JP2012026957A - Spectrophotometer - Google Patents

Spectrophotometer Download PDF

Info

Publication number
JP2012026957A
JP2012026957A JP2010168126A JP2010168126A JP2012026957A JP 2012026957 A JP2012026957 A JP 2012026957A JP 2010168126 A JP2010168126 A JP 2010168126A JP 2010168126 A JP2010168126 A JP 2010168126A JP 2012026957 A JP2012026957 A JP 2012026957A
Authority
JP
Japan
Prior art keywords
light
sample
light beam
photodetector
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010168126A
Other languages
Japanese (ja)
Inventor
Kasumi Yokota
佳澄 横田
Toshiro Kimura
俊郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2010168126A priority Critical patent/JP2012026957A/en
Publication of JP2012026957A publication Critical patent/JP2012026957A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve accuracy of a calculation value of absorbance or the like by reducing noise when a wavelength scanning speed is low.SOLUTION: When a wavelength scanning speed is set to be low (Yes in S10) and a level of a sample side measurement signal obtained by detecting transmitted light of a sample to be measured is lower than a threshold (Yes in S13, S14 and S15), a rotational speed of a sector mirror for dividing monochromatic light into a sample side beam and a reference side beam is lowered (S16). Thereby, switching frequency of sectors per unit time is reduced and a rate of waste periods in which effective data cannot be collected before and after the switching is reduced. Consequently, the number of target data to be added per the same time can be increased (namely, addition time is extended) and a noise level can be reduced. When the level of the sample side measurement signal is equal to or above the threshold, the influence of increase of 1/f noise may exceed, and thereby the rotational speed of the sector mirror is maintained at a normal speed.

Description

本発明は分光光度計に関し、さらに詳しくは、回転セクタ鏡やビームスプリッタなどによって測定光を試料側光路と参照側光路との2方向へと分けるダブルビーム方式の分光光度計に関する。   The present invention relates to a spectrophotometer, and more particularly to a double beam type spectrophotometer that divides measurement light into two directions of a sample side optical path and a reference side optical path by a rotating sector mirror, a beam splitter, or the like.

分光光度計には、その光路の構成によってダブルビーム方式とシングルビーム方式とがある。ダブルビーム方式は、吸光度を算出する過程で原理的に光源の光量変動による影響を相殺することが可能であるため、一般的に、分析精度の点でシングルビーム方式よりも有利である。   The spectrophotometer has a double beam method and a single beam method depending on the configuration of the optical path. The double beam method is generally more advantageous than the single beam method in terms of analysis accuracy because the influence of fluctuations in the light amount of the light source can be canceled in principle in the course of calculating the absorbance.

ダブルビーム方式の分光光度計として、分光器(モノクロメータ)により取り出された単色光を回転セクタ鏡を用いて試料側光束と参照側光束とに振り分ける構成のものがよく知られている。例えば特許文献1などに開示された分光光度計では、一定速度で回転駆動されるセクタ鏡により単色光が試料側光束と参照側光束とに交互に振り分けられ、試料側光束は被測定試料に照射され、参照側光束は被測定成分を含まない例えば溶媒のみである参照試料に照射される。そうして被測定試料を透過した光と参照試料を透過した光とは1つの光検出器に対し交互に導入され、光検出器では各透過光に対応した信号が検出される。また、光を遮蔽する遮光部がセクタ鏡に一体に設けられており、光が光検出器に入射しない状態での暗電流などによる暗信号もセクタ鏡の回転に伴って周期的に測定されるようになっている。   As a double beam type spectrophotometer, a configuration in which monochromatic light extracted by a spectroscope (monochromator) is divided into a sample-side light beam and a reference-side light beam using a rotating sector mirror is well known. For example, in a spectrophotometer disclosed in Patent Document 1 or the like, monochromatic light is alternately distributed into a sample-side light beam and a reference-side light beam by a sector mirror that is rotationally driven at a constant speed, and the sample-side light beam irradiates the sample to be measured. Then, the reference-side light beam is applied to a reference sample that does not contain the component to be measured, for example, only the solvent. Thus, the light transmitted through the sample to be measured and the light transmitted through the reference sample are alternately introduced to one photodetector, and the photodetector detects a signal corresponding to each transmitted light. In addition, a light-shielding portion that shields light is provided integrally with the sector mirror, and dark signals due to dark current and the like when light is not incident on the photodetector are also periodically measured as the sector mirror rotates. It is like that.

図12は上述したようなダブルビーム方式分光光度計に用いられる一般的なセクタ鏡の平面図である。このセクタ鏡8において、軸81の周りには反射鏡82、開口部83、遮光部84が、交互に設けられている。いま、分光器から取り出された単色光の光束が図12中に点線で示す位置Lに来るようにセクタ鏡8が設置されているとすると、セクタ鏡8が1回転する間に、位置Lには、開口部83→遮光部84→反射鏡82→遮光部84→開口部83→遮光部84→反射鏡82→遮光部84が順に来る。即ち、セクタ鏡8のモードは、図13(a)に示すように、通過(S)→遮光(DS)→反射(R)→遮光(DR)→通過(S)→遮光(DS)→反射(R)→遮光(DR)の順に切り替わる。通過(S)の期間には被測定試料に試料側光束が照射され、反射(R)の期間には参照試料に参照側光束が照射される。また、遮光(DS、DR)の期間には光検出器へ光が入射しない。その結果、光検出器において、通過(S)の期間には試料側信号が、反射(R)の期間には参照側信号が、遮光(DS、DR)の期間には暗信号が、時分割で得られる。   FIG. 12 is a plan view of a general sector mirror used in the double beam spectrophotometer as described above. In the sector mirror 8, reflecting mirrors 82, openings 83, and light shielding portions 84 are alternately provided around the axis 81. Now, assuming that the sector mirror 8 is installed so that the monochromatic light beam extracted from the spectroscope is positioned at a position L indicated by a dotted line in FIG. 12, the sector mirror 8 is moved to the position L during one rotation. The opening 83 → the light shielding portion 84 → the reflecting mirror 82 → the light shielding portion 84 → the opening portion 83 → the light shielding portion 84 → the reflecting mirror 82 → the light shielding portion 84 comes in order. That is, the mode of the sector mirror 8 is, as shown in FIG. 13 (a), passing (S) → light shielding (DS) → reflection (R) → light shielding (DR) → passing (S) → light shielding (DS) → reflection. It switches in the order of (R) → light shielding (DR). The sample-side light beam is irradiated to the sample to be measured during the passage (S), and the reference-side light beam is irradiated to the reference sample during the reflection (R) period. In addition, no light enters the photodetector during the light shielding (DS, DR) period. As a result, in the photodetector, the sample-side signal is time-divisionally transmitted during the passage (S) period, the reference-side signal is transmitted during the reflection (R) period, and the dark signal is transmitted during the light-shielding (DS, DR) period. It is obtained by.

検出信号の変化の一例を図13(b)に示す。通常、セクタ鏡8が回転する際に各セクタの切り替わりの前後で信号は大きく変化するが、光検出器やその後段の電気回路の周波数応答の制約などのために、信号の変化の立ち上がり、立ち下がりには鈍りが生じる。この検出信号はA/D変換器において所定のサンプリング周期でサンプリングされてデジタルデータに変換されるが、セクタの切り替わり目で信号が静定していない範囲では正確なデータを得ることができない。そのため、図13(c)に示した各データ収集期間に得られるデータのみを有効データとして扱い、それ以外の期間に発生したデータは棄却される。図13(c)において、Dsは試料側信号データの収集期間、Drは参照側信号データの収集期間、Ddsは試料側暗信号データの収集期間、Ddrは参照側暗信号データの収集期間、である。   An example of the change in the detection signal is shown in FIG. Normally, when the sector mirror 8 rotates, the signal changes greatly before and after the switching of each sector. However, due to the restriction of the frequency response of the photodetector and the subsequent electric circuit, the rise and fall of the signal change is caused. The descent is dull. The detection signal is sampled at a predetermined sampling period and converted into digital data in the A / D converter, but accurate data cannot be obtained in a range where the signal is not settled at the sector switching. Therefore, only data obtained in each data collection period shown in FIG. 13C is treated as valid data, and data generated in other periods is rejected. In FIG. 13C, Ds is the sample-side signal data collection period, Dr is the reference-side signal data collection period, Dds is the sample-side dark signal data collection period, and Ddr is the reference-side dark signal data collection period. is there.

なお、試料側光束と参照側光束とを1つの光検出器に導入するシングルディテクタ構成の場合には、試料側暗信号と参照側暗信号とで暗電流はほぼ同程度であるから、両信号は実質的に区別されない。一方、試料側光束と参照側光束とをそれぞれ別の光検出器に導入するダブルディテクタ構成の場合には、光検出器毎に暗電流が相違するから、試料側暗信号と参照側暗信号とは区別して扱われる。   In the case of a single detector configuration in which the sample-side light beam and the reference-side light beam are introduced into one photodetector, the dark current is approximately the same for the sample-side dark signal and the reference-side dark signal. Are virtually indistinguishable. On the other hand, in the case of a double detector configuration in which the sample-side light beam and the reference-side light beam are respectively introduced into different photodetectors, the dark current is different for each photodetector, so the sample-side dark signal and the reference-side dark signal are Are treated separately.

一般的に、セクタ鏡の回転速度は数十Hz程度(例えば交流電源の電源周波数)であり、それに比べてデータのサンプリング周期は格段に短い。このため、各データ収集期間にはそれぞれ多数のデータが得られ、これに対し積算平均化処理などのノイズ低減処理を行っている。例えば積算平均化処理を行う場合、信号に重畳しているノイズは積算時間(デジタルデータの場合には積算するデータ個数)の平方根に反比例する。したがって、ノイズを下げるには積算時間を延ばすことが有効である。   In general, the rotational speed of the sector mirror is about several tens of Hz (for example, the power supply frequency of an AC power supply), and the data sampling cycle is much shorter than that. For this reason, a lot of data is obtained in each data collection period, and noise reduction processing such as integration averaging processing is performed on the data. For example, when performing integration averaging processing, noise superimposed on the signal is inversely proportional to the square root of integration time (in the case of digital data, the number of data to be integrated). Therefore, it is effective to extend the integration time to reduce noise.

上述したような分光光度計では、所定の波長範囲に亘る吸収スペクトルなどを取得するために分光器で波長走査を行うが、この波長走査速度は一般に変更可能である。波長走査速度が速い場合には図13(a)に示す1サイクル毎に波長が変移するのに対し、波長走査速度が遅い場合には複数サイクルに対して波長が同一であるため、複数サイクルに亘る同一のデータ収集期間で得られるデータを積算することができる。つまり、波長走査速度が遅い場合には、積算時間を延ばすことが可能である。しかしながら、前述したようにセクタの切り替わり目では有効なデータが得られないため、積算時間が延びても実際には無駄になるデータが多い。そのため、従来の分光光度計においても波長走査速度が遅い場合には速い場合に比べてノイズを低減することはできるが、その効果は必ずしも十分に発揮されないという問題がある。   In the spectrophotometer as described above, wavelength scanning is performed by a spectroscope in order to acquire an absorption spectrum over a predetermined wavelength range, and this wavelength scanning speed can be generally changed. When the wavelength scanning speed is high, the wavelength changes for each cycle shown in FIG. 13A, whereas when the wavelength scanning speed is low, the wavelength is the same for a plurality of cycles. Data obtained in the same data collection period can be integrated. That is, when the wavelength scanning speed is low, the integration time can be extended. However, as described above, since effective data cannot be obtained at the sector switching, there is much data that is actually wasted even if the integration time is extended. Therefore, even in the conventional spectrophotometer, noise can be reduced when the wavelength scanning speed is low as compared with the case where the wavelength scanning speed is high, but the effect is not necessarily exhibited sufficiently.

また例えば被測定試料での光吸収が大きいような場合には試料側測定信号のノイズレベルと参照側測定信号のノイズレベルとが大きく相違するが、こうした場合、ノイズレベルが高い側が全体のノイズレベルを支配することになる。その結果、試料側測定信号と参照側測定信号とから計算される吸収スペクトルのSN比が低くなってしまい、高精度な測定に支障をきたすことがある。また、暗信号のノイズレベルが十分に低く、試料側測定信号や参照側測定信号のノイズレベルが高い場合も同様である。即ち、測定信号同士や測定信号と暗信号とのノイズレベルの差異が大きい場合には、ノイズレベルが高い側の信号によって吸収スペクトルのSN比が低下し、測定精度を損なうという問題がある。   In addition, for example, when the light absorption in the sample to be measured is large, the noise level of the sample-side measurement signal and the noise level of the reference-side measurement signal are greatly different. In such a case, the higher noise level is the overall noise level. Will dominate. As a result, the SN ratio of the absorption spectrum calculated from the sample-side measurement signal and the reference-side measurement signal becomes low, which may hinder high-accuracy measurement. The same applies when the noise level of the dark signal is sufficiently low and the noise level of the sample-side measurement signal or the reference-side measurement signal is high. That is, when the difference in noise level between the measurement signals or between the measurement signal and the dark signal is large, there is a problem that the SN ratio of the absorption spectrum is lowered by the signal having the higher noise level, and the measurement accuracy is impaired.

特開2001−356049号公報JP 2001-356049 A

本発明は上記課題を解決するために成されたものであり、その第1の目的は、波長走査速度が遅い場合に、従来よりも吸収スペクトルのSN比を改善して測定精度を向上させることができるダブルビーム方式の分光光度計を提供することである。   The present invention has been made to solve the above-mentioned problems, and its first object is to improve the measurement accuracy by improving the S / N ratio of the absorption spectrum compared to the conventional case when the wavelength scanning speed is slow. It is to provide a double beam type spectrophotometer that can perform the above.

また本発明の第2の目的は、試料側測定信号と参照側測定信号とのノイズレベルに大きな差異がある場合や暗信号と試料側測定信号又は参照側測定信号とのノイズレベルに大きな差異がある場合に、従来よりも吸収スペクトルのSN比を改善して測定精度を向上させることができるダブルビーム方式の分光光度計を提供することである。   The second object of the present invention is that there is a large difference in noise level between the sample side measurement signal and the reference side measurement signal, or there is a large difference in noise level between the dark signal and the sample side measurement signal or the reference side measurement signal. In some cases, it is an object to provide a double beam spectrophotometer that can improve the measurement accuracy by improving the S / N ratio of the absorption spectrum as compared with the conventional case.

上記第1の目的を達成するために成された第1発明は、光源より発した光から波長走査可能な分光器により単色光を取り出した後に、該単色光を光分配手段により試料側光束と参照側光束とに交互に振り分けて、それぞれ被測定試料と参照試料とを透過する光束を光検出器に導入する光学系、又は、前記単色光を試料側光束と参照側光束とに分割して、被測定試料と参照試料とを透過する各光束を交互に検出器へ導く光合一手段若しくはそれぞれ間欠的に遮弊する遮光手段を通して光検出器に導入する光学系、のいずれか1つの光学系を用いたダブルビーム方式の分光光度計において、
a)光束の切替えを周期的に行うように、前記光分配手段、前記光合一手段、又は前記遮光手段を駆動する駆動源と、
b)前記単色光の波長を走査するに際し、その波長走査速度に応じて光束の切替えの速度を変更するように前記駆動源を制御する制御手段と、
を備えることを特徴としている。
According to a first aspect of the present invention for achieving the first object, after monochromatic light is extracted from light emitted from a light source by a spectroscope capable of wavelength scanning, the monochromatic light is converted into a sample-side light beam by a light distribution means. An optical system that alternately distributes light to the reference side light flux and introduces the light flux that passes through the sample to be measured and the reference sample to the photodetector, or splits the monochromatic light into the sample side light flux and the reference side light flux. Any one of the optical systems: an optical unifying unit that alternately guides each light beam passing through the sample to be measured and the reference sample to the detector or an optical system that is introduced into the photodetector through a light shielding unit that intermittently blocks each of the light beams In the double beam type spectrophotometer using
a) a drive source for driving the light distribution means, the light coalescence means, or the light shielding means so as to periodically switch the light flux;
b) when scanning the wavelength of the monochromatic light, the control means for controlling the drive source so as to change the switching speed of the luminous flux according to the wavelength scanning speed;
It is characterized by having.

なお、上記光合一手段は、2つの光束を合一したあとの両光束が共に1つの検出器の受光面に到達しさえすれば、両光束の光軸が必ずしも一致しなくてもよい。これは後述の第2及び第3発明でも同様である。   Note that the optical union means does not necessarily have to coincide with the optical axes of the two light beams as long as both light beams after the two light beams merge together reach the light receiving surface of one detector. The same applies to the second and third inventions described later.

第1発明に係る分光光度計の一態様は、前記光分配手段として、回転軸の周りに、反射鏡、開口部、及び遮蔽部を有するセクタ鏡を有し、前記制御手段は、前記セクタ鏡の回転速度を変更するように該セクタ鏡を回転駆動する駆動源を制御する構成とすることができる。また前記光分配手段としては、光スイッチなどの光学素子を用いることもできる。   In one aspect of the spectrophotometer according to the first aspect of the present invention, the light distribution means includes a sector mirror having a reflecting mirror, an opening, and a shield around a rotation axis, and the control means includes the sector mirror. The drive source for rotationally driving the sector mirror can be controlled so as to change the rotation speed. As the light distribution means, an optical element such as an optical switch can be used.

また第1発明に係る分光光度計の別の態様として、ビームスプリッタにより単色光を試料側光束と参照側光束とに二分割し、被測定試料と参照試料とをそれぞれ透過する光束を前記光合一手段であるシャッタで交互に切り替えて1つの光検出器に導入する構成としてもよい。   According to another aspect of the spectrophotometer according to the first aspect of the present invention, the monochromatic light is divided into a sample-side light beam and a reference-side light beam by a beam splitter, and the light beams transmitted through the sample to be measured and the reference sample are combined with the light. A configuration may be adopted in which the shutters as means are alternately switched to be introduced into one photodetector.

さらにまた第1発明に係る分光光度計の別の態様として、ビームスプリッタにより単色光を試料側光束と参照側光束とに二分割し、被測定試料と参照試料とをそれぞれ透過する光束を前記遮光手段で周期的に遮蔽し、別々の光検出器に導入する構成としてもよい。遮光手段としては、回転軸の周りに開口部及び遮蔽部を有する部材や光スイッチなど特にその構成を問わない。   Furthermore, as another aspect of the spectrophotometer according to the first invention, the monochromatic light is divided into a sample-side light beam and a reference-side light beam by a beam splitter, and the light beams that pass through the sample to be measured and the reference sample are shielded from light. It is good also as a structure which shields periodically by a means and introduce | transduces into a separate photodetector. The light shielding means may be of any structure, such as a member having an opening and a shield around the rotation axis, or an optical switch.

第1発明に係る分光光度計において、例えば光分配手段としてセクタ鏡を用いた場合、制御手段は、波長走査速度が遅い場合に速い場合に比べてセクタ鏡の回転速度を下げるように駆動源を制御する。セクタ鏡の回転速度が下がると、回転に伴う単位時間当たりの反射鏡と遮蔽部との切替え及び開口部と遮蔽部との切替えの頻度が下がる。この切替えの前後では信号レベルが大きく変化するために、光検出器やその後段の回路系の応答速度の制約によって信号の立ち上がり・立ち下がりに鈍りが生じ、その間には有効なデータを収集できない。これに対し第1発明に係る分光光度計では、波長走査速度が遅くなると単位時間当たりの信号の切替え頻度が下がるために、有効データの収集が行えない無駄な期間の割合が減少する。その結果、同一時間当たりでノイズ低減処理を行う対象のデータの数が増加し(例えば積算時間が長くなり)、ノイズレベルを低減させることができる。   In the spectrophotometer according to the first aspect of the present invention, for example, when a sector mirror is used as the light distribution means, the control means sets the drive source so as to lower the rotational speed of the sector mirror when the wavelength scanning speed is slow compared to when it is fast. Control. When the rotation speed of the sector mirror decreases, the frequency of switching between the reflecting mirror and the shielding unit and the switching between the opening and the shielding unit per unit time associated with the rotation decreases. Since the signal level changes greatly before and after the switching, the rise and fall of the signal becomes dull due to the restriction of the response speed of the photodetector and the subsequent circuit system, and valid data cannot be collected during that time. On the other hand, in the spectrophotometer according to the first aspect of the invention, when the wavelength scanning speed becomes slow, the frequency of signal switching per unit time decreases, so the proportion of useless periods during which valid data cannot be collected decreases. As a result, the number of data subject to noise reduction processing per unit time increases (for example, the integration time becomes longer), and the noise level can be reduced.

但し、一般に増幅器などの電気回路に使用されている半導体素子には、ノイズレベルが周波数の増加に反比例する1/fノイズがある。セクタ鏡の回転速度を下げると、この1/fノイズは増加する可能性がある。このため、セクタ鏡の回転速度を下げたときに、1/fノイズの増加作用とノイズ低減処理時間の増加に伴う測定信号上のノイズ低減効果とのいずれが勝るのかを考慮することが望ましい。一般的に、光検出器に到達する光が弱く、測定信号のレベルが低い場合には、光検出器などで信号に重畳されるノイズが相対的に大きいために、ノイズ低減処理時間の増加に伴う測定信号上のノイズ低減効果が勝る。   However, semiconductor elements generally used in electric circuits such as amplifiers have 1 / f noise whose noise level is inversely proportional to the increase in frequency. If the rotation speed of the sector mirror is lowered, this 1 / f noise may increase. For this reason, it is desirable to consider which one of the 1 / f noise increasing effect and the noise reducing effect on the measurement signal with the increase of the noise reduction processing time is superior when the rotational speed of the sector mirror is lowered. Generally, when the light reaching the photodetector is weak and the level of the measurement signal is low, the noise superimposed on the signal by the photodetector or the like is relatively large, which increases the noise reduction processing time. The noise reduction effect on the associated measurement signal is superior.

そこで第1発明に係る分光光度計の好ましい一態様として、前記制御手段は、被測定試料を透過する光束が前記光検出器に入射しているときの該光検出器による検出信号のレベルに応じて、波長走査速度に応じた光束切替え速度の変更の要否を決定する構成とするとよい。即ち、光検出器による検出信号のレベルが所定の閾値以下である場合にのみ、波長走査速度が遅いときにセクタ鏡回転速度を下げ、光検出器による検出信号のレベルが所定の閾値を超えている場合には波長走査速度に拘わらずセクタ鏡回転速度を通常通りとすればよい。   Therefore, as a preferred aspect of the spectrophotometer according to the first aspect of the invention, the control means responds to the level of the detection signal from the light detector when the light beam passing through the sample to be measured is incident on the light detector. Thus, it is preferable to determine whether or not it is necessary to change the light beam switching speed according to the wavelength scanning speed. That is, only when the level of the detection signal by the photodetector is below a predetermined threshold, the sector mirror rotation speed is lowered when the wavelength scanning speed is low, and the level of the detection signal by the photodetector exceeds the predetermined threshold. If so, the sector mirror rotation speed may be set as usual regardless of the wavelength scanning speed.

上記第2の目的を達成するために成された第2発明は、測定光を光分配手段により試料側光束と参照側光束とに交互に振り分けて、それぞれ被測定試料と参照試料とを透過する光束を1つ若しくはそれぞれ別個の光検出器に導入する光学系、又は、測定光を試料側光束と参照側光束とに分割して、それぞれ被測定試料と参照試料とを透過する光束を光合一手段により交互に1つの光検出器に導入する光学系、のいずれか1つの光学系を用いたダブルビーム方式の分光光度計において、
a)被測定試料を透過する光束と参照試料を透過する光束が1又は複数の光検出器へ交互に入射する1サイクルの中で、被測定試料の透過光束に対して光検出器で得られた試料側測定信号、及び、参照試料の透過光束に対して光検出器で得られた参照側測定信号に対してノイズ低減処理を行うノイズ低減処理手段と、
b)前記1サイクルの中で被測定試料の透過光束と参照試料の透過光束とが光検出器に入射する時間の割合を変更するように前記光分配手段又は前記光合一手段を制御するとともに、それに対応して前記ノイズ低減処理手段によるノイズ低減処理対象の信号の期間を変更する制御手段と、
を備えることを特徴としている。
According to a second aspect of the invention made to achieve the second object described above, the measurement light is alternately distributed to the sample-side light beam and the reference-side light beam by the light distribution means, and is transmitted through the sample to be measured and the reference sample, respectively. An optical system that introduces a light beam into one or separate optical detectors, or splits measurement light into a sample-side light beam and a reference-side light beam, and optically combines the light beams that pass through the sample to be measured and the reference sample, respectively. In a double beam type spectrophotometer using any one of the optical systems alternately introduced into one photodetector by means,
a) In one cycle in which the light beam transmitted through the sample to be measured and the light beam transmitted through the reference sample are alternately incident on one or a plurality of photodetectors, the light beam obtained by the photodetector is obtained with respect to the transmitted light beam of the sample to be measured. Noise reduction processing means for performing noise reduction processing on the sample side measurement signal and the reference side measurement signal obtained by the photodetector with respect to the transmitted light beam of the reference sample;
b) controlling the light distribution means or the light combining means so as to change the ratio of the time during which the transmitted light flux of the sample to be measured and the transmitted light flux of the reference sample are incident on the photodetector in the one cycle; Correspondingly, control means for changing the period of the signal of the noise reduction processing target by the noise reduction processing means,
It is characterized by having.

第2発明に係る分光光度計の一態様は、前記光分配手段として、回転軸の周りに、反射鏡、開口部、及び遮蔽部を有するセクタ鏡と、該セクタ鏡を回転駆動する駆動源と、を含み、前記セクタ鏡にあって、前記反射鏡と前記開口部の少なくとも一方の回転方向に占める角度を変更することによって、1サイクル中で被測定試料の透過光束と参照試料の透過光束とが光検出器に入射する時間の割合を変更する構成とするとよい。   In one aspect of the spectrophotometer according to the second invention, as the light distribution means, a sector mirror having a reflecting mirror, an opening, and a shielding portion around a rotation axis, and a drive source for rotationally driving the sector mirror, In the sector mirror, the transmitted light flux of the sample to be measured and the transmitted light flux of the reference sample are changed in one cycle by changing the angle occupied in the rotation direction of at least one of the reflecting mirror and the opening. It is preferable that the ratio of the time when the light enters the photodetector is changed.

この構成では、1つのセクタ鏡にあって反射鏡と開口部の少なくとも一方の回転方向に占める角度が可変な構造としてもよいし、或いは、反射鏡と開口部の少なくとも一方の回転方向に占める角度が相違する複数種のセクタ鏡を用意し、それを自動又は手動により適宜交換可能な構成としてもよい。いずれにしても、セクタ鏡を一定回転速度で回転させた場合、上記角度の変更によって、1サイクル中で被測定試料に光束が照射される時間と参照試料に光束が照射される時間との割合が変更される。   In this configuration, in one sector mirror, the angle occupied in the rotation direction of at least one of the reflecting mirror and the opening may be variable, or the angle occupied in the rotation direction of at least one of the reflecting mirror and the opening. It is also possible to prepare a plurality of types of sector mirrors having different from each other, and to replace them appropriately or automatically or manually. In any case, when the sector mirror is rotated at a constant rotational speed, the ratio of the time during which the sample to be measured is irradiated with the light beam and the time during which the reference sample is irradiated with the light beam in one cycle due to the change in the angle. Is changed.

そのほか、セクタ鏡の回転速度が可変であり、特に或る回転位置から次の回転位置までの回転動作が高速に行え、且つ或る回転位置でセクタ鏡を急に停止可能な場合には、その回転制御によって、1サイクル中で試料側光束を送る時間と参照側光束を送る時間との割合を変更することができる。   In addition, when the rotational speed of the sector mirror is variable, especially when the rotational operation from one rotational position to the next rotational position can be performed at a high speed and the sector mirror can be stopped suddenly at a certain rotational position, By the rotation control, the ratio of the time for sending the sample-side light beam and the time for sending the reference-side light beam in one cycle can be changed.

従来、1サイクル中で試料側測定信号のノイズ低減処理時間(ノイズ低減処理対象のデータの数)と参照側測定信号のノイズ低減処理時間(ノイズ低減処理対象のデータの数)とは同じであり、またその時間の割合が変更可能な構成でもなかった。これに対し第2発明に係る分光光度計では、1サイクル中で試料側測定信号のノイズ低減処理時間(ノイズ低減処理対象のデータの数)と参照側測定信号のノイズ低減処理時間(ノイズ低減処理対象のデータの数)との割合が変更可能となっている。前述したように例えばノイズ低減処理として積算平均化処理を行う場合、ノイズレベルは積算時間の平方根に反比例する。そこで、試料側測定信号と参照側測定信号とのノイズレベルに大きな差異があるような場合に、ノイズレベルの大きい側の測定信号の積算時間の割合を長くする。1サイクルの時間が一定である場合、一方の測定信号の積算時間、例えば試料側測定信号の積算時間を長くすると、他方の参照側測定信号の積算時間は短くなる。その結果、積算処理後の試料側測定信号上のノイズレベルは下がる一方、参照側測定信号のノイズレベルは上がる。つまり、大きな差異があった両者のノイズレベルが近い状態になり、全体的なノイズレベルを低下させることができる。   Conventionally, the noise reduction processing time (number of data subject to noise reduction processing) of the sample side measurement signal in one cycle is the same as the noise reduction processing time (number of data subject to noise reduction processing) of the reference side measurement signal. Also, the time ratio was not changeable. On the other hand, in the spectrophotometer according to the second aspect of the present invention, the noise reduction processing time of the sample-side measurement signal (number of data subject to noise reduction processing) and the noise reduction processing time of the reference-side measurement signal (noise reduction processing) in one cycle. The number of target data) can be changed. As described above, for example, when the integration averaging process is performed as the noise reduction process, the noise level is inversely proportional to the square root of the integration time. Therefore, when there is a large difference in the noise level between the sample-side measurement signal and the reference-side measurement signal, the ratio of the integration time of the measurement signal on the side with the larger noise level is increased. When the time of one cycle is constant, if the integration time of one measurement signal, for example, the integration time of the sample-side measurement signal is increased, the integration time of the other reference-side measurement signal is shortened. As a result, the noise level on the sample-side measurement signal after the integration process decreases, while the noise level of the reference-side measurement signal increases. That is, the noise levels of both of them having a large difference are close to each other, and the overall noise level can be reduced.

また第2発明に係る分光光度計の好ましい一態様は、前記光検出器で得られた信号のノイズレベルを推定するノイズ推定手段を備え、前記制御手段は、前記ノイズ推定手段によるノイズレベルの推定結果に応じて、1サイクル中で被測定試料の透過光束と参照試料の透過光束とが光検出器に入射する時間の割合を変更する構成とするとよい。   In a preferred aspect of the spectrophotometer according to the second aspect of the present invention, the spectrophotometer further includes noise estimation means for estimating a noise level of a signal obtained by the photodetector, and the control means estimates the noise level by the noise estimation means. Depending on the result, the ratio of the time during which the transmitted light beam of the sample to be measured and the transmitted light beam of the reference sample enter the photodetector in one cycle may be changed.

この構成によれば、1サイクルの時間を一定に保ったまま、試料側測定信号のノイズレベルと参照側測定信号のノイズレベルとが同程度になるようにそれぞれのノイズ低減処理時間を適切に調整することができる。それにより、全体のノイズレベルを最小又はそれに近い状態にすることができる。   According to this configuration, the noise reduction processing time is appropriately adjusted so that the noise level of the sample-side measurement signal and the noise level of the reference-side measurement signal are approximately the same while keeping the cycle time constant. can do. Thereby, the overall noise level can be minimized or close to it.

また第2発明に係る分光光度計の好ましい別の態様として、前記制御手段は、被測定試料を透過する光束が前記光検出器に入射しているときの該光検出器による検出信号のレベルに応じて、1サイクル中で被測定試料の透過光束と参照試料の透過光束とが光検出器に入射する時間の割合を変更する構成とすることができる。   As another preferred aspect of the spectrophotometer according to the second aspect of the invention, the control means is adapted to adjust the level of the detection signal by the photodetector when the light beam passing through the sample to be measured is incident on the photodetector. Accordingly, the ratio of the time during which the transmitted light beam of the sample to be measured and the transmitted light beam of the reference sample enter the photodetector in one cycle can be changed.

上述したように、通常、信号レベルが低い場合にノイズレベルは相対的に高いから、信号レベルからノイズレベルを推測し、試料側測定信号のノイズレベルと参照側測定信号のノイズレベルとが同程度になるようにそれぞれのノイズ低減処理時間を適切に調整することができる。   As described above, since the noise level is usually relatively high when the signal level is low, the noise level is estimated from the signal level, and the noise level of the sample-side measurement signal and the noise level of the reference-side measurement signal are comparable. Thus, the respective noise reduction processing times can be adjusted appropriately.

上記第2発明に係る分光光度計は、試料側測定信号と参照側測定信号とのノイズレベルに大きな差異がある場合に、ノイズレベルの大きい側の測定信号に対するノイズ低減処理時間の割合を長くするものであるが、試料側測定信号と暗信号とのノイズレベルに大きな差異がある場合、又は、参照側測定信号と暗信号とのノイズレベルに大きな差異がある場合にも同様の手法を適用して測定信号と暗信号とのノイズレベルを同程度にすることで、全体的なノイズレベルを低下させることができる。   In the spectrophotometer according to the second aspect of the invention, when there is a large difference in noise level between the sample-side measurement signal and the reference-side measurement signal, the ratio of the noise reduction processing time to the measurement signal on the higher noise level side is increased. However, if there is a large difference in the noise level between the sample-side measurement signal and the dark signal, or if there is a large difference in the noise level between the reference-side measurement signal and the dark signal, the same method is applied. By making the noise levels of the measurement signal and the dark signal comparable, the overall noise level can be reduced.

即ち、上記第2の目的を達成するために成された第3発明は、測定光を光分配手段により試料側光束と参照側光束とに交互に振り分けて、それぞれ被測定試料と参照試料とを透過する光束を1つ若しくはそれぞれ別個の光検出器に導入する光学系と、測定光を試料側光束と参照側光束とに分割して、それぞれ被測定試料と参照試料とを透過する光束を光合一手段により交互に1つの光検出器に導入する光学系と、測定光を試料側光束と参照側光束とに分割して、それぞれ被測定試料と参照試料とを透過する光束を別個の光検出器に導入する光学系と、のうちのいずれか1つの光学系を用いるとともに、被測定試料を透過する光束と参照試料を透過する光束が光検出器へ交互に入射する1サイクル中で少なくとも1回、前記光検出器に光束が入射しないように光路上で周期的に光束を遮蔽する、又は被測定試料と参照試料とを透過する各光束をそれぞれ1サイクル中で少なくとも1回遮弊する遮光手段を具備するダブルビーム方式の分光光度計において、
a)1サイクルの中で、被測定試料の透過光束に対して光検出器で得られた試料側測定信号、参照試料の透過光束に対して光検出器で得られた参照側測定信号、及び、遮光時に光検出器で得られた暗信号に対しそれぞれノイズ低減処理を行うノイズ低減処理手段と、
b)前記1サイクルの中で、被測定試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、及び/又は、参照試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、を変更するように前記光分配手段、前記光合一手段、又は前記遮光手段の少なくとも1つを制御するとともに、それに対応して前記ノイズ低減処理手段によるノイズ低減処理対象の信号の期間を変更する制御手段と、
を備えることを特徴としている。
That is, in the third invention made to achieve the second object, the measurement light is alternately distributed to the sample-side light beam and the reference-side light beam by the light distribution means, and the sample to be measured and the reference sample are respectively separated. An optical system that introduces one or more light beams to be transmitted to separate photodetectors, and the measurement light is divided into a sample-side light beam and a reference-side light beam, and the light beams transmitted through the sample to be measured and the reference sample are optically combined. An optical system that alternately introduces into one photodetector by one means, and the measurement light is divided into a sample-side light beam and a reference-side light beam, and light beams that pass through the sample to be measured and the reference sample are detected separately. Any one of the optical systems introduced into the detector and at least one of the optical systems that pass through the sample to be measured and the light beams that pass through the reference sample alternately enter the photodetector. Times, the light flux enters the photodetector. A double beam type spectrophotometer provided with a light shielding means for periodically shielding the light beam on the optical path or blocking each light beam transmitted through the sample to be measured and the reference sample at least once in one cycle. In total
a) a sample-side measurement signal obtained by the photodetector with respect to the transmitted light flux of the sample to be measured in one cycle, a reference-side measurement signal obtained by the photodetector with respect to the transmitted light flux of the reference sample, and Noise reduction processing means for performing noise reduction processing on the dark signal obtained by the photodetector at the time of light shielding,
b) The ratio of the time during which the transmitted light beam of the sample to be measured is incident on the photodetector and the time during which the light is shielded and / or the transmitted light beam of the reference sample is incident on the photodetector in the cycle. And controlling at least one of the light distribution means, the light coalescence means, or the light shielding means so as to change the ratio of the time during which the light is blocked and the time during which the light is blocked, and the noise reduction processing correspondingly Control means for changing the period of the signal subject to noise reduction processing by the means;
It is characterized by having.

第3発明に係る分光光度計の一態様は、前記光分配手段及び前記遮光手段として、回転軸の周りに、反射鏡、開口部、及び遮蔽部を有するセクタ鏡と、該セクタ鏡を回転駆動する駆動源と、を含み、前記セクタ鏡にあって、前記反射鏡と前記遮光部との少なくともいずれか一方、又は、前記開口部と前記遮光部との少なくともいずれか一方の回転方向に占める角度を変更することによって、1サイクル中で、被測定試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、及び/又は、参照試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、を変更する構成とすることができる。   A spectrophotometer according to a third aspect of the present invention provides a sector mirror having a reflecting mirror, an opening, and a shielding portion around a rotation axis as the light distribution means and the light shielding means, and the sector mirror is driven to rotate. An angle that occupies in the rotation direction of at least one of the reflecting mirror and the light shielding part, or at least one of the opening and the light shielding part. By changing the ratio, the ratio of the time during which the transmitted light beam of the sample to be measured enters the photodetector and the time during which the light is shielded in one cycle, and / or the transmitted light beam of the reference sample is detected by the photodetector. The ratio between the time when the light is incident and the time when the light is shielded can be changed.

また第3発明に係る分光光度計において、好ましくは、前記光検出器で得られた信号のノイズレベルを推定するノイズ推定手段を備え、前記制御手段は、前記ノイズ推定手段によるノイズレベルの推定結果に応じて、1サイクル中で、被測定試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、及び/又は、参照試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、を変更する構成とすることができる。また、前記制御手段は、被測定試料を透過する光束が前記光検出器に入射しているときの該光検出器による検出信号のレベルに応じて、1サイクル中で、被測定試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、及び/又は、参照試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、を変更する被測定試料の透過光束と参照試料の透過光束とが光検出器に入射する時間の割合を変更する構成としてもよい。   In the spectrophotometer according to the third invention, preferably, the spectrophotometer further includes noise estimation means for estimating a noise level of a signal obtained by the photodetector, and the control means is a noise level estimation result by the noise estimation means. The ratio of the time during which the transmitted light beam of the sample to be measured enters the photodetector and the time during which the light is shielded and / or the transmitted light beam of the reference sample enters the photodetector during one cycle. It can be set as the structure which changes the ratio of the time to perform and the time when the light is shielded. Further, the control means transmits the light beam transmitted through the sample to be measured in one cycle according to the level of the detection signal from the light detector when the light beam transmitted through the sample to be measured is incident on the light detector. The ratio between the time when the light is incident on the photodetector and the time when the light is shielded, and / or the ratio between the time when the transmitted light beam of the reference sample is incident on the photodetector and the time when the light is shielded A configuration may be adopted in which the ratio of the time during which the transmitted light flux of the sample to be measured and the transmitted light flux of the reference sample to be changed enters the photodetector is changed.

第1発明に係る分光光度計によれば、所定波長範囲に亘る波長走査を行うに際しその波長走査速度が遅い場合に、測定所要時間を従来と同一にしたままでも同一時間当たりでノイズ低減処理対象のデータの数が増加するので、従来よりもノイズレベルを低減させることができ、それにより吸光スペクトルの精度を向上させることができる。   According to the spectrophotometer according to the first aspect of the present invention, when performing wavelength scanning over a predetermined wavelength range, when the wavelength scanning speed is slow, even if the time required for measurement is kept the same as in the prior art, the noise reduction processing target is the same per unit time. As the number of data increases, the noise level can be reduced as compared with the conventional method, thereby improving the accuracy of the absorption spectrum.

また第2発明及び第3発明に係る分光光度計によれば、試料側測定信号と参照側測定信号とのノイズレベルが大きく相違する場合、試料側測定信号と暗信号とのノイズレベルが大きく相違する場合、或いは、参照側測定信号と暗信号とのノイズレベルが大きく相違する場合において、測定所要時間を従来と同一にしたままでも全体のノイズレベルを低減させることができ、それにより吸光スペクトルの精度を向上させることができる。   Further, according to the spectrophotometers according to the second and third inventions, when the noise level between the sample side measurement signal and the reference side measurement signal is greatly different, the noise level between the sample side measurement signal and the dark signal is greatly different. Or when the noise level of the reference measurement signal and the dark signal is significantly different, the overall noise level can be reduced even if the measurement time is kept the same as before, thereby reducing the absorption spectrum. Accuracy can be improved.

本発明の第1実施例による分光光度計の要部の構成図。The block diagram of the principal part of the spectrophotometer by 1st Example of this invention. 第1実施例の分光光度計においてセクタ鏡の回転に伴うモードの遷移、光検出器で得られる検出信号、各信号に対するデータ収集期間を示す模式的なタイミング図。FIG. 3 is a schematic timing chart showing mode transitions associated with rotation of a sector mirror, detection signals obtained by a photodetector, and data collection periods for each signal in the spectrophotometer of the first embodiment. 標準的な走査速度とその半分の走査速度との波長変移を示す図。The figure which shows the wavelength transition of a standard scanning speed and the half scanning speed. 第1実施例の分光光度計における測定動作の制御フローチャート。The control flowchart of the measurement operation | movement in the spectrophotometer of 1st Example. 第1実施例の分光光度計における吸収スペクトルとセクタ鏡の回転速度との対応関係の一例を示す図。The figure which shows an example of the correspondence of the absorption spectrum in the spectrophotometer of 1st Example, and the rotational speed of a sector mirror. 本発明の第2実施例による分光光度計の要部の構成図。The block diagram of the principal part of the spectrophotometer by 2nd Example of this invention. 第2実施例の分光光度計で用いられる2種類のセクタ鏡の平面図。The top view of two types of sector mirrors used with the spectrophotometer of 2nd Example. 第2実施例の分光光度計においてセクタ鏡の回転に伴うモードの遷移、光検出器で得られる検出信号、各信号に対するデータ収集期間を示す模式的なタイミング図。FIG. 9 is a schematic timing chart showing mode transitions accompanying rotation of a sector mirror, detection signals obtained by a photodetector, and data collection periods for each signal in the spectrophotometer of the second embodiment. 試料側測定信号の積算時間と参照側測定信号の比と全体のノイズレベルとの関係を示す図。The figure which shows the relationship between the integration time of a sample side measurement signal, the ratio of a reference side measurement signal, and the whole noise level. 第2実施例の分光光度計における吸収スペクトルとセクタ鏡の回転速度との対応関係の一例を示す図。The figure which shows an example of the correspondence of the absorption spectrum in the spectrophotometer of 2nd Example, and the rotational speed of a sector mirror. 本発明の第3実施例による分光光度計の要部の構成図。The block diagram of the principal part of the spectrophotometer by 3rd Example of this invention. 従来の一般的なセクタ鏡の平面図。The top view of the conventional common sector mirror. 一般的な分光光度計におけるセクタ鏡の回転に伴うモードの遷移、光検出器で得られる検出信号、各信号に対するデータ収集期間を示す模式的なタイミング図。The typical timing diagram which shows the mode transition accompanying the rotation of the sector mirror in a general spectrophotometer, the detection signal obtained by a photodetector, and the data collection period with respect to each signal.

[第1実施例]
本発明の一実施例(第1実施例)である分光光度計について、図1〜図5を参照して説明する。図1は第1実施例によるダブルビーム−シングルディテクタ方式の分光光度計の要部の構成図である。
[First embodiment]
A spectrophotometer which is one embodiment (first embodiment) of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram of the main part of a spectrophotometer of the double beam / single detector system according to the first embodiment.

図1において、光源1から発した光は、入口スリット2、回折格子3、出口スリット4、及びステッピングモータ5からなる分光器6に導入され、分光器6から所定の波長の単色光が取り出される。ステッピングモータ5は、入口スリット2を通過した入射光に対し回折格子3の角度を変えることにより、出口スリット4を介して取り出される単色光の波長を変化させる。分光器6から取り出された単色光は、モータ9により所定の回転速度で回転駆動されるセクタ鏡8によって、2つの反射鏡10、11の方向に交互に送られる。   In FIG. 1, light emitted from a light source 1 is introduced into a spectroscope 6 including an entrance slit 2, a diffraction grating 3, an exit slit 4, and a stepping motor 5, and monochromatic light having a predetermined wavelength is extracted from the spectroscope 6. . The stepping motor 5 changes the wavelength of the monochromatic light extracted through the exit slit 4 by changing the angle of the diffraction grating 3 with respect to the incident light that has passed through the entrance slit 2. The monochromatic light extracted from the spectroscope 6 is alternately sent in the direction of the two reflecting mirrors 10 and 11 by the sector mirror 8 that is rotationally driven by the motor 9 at a predetermined rotational speed.

セクタ鏡8は既に説明した図12に示した構造を有する。セクタ鏡8の回転に伴い、分光器6から到来する単色光の照射位置Lに開口部83が来たときには、単色光は開口部83を通り抜けて反射鏡11に当たり、試料側光束Lsとなって被測定試料13に照射される。一方、単色光の照射位置Lに反射鏡82が来たときには、単色光は反射鏡82で反射されて反射鏡10に当たり、参照側光束Lrとなって参照試料12に照射される。また、単色光の照射位置Lに遮光部84が来たときには、試料側光束Ls及び参照側光束Lrが共にない状態となる。例えば、被測定試料13は試料セルに被測定試料溶液が充填されたもの、参照試料12は同じ試料セルに溶媒のみが充填されたものである。図12に示したように、セクタ鏡8は、開口部83、反射鏡82、遮光部84を軸81の周りに45°の同一回転角度ずつ有する。したがって、1サイクル(1/2回転期間)中で、被測定試料13と参照試料12に光が照射される期間は等しく、その間で光が遮蔽される期間も等しい。   The sector mirror 8 has the structure shown in FIG. When the opening 83 comes to the irradiation position L of the monochromatic light coming from the spectroscope 6 as the sector mirror 8 rotates, the monochromatic light passes through the opening 83 and strikes the reflecting mirror 11 to become the sample-side light beam Ls. The sample 13 to be measured is irradiated. On the other hand, when the reflecting mirror 82 comes to the irradiation position L of the monochromatic light, the monochromatic light is reflected by the reflecting mirror 82 and hits the reflecting mirror 10 to be irradiated on the reference sample 12 as a reference side light beam Lr. Further, when the light blocking portion 84 comes to the irradiation position L of the monochromatic light, the sample side light beam Ls and the reference side light beam Lr are not present. For example, the sample 13 to be measured is a sample cell filled with a sample solution to be measured, and the reference sample 12 is a sample cell filled with only a solvent. As shown in FIG. 12, the sector mirror 8 has the opening 83, the reflecting mirror 82, and the light-shielding portion 84 at the same rotation angle of 45 ° around the axis 81. Therefore, in one cycle (1/2 rotation period), the period during which light is irradiated to the sample 13 to be measured and the reference sample 12 is equal, and the period during which light is shielded is also equal.

参照試料12を透過した参照側光束Lrは反射鏡14で反射され、被測定試料13を透過した試料側光束Lsは反射鏡15、16で反射され、共通の光検出器17に導入される。光検出器17はその種類を問わず、波長帯域に応じて、光電子増倍管、InGaAs、InAs、PbS等の半導体検出器など、適宜の検出器を用いることができる。もちろん、波長に応じて複数の光検出器を切り替えるようにしてもよい。   The reference-side light beam Lr that has passed through the reference sample 12 is reflected by the reflecting mirror 14, and the sample-side light beam Ls that has passed through the sample 13 to be measured is reflected by the reflecting mirrors 15, 16 and introduced into a common photodetector 17. Regardless of the type of light detector 17, an appropriate detector such as a photomultiplier tube, a semiconductor detector such as InGaAs, InAs, or PbS can be used depending on the wavelength band. Of course, a plurality of photodetectors may be switched according to the wavelength.

光検出器17による検出信号は図示しない増幅器などで増幅された後に、A/D変換器(ADC)18に入力され、所定のサンプリング周期でサンプリングされてデジタル値に変換される。これにより、光検出器17に入射した光の強度(光量)に対応したデータが得られ、この時系列のデータがデータ処理部20に入力される。データ処理部20は、モータ5、9などを制御する制御部30からの制御信号に基づいて、必要なデータを取捨選択するとともに分類して保存し、さらにはそのデータを用いた所定の演算処理を実行することで、被測定試料による吸光度を波長毎に計算して吸光スペクトルを作成する。   A detection signal from the photodetector 17 is amplified by an amplifier (not shown) and the like and then input to an A / D converter (ADC) 18 where it is sampled at a predetermined sampling period and converted into a digital value. As a result, data corresponding to the intensity (light quantity) of the light incident on the photodetector 17 is obtained, and this time-series data is input to the data processing unit 20. The data processing unit 20 selects and classifies necessary data based on a control signal from the control unit 30 that controls the motors 5, 9 and the like, and stores and sorts the necessary data. Further, predetermined calculation processing using the data is performed. By executing the above, the absorbance of the sample to be measured is calculated for each wavelength to create an absorption spectrum.

データ処理部20や制御部30はパーソナルコンピュータを中心に構成することができ、パーソナルコンピュータにインストールした専用の制御/処理ソフトウエアをコンピュータ上で実行することにより、それぞれの機能を達成するようにすることができる。こうしたソフトウエアにより具現化される機能ブロックとして、データ処理部20は、測定信号積算処理部21、暗信号積算処理部22、データメモリ23、吸光度算出処理部24などを備える。測定信号積算処理部21は、試料側信号のデータ収集期間Dsに得られるデータ、及び、参照側信号のデータ収集期間Drに得られるデータをそれぞれ積算し、その平均値をそれぞれ計算するものである。暗信号積算処理部22は、試料側暗信号のデータ収集期間に得られるデータDds、及び、参照側暗信号のデータ収集期間Ddrに得られるデータをそれぞれ積算し、その平均値をそれぞれ計算するものである。   The data processing unit 20 and the control unit 30 can be configured around a personal computer, and each function is achieved by executing dedicated control / processing software installed in the personal computer on the computer. be able to. As functional blocks embodied by such software, the data processing unit 20 includes a measurement signal integration processing unit 21, a dark signal integration processing unit 22, a data memory 23, an absorbance calculation processing unit 24, and the like. The measurement signal integration processing unit 21 integrates data obtained during the data collection period Ds of the sample side signal and data obtained during the data collection period Dr of the reference side signal, and calculates an average value thereof. . The dark signal integration processing unit 22 integrates data Dds obtained during the data collection period of the sample-side dark signal and data obtained during the data collection period Ddr of the reference-side dark signal, and calculates an average value thereof. It is.

本実施例の分光光度計における特徴的な測定動作を図2〜図5を用いて説明する。この分光光度計では、所定波長範囲(例えばλ1〜λ2)の吸収スペクトルを測定するために、分光器6から取り出される単色光の波長が所定波長範囲で所定の波長ステップずつ変化するように波長走査が行われる。この波長走査速度(単位時間当たりの波長変移量)は1種ではなく複数種存在する。図3は標準的な走査速度(A)とその半分の走査速度(A/2)との波長変移を示す図である。同じ波長ステップΔλである場合でも、走査速度が1/2になれば1つの波長に留まる時間は2倍になる。   A characteristic measurement operation in the spectrophotometer of the present embodiment will be described with reference to FIGS. In this spectrophotometer, in order to measure an absorption spectrum in a predetermined wavelength range (for example, λ1 to λ2), wavelength scanning is performed so that the wavelength of monochromatic light extracted from the spectroscope 6 changes by predetermined wavelength steps in the predetermined wavelength range. Is done. This wavelength scanning speed (amount of wavelength shift per unit time) is not one but a plurality of kinds. FIG. 3 is a diagram showing a wavelength shift between a standard scanning speed (A) and a half scanning speed (A / 2). Even in the case of the same wavelength step Δλ, if the scanning speed is halved, the time for staying at one wavelength is doubled.

図2は、セクタ鏡8の回転に伴うモードの遷移、光検出器17で得られる検出信号、各信号に対するデータ収集期間を示す模式的なタイミング図であり、(a)〜(c)は波長走査速度がAである場合、(d)〜(f)は波長走査速度がA/2である場合である。但し、後述するように、波長走査速度がA/2である場合に必ずしも(d)〜(f)のタイミングになるとは限らず、(a)〜(c)のタイミングになることもあり得る。図2(a)〜(c)に示したタイミングは図13に示したタイミングと同じである。   FIG. 2 is a schematic timing chart showing the mode transition accompanying the rotation of the sector mirror 8, the detection signal obtained by the photodetector 17, and the data collection period for each signal. (A) to (c) are wavelengths. When the scanning speed is A, (d) to (f) are cases where the wavelength scanning speed is A / 2. However, as will be described later, when the wavelength scanning speed is A / 2, the timings (d) to (f) are not necessarily reached, and the timings (a) to (c) may be reached. The timing shown in FIGS. 2A to 2C is the same as the timing shown in FIG.

図4は第1実施例の分光光度計における測定動作の制御フローチャートである。図4に従って測定動作を説明する。   FIG. 4 is a control flowchart of the measurement operation in the spectrophotometer of the first embodiment. The measurement operation will be described with reference to FIG.

測定実行に先立って制御部30は、設定された波長走査速度が低速であるか否かを判定する(ステップS10)。ここでは説明を簡単にするために、波長走査速度は上述したAとA/2との2種のみであるとし、前者を通常速、後者を低速であるとする。波長走査速度が通常速に設定されている場合には、制御部30はセクタ鏡8の回転速度を通常速度(例えば60Hz)に設定してモータ9を駆動し、波長走査速度:Aで走査開始波長λ1から図3に示したような波長走査を開始する。それと同時にデータ処理部20は測光動作を実行する(ステップS20)。   Prior to the execution of measurement, the control unit 30 determines whether or not the set wavelength scanning speed is low (step S10). Here, for simplicity of explanation, it is assumed that there are only two types of wavelength scanning speeds, A and A / 2, and that the former is a normal speed and the latter is a low speed. When the wavelength scanning speed is set to the normal speed, the control unit 30 sets the rotation speed of the sector mirror 8 to the normal speed (for example, 60 Hz), drives the motor 9, and starts scanning at the wavelength scanning speed: A. The wavelength scanning as shown in FIG. 3 is started from the wavelength λ1. At the same time, the data processor 20 performs a photometric operation (step S20).

即ち、図2(a)に示したようなセクタ鏡8のモードの切替えに伴い、光検出器17には図2(b)に示したような検出信号が得られる。測定信号積算処理部21は図2(c)に示す試料側測定信号のデータ収集期間Dsに得られる複数のデータ、及び参照側測定信号のデータ収集期間Drに得られる複数のデータをそれぞれ積算平均化処理し、得られた値をデータメモリ23に格納する。一方、暗信号積算処理部22は図2(c)に示す暗信号のデータ収集期間Dds、Ddrに得られる複数のデータをそれぞれ積算平均化処理し、得られた値をデータメモリ23に格納する。そうして走査終了波長λ2に達するまで各信号のデータを収集する。これは従来の分光光度計における測定動作と同じである。   That is, with the switching of the mode of the sector mirror 8 as shown in FIG. 2A, the detection signal as shown in FIG. The measurement signal integration processing unit 21 integrates a plurality of data obtained during the data collection period Ds of the sample side measurement signal and a plurality of data obtained during the data collection period Dr of the reference side measurement signal shown in FIG. The obtained value is stored in the data memory 23. On the other hand, the dark signal integration processing unit 22 integrates and averages a plurality of data obtained during the dark signal data collection periods Dds and Ddr shown in FIG. 2C and stores the obtained values in the data memory 23. . Thus, data of each signal is collected until the scanning end wavelength λ2 is reached. This is the same as the measurement operation in the conventional spectrophotometer.

一方、ステップS10で波長走査速度が低速であると判定されると、制御部30はセクタ鏡8の回転速度をまず通常速度(60Hz)に設定してモータ9を駆動し(ステップS11)、波長走査速度:A/2で走査開始波長λ1から図3に示したような波長走査を開始する(ステップS12)。それと同時にデータ処理部20は測定動作、つまりデータの収集を開始する(ステップS13)。   On the other hand, if it is determined in step S10 that the wavelength scanning speed is low, the controller 30 first sets the rotation speed of the sector mirror 8 to the normal speed (60 Hz) and drives the motor 9 (step S11). At a scanning speed of A / 2, the wavelength scanning as shown in FIG. 3 is started from the scanning start wavelength λ1 (step S12). At the same time, the data processing unit 20 starts a measurement operation, that is, data collection (step S13).

即ち、図2(a)に示したようなセクタ鏡8のモードの切替えに伴い、光検出器17には図2(b)に示したような検出信号が得られる。測定信号積算処理部21は図2(c)に示す試料側測定信号のデータ収集期間Dsに得られる複数のデータ、及び参照側測定信号のデータ収集期間Drに得られる複数のデータをそれぞれ積算平均化処理し、得られた値をデータメモリ23に格納する。一方、暗信号積算処理部22は図2(c)に示す暗信号のデータ収集期間Dds、Ddrに得られる複数のデータをそれぞれ積算平均化処理し、得られた値をデータメモリ23に格納する。この場合、上述したように同一波長に留まる時間は波長走査速度がAである場合の2倍となるため、同一波長に対して得られるデータの数は2倍になる。   That is, with the switching of the mode of the sector mirror 8 as shown in FIG. 2A, the detection signal as shown in FIG. The measurement signal integration processing unit 21 integrates a plurality of data obtained during the data collection period Ds of the sample side measurement signal and a plurality of data obtained during the data collection period Dr of the reference side measurement signal shown in FIG. The obtained value is stored in the data memory 23. On the other hand, the dark signal integration processing unit 22 integrates and averages a plurality of data obtained during the dark signal data collection periods Dds and Ddr shown in FIG. 2C and stores the obtained values in the data memory 23. . In this case, as described above, the time for staying at the same wavelength is twice that when the wavelength scanning speed is A, so the number of data obtained for the same wavelength is doubled.

測定信号積算処理部21は、試料側測定信号の積算平均値が得られるとその値を予め決められた閾値と比較する(ステップS14)。被測定試料13での光の吸収の度合が大きく試料側測定信号のレベルが低くなって信号値が閾値よりも小さいと判定されると、ステップS15からS16へ進み、制御部30はセクタ鏡8の回転速度を低速(例えば標準速度の1/2の30Hz)に設定する。一方、試料側測定信号の積算平均値が閾値以上である場合には、制御部30はセクタ鏡8の回転速度を標準速度に設定する(ステップS17)。つまり、試料側測定信号の積算平均値の大小に応じて、セクタ鏡8の回転速度が変更されることになる。   When the integrated average value of the sample-side measurement signal is obtained, the measurement signal integration processing unit 21 compares the value with a predetermined threshold value (step S14). When the degree of light absorption in the sample 13 to be measured is large and the level of the sample-side measurement signal is low and it is determined that the signal value is smaller than the threshold value, the process proceeds from step S15 to S16. Is set to a low speed (for example, 30 Hz which is 1/2 of the standard speed). On the other hand, when the integrated average value of the sample-side measurement signals is equal to or greater than the threshold value, the control unit 30 sets the rotation speed of the sector mirror 8 to the standard speed (step S17). That is, the rotation speed of the sector mirror 8 is changed according to the magnitude of the integrated average value of the sample side measurement signals.

セクタ鏡8の回転速度が1/2になると、図2(d)に示すように、セクタ鏡8の各モードの期間は2倍に延びる。これは、単位時間当たりで、モードの切替えに伴う信号変化の頻度が1/2になることを意味する。図2(e)に示すように、信号レベルが大きく変化する際には増幅回路等の周波数応答の制約などから波形に鈍りが生じるが、各モードの期間が延びることで信号レベルが安定している期間も延びる。そのため、各測定信号及び暗信号に対するデータ収集期間は図2(f)に示すように長くなり、それはセクタ鏡8の回転速度が通常速である場合のデータ収集期間の2倍よりも長くなる。これは、モードの切替えに伴う信号変化の頻度が下がっているために、その信号変化前後でデータ収集ができない期間の無駄が少なくなるためである。その結果、波長走査速度がA/2でセクタ鏡8の回転速度が通常速である場合よりも、同一波長に対して得られるデータの個数が増え、それだけノイズを低減することができる。なお、セクタ鏡8の回転速度に応じてデータ収集期間が変わるから、データ処理部20におけるデータの取捨選択のタイミング、積算平均処理のタイミングなどもセクタ鏡8の回転速度に応じて変更する必要があることは当然である。   When the rotational speed of the sector mirror 8 is halved, the period of each mode of the sector mirror 8 is doubled as shown in FIG. This means that the frequency of signal change accompanying mode switching is halved per unit time. As shown in FIG. 2 (e), when the signal level changes greatly, the waveform becomes dull due to the restriction of the frequency response of the amplifier circuit, etc., but the signal level is stabilized by extending the period of each mode. The period of time is also extended. Therefore, the data collection period for each measurement signal and dark signal is long as shown in FIG. 2 (f), which is longer than twice the data collection period when the rotational speed of the sector mirror 8 is normal. This is because the frequency of signal change associated with mode switching is reduced, and waste of a period during which data cannot be collected before and after the signal change is reduced. As a result, compared to the case where the wavelength scanning speed is A / 2 and the rotational speed of the sector mirror 8 is the normal speed, the number of data obtained for the same wavelength is increased, and the noise can be reduced accordingly. Since the data collection period changes according to the rotational speed of the sector mirror 8, the timing for selecting data in the data processing unit 20 and the timing of the integration averaging process also need to be changed according to the rotational speed of the sector mirror 8. Of course it is.

そして、制御部30は波長走査が終了したか否かを判定し(ステップS18)、未だ走査終了波長λ2に達していなければ、次の波長に移行するようにモータ5に制御信号を送ることにより回折格子3を回動させる(ステップS19)。その後にステップS13へと戻り、再びデータ収集を実行する。したがって、走査終了波長λ2に達するまでステップS13〜S19の処理が繰り返され、試料側測定信号の積算平均値が閾値以上であるか否かによってセクタ鏡8の回転速度が通常速と低速とで切り替えられる。   Then, the control unit 30 determines whether or not the wavelength scanning is completed (step S18). If the scanning end wavelength λ2 has not been reached yet, the control unit 30 sends a control signal to the motor 5 so as to shift to the next wavelength. The diffraction grating 3 is rotated (step S19). Thereafter, the process returns to step S13, and data collection is executed again. Therefore, the processing in steps S13 to S19 is repeated until the scanning end wavelength λ2 is reached, and the rotation speed of the sector mirror 8 is switched between the normal speed and the low speed depending on whether or not the integrated average value of the sample side measurement signal is equal to or greater than the threshold value. It is done.

上述したようにセクタ鏡8の回転速度が低速になると積算平均処理対象となるデータの個数が増えるのでノイズ低減効果があるが、セクタ鏡8の回転に伴うモード切換え周波数付近のノイズは除去されない。そのため、低周波帯域でより高いレベルとなる1/fノイズが多い場合には、セクタ鏡8の回転速度を下げると1/fノイズが増加して却って逆効果となる場合がある。一般に、光検出器17に入射する光が弱い場合にはもともとノイズが多く、上述したようなセクタ鏡8の回転速度を下げることによるノイズ低減効果が顕著である。そこで、上記実施例では、波長走査速度が低速であって光検出器17に入射する光が弱い場合にのみセクタ鏡8の回転速度を下げ、波長走査速度が低速であっても光検出器17に入射する光が強い場合にはセクタ鏡8の回転速度を下げないようにしている。   As described above, when the rotational speed of the sector mirror 8 is low, the number of data to be integrated and averaged increases, so that noise reduction is achieved. However, noise near the mode switching frequency associated with the rotation of the sector mirror 8 is not removed. For this reason, when there is a lot of 1 / f noise at a higher level in the low frequency band, if the rotational speed of the sector mirror 8 is lowered, the 1 / f noise may increase and may have an adverse effect. Generally, when the light incident on the photodetector 17 is weak, there is originally a lot of noise, and the noise reduction effect by reducing the rotation speed of the sector mirror 8 as described above is remarkable. Therefore, in the above embodiment, the rotation speed of the sector mirror 8 is lowered only when the wavelength scanning speed is low and the light incident on the photodetector 17 is weak, and the photodetector 17 is low even if the wavelength scanning speed is low. When the light incident on is strong, the rotation speed of the sector mirror 8 is not lowered.

図5は吸収スペクトルとセクタ鏡8の回転速度との対応関係の一例を示す図である。吸光度が大きい場合には試料側測定信号は低くなるから、吸収スペクトルでみると、或る吸光度以上の波長範囲ではセクタ鏡8の回転速度は低速となり、その吸光度未満の波長範囲ではセクタ鏡8の回転速度は通常速となる。   FIG. 5 is a diagram illustrating an example of a correspondence relationship between the absorption spectrum and the rotation speed of the sector mirror 8. When the absorbance is high, the sample-side measurement signal is low. Therefore, when viewed from the absorption spectrum, the rotation speed of the sector mirror 8 is slow in the wavelength range above a certain absorbance, and in the wavelength range below the absorbance, The rotation speed is a normal speed.

もちろん、1/fノイズの影響がもともと小さく、セクタ鏡8の回転速度を下げた場合に、1/fノイズの増加よりノイズ低減効果が勝るような状況の下では、ステップS10でYesと判定されるとセクタ鏡8の回転速度を低速に設定して走査終了波長まで測定を実行するようにしてもよい。   Of course, if the influence of the 1 / f noise is originally small and the noise reduction effect is better than the increase of the 1 / f noise when the rotational speed of the sector mirror 8 is lowered, it is determined Yes in step S10. Then, the rotation speed of the sector mirror 8 may be set to a low speed and measurement may be executed up to the scanning end wavelength.

なお、上記実施例では、ダブルビーム方式を実現するために、セクタ鏡8を用いて分光器6から到来した単色光を試料側光束Lsと参照側光束Lrとに振り分け、被測定試料13を透過した試料側光束Lsと参照試料12を透過した参照側光束Lrとを光検出器17に導入する構成としていたが、光学系の構成はこれに限るものではない。例えば、光スイッチなどの光学素子を用いて単色光を試料側光束Lsと参照側光束Lrとに振り分けたり、或いは、ビームスプリッタにより単色光を試料側光束Lsと参照側光束Lrとの2つに分割し、各光束をそれぞれシャッタで断続的に遮蔽して交互に光検出器に導入したりするようにしてもよい。   In the above embodiment, in order to realize the double beam system, the monochromatic light coming from the spectroscope 6 is divided into the sample-side light beam Ls and the reference-side light beam Lr using the sector mirror 8 and transmitted through the sample 13 to be measured. The sample-side light beam Ls and the reference-side light beam Lr transmitted through the reference sample 12 are introduced into the photodetector 17, but the structure of the optical system is not limited to this. For example, the monochromatic light is divided into the sample-side light beam Ls and the reference-side light beam Lr using an optical element such as an optical switch, or the monochromatic light is divided into the sample-side light beam Ls and the reference-side light beam Lr by a beam splitter. Alternatively, the light beams may be divided and intermittently shielded by a shutter, and alternately introduced into the photodetector.

[第2実施例]
次いで本発明の別の実施例(第2実施例)である分光光度計について、図6〜図9を参照して説明する。図6は第2実施例によるダブルビーム−シングルディテクタ方式分光光度計の要部の構成図である。図1に示した構成と同一又は相当する構成要素には同一の符号を付して詳細な説明を省略する。
[Second Embodiment]
Next, a spectrophotometer which is another embodiment (second embodiment) of the present invention will be described with reference to FIGS. FIG. 6 is a block diagram of the main part of a double beam single detector spectrophotometer according to the second embodiment. Constituent elements that are the same as or correspond to those shown in FIG.

この分光光度計において基本的な光学系は第1実施例と同じであるが、異なる2種類のセクタ鏡8A、8Bを交換可能なセクタ鏡交換機構40が設けられており、セクタ鏡交換機構40は制御部30の指示の下にセクタ鏡8A、8Bのいずれかを選択し、モータ9の軸に連結させるとともに光路中に挿入する。   In this spectrophotometer, the basic optical system is the same as that of the first embodiment, but a sector mirror exchange mechanism 40 capable of exchanging two different types of sector mirrors 8A and 8B is provided. Selects one of the sector mirrors 8A and 8B under the instruction of the control unit 30 and connects it to the shaft of the motor 9 and inserts it into the optical path.

図7は2種類のセクタ鏡8A、8Bの平面図である。図7(a)に示したセクタ鏡8Aは図12に示したものと同じであり、回転軸81の周りで反射鏡82、開口部83、遮光部84の占める角度が等しい(45°)ことから、ここではこれを均等型セクタ鏡と呼ぶこととする。一方、図7(b)に示したセクタ鏡8Bは、開口部83の角度が90°に拡張され、反射鏡82と遮光部84の占める角度がそれぞれ30°ずつに縮小されている。開口部83と反射鏡82の占める角度の比は3:1であり、ここではこれを非均等型セクタ鏡と呼ぶこととする。   FIG. 7 is a plan view of two types of sector mirrors 8A and 8B. The sector mirror 8A shown in FIG. 7A is the same as that shown in FIG. 12, and the angles occupied by the reflecting mirror 82, the opening 83, and the light shielding portion 84 around the rotation axis 81 are equal (45 °). Therefore, here, this is called a uniform sector mirror. On the other hand, in the sector mirror 8B shown in FIG. 7B, the angle of the opening 83 is expanded to 90 °, and the angles occupied by the reflecting mirror 82 and the light shielding portion 84 are reduced to 30 ° each. The ratio of the angle occupied by the opening 83 and the reflecting mirror 82 is 3: 1, which is referred to herein as a non-uniform sector mirror.

本実施例の分光光度計では、例えば分析担当者が被測定試料の吸光の程度を或る程度推測し、分析に先立って図示しない操作部から吸光の程度の大小を分析条件の1つとして入力設定する。被測定試料による吸光度合が小さい場合には被測定試料13の透過光の光量は相対的に大きく、被測定試料による吸光度合が大きい場合には被測定試料13の透過光の光量は相対的に小さくなる。ショットノイズが測定信号に乗るノイズの主要因である場合、光検出器17に入射する光量が小さい場合にノイズレベルが高くなる。そこで、制御部30は、吸光度合が大であると設定された場合には非均等型セクタ鏡8Bを使用し、吸光度合が小であると設定された場合には均等型セクタ鏡8Aを使用するようにセクタ鏡交換機構40に指示を出す。これに応じてセクタ鏡交換機構40は、使用するセクタ鏡をモータ9の回転軸に連結させる。   In the spectrophotometer of the present embodiment, for example, the person in charge of analysis estimates the degree of light absorption of the sample to be measured to some extent, and inputs the magnitude of light absorption as one of the analysis conditions from an operation unit (not shown) prior to analysis. Set. When the absorbance by the sample to be measured is small, the amount of transmitted light of the sample to be measured 13 is relatively large, and when the absorbance by the sample to be measured is large, the amount of light transmitted by the sample to be measured 13 is relatively Get smaller. When shot noise is the main cause of noise on the measurement signal, the noise level increases when the amount of light incident on the photodetector 17 is small. Therefore, the control unit 30 uses the non-uniform sector mirror 8B when the absorbance is set to be large, and uses the uniform sector mirror 8A when the absorbance is set to be small. The sector mirror exchange mechanism 40 is instructed to do so. In response to this, the sector mirror exchanging mechanism 40 connects the sector mirror to be used to the rotating shaft of the motor 9.

分析が開始されると、制御部30の制御の下にモータ9は一定速度で回転駆動され、セクタ鏡8A又は8Bは一定速度(例えば60Hz)で回転する。均等型セクタ鏡8Aが使用される場合には、回転に伴うセクタ鏡8Aのモード遷移、光検出器17による検出信号、及びデータ処理部20におけるデータ収集期間は図8(a)〜(c)に示すようになる。これは、図2(a)〜(c)、図13(a)〜(b)と同じタイミングであり、既に説明した通りである。   When the analysis is started, the motor 9 is driven to rotate at a constant speed under the control of the control unit 30, and the sector mirror 8A or 8B rotates at a constant speed (for example, 60 Hz). When the uniform sector mirror 8A is used, the mode transition of the sector mirror 8A accompanying the rotation, the detection signal by the photodetector 17, and the data collection period in the data processing unit 20 are shown in FIGS. As shown. This is the same timing as FIGS. 2A to 2C and FIGS. 13A to 13B, and has already been described.

これに対し、非均等型セクタ鏡8Bが使用される場合には、回転に伴うセクタ鏡8Bのモード遷移、光検出器17による検出信号、及びデータ処理部20におけるデータ収集期間は図8(d)〜(f)に示すようになる。即ち、非均等型セクタ鏡8Bでは、開口部83の角度が広く、反射鏡82及び遮光部84の角度は狭くなっているため、それに伴い、1サイクルの中で、試料側光束Lsが被測定試料13に照射される期間が長くなり、参照側光束Lrが参照試料12に照射される期間、及び遮光の期間が短くなる。それに応じて、各測定信号、及び暗信号をデジタル化したデータを収集する期間Ds、Dr、Dds、Ddrも変化する。   On the other hand, when the non-uniform sector mirror 8B is used, the mode transition of the sector mirror 8B accompanying the rotation, the detection signal by the photodetector 17, and the data collection period in the data processing unit 20 are shown in FIG. ) To (f). That is, in the non-uniform sector mirror 8B, since the angle of the opening 83 is wide and the angles of the reflecting mirror 82 and the light shielding portion 84 are narrow, the sample-side light beam Ls is measured in one cycle. The period during which the sample 13 is irradiated becomes longer, and the period during which the reference-side light beam Lr is irradiated onto the reference sample 12 and the light shielding period are shortened. Accordingly, the periods Ds, Dr, Dds, and Ddr for collecting data obtained by digitizing each measurement signal and dark signal also change.

即ち、前述のように被測定試料13による吸光度合が大きく試料側測定信号のノイズレベルが高いと推測される場合に、その試料側測定信号に対する積算時間の割合を増加させる。これにより、全体のノイズレベルは下がる。このことを簡単に説明する。   That is, as described above, when it is estimated that the absorbance of the sample to be measured 13 is large and the noise level of the sample side measurement signal is high, the ratio of the integration time to the sample side measurement signal is increased. This lowers the overall noise level. This will be explained briefly.

試料側測定信号のノイズレベルをNs、参照側測定信号のノイズレベルをNrとすると、両測定信号から求まる吸光度を反映した信号のノイズレベルNtは、
Nt=√(Ns+Nr
である。いま一例として、試料側測定信号ノイズレベルNsが参照側測定信号ノイズレベルNrに比べて100倍悪いと仮定する。即ち、Ns=N、Nr=100×Nである。
両測定信号の積算時間の合計を等しく保った状態で、積算時間の割合を変更する場合を考える。試料側測定信号の積算時間Ps、参照側測定信号の積算時間Prに対し、
I=Ps/Pr、Ps+Pr=1
とすると、試料側測定信号の積算時間Ps、参照側測定信号の積算時間Prは次のように書き換えられる。
Ps=I/(I+1)
Pr=1/(I+1)
When the noise level of the sample-side measurement signal is Ns and the noise level of the reference-side measurement signal is Nr, the noise level Nt of the signal reflecting the absorbance obtained from both measurement signals is
Nt = √ (Ns 2 + Nr 2 )
It is. As an example, assume that the sample-side measurement signal noise level Ns is 100 times worse than the reference-side measurement signal noise level Nr. That is, Ns = N and Nr = 100 × N.
Consider a case in which the ratio of integration time is changed while keeping the total integration time of both measurement signals equal. For the integration time Ps of the sample side measurement signal and the integration time Pr of the reference side measurement signal,
I = Ps / Pr, Ps + Pr = 1
Then, the integration time Ps of the sample-side measurement signal and the integration time Pr of the reference-side measurement signal are rewritten as follows.
Ps = I / (I + 1)
Pr = 1 / (I + 1)

したがって、積算時間変更後のノイズレベルNtは、
Nt=√{Ns(I+1)/2I+Nr(I+1)/2}
である。これをlog(I)に対するグラフで表すと図9に示すようになる。log(I)=0のときがI=1、つまり試料側測定信号に対する積算時間と参照側測定信号に対する積算時間が等しいときであり、log(I)=2、つまりI=100付近でノイズレベルは最小になっている。これにより、試料側測定信号のノイズレベルと参照側測定信号のノイズレベルとに差がある場合には、各測定信号に対する積算時間の割合を1:1ではなく適宜に変更することにより、全体のノイズレベルを低減させることができることが分かる。
Therefore, the noise level Nt after the integration time change is
Nt = √ {Ns 2 (I + 1) / 2I + Nr 2 (I + 1) / 2}
It is. When this is represented by a graph with respect to log (I), it is as shown in FIG. When log (I) = 0, I = 1, that is, when the integration time for the sample-side measurement signal is equal to the integration time for the reference-side measurement signal, and the noise level is near log (I) = 2, that is, I = 100. Is minimized. Thereby, when there is a difference between the noise level of the sample-side measurement signal and the noise level of the reference-side measurement signal, the ratio of the integration time with respect to each measurement signal is changed appropriately instead of 1: 1 to It can be seen that the noise level can be reduced.

また、試料側測定信号と試料側暗信号とのノイズレベルに大きな差異がある場合、又は、参照側測定信号と参照側暗信号とのノイズレベルに大きな差異がある場合も同様に、それら測定信号に対する積算時間と暗信号に対する積算時間の割合を1:1でなく適宜に変更することにより、全体のノイズレベルを下げることができる。   Similarly, when there is a large difference in the noise level between the sample-side measurement signal and the sample-side dark signal, or when there is a large difference in the noise level between the reference-side measurement signal and the reference-side dark signal, these measurement signals The total noise level can be lowered by appropriately changing the ratio of the integration time to the dark signal and the integration time to the dark signal instead of 1: 1.

したがって、試料側測定信号のノイズレベルが参照側測定信号のノイズレベルよりも高く、試料側測定信号のノイズレベルが試料側暗側信号や参照側暗信号のノイズレベルよりも高い場合に、図7(b)に示したような不均等型セクタ鏡8Bを使用し、図8(d)〜(f)に示したタイミングでデータ処理部20がデータ処理を行うことで、均等型セクタ鏡8Aを使用した場合に比べて全体のノイズレベルを低減することができる。   Therefore, when the noise level of the sample side measurement signal is higher than the noise level of the reference side measurement signal, and the noise level of the sample side measurement signal is higher than the noise level of the sample side dark side signal or the reference side dark signal, FIG. The non-uniform sector mirror 8B as shown in (b) is used, and the data processing unit 20 performs data processing at the timings shown in FIGS. The overall noise level can be reduced as compared with the case where it is used.

前述したように、全体のノイズレベルを最小にするためのIの値、つまりIの最適値は試料側測定信号ノイズレベルNsと参照側測定信号ノイズレベルNrとの差異により決まる。したがって、全体のノイズレベルを最小又はそれに近い状態にするという観点では、上述したように回転方向の各セクタの角度が固定された不均等型の回転セクタ鏡ではなく、各セクタの角度が可変である構造の回転セクタ鏡を用い、実際に取得された信号に基づいてリアルタイムで各セクタの角度を変更して各信号の積算時間を適切に調整するのが好ましい。   As described above, the value of I for minimizing the overall noise level, that is, the optimum value of I is determined by the difference between the sample-side measurement signal noise level Ns and the reference-side measurement signal noise level Nr. Therefore, from the viewpoint of minimizing or approaching the overall noise level, the angle of each sector is variable, not the non-uniform rotating sector mirror in which the angle of each sector in the rotation direction is fixed as described above. It is preferable to use a rotating sector mirror having a certain structure and appropriately adjust the integration time of each signal by changing the angle of each sector in real time based on the actually acquired signal.

実際に取得された信号によりノイズレベルを推定する場合、例えば次のようにすることができる。例えば図8(a)〜(c)に示すようにセクタ鏡を一定速度で回転駆動している状態で各データ収集期間Ds、Dds、Dr、Ddrにはそれぞれ多数のデータが得られるが、このときの各データ収集期間のノイズレベルを次のように定義する。
N(Ds)=σ(Ds)/(<Ds>−<Dds>)
N(Dds)=σ(Dds)/(<Ds>−<Dds>)
N(Dr)=σ(Dr)/(<Dr>−<Ddr>)
N(Ddr)=σ(Ddr)/(<Dr>−<Ddr>)
ここで、σ(X)は期間Xにおけるデータの標準偏差、<X>は期間Xにおけるデータの平均値である。
或る1サイクル中の4つのノイズレベルN(Ds)、N(Dds)、N(Dr)、N(Ddr)が求まったならば、ノイズレベルの比となるように次のサイクルの各データ収集期間Ds、Dds、Dr、Ddrの長さを調整するように各セクタ、つまり、反射鏡82、開口部83、遮光部84の角度を変更すればよい。
When the noise level is estimated based on the actually acquired signal, for example, the following can be performed. For example, as shown in FIGS. 8A to 8C, a large number of data can be obtained in each data collection period Ds, Dds, Dr, Ddr while the sector mirror is rotated at a constant speed. The noise level of each data collection period is defined as follows.
N (Ds) = σ (Ds) / (<Ds> − <Dds>)
N (Dds) = σ (Dds) / (<Ds> − <Dds>)
N (Dr) = σ (Dr) / (<Dr> − <Ddr>)
N (Ddr) = σ (Ddr) / (<Dr> − <Ddr>)
Here, σ (X) is a standard deviation of data in the period X, and <X> is an average value of data in the period X.
When four noise levels N (Ds), N (Dds), N (Dr), and N (Ddr) in one cycle are obtained, each data collection of the next cycle is performed so that the ratio of the noise levels is obtained. What is necessary is just to change the angle of each sector, ie, the reflective mirror 82, the opening part 83, and the light-shielding part 84, so that the length of period Ds, Dds, Dr, Ddr may be adjusted.

また、上述したように、通常、試料による吸収が大きく試料側測定信号のレベルが下がるほどノイズレベルは高くなる。そこで、取得した信号に基づいて上記のようにノイズレベルを求める代わりに、試料側測定信号のレベルに基づいて、各データ収集期間Ds、Dds、Dr、Ddrの長さを調整するように各セクタ、つまり、反射鏡82、開口部83、遮光部84の角度を変更してもよい。全体のノイズレベルを最小化することはできないものの、簡単な構成で従来よりも全体のノイズレベルを下げるには、図6に示したように均一型セクタ鏡と不均一型セクタ鏡を交換する構造として、取得された試料側測定信号の信号レベルを閾値を比較し、測定信号が閾値よりも小さい場合に不均一型セクタ鏡を、測定信号が閾値以上である場合に均一型セクタ鏡を選択するようにするとよい。   Further, as described above, normally, the noise level increases as the absorption by the sample is large and the level of the sample-side measurement signal decreases. Therefore, instead of obtaining the noise level as described above based on the acquired signal, each sector is adjusted so that the length of each data collection period Ds, Dds, Dr, Ddr is adjusted based on the level of the sample-side measurement signal. That is, you may change the angle of the reflective mirror 82, the opening part 83, and the light-shielding part 84. FIG. Although the entire noise level cannot be minimized, a structure in which the uniform sector mirror and the non-uniform sector mirror are exchanged as shown in FIG. As a result, the signal level of the obtained sample-side measurement signal is compared with a threshold value, and a non-uniform sector mirror is selected when the measurement signal is smaller than the threshold value, and a uniform sector mirror is selected when the measurement signal is greater than or equal to the threshold value. It is good to do so.

図10は吸収スペクトルとセクタ鏡の選択(均一型/不均一型)との対応関係の一例を示す図である。吸光度が大きい場合には試料側測定信号は低くなるから、吸収スペクトルでみると、或る吸光度以上の波長範囲では不均一型セクタ鏡が使用され、その吸光度未満の波長範囲では均一型セクタ鏡が使用される。   FIG. 10 is a diagram showing an example of the correspondence relationship between the absorption spectrum and the sector mirror selection (uniform / non-uniform). When the absorbance is high, the sample-side measurement signal is low. Therefore, in the absorption spectrum, a non-uniform sector mirror is used in a wavelength range above a certain absorbance, and a uniform sector mirror is used in a wavelength range below that absorbance. used.

また上記第2実施例は、セクタ鏡を一定速度で回転駆動することを前提として、回転方向に各セクタの占める角度を変えることで積算時間を変えるようにしていたが、セクタ毎に回転速度を変えることができる場合や、単色光の照射位置Lに任意のセクタが来た状態でセクタ鏡の回転を一時停止することができる場合には、各セクタの角度が同一であっても回転制御により積算時間を適宜に調整することができる。   In the second embodiment, on the assumption that the sector mirror is rotated at a constant speed, the integration time is changed by changing the angle occupied by each sector in the rotation direction. However, the rotation speed is changed for each sector. When the rotation of the sector mirror can be temporarily stopped when an arbitrary sector has arrived at the irradiation position L of monochromatic light, even if the angle of each sector is the same, the rotation control is performed. The integration time can be adjusted appropriately.

また、上記第1実施例と同じく、ダブルビーム方式を実現するための光学系の構成は回転駆動されるセクタ鏡を用いたものに限らない。例えば、光スイッチなどの光学素子を用いて単色光を試料側光束Lsと参照側光束Lrとに振り分ける構成としてもよい。また、図11に示すように、ビームスプリッタ41により単色光を試料側光束Lsと参照側光束Lrとの2つに分割し、各光束をそれぞれシャッタ42、43で断続的に遮蔽して交互に光検出器17に導入する構成とすることもできる。この例では、シャッタ42、43が同期的にモータ44により回転駆動される構成であり、シャッタ42、43の回転方向に占める遮光部の角度を変更することで、各測定信号や暗信号の積算時間を調整することが可能である。また、このような回転式のシャッタでなく、任意のタイミングで遮光を行えるシャッタの場合には、そのタイミングの制御により各測定信号や暗信号の積算時間を調整することが可能である。   As in the first embodiment, the configuration of the optical system for realizing the double beam system is not limited to that using a sector mirror that is rotationally driven. For example, a configuration may be adopted in which monochromatic light is divided into the sample-side light beam Ls and the reference-side light beam Lr using an optical element such as an optical switch. Further, as shown in FIG. 11, the monochromatic light is split into two of the sample side light beam Ls and the reference side light beam Lr by the beam splitter 41, and each light beam is intermittently shielded by the shutters 42 and 43, respectively. It can also be set as the structure introduce | transduced into the photodetector 17. FIG. In this example, the shutters 42 and 43 are synchronously driven and rotated by the motor 44. By changing the angle of the light shielding portion in the rotation direction of the shutters 42 and 43, integration of each measurement signal and dark signal is performed. It is possible to adjust the time. In addition, in the case of a shutter that can shield light at an arbitrary timing instead of such a rotary shutter, the integration time of each measurement signal and dark signal can be adjusted by controlling the timing.

また、上記実施例はいずれもシングルディテクタの構成であるが、ダブルディテクタの構成にも本発明を適用することができる。ただし、ダブルディテクタ構成の場合には、光検出器毎に、試料側信号データの収集期間と試料側暗信号データの収集期間とで1サイクル、参照側信号データの収集期間と参照側暗信号データの収集期間とで1サイクルとなる。したがって、第1実施例の場合には、光検出器毎にそのサイクルの周期が変更され、第2実施例の場合には、1サイクル内での測定信号データの収集期間と暗信号データの収集期間との割合が変更されることになる。   In addition, each of the above embodiments has a single detector configuration, but the present invention can also be applied to a double detector configuration. However, in the case of a double detector configuration, for each photodetector, one cycle of the sample-side signal data collection period and the sample-side dark signal data collection period, the reference-side signal data collection period and the reference-side dark signal data The collection period is one cycle. Therefore, in the case of the first embodiment, the cycle period is changed for each photodetector, and in the case of the second embodiment, the measurement signal data collection period and dark signal data collection within one cycle. The ratio with the period will be changed.

また、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形、修正、追加を行っても本願特許請求の範囲に包含されることは当然である。   Moreover, the said Example is an example of this invention, Even if it changes suitably, amends, and is added in the range of the meaning of this invention, it is naturally included in the claim of this application.

1…光源
2…入口スリット
3…回折格子
4…出口スリット
5…ステッピングモータ
6…分光器
8、8A、8B…セクタ鏡
81…回転軸
82…反射鏡
83…開口部
84…遮光部
9、44…モータ
10、11、14、15…反射鏡
12…参照試料
13…被測定試料
17…光検出器
20…データ処理部
21…測定信号積算処理部
22…暗信号積算処理部
23…データメモリ
24…吸光度算出処理部
30…制御部
40…セクタ鏡交換機構
41…ビームスプリッタ
42、43…シャッタ
DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Entrance slit 3 ... Diffraction grating 4 ... Exit slit 5 ... Stepping motor 6 ... Spectroscope 8, 8A, 8B ... Sector mirror 81 ... Rotating shaft 82 ... Reflection mirror 83 ... Opening part 84 ... Light-shielding part 9, 44 ... Motors 10, 11, 14, 15 ... Reflector 12 ... Reference sample 13 ... Measured sample 17 ... Photo detector 20 ... Data processing unit 21 ... Measurement signal integration processing unit 22 ... Dark signal integration processing unit 23 ... Data memory 24 ... Absorbance calculation processing unit 30 ... Control unit 40 ... Sector mirror exchange mechanism 41 ... Beam splitters 42, 43 ... Shutter

Claims (11)

光源より発した光から波長走査可能な分光器により単色光を取り出した後に、該単色光を光分配手段により試料側光束と参照側光束とに交互に振り分けて、それぞれ被測定試料と参照試料とを透過する光束を光検出器に導入する光学系、又は、前記単色光を試料側光束と参照側光束とに分割して、被測定試料と参照試料とを透過する各光束を交互に検出器へ導く光合一手段若しくはそれぞれ間欠的に遮弊する遮光手段を通して光検出器に導入する光学系、のいずれか1つの光学系を用いたダブルビーム方式の分光光度計において、
a)光束の切替えを周期的に行うように、前記光分配手段、前記光合一手段、又は前記遮光手段を駆動する駆動源と、
b)前記単色光の波長を走査するに際し、その波長走査速度に応じて光束の切替えの速度を変更するように前記駆動源を制御する制御手段と、
を備えることを特徴とする分光光度計。
After monochromatic light is extracted from the light emitted from the light source by a spectroscope capable of wavelength scanning, the monochromatic light is alternately distributed into the sample-side light beam and the reference-side light beam by the light distribution means, and the sample to be measured and the reference sample are respectively obtained. An optical system that introduces a light beam that passes through a photodetector, or a detector that splits the monochromatic light into a sample-side light beam and a reference-side light beam, and alternately transmits each light beam that passes through the sample to be measured and the reference sample. In the double beam type spectrophotometer using any one of the optical system that introduces into the photodetector through the light coalescing means that leads to the light or the light shielding means that intermittently blocks each,
a) a drive source for driving the light distribution means, the light coalescence means, or the light shielding means so as to periodically switch the light flux;
b) when scanning the wavelength of the monochromatic light, the control means for controlling the drive source so as to change the switching speed of the luminous flux according to the wavelength scanning speed;
A spectrophotometer comprising:
請求項1に記載の分光光度計であって、
前記光分配手段として、回転軸の周りに、反射鏡、開口部、及び遮蔽部を有するセクタ鏡を有し、前記制御手段は、前記セクタ鏡の回転速度を変更するように該セクタ鏡を回転駆動する駆動源を制御することを特徴とする分光光度計。
The spectrophotometer according to claim 1, wherein
The light distribution means has a sector mirror having a reflecting mirror, an opening, and a shielding part around a rotation axis, and the control means rotates the sector mirror so as to change the rotation speed of the sector mirror. A spectrophotometer characterized by controlling a driving source to be driven.
請求項1又は2に記載の分光光度計であって、
前記制御手段は、被測定試料を透過する光束が前記光検出器に入射しているときの該光検出器による検出信号のレベルに応じて、波長走査速度に応じた光束切替え速度の変更の要否を決定することを特徴とする分光光度計。
The spectrophotometer according to claim 1 or 2,
The control means needs to change the light beam switching speed in accordance with the wavelength scanning speed according to the level of the detection signal from the light detector when the light beam transmitted through the sample to be measured is incident on the light detector. A spectrophotometer characterized by determining whether or not.
測定光を光分配手段により試料側光束と参照側光束とに交互に振り分けて、それぞれ被測定試料と参照試料とを透過する光束を1つ若しくはそれぞれ別個の光検出器に導入する光学系、又は、測定光を試料側光束と参照側光束とに分割して、それぞれ被測定試料と参照試料とを透過する光束を光合一手段により交互に1つの光検出器に導入する光学系、のいずれか1つの光学系を用いたダブルビーム方式の分光光度計において、
a)被測定試料を透過する光束と参照試料を透過する光束が1又は複数の光検出器へ交互に入射する1サイクルの中で、被測定試料の透過光束に対して光検出器で得られた試料側測定信号、及び、参照試料の透過光束に対して光検出器で得られた参照側測定信号に対してノイズ低減処理を行うノイズ低減処理手段と、
b)前記1サイクルの中で被測定試料の透過光束と参照試料の透過光束とが光検出器に入射する時間の割合を変更するように前記光分配手段又は前記光合一手段を制御するとともに、それに対応して前記ノイズ低減処理手段によるノイズ低減処理対象の信号の期間を変更する制御手段と、
を備えることを特徴とする分光光度計。
An optical system in which the measurement light is alternately distributed to the sample-side light beam and the reference-side light beam by the light distribution means, and the light beams that pass through the sample to be measured and the reference sample, respectively, are introduced into one or separate light detectors, or Any one of the optical systems in which the measurement light is divided into the sample-side light beam and the reference-side light beam, and the light beams respectively transmitted through the sample to be measured and the reference sample are alternately introduced into one photodetector by the optical coalescing means. In a double beam spectrophotometer using one optical system,
a) In one cycle in which the light beam transmitted through the sample to be measured and the light beam transmitted through the reference sample are alternately incident on one or a plurality of photodetectors, the light beam obtained by the photodetector is obtained with respect to the transmitted light beam of the sample to be measured. Noise reduction processing means for performing noise reduction processing on the sample side measurement signal and the reference side measurement signal obtained by the photodetector with respect to the transmitted light beam of the reference sample;
b) controlling the light distribution means or the light combining means so as to change the ratio of the time during which the transmitted light flux of the sample to be measured and the transmitted light flux of the reference sample are incident on the photodetector in the one cycle; Correspondingly, control means for changing the period of the signal of the noise reduction processing target by the noise reduction processing means,
A spectrophotometer comprising:
請求項4に記載の分光光度計であって、
前記光分配手段として、回転軸の周りに、反射鏡、開口部、及び遮蔽部を有するセクタ鏡と、該セクタ鏡を回転駆動する駆動源と、を含み、前記セクタ鏡にあって、前記反射鏡と前記開口部の少なくとも一方の回転方向に占める角度を変更することによって、1サイクル中で被測定試料の透過光束と参照試料の透過光束とが光検出器に入射する時間の割合を変更することを特徴とする分光光度計。
The spectrophotometer according to claim 4, wherein
The light distribution means includes a sector mirror having a reflection mirror, an opening, and a shielding portion around a rotation axis, and a drive source for rotationally driving the sector mirror. By changing the angle occupied by at least one of the mirror and the opening in the rotation direction, the ratio of the time during which the transmitted light beam of the sample to be measured and the transmitted light beam of the reference sample enter the photodetector in one cycle is changed. A spectrophotometer characterized by that.
請求項4又は5に記載の分光光度計であって、
前記光検出器で得られた信号のノイズレベルを推定するノイズ推定手段を備え、前記制御手段は、前記ノイズ推定手段によるノイズレベルの推定結果に応じて、1サイクル中で被測定試料の透過光束と参照試料の透過光束とが光検出器に入射する時間の割合を変更することを特徴とする分光光度計。
The spectrophotometer according to claim 4 or 5, wherein
Noise estimation means for estimating the noise level of the signal obtained by the photodetector is provided, and the control means transmits the transmitted light flux of the sample to be measured in one cycle according to the estimation result of the noise level by the noise estimation means. And a ratio of the time during which the transmitted light flux of the reference sample is incident on the photodetector.
請求項4又は5に記載の分光光度計であって、
前記制御手段は、被測定試料を透過する光束が前記光検出器に入射しているときの該光検出器による検出信号のレベルに応じて、1サイクル中で被測定試料の透過光束と参照試料の透過光束とが光検出器に入射する時間の割合を変更することを特徴とする分光光度計。
The spectrophotometer according to claim 4 or 5, wherein
The control means controls the transmitted light beam of the sample to be measured and the reference sample in one cycle according to the level of the detection signal from the light detector when the light beam transmitted through the sample to be measured is incident on the light detector. The spectrophotometer is characterized in that the ratio of the time during which the transmitted light flux enters the photodetector is changed.
測定光を光分配手段により試料側光束と参照側光束とに交互に振り分けて、それぞれ被測定試料と参照試料とを透過する光束を1つ若しくはそれぞれ別個の光検出器に導入する光学系と、測定光を試料側光束と参照側光束とに分割して、それぞれ被測定試料と参照試料とを透過する光束を光合一手段により交互に1つの光検出器に導入する光学系と、測定光を試料側光束と参照側光束とに分割して、それぞれ被測定試料と参照試料とを透過する光束を別個の光検出器に導入する光学系と、のうちのいずれか1つの光学系を用いるとともに、被測定試料を透過する光束と参照試料を透過する光束が光検出器へ交互に入射する1サイクル中で少なくとも1回、前記光検出器に光束が入射しないように光路上で周期的に光束を遮蔽する、又は被測定試料と参照試料とを透過する各光束をそれぞれ1サイクル中で少なくとも1回遮弊する遮光手段を具備するダブルビーム方式の分光光度計において、
a)1サイクルの中で、被測定試料の透過光束に対して光検出器で得られた試料側測定信号、参照試料の透過光束に対して光検出器で得られた参照側測定信号、及び、遮光時に光検出器で得られた暗信号に対しそれぞれノイズ低減処理を行うノイズ低減処理手段と、
b)前記1サイクルの中で、被測定試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、及び/又は、参照試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、を変更するように前記光分配手段、前記光合一手段、又は前記遮光手段の少なくとも1つを制御するとともに、それに対応して前記ノイズ低減処理手段によるノイズ低減処理対象の信号の期間を変更する制御手段と、
を備えることを特徴とする分光光度計。
An optical system that alternately distributes the measurement light into the sample-side light beam and the reference-side light beam by the light distribution means, and introduces the light beams that pass through the sample to be measured and the reference sample, respectively, into separate photodetectors; An optical system that splits the measurement light into a sample-side light beam and a reference-side light beam, and alternately introduces light beams that pass through the sample to be measured and the reference sample, respectively, into a single photodetector by means of optical coalescence, and the measurement light While using any one optical system of the optical system which divides | segments into a sample side light beam and a reference side light beam, and introduce | transduces into a separate photodetector the light beam which permeate | transmits a to-be-measured sample and a reference sample, respectively. The light beam transmitted through the sample to be measured and the light beam transmitted through the reference sample alternately enter the photodetector at least once in one cycle so that the light beam does not enter the photodetector periodically on the optical path. Shield or measure In a spectrophotometer double beam system having a light shielding means for Hay shielding at least once each beam passes through the charge and the reference sample in each one cycle in,
a) a sample-side measurement signal obtained by the photodetector with respect to the transmitted light flux of the sample to be measured in one cycle, a reference-side measurement signal obtained by the photodetector with respect to the transmitted light flux of the reference sample, and Noise reduction processing means for performing noise reduction processing on the dark signal obtained by the photodetector at the time of light shielding,
b) The ratio of the time during which the transmitted light beam of the sample to be measured is incident on the photodetector and the time during which the light is shielded and / or the transmitted light beam of the reference sample is incident on the photodetector in the cycle. And controlling at least one of the light distribution means, the light coalescence means, or the light shielding means so as to change the ratio of the time during which the light is blocked and the time during which the light is blocked, and the noise reduction processing correspondingly Control means for changing the period of the signal subject to noise reduction processing by the means;
A spectrophotometer comprising:
請求項8に記載の分光光度計であって、
前記光分配手段及び前記遮光手段として、回転軸の周りに、反射鏡、開口部、及び遮蔽部を有するセクタ鏡と、該セクタ鏡を回転駆動する駆動源と、を含み、前記セクタ鏡にあって、前記反射鏡と前記遮光部との少なくともいずれか一方、又は、前記開口部と前記遮光部との少なくともいずれか一方の回転方向に占める角度を変更することによって、1サイクル中で、被測定試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、及び/又は、参照試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、を変更することを特徴とする分光光度計。
The spectrophotometer according to claim 8, wherein
The light distribution means and the light shielding means include a sector mirror having a reflecting mirror, an opening, and a shielding part around a rotation axis, and a drive source for rotationally driving the sector mirror. By changing the angle occupied in the rotation direction of at least one of the reflecting mirror and the light shielding part, or at least one of the opening and the light shielding part, the measurement is performed in one cycle. The ratio between the time when the transmitted light beam of the sample is incident on the photodetector and the time when the light is shielded, and / or the time when the transmitted light beam of the reference sample is incident on the photodetector and the time when the light is shielded A spectrophotometer characterized by changing the ratio of
請求項8又は9に記載の分光光度計であって、
前記光検出器で得られた信号のノイズレベルを推定するノイズ推定手段を備え、前記制御手段は、前記ノイズ推定手段によるノイズレベルの推定結果に応じて、1サイクル中で、被測定試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、及び/又は、参照試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、を変更することを特徴とする分光光度計。
The spectrophotometer according to claim 8 or 9, wherein
Noise estimation means for estimating the noise level of the signal obtained by the photodetector is provided, and the control means transmits the sample to be measured in one cycle according to the noise level estimation result by the noise estimation means. The ratio between the time when the light beam is incident on the photodetector and the time when the light is shielded; and / or the ratio between the time when the transmitted light beam of the reference sample is incident on the photodetector and the time when the light is shielded; A spectrophotometer, characterized by changing.
請求項8又は9に記載の分光光度計であって、
前記制御手段は、被測定試料を透過する光束が前記光検出器に入射しているときの該光検出器による検出信号のレベルに応じて、1サイクル中で、被測定試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、及び/又は、参照試料の透過光束が光検出器に入射する時間と光が遮蔽されている時間との割合、を変更する被測定試料の透過光束と参照試料の透過光束とが光検出器に入射する時間の割合を変更することを特徴とする分光光度計。
The spectrophotometer according to claim 8 or 9, wherein
According to the level of the detection signal from the light detector when the light beam transmitted through the sample to be measured is incident on the light detector, the control means transmits the light beam transmitted through the sample to be measured in one cycle. Changing the ratio between the time when the light is incident on the detector and the time when the light is shielded and / or the ratio between the time when the transmitted light beam of the reference sample is incident on the light detector and the time when the light is shielded A spectrophotometer characterized in that the ratio of the time during which the transmitted light beam of the sample to be measured and the transmitted light beam of the reference sample enter the photodetector is changed.
JP2010168126A 2010-07-27 2010-07-27 Spectrophotometer Pending JP2012026957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168126A JP2012026957A (en) 2010-07-27 2010-07-27 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168126A JP2012026957A (en) 2010-07-27 2010-07-27 Spectrophotometer

Publications (1)

Publication Number Publication Date
JP2012026957A true JP2012026957A (en) 2012-02-09

Family

ID=45780034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168126A Pending JP2012026957A (en) 2010-07-27 2010-07-27 Spectrophotometer

Country Status (1)

Country Link
JP (1) JP2012026957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212688A (en) * 2014-04-18 2015-11-26 Drc株式会社 Light irradiation device and method for measuring light transmission characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212688A (en) * 2014-04-18 2015-11-26 Drc株式会社 Light irradiation device and method for measuring light transmission characteristic

Similar Documents

Publication Publication Date Title
JP5516486B2 (en) Spectrometer and program
US7099003B2 (en) Spectroscopic systems and methods
EP0056239B1 (en) Method of measuring raman spectra and laser raman spectrophotometry system
US4225233A (en) Rapid scan spectrophotometer
JP3102689B2 (en) Spectral spectrum detector
JPS6132607B2 (en)
JP6201547B2 (en) Spectrometer wavelength calibration method
JP2012026957A (en) Spectrophotometer
JP5206322B2 (en) Spectrophotometer
JPH043492B2 (en)
JP3572681B2 (en) Multi-channel spectrophotometer
JP2010156655A (en) Spectrophotometer
JP3591427B2 (en) Spectrophotometer
JP2013011473A (en) Spectrophotometer
JP2000097774A (en) Spectrophotometer
JPH09145478A (en) Multichannel type spectrophotometer
JP5454492B2 (en) Spectrophotometer
JP3593559B2 (en) High-speed spectrometer
JP2006003165A (en) Spectrophotometer
JP2989459B2 (en) Spectrometer
JPH10185686A (en) Spectrophotometer
JPH06241900A (en) Spectrochemical analyzer
JP2012018011A (en) Spectrophotometer
JP2008292249A (en) Spectrophotometer
JP2015099127A (en) Spectrophotometer, analysis system, and analysis method