弾性率が所定範囲となるものであり、特定の破断強度と破断伸度とを示すエラストマーを所定量含有していると共に、配合すべき導電粒子として所定の圧縮硬さを有するものを使用している。このため、本発明の異方性導電フィルムは、良好な接続信頼性とリペア性とを両立させることができ、よって、基板の端子と電子部品の端子とを異方性導電接続する際に有用である。   The anisotropic conductive film of the present invention has a storage elastic modulus after curing within a predetermined range, contains a predetermined amount of elastomer showing a specific breaking strength and breaking elongation, and should be blended A conductive particle having a predetermined compression hardness is used. For this reason, the anisotropic conductive film of the present invention can achieve both good connection reliability and repairability, and is therefore useful for anisotropic conductive connection between the terminal of the substrate and the terminal of the electronic component. It is.

Claims (4)

膜形成樹脂と、液状硬化性化合物と、導電粒子と、エラストマーと、硬化剤とを含有する樹脂組成物をフィルムに成形した異方性導電フィルムであって、
硬化後の異方性導電フィルムのJIS K7244−4による引張り振動モードの動的粘弾性測定における貯蔵弾性率(25℃)が、0.5〜1.5GPaであり、
エラストマーが、ASTM D638による50〜80MPaの破断強度と10%以下の破断伸度とを示すものであり、
エラストマーの樹脂組成物中の含有量が、膜形成樹脂、液状硬化性化合物、導電粒子、当該エラストマー及び硬化剤の合計全質量中の20〜50質量%であり、そして
導電粒子が、荷重49.035mN、負荷速度2.226mN/secの条件における10%変位時に300〜500kgf/mmの圧縮硬さを示すものである
異方性導電フィルム。
An anisotropic conductive film obtained by molding a resin composition containing a film-forming resin, a liquid curable compound, conductive particles, an elastomer, and a curing agent into a film,
The storage elastic modulus (25 degreeC) in the dynamic viscoelasticity measurement of the tensile vibration mode by JISK7244-4 of the anisotropic conductive film after hardening is 0.5-1.5GPa,
The elastomer exhibits a breaking strength of 50 to 80 MPa according to ASTM D638 and a breaking elongation of 10% or less,
The content of the elastomer in the resin composition is 20 to 50% by mass in the total total mass of the film-forming resin, the liquid curable compound, the conductive particles, the elastomer and the curing agent, and the conductive particles have a load of 49. An anisotropic conductive film that exhibits a compression hardness of 300 to 500 kgf / mm 2 at 10% displacement under conditions of 035 mN and a load speed of 2.226 mN / sec.
液状硬化性化合物がアクリル系モノマーである請求項1記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1, wherein the liquid curable compound is an acrylic monomer. 基板の端子と電子部品の端子とを異方性導電接続して接続構造体を得る製造方法であって、
基板の端子に、請求項1又は2記載の異方性導電フィルムを仮貼りする工程、
電子部品を、その端子が基板の端子に対向するように異方性導電フィルム上に配置する工程、
基板と電子部品とで挟持された異方性導電フィルムを、電子部品側からボンディングツールで加熱加圧することにより異方性導電接続を行う工程
を有する製造方法。
A manufacturing method for obtaining a connection structure by anisotropically conductively connecting a terminal of a substrate and a terminal of an electronic component,
Temporarily attaching the anisotropic conductive film according to claim 1 or 2 to a terminal of the substrate;
Arranging the electronic component on the anisotropic conductive film so that the terminal faces the terminal of the substrate;
The manufacturing method which has the process of performing anisotropic conductive connection by heat-pressing the anisotropic conductive film clamped with the board | substrate and the electronic component with the bonding tool from the electronic component side.
請求項3記載の製造方法で得られた接続構造体。   A connection structure obtained by the manufacturing method according to claim 3.
JP2011195290A 2011-09-07 2011-09-07 Anisotropic conductive film and method for manufacturing connection structure Active JP5672201B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011195290A JP5672201B2 (en) 2011-09-07 2011-09-07 Anisotropic conductive film and method for manufacturing connection structure
KR1020120098572A KR101393836B1 (en) 2011-09-07 2012-09-06 Anisotropic conductive film and method for producing connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195290A JP5672201B2 (en) 2011-09-07 2011-09-07 Anisotropic conductive film and method for manufacturing connection structure

Publications (2)

Publication Number Publication Date
JP2012028334A true JP2012028334A (en) 2012-02-09
JP5672201B2 JP5672201B2 (en) 2015-02-18

Family

ID=45780971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195290A Active JP5672201B2 (en) 2011-09-07 2011-09-07 Anisotropic conductive film and method for manufacturing connection structure

Country Status (2)

Country Link
JP (1) JP5672201B2 (en)
KR (1) KR101393836B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131904A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Connection structure and method for producing same
KR20210080480A (en) 2018-10-22 2021-06-30 타츠타 전선 주식회사 conductive adhesive sheet
US11414573B2 (en) 2016-08-30 2022-08-16 Showa Denko Materials Co., Ltd. Adhesive composition
KR20220124684A (en) 2020-01-07 2022-09-14 타츠타 전선 주식회사 electromagnetic shielding film
KR20220147066A (en) 2020-02-26 2022-11-02 타츠타 전선 주식회사 electromagnetic shielding film
US11647619B2 (en) 2019-12-03 2023-05-09 Tatsuta Electric Wire & Cable Co., Ltd. Electromagnetic wave shielding film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020103657B4 (en) 2020-02-12 2022-06-23 Doosan Heavy Industries & Construction Co., Ltd. Three-walled impingement liner for reusing impingement air in an airfoil, airfoil incorporating the liner, turbomachinery component and a gas turbine fitted therewith

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003337346A (en) * 2002-03-13 2003-11-28 Sharp Corp Liquid crystal display device and manufacturing method therefor
JP2004118078A (en) * 2002-09-27 2004-04-15 Sekisui Chem Co Ltd Polarizing plate with photosetting adhesive and method for sticking polarizing plate
JP2004161828A (en) * 2002-11-11 2004-06-10 Nippon Steel Chem Co Ltd Resin composition for forming film, and film adhesive
JP2005275053A (en) * 2004-03-25 2005-10-06 Dainippon Ink & Chem Inc Peelable pressure-sensitive adhesive double coated tape
JP2008159586A (en) * 2002-02-28 2008-07-10 Hitachi Chem Co Ltd Circuit connecting material and connection structure of circuit terminal using same
JP2010212706A (en) * 2010-04-19 2010-09-24 Hitachi Chem Co Ltd Circuit connecting material and method of manufacturing circuit board using the same, and circuit board
JP2010272546A (en) * 2010-08-27 2010-12-02 Sony Chemical & Information Device Corp Method for manufacturing mounting body, connection method, and anisotropic conductive film
JP2011105861A (en) * 2009-11-18 2011-06-02 Hitachi Chem Co Ltd Circuit-connecting material and connected structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370926B2 (en) 2004-02-16 2009-11-25 日立化成工業株式会社 Thin-leaf wiring board material and manufacturing method thereof
KR100735211B1 (en) 2006-02-21 2007-07-03 엘에스전선 주식회사 Anisotropic conductive film with conductive ball of highly reliable electric connection
JP5823117B2 (en) 2010-11-16 2015-11-25 デクセリアルズ株式会社 Anisotropic conductive film, bonded body, and manufacturing method of bonded body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159586A (en) * 2002-02-28 2008-07-10 Hitachi Chem Co Ltd Circuit connecting material and connection structure of circuit terminal using same
JP2003337346A (en) * 2002-03-13 2003-11-28 Sharp Corp Liquid crystal display device and manufacturing method therefor
JP2004118078A (en) * 2002-09-27 2004-04-15 Sekisui Chem Co Ltd Polarizing plate with photosetting adhesive and method for sticking polarizing plate
JP2004161828A (en) * 2002-11-11 2004-06-10 Nippon Steel Chem Co Ltd Resin composition for forming film, and film adhesive
JP2005275053A (en) * 2004-03-25 2005-10-06 Dainippon Ink & Chem Inc Peelable pressure-sensitive adhesive double coated tape
JP2011105861A (en) * 2009-11-18 2011-06-02 Hitachi Chem Co Ltd Circuit-connecting material and connected structure
JP2010212706A (en) * 2010-04-19 2010-09-24 Hitachi Chem Co Ltd Circuit connecting material and method of manufacturing circuit board using the same, and circuit board
JP2010272546A (en) * 2010-08-27 2010-12-02 Sony Chemical & Information Device Corp Method for manufacturing mounting body, connection method, and anisotropic conductive film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11414573B2 (en) 2016-08-30 2022-08-16 Showa Denko Materials Co., Ltd. Adhesive composition
WO2019131904A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Connection structure and method for producing same
JPWO2019131904A1 (en) * 2017-12-28 2020-12-24 昭和電工マテリアルズ株式会社 Connection structure and its manufacturing method
US11355469B2 (en) 2017-12-28 2022-06-07 Showa Denko Materials Co., Ltd. Connection structure and method for producing same
JP7314801B2 (en) 2017-12-28 2023-07-26 株式会社レゾナック Connection structure and manufacturing method thereof
KR20210080480A (en) 2018-10-22 2021-06-30 타츠타 전선 주식회사 conductive adhesive sheet
US11647619B2 (en) 2019-12-03 2023-05-09 Tatsuta Electric Wire & Cable Co., Ltd. Electromagnetic wave shielding film
KR20220124684A (en) 2020-01-07 2022-09-14 타츠타 전선 주식회사 electromagnetic shielding film
KR20220147066A (en) 2020-02-26 2022-11-02 타츠타 전선 주식회사 electromagnetic shielding film

Also Published As

Publication number Publication date
KR101393836B1 (en) 2014-05-12
JP5672201B2 (en) 2015-02-18
KR20130027436A (en) 2013-03-15

Similar Documents

Publication Publication Date Title
JP5672201B2 (en) Anisotropic conductive film and method for manufacturing connection structure
TWI425072B (en) Semi thermosetting anisotropic conductive film composition
US8003017B2 (en) Adhesive composition and anisotropic conductive film using the same
US20120292082A1 (en) Anisotropic conductive film
JP2009182363A (en) Adhesive for circuit connection, circuit connection method using the same, and circuit connected structure
US20110159713A1 (en) Acrylic insulating adhesive
US20080295959A1 (en) Thermally Conductive Adhesive Composition and Adhesion Method
TW201114878A (en) Adhesive composition, circuit connecting material and connecting structure of circuit member
JP7287432B2 (en) Resin composition, prepreg, resin-coated metal foil, laminate, printed wiring board, and method for producing resin composition
JP6532850B2 (en) Adhesive composition, film adhesive, adhesive sheet, circuit connector, method of connecting circuit members, use of adhesive composition, use of film adhesive, and use of adhesive sheet
JP2008174687A (en) Anisotropic electroconductive film
KR101385032B1 (en) Anisotropic conductive film composition and the anisotropic conductive film thereof
JP2022173197A (en) Conductive film, method for manufacturing connector, and connector
JP2011243786A (en) Method of manufacturing connection structure
JP5844588B2 (en) Circuit connection material, connection method using the same, and connection structure
TWI410474B (en) Composition for anisotropic conductive film and anisotropic conductive film using the same
JPWO2017090659A1 (en) Adhesive composition for circuit connection and structure
JP2009110913A (en) Semi-thermosetting anisotropic conductive film composition
CN108473633B (en) Low temperature curable adhesive compositions and articles comprising the same
JP2013125598A (en) Film-like anisotropic conductive adhesive
US9018307B2 (en) Adhesive composition
JP2010159328A (en) Conductive particle, anisotropic conductive material, and connecting structure
TWI527873B (en) Anisotropic conductive adhesive composition film and semiconductor device
KR100727741B1 (en) Anisotropic conductive adhesive for hyper speed hardening, and anisotropic conductive film using the same
JP2011204898A (en) Adhesive composition, and connection structure for circuit member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5672201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250