JP2012026893A - Liquid chromatograph - Google Patents

Liquid chromatograph Download PDF

Info

Publication number
JP2012026893A
JP2012026893A JP2010166481A JP2010166481A JP2012026893A JP 2012026893 A JP2012026893 A JP 2012026893A JP 2010166481 A JP2010166481 A JP 2010166481A JP 2010166481 A JP2010166481 A JP 2010166481A JP 2012026893 A JP2012026893 A JP 2012026893A
Authority
JP
Japan
Prior art keywords
switching valve
rotor
diameter
orifice
orifices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010166481A
Other languages
Japanese (ja)
Inventor
Ken Kanno
賢 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GL Science Inc
Original Assignee
GL Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GL Science Inc filed Critical GL Science Inc
Priority to JP2010166481A priority Critical patent/JP2012026893A/en
Publication of JP2012026893A publication Critical patent/JP2012026893A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Multiple-Way Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high performance liquid chromatograph (called as HPLC hereafter) with a recycle separation function.SOLUTION: The liquid chromatograph is connected to a supply flow channel of a moving phase and a recycle flow channel in which a liquid feed pump 42, a separation column 48, and a detector 47 are interposed, and an introduced sample is made recyclable, has a single switching valve 4 which makes the supply flow channel of the moving phase and the recycle flow channel switchable, one end parts of the respective connection conduct tubes 22, 23 to be connected to the suction side and the discharge side of the liquid feed pump 42 is connected to the switching valve 4, one end part of the introduction side of the separation column 48 is connected to the switching valve 4, an inner diameter of the connection conduct tube 22 for connecting the suction side of the liquid feed pump 42 to the switching valve 4 is formed to the maximum in piping to the switching valve 4, length of the connection conduct tube 22 is formed to be short as much as possible, and an inner diameter of a connection conduct tube 26 for connecting an exit side end of the detector 47 to the switching valve 4 is formed in the middle in piping to the switching valve 4.

Description

本発明は、例えばリサイクル分離機能を備えた高速液体クロマトグラフ(以下、HPL
Cと呼ぶ)に好適で、リサイクル切換バルブと、リサイクル流路に介挿する切換バルブとを単一のバルブで構成し、部品点数を低減し構成を簡潔化して小形軽量化と低廉化を図るとともに、バルブ操作の煩雑を解消し、これを容易かつ正確に行なえるとともに、各接続導管の寸法を合理的に構成し、そのデッドボリュ−ムを低減して分離時における試料の拡散を防止し、通常およびリサイクル分離の精度を向上するとともに、切換バルブに設けたオリフィスとロ−タのロ−タ溝を合理的に構成し、試料導入時とリサイクル分離時の流体の移動を円滑かつ安全に行なえるようにした、液体クロマトグラフに関する。
The present invention is, for example, a high performance liquid chromatograph (hereinafter, HPL) having a recycling separation function.
The recycle switching valve and the switching valve inserted in the recycle flow path are composed of a single valve, reducing the number of parts and simplifying the structure, thereby reducing the size, weight and cost. At the same time, the complexity of valve operation can be eliminated, and this can be done easily and accurately, the dimensions of each connecting conduit are rationally configured, and the dead volume is reduced to prevent sample diffusion during separation, In addition to improving the accuracy of normal and recycle separation, the orifice and rotor rotor grooves provided in the switching valve are rationally configured to allow smooth and safe fluid movement during sample introduction and recycle separation. The present invention relates to a liquid chromatograph.

リサイクル分離機能を備えた液体クロマトグラフ(以下、LCと呼ぶ)のなかに、リサイクルバルブと切換バルブを備え、溶離液にサンプルを導入し、サンプルの目的成分が溶出したところで、リサイクルバルブを切換え、同時に切換バルブを切換えて、溶離液とサンプルをリサイクル流路に循環させ、リサイクル分離するようにしたものがある(例えば、特許文献1参照)。   A liquid chromatograph equipped with a recycle separation function (hereinafter referred to as LC) is equipped with a recycle valve and a switching valve. The sample is introduced into the eluent, and when the target component of the sample is eluted, the recycle valve is switched. At the same time, there is one in which the switching valve is switched so that the eluent and the sample are circulated through the recycling flow path for recycling separation (for example, see Patent Document 1).

しかし、前記LCは、リサイクルバルブと切換バルブを要し、部品点数が増え構成が複雑化して高価になるとともに、それらの切換えを要して、操作が煩雑になる等の問題があった。   However, the LC requires a recycle valve and a switching valve, which increases the number of parts, makes the configuration complicated and expensive, and requires switching them, resulting in complicated operation.

前記問題を解決するものとして、リサイクルバルブと切換バルブを単一の8ポ−ト切換バルブで構成し、バルブの個数を低減し、バルブの切換え操作の煩雑を解消するようにしたものがある(例えば、特許文献2参照)。   As a solution to the above problem, there is one in which the recycling valve and the switching valve are constituted by a single 8-port switching valve, the number of valves is reduced, and the complicated switching operation of the valve is eliminated ( For example, see Patent Document 2).

しかし、前記LCは、8ポ−ト切換バルブにバッファ流路を接続するとともに、リサイクル流路に試料注入装置を介挿しているため、リサイクル流路のデッドボリュ−ムが増加してサンプルが拡散し、リサイクル分離精度に十分な結果を得られなかった。   However, since the LC has a buffer flow path connected to the 8-port switching valve and a sample injection device is inserted in the recycle flow path, the dead volume of the recycle flow path increases and the sample diffuses. The recycling separation accuracy was not sufficient.

ところで、この種の切換バルブは、外部に開口したポ−トに連通するオリフィスを形成したステ−タと、前記オリフィスに連通可能な複数のロ−タ溝を形成したロ−タとを備え、該ロ−タをステ−タに液密かつ回動可能に構成していた(例えば、特許文献3参照)。   By the way, this type of switching valve includes a stator in which an orifice communicating with a port opened to the outside and a rotor in which a plurality of rotor grooves capable of communicating with the orifice are formed, The rotor is configured to be liquid-tight and rotatable with respect to the stator (for example, see Patent Document 3).

しかし、前記切換バルブは、ポ−ト数が多くなると、ロ−タ溝の長さやオリフィス径が制約され、移動流体の給排が円滑かつ能率良く行なわれなくなり、分離精度や分離時間に影響を及ぼすとともに、ステ−タとロ−タとのシ−ル機能が低下し、液漏れを起こす等の問題があった。
この場合、ロ−タ溝の長さやオリフィス径をそれぞれ同一に形成すると、切換バルブに接続する機器との対応が画一的になり、例えば送液ポンプによる溶離液またはサンプルの吸引作用が不安定になり、溶離液やサンプルの移動量が変動するとともに、検出器の圧力上昇によってセルが破損する等の問題があった。
However, when the number of ports is increased, the length of the rotor groove and the orifice diameter of the switching valve are restricted, and the supply and discharge of the moving fluid is not performed smoothly and efficiently, affecting the separation accuracy and separation time. In addition, the seal function between the stator and the rotor is lowered, and there is a problem of causing liquid leakage.
In this case, if the length of the rotor groove and the diameter of the orifice are made the same, the correspondence with the device connected to the switching valve becomes uniform, for example, the elution of the eluent or sample by the liquid feed pump is unstable. As a result, the amount of movement of the eluent and sample fluctuated, and the cell was damaged due to an increase in detector pressure.

特許第2573884号公報Japanese Patent No. 2557384 特開2006−138699号公報JP 2006-138699 A 特開平1−307575号公報JP-A-1-307575

本発明はこのような問題を解決し、例えばリサイクル分離機能を備えたHPLCに好適で、リサイクル切換バルブと、リサイクル流路に介挿する切換バルブとを単一のバルブで構成し、部品点数を低減し構成を簡潔化して小形軽量化と低廉化を図るとともに、バルブ操作の煩雑を解消し、これを容易かつ正確に行なえるとともに、各接続導管の寸法を合理的に構成し、そのデッドボリュ−ムを低減して分離時における試料の拡散を防止し、通常およびリサイクル分離の精度を向上するとともに、切換バルブに設けたオリフィスとロ−タのロ−タ溝を合理的に構成し、試料導入時とリサイクル分離時の流体の移動を円滑かつ安全に行なえるようにした、液体クロマトグラフを提供することを目的にしている。   The present invention solves such a problem, and is suitable for, for example, HPLC having a recycling separation function. The recycling switching valve and the switching valve inserted in the recycling flow path are constituted by a single valve, and the number of parts is reduced. Reduced and simplified configuration to reduce size, weight and cost, eliminate the complexity of valve operation, easily and accurately do this, and rationally configure the dimensions of each connecting conduit, and its dead volume In addition to improving the accuracy of normal and recycle separation, the orifice of the switching valve and the rotor groove of the rotor are rationally configured for sample introduction. It is an object of the present invention to provide a liquid chromatograph that can smoothly and safely move fluid during separation and recycling.

請求項1の発明は、移動相の供給流路と、送液ポンプと分離カラムと検出器とを介挿し、かつ導入したサンプルを循環可能にしたリサイクル流路とに接続され、前記供給流路とリサイクル流路とを切換え可能にした単一の切換バルブを有する液体クロマトグラフにおいて、前記送液ポンプの吸引側と切換バルブとを接続する接続導管を、前記切換バルブへ配管する複数の接続導管の中で最大の内径に形成し、かつその長さを可及的に短く形成するとともに、検出器の出口側端部と切換バルブとを接続する接続導管を、前記切換バルブへ配管する複数の接続導管の中で中間の内径に形成し、検出器の入口側端部と切換バルブとを接続する接続導管と、前記送液ポンプの吐出側と切換バルブとを接続する接続導管との各内径を、切換バルブへ配管する複数の接続導管の中で最小に形成し、送液ポンプの吸引側と吐出側に接続する接続導管の間に、試料注入装置等の機器を介挿する場合のデッドボリュ−ム増を防止するとともに、送液ポンプや検出器等の機器と切換バルブとを接続する各接続導管の内径を合理的に構成し、各接続導管のデッドボリュ−ムを低減するとともに、前記送液ポンプの吸引側と切換バルブを接続する接続導管の内径を切換バルブの配管中で最大に形成し、送液ポンプによる吸引作動を円滑かつ能率良く行なうようにするとともに、検出器の出口側端部と切換バルブを接続する接続導管の内径を切換バルブの配管中で中間に形成して、検出器のセルに対する高圧負荷を防止し、セルの破損を防止するようにしている。   The invention according to claim 1 is connected to a supply flow path for the mobile phase, a recycle flow path that allows the introduced sample to be circulated through the liquid feed pump, the separation column, and the detector. In a liquid chromatograph having a single switching valve capable of switching between a recycle flow path and a recycle flow path, a plurality of connection conduits for connecting a connection conduit connecting the suction side of the liquid feeding pump and the switching valve to the switching valve A plurality of pipes connected to the switching valve for connecting the outlet end of the detector and the switching valve. Inner diameters of the connection conduit formed between the inlet side end of the detector and the switching valve, and the connection conduit connecting the discharge side of the liquid feed pump and the switching valve, formed at an intermediate inner diameter in the connection conduit. To the switching valve It is formed to the minimum among the plurality of connecting conduits to prevent an increase in dead volume when a device such as a sample injection device is inserted between the connecting conduits connected to the suction side and the discharge side of the liquid feeding pump. In addition, the internal diameter of each connection conduit that connects a device such as a liquid feed pump and a detector and the switching valve is rationally configured to reduce the dead volume of each connection conduit, and the suction side of the liquid feed pump The inner diameter of the connecting conduit that connects the switching valve is maximized in the switching valve piping so that the suction operation by the liquid feed pump is performed smoothly and efficiently, and the outlet end of the detector is connected to the switching valve. The inner diameter of the connecting conduit is formed in the middle of the switching valve piping to prevent a high pressure load on the detector cell and to prevent damage to the cell.

請求項2の発明は、前記切換バルブのバルブヘッドの表面に8個以上のポ−トを設け、前記バルブヘッドのシ−ル面に前記ポ−トに連通する8個以上のオリフィスを形成し、バルブヘッドに形成するポ−トと、シ−ル面に形成するオリフィスの数を共に従来よりも削減し、構成の簡潔化と製作の容易化を図り、切換バルブの小形軽量化を図るようにしている。
請求項3の発明は、前記切換バルブのバルブヘッドの内端面に設けたシ−ル面に大小異径の複数のオリフィスを形成するとともに、前記シ−ル面に液密で回動かつ摺動可能に設けたロ−タのシ−ル面に溝幅を異にする複数のロ−タ溝を形成し、前記オリフィスの口径とロ−タ溝の幅を送液ポンプや検出器等の機器に応じて合理的に形成し、移動流体の給排を合理的かつ円滑に行なうようにしている。
In the invention of claim 2, eight or more ports are provided on the surface of the valve head of the switching valve, and eight or more orifices communicating with the port are formed on the seal surface of the valve head. The number of ports formed on the valve head and the number of orifices formed on the seal surface are both reduced as compared to the prior art, thereby simplifying the configuration and facilitating manufacturing, and reducing the size and weight of the switching valve. I have to.
According to a third aspect of the present invention, a plurality of orifices having large and small diameters are formed on a seal surface provided on an inner end surface of the valve head of the switching valve, and the seal surface is liquid-tightly rotated and slid. A plurality of rotor grooves having different groove widths are formed on the seal surface of the rotor that can be provided, and the diameter of the orifice and the width of the rotor groove are set to a device such as a liquid feed pump or a detector. Therefore, the mobile fluid can be supplied and discharged rationally and smoothly.

請求項4の発明は、前記各シ−ル面の半径方向の内外位置に、大小異径の複数のオリフィスと、溝幅を異にする複数のロ−タ溝を形成し、各シ−ル面を合理的に構成し、切換バルブの小形軽量化を図るようにしている。
請求項5の発明は、送液ポンプの吸引側に連通する切換バルブ内のオリフィスとロ−タ溝を最大径および最大幅に形成し、検出器の出口側端部に連通する切換バルブ内のオリフィスとロ−タ溝を中間径および中間幅に形成し、検出器の入口側端部に連通する切換バルブ内のオリフィスとロ−タ溝、および前記送液ポンプの吐出側端部に連通する切換バルブ内のオリフィスとロ−タ溝とを最小径および最小幅に形成し、切換バルブ内のオリフィスとロ−タ溝を接続機器に応じて合理的に構成し、移動流体の給排を円滑かつ能率良く行なうようにしている。
According to a fourth aspect of the present invention, a plurality of orifices having different diameters and a plurality of rotor grooves having different groove widths are formed at inner and outer positions in the radial direction of the respective seal surfaces. The surface is rationally configured to reduce the size and weight of the switching valve.
According to the fifth aspect of the present invention, an orifice and a rotor groove in the switching valve communicating with the suction side of the liquid feeding pump are formed to have a maximum diameter and a maximum width, and the switching valve communicating with the outlet side end of the detector is provided. An orifice and a rotor groove are formed with an intermediate diameter and an intermediate width, and communicated with an orifice and a rotor groove in a switching valve that communicates with the inlet side end of the detector and with a discharge side end of the liquid feed pump. The orifice and rotor groove in the switching valve are formed to the minimum diameter and width, and the orifice and rotor groove in the switching valve are rationally configured according to the connected equipment to smoothly supply and discharge moving fluid. And I try to do it efficiently.

請求項6の発明は、前記接続導管の内径の最大と、中間と最小の内径比を、約1:0.5:0.3に形成し、対応する機器に応じて各接続導管を合理的に構成し、移動流体の給排を円滑かつ能率良く行なうとともに、各接続導管のデッドボリュ−ムを低減するようにしている。
請求項7の発明は、前記オリフィスの最大径と、中間径と最小径の比を約1:0.8:
0.5に形成し、対応する機器に応じて各オリフィスを合理的に構成し、移動流体の給排を円滑かつ能率良く行なうようにしている。
請求項8の発明は、前記ロ−タ溝の最大幅と、中間幅と最小幅の比を、約1:0.8:0.5に形成し、対応する機器に応じて各ロ−タ溝を合理的に構成し、移動流体の給排を円滑かつ能率良く行なうようにしている。
According to the invention of claim 6, the maximum inner diameter and the minimum inner diameter ratio of the connecting conduits are formed to be about 1: 0.5: 0.3, and each connecting conduit is rationally set according to the corresponding equipment. The mobile fluid is smoothly and efficiently supplied and discharged, and the dead volume of each connecting conduit is reduced.
According to the seventh aspect of the present invention, the ratio of the maximum diameter and the intermediate diameter to the minimum diameter of the orifice is about 1: 0.8:
It is formed to 0.5, and each orifice is rationally configured according to the corresponding equipment so that the moving fluid can be smoothly and efficiently supplied and discharged.
According to an eighth aspect of the present invention, the ratio of the maximum width of the rotor groove to the intermediate width and the minimum width is formed to be about 1: 0.8: 0.5, and each rotor is formed according to the corresponding equipment. The groove is rationally configured so that the moving fluid can be supplied and discharged smoothly and efficiently.

請求項1の発明は、前記送液ポンプの吸引側と切換バルブとを接続する接続導管を、前記切換バルブへ配管する複数の接続導管の中で最大の内径に形成し、かつその長さを可及的に短く形成するとともに、検出器の出口側端部と切換バルブとを接続する接続導管を、前記切換バルブへ配管する複数の接続導管の中で中間の内径に形成し、検出器の入口側端部と切換バルブとを接続する接続導管と、前記送液ポンプの吐出側と切換バルブとを接続する接続導管との各内径を切換バルブへ配管する複数の接続導管の中で最小に形成したから、送液ポンプの吸引側と吐出側に接続する接続導管の間に、試料注入装置等の機器を介挿する場合のデッドボリュ−ム増を防止するとともに、送液ポンプや検出器等の機器と切換バルブとを接続する各接続導管の内径を合理的に構成し、各接続導管のデッドボリュ−ムを低減するとともに、前記送液ポンプの吸引側と切換バルブを接続する接続導管の内径を切換バルブの配管中で最大に形成し、送液ポンプによる吸引作動を円滑かつ能率良く行なうことができ、また検出器の出口側端部と切換バルブを接続する接続導管の内径を切換バルブの配管中で中間に形成したから、検出器のセルに対する高圧負荷を防止し、セルの破損を防止することができる。   In the first aspect of the present invention, the connection conduit connecting the suction side of the liquid feeding pump and the switching valve is formed to have the maximum inner diameter among the plurality of connection conduits piped to the switching valve, and the length thereof is set. A connecting conduit that connects the outlet end of the detector and the switching valve is formed to have an inner diameter that is intermediate among the plurality of connecting conduits that are connected to the switching valve. The inner diameters of the connecting conduit connecting the inlet end and the switching valve and the connecting conduit connecting the discharge side of the liquid feeding pump and the switching valve are minimized among the plurality of connecting conduits piping to the switching valve. Since it has been formed, it prevents the increase in dead volume when a device such as a sample injection device is inserted between the connection conduits connected to the suction side and the discharge side of the liquid feed pump, and the liquid feed pump, detector, etc. Connecting each device to the switching valve The inside diameter of the connection conduit is reduced, the dead volume of each connection conduit is reduced, and the inside diameter of the connection conduit connecting the suction side of the liquid feeding pump and the switching valve is formed to the maximum in the piping of the switching valve, The suction operation by the liquid feed pump can be performed smoothly and efficiently, and the inner diameter of the connection conduit connecting the outlet end of the detector and the switching valve is formed in the middle of the switching valve piping. A high-pressure load on the cell can be prevented, and damage to the cell can be prevented.

請求項2の発明は、前記切換バルブのバルブヘッドの表面に8個以上のポ−トを設け、前記バルブヘッドのシ−ル面に前記ポ−トに連通する8個以上のオリフィスを形成したから、バルブヘッドに形成するポ−トと、シ−ル面に形成するオリフィスの数を共に従来よりも削減し、構成の簡潔化と製作の容易化を図り、切換バルブの小形軽量化を図ることができる。
請求項3の発明は、前記切換バルブのバルブヘッドの内端面に設けたシ−ル面に大小異径の複数のオリフィスを形成するとともに、前記シ−ル面に液密で回動かつ摺動可能に設けたロ−タのシ−ル面に溝幅を異にする複数のロ−タ溝を形成したから、前記オリフィスの口径とロ−タ溝の幅を送液ポンプや検出器等の機器に応じて合理的に形成し、移動流体の給排を合理的かつ円滑に行なうことができる。
In the invention of claim 2, eight or more ports are provided on the surface of the valve head of the switching valve, and eight or more orifices communicating with the port are formed on the seal surface of the valve head. Therefore, the number of ports formed on the valve head and the number of orifices formed on the seal surface are both reduced as compared with the prior art, thereby simplifying the configuration and facilitating manufacturing, and reducing the size and weight of the switching valve. be able to.
According to a third aspect of the present invention, a plurality of orifices having large and small diameters are formed on a seal surface provided on an inner end surface of the valve head of the switching valve, and the seal surface is liquid-tightly rotated and slid. Since a plurality of rotor grooves having different groove widths are formed on the seal surface of the rotor that can be provided, the diameter of the orifice and the width of the rotor groove are determined by a liquid feed pump, a detector, etc. It can be rationally formed according to the device, and the moving fluid can be supplied and discharged rationally and smoothly.

請求項4の発明は、前記各シ−ル面の半径方向の内外位置に、大小異径の複数のオリフィスと、溝幅を異にする複数のロ−タ溝を形成したから、各シ−ル面を合理的に構成し、切換バルブの小形軽量化を図ることができる。
請求項5の発明は、送液ポンプの吸引側に連通する切換バルブ内のオリフィスとロ−タ溝を最大径および最大幅に形成し、検出器の出口側端部に連通する切換バルブ内のオリフィスとロ−タ溝を中間径および中間幅に形成し、検出器の入口側端部に連通する切換バルブ内のオリフィスとロ−タ溝、および前記送液ポンプの吐出側端部に連通する切換バルブ内のオリフィスとロ−タ溝とを最小径および最小幅に形成したから、切換バルブ内のオリフィスとロ−タ溝を接続機器に応じて合理的に構成し、移動流体の給排を円滑かつ能率良く行なうことができる。
In the invention of claim 4, since the plurality of orifices having different diameters and the plurality of rotor grooves having different groove widths are formed in the inner and outer positions in the radial direction of the respective seal surfaces. The switch surface can be rationally configured, and the switching valve can be reduced in size and weight.
According to the fifth aspect of the present invention, an orifice and a rotor groove in the switching valve communicating with the suction side of the liquid feeding pump are formed to have a maximum diameter and a maximum width, and the switching valve communicating with the outlet side end of the detector is provided. An orifice and a rotor groove are formed with an intermediate diameter and an intermediate width, and communicated with an orifice and a rotor groove in a switching valve that communicates with the inlet side end of the detector and with a discharge side end of the liquid feed pump. Since the orifice and rotor groove in the switching valve have the minimum diameter and minimum width, the orifice and rotor groove in the switching valve are rationally configured according to the connected equipment to supply and discharge moving fluid. Smooth and efficient.

請求項6の発明は、前記接続導管の内径の最大と、中間と最小の内径比を、約1:0.5:0.3に形成したから、対応する機器に応じて各接続導管を合理的に構成し、移動流体の給排を円滑かつ能率良く行なうとともに、各接続導管のデッドボリュ−ムを低減することができる。
請求項7の発明は、前記オリフィスの最大径と、中間径と最小径の比を約1:0.8:
0.5に形成したから、対応する機器に応じて各オリフィスを合理的に構成し、移動流体の給排を円滑かつ能率良く行なうことができる。
請求項8の発明は、前記ロ−タ溝の最大幅と、中間幅と最小幅の比を、約1:0.8:0.5に形成したから、対応する機器に応じて各ロ−タ溝を合理的に構成し、移動流体の給排を円滑かつ能率良く行なうことができる。
In the invention of claim 6, since the maximum inside diameter and the minimum inside diameter ratio of the connecting conduits are formed to be about 1: 0.5: 0.3, each connecting conduit is rationalized according to the corresponding equipment. Thus, the moving fluid can be smoothly and efficiently supplied and discharged, and the dead volume of each connecting conduit can be reduced.
According to the seventh aspect of the present invention, the ratio of the maximum diameter and the intermediate diameter to the minimum diameter of the orifice is about 1: 0.8:
Since it is formed to 0.5, each orifice can be rationally configured according to the corresponding device, and the moving fluid can be supplied and discharged smoothly and efficiently.
In the invention of claim 8, since the ratio of the maximum width and the intermediate width to the minimum width of the rotor groove is set to about 1: 0.8: 0.5, each rotor has a ratio corresponding to the corresponding equipment. It is possible to rationally configure the groove and supply and discharge the moving fluid smoothly and efficiently.

本発明に適用した切換バルブの使用状態を示す正面図である。It is a front view which shows the use condition of the switching valve applied to this invention. 本発明に適用した切換バルブの内端面のシ−ル面を示す斜視図で、ステ−タの機能を奏するようにしている。It is a perspective view which shows the seal surface of the inner end surface of the switching valve applied to this invention, and it has played the function of a stator. 本発明に適用した切換バルブのロ−タとそのシ−ル面を示す斜視図である。It is a perspective view which shows the rotor of the switching valve applied to this invention, and its sealing surface. 本発明に適用した切換バルブの通常時(試料導入時と分取時)を示す説明図である。It is explanatory drawing which shows the normal time (at the time of sample introduction and the time of fractionation) of the switching valve applied to this invention. 本発明に適用した切換バルブのリサイクル時を示す説明図である。It is explanatory drawing which shows the time of recycling of the switching valve applied to this invention.

本発明の第2の実施形態に適用した切換バルブの通常時を示す説明図であるIt is explanatory drawing which shows the normal time of the switching valve applied to the 2nd Embodiment of this invention. 本発明の第2の実施形態に適用した切換バルブのリサイクル時を示す説明図である。It is explanatory drawing which shows the time of recycling of the switching valve applied to the 2nd Embodiment of this invention. 本発明の第3の実施形態に適用した切換バルブの通常時を示す説明図であるIt is explanatory drawing which shows the normal time of the switching valve applied to the 3rd Embodiment of this invention.

以下、本発明をリサイクル分離機能を備えたHPLCに適用した図示の実施形態について説明すると、図1乃至図5において1は作業台2上に設置したHPLC筐体で、該筐体1の近接位置にバルブボックス3が設置されている。   Hereinafter, the illustrated embodiment in which the present invention is applied to an HPLC having a recycle separation function will be described. In FIGS. 1 to 5, reference numeral 1 denotes an HPLC casing installed on a work table 2, and the proximity position of the casing 1. The valve box 3 is installed in the front.

前記バルブボックス3に、HPLCのリサイクル切換バルブと、リサイクル流路の流路切換バルブの機能を備えた切換バルブ4が設けられている。
前記切換バルブ4は8ポ−ト以上の多ポ−トバルブが使用され、実施形態では8ポ−ト切換バルブが使用され、そのバルブヘッド5の前部がバルブボックス3の前部に突出して配置されている。
The valve box 3 is provided with a switching valve 4 having the functions of a HPLC switching valve and a recycling channel.
As the switching valve 4, a multi-port valve of 8 ports or more is used. In the embodiment, an 8-port switching valve is used, and the front portion of the valve head 5 projects from the front portion of the valve box 3. Has been.

前記切換バルブ4は、内部のデッドボリュ−ムを低減するため、ステ−タの機能を兼ね備えたバルブヘッド5を有し、該バルブヘッド5がボルト(図示略)を介して、筒状のバルブハウジング(図示略)に連結されている。   The switching valve 4 has a valve head 5 having a function of a stator in order to reduce an internal dead volume, and the valve head 5 is a cylindrical valve housing via a bolt (not shown). (Not shown).

前記バルブヘッド5の外部は略円錐台形状に形成され、その錐面5aの同心円位置に後述する小孔通路の開口部として、各一対のポ−ト6〜13が形成されている。
前記同心円の外円部にポ−ト6〜9が配置され、内円部にポ−ト10〜13が配置され、その口径はポ−ト6〜13の順に小径に形成され、最小径のポ−ト10〜13は同径に形成されている。
The outside of the valve head 5 is formed in a substantially truncated cone shape, and a pair of ports 6 to 13 are formed at the concentric positions of the conical surface 5a as openings of a small hole passage which will be described later.
Ports 6 to 9 are arranged on the outer circle part of the concentric circles, ports 10 to 13 are arranged on the inner circle part, and the diameters are formed in the order of the ports 6 to 13 in the order of the smallest diameter. Ports 10 to 13 are formed with the same diameter.

前記ポ−ト6〜13にフィッティング14〜21がねじ込まれ、このうちフィッティング14,19間に大小異径の接続導管22,23が接続され、フィッティング15に接続導管24が接続されている。
また、フィッティング16に接続導管25が接続され、フィッティング17,20間に大小異径の接続導管26,27が接続され、フィッティング18,21間に接続導管28が接続されている。
Fittings 14 to 21 are screwed into the ports 6 to 13, of which connecting conduits 22 and 23 having different diameters are connected between the fittings 14 and 19, and a connecting conduit 24 is connected to the fitting 15.
Further, a connecting conduit 25 is connected to the fitting 16, connecting conduits 26 and 27 having different diameters are connected between the fittings 17 and 20, and a connecting conduit 28 is connected between the fittings 18 and 21.

前記接続導管22〜28は、PEEK(登録商標)若しくはステンレスまたはテフロン(登録商標)で構成され、その内径は大小異径に形成されていて、実施形態では内径0.1〜2.0mmのものを適宜選択して使用している。
このうち、接続導管22,24の内径は切換バルブ4の配管中、最大径に形成され、接続導管25,26の内径は次に大径の中間径に形成され、接続導管27,28の内径は最小径に形成され、接続導管23の内径は接続導管22または24の略1/2に形成されている。
The connecting conduits 22 to 28 are made of PEEK (registered trademark), stainless steel, or Teflon (registered trademark), and the inner diameters thereof are different from each other. In the embodiment, the inner diameter is 0.1 to 2.0 mm. Are appropriately selected and used.
Among these, the inner diameters of the connection conduits 22 and 24 are formed to the maximum diameter in the piping of the switching valve 4, the inner diameters of the connection conduits 25 and 26 are formed to the next largest intermediate diameter, and the inner diameters of the connection conduits 27 and 28 are formed. Is formed to have a minimum diameter, and the inner diameter of the connecting conduit 23 is formed to be approximately ½ of the connecting conduit 22 or 24.

実施形態の接続導管22〜28の内径は、接続導管22,24の内径を1とすると、接続導管25,26と接続導管27,28との内径比は、約1:0.5:0.3に形成され、より厳密には分析条件や流量に応じて、1:0.3〜0.7:0.1〜0.5に形成されている。   The inner diameters of the connection conduits 22 to 28 in the embodiment are as follows. When the inner diameter of the connection conduits 22 and 24 is 1, the inner diameter ratio of the connection conduits 25 and 26 to the connection conduits 27 and 28 is about 1: 0.5: 0. More specifically, it is formed in the range of 1: 0.3 to 0.7: 0.1 to 0.5 depending on the analysis conditions and the flow rate.

前記バルブヘッド5の内部に、前記ポ−ト6〜13に連通する大小異径の小孔通路(図示略)が斜状に形成され、該通路の端部がバルブヘッド5の内端面に突設したシ−ル面5aに、噴出孔として大小異径のオリフィス29〜32が形成されている。   Inside the valve head 5, small and small diameter passages (not shown) communicating with the ports 6 to 13 are formed in an oblique shape, and the end of the passage projects into the inner end surface of the valve head 5. On the provided seal surface 5a, orifices 29 to 32 having different diameters are formed as ejection holes.

前記オリフィス29〜32は図2のようにシ−ル面5aに同心円状に配置され、その外円部にオリフィス29〜32が配置され、内円部にオリフィス33〜36が配置され、その口径はオリフィス29〜36の順に小径に形成され、最小径のオリフィス33〜36が同径に形成されている。   The orifices 29 to 32 are concentrically arranged on the seal surface 5a as shown in FIG. 2, the orifices 29 to 32 are arranged on the outer circle portion thereof, and the orifices 33 to 36 are arranged on the inner circle portion thereof. Are formed in the order of the smaller diameters of the orifices 29 to 36, and the smallest diameter orifices 33 to 36 are formed to have the same diameter.

実施形態のオリフィス29〜36のうち、オリフィス29,30が最大径に形成され、オリフィス31,32が次に大径の中間径に形成され、オリフィス33〜36が最小径に形成され、それらの口径はオリフィス29,30を1とすると、約1:0.8:0.5に形成され、より厳密には分析条件や流量に応じて、1:0.7〜1.0:0.4〜0.6に形成されている。   Of the orifices 29 to 36 of the embodiment, the orifices 29 and 30 are formed to have the largest diameter, the orifices 31 and 32 are formed to the next largest intermediate diameter, and the orifices 33 to 36 are formed to the smallest diameter, When the orifices 29 and 30 are 1, the diameter is about 1: 0.8: 0.5. More strictly, depending on the analysis conditions and flow rate, 1: 0.7 to 1.0: 0.4. To 0.6.

前記バルブヘッド5のシ−ル面5aに、ロ−タ37のシ−ル面37aが液密で回動かつ摺動可能に配置されている。
前記ロ−タ37はバルブヘッド5よりも小径に形成され、そのシ−ル面37aがロ−タ37の端面に円板状に突設されている。前記シ−ル面37aは前記シ−ル面5aと同径の平坦面に形成され、該シ−ル面37aに図3のように略円弧状の複数のロ−タ溝38〜41が同心円状に配置され、その外円部にロ−タ溝38,39が配置され、内円部にロ−タ溝40,41が配置されている。
The seal surface 37a of the rotor 37 is disposed on the seal surface 5a of the valve head 5 so as to be liquid-tight and rotatable and slidable.
The rotor 37 is formed to have a smaller diameter than the valve head 5, and the seal surface 37 a projects from the end surface of the rotor 37 in a disk shape. The seal surface 37a is formed as a flat surface having the same diameter as the seal surface 5a, and a plurality of substantially arc-shaped rotor grooves 38 to 41 are concentrically formed on the seal surface 37a as shown in FIG. The rotor grooves 38 and 39 are arranged in the outer circle portion, and the rotor grooves 40 and 41 are arranged in the inner circle portion.

前記ロ−タ溝38の長さは、ロ−タ溝39〜41の略2倍に形成され、該ロ−タ溝39〜41の長さは略同長に形成されている。
前記ロ−タ溝38〜41の溝幅は、対応するオリフィス29〜36の口径と略等幅に形成され、このうちロ−タ溝38が最大幅に形成され、ロ−タ溝39が次に幅広な中間幅に形成され、ロ−タ溝40,41が最小幅に形成され、各ロ−タ溝40,41を等幅に形成している。
The length of the rotor groove 38 is approximately twice that of the rotor grooves 39 to 41, and the length of the rotor grooves 39 to 41 is formed to be substantially the same.
The width of the rotor grooves 38 to 41 is formed to be substantially equal to the diameter of the corresponding orifices 29 to 36, of which the rotor groove 38 is formed to the maximum width, and the rotor groove 39 is the next. The rotor grooves 40 and 41 are formed to have a minimum width, and the rotor grooves 40 and 41 are formed to have the same width.

前記ロ−タ溝38〜41の溝幅比は、前述のオリフィス比と同様にロ−タ溝38の幅を1とすると、約1:0.8:0.5に形成され、より厳密には分析条件や流量に応じて、1:0.7〜1.0:0.4〜0.6に形成されている。   The groove width ratio of the rotor grooves 38 to 41 is formed to be about 1: 0.8: 0.5 when the width of the rotor groove 38 is 1, similarly to the orifice ratio described above. Is formed in the range of 1: 0.7 to 1.0: 0.4 to 0.6 depending on the analysis conditions and flow rate.

実施形態のロ−タ37は回動手段として、モ−タ(図示略)に連係しているが、モ−タの代わりに、手動で回動させることも可能である。
前記ロ−タ37は軸受(図示略)を介して回動可能に支持され、該ロ−タ37の後方に皿バネ等の付勢手段を配置し、該付勢手段を介してロ−タ37を前方に付勢し、そのシ−ル面37aを前記シ−ル面5aに液密で回動かつ摺動可能に配置している。
The rotor 37 of the embodiment is linked to a motor (not shown) as a rotating means, but can be manually rotated instead of the motor.
The rotor 37 is rotatably supported via a bearing (not shown), and an urging means such as a disc spring is disposed behind the rotor 37, and the rotor is interposed via the urging means. 37 is urged forward, and its seal surface 37a is disposed in a liquid-tight manner on the seal surface 5a so as to be rotatable and slidable.

前記最大内径の接続導管22は、一端がポ−ト6に連通するフィッティング14に接続され、他端が送液ポンプ42の吸入側端部に接続され、該送液ポンプ42による流体の吸入を円滑かつ能率良く実行可能にされている。
前記接続導管22の長さは可及的に短く形成され、実施形態ではポ−ト6,11間の接続導管22,23の管路長の略10%に形成され、当該部のデッドボリュ−ムの低減を図っている。
One end of the connection pipe 22 having the maximum inner diameter is connected to the fitting 14 communicating with the port 6, and the other end is connected to the suction side end of the liquid feed pump 42. It is possible to execute smoothly and efficiently.
The length of the connecting conduit 22 is formed as short as possible. In the embodiment, the connecting conduit 22 is formed to be approximately 10% of the pipe length of the connecting conduits 22 and 23 between the ports 6 and 11, and the dead volume of the portion is formed. We are trying to reduce it.

前記送液ポンプ42の吐出側端部とフィッティング19の間に、接続導管23が接続され、該接続導管23の内径は接続導管22の略1/2に形成され、換言すれば前記ポ−ト11に連通する最小径のオリフィス34と同径若しくは若干大径に形成されている。
前記接続導管23の長さは、ポ−ト6,11間の接続導管22,23の管路長の略90%に形成され、当該部のデッドボリュ−ムの低減を図っている。
A connection conduit 23 is connected between the discharge side end of the liquid feed pump 42 and the fitting 19, and the inner diameter of the connection conduit 23 is formed to be approximately ½ of the connection conduit 22, in other words, the port. 11 is formed to have the same diameter or a slightly larger diameter than the orifice 34 having the smallest diameter communicating with 11.
The length of the connecting conduit 23 is formed to be approximately 90% of the pipe length of the connecting conduits 22 and 23 between the ports 6 and 11, so as to reduce the dead volume of the portion.

前記最大内径の他の接続導管24は、一端がポ−ト7に連通するフィッティング15に接続され、他端が溶離液収納容器43内に配管され、該容器43に収容した移動相である溶離液44を円滑かつ能率良く供給可能にしている。   The other connecting conduit 24 having the maximum inner diameter is connected to a fitting 15 having one end communicating with the port 7, and the other end is piped into an eluent storage container 43, and is an elution which is a mobile phase stored in the container 43. The liquid 44 can be supplied smoothly and efficiently.

前記中間の一方の接続導管25は、一端がポ−ト8に連通するフィッティング16に接続され、他端が分取装置45に接続されていて、その内径を中間に形成して圧力上昇を抑制し、後述する検出器のセルの故障ないし破損を防止している。
また、中間の他方の接続導管26は、一端がポ−ト9に連通するフィッティング17に接続され、他端がセル46を有する検出器47の出口側端部に接続され、前記管径を介しセル46に対する高圧負荷を防止し、セル46の故障を未然に防止可能にしている。
One of the intermediate connection conduits 25 is connected to the fitting 16 having one end communicating with the port 8 and the other end connected to the sorting device 45, and has an inner diameter in the middle to suppress an increase in pressure. Thus, failure or breakage of the detector cell described later is prevented.
The other middle connecting conduit 26 is connected to a fitting 17 having one end communicating with the port 9, and the other end connected to an outlet side end portion of a detector 47 having a cell 46, through the pipe diameter. A high-pressure load on the cell 46 is prevented, and a failure of the cell 46 can be prevented beforehand.

前記検出器47の入口側端部と、ポ−ト12に連通するフィッティング20に最小内径またはそれより若干大径の接続導管27が接続され、該導管27に分離カラム48が介挿され、当該部のデッドボリュ−ムの低減を図っている。なお、分離カラム48の上流側で、オートサンプラ−50より下流側の接続導管28に、ガ−ドカラムを配置することも可能である。   A connecting conduit 27 having a minimum inner diameter or a slightly larger diameter is connected to the inlet end of the detector 47 and the fitting 20 communicating with the port 12, and a separation column 48 is inserted into the conduit 27, The dead volume of the part is reduced. It is also possible to arrange a guard column in the connection conduit 28 on the upstream side of the separation column 48 and on the downstream side of the autosampler 50.

前記フィッティング18と、ポ−ト13に連通するフィッティング21との間に最小内径の接続導管28が接続され、該導管28の上流側にプレヒ−トチュ−ブ49が介挿され、該チュ−ブ49の下流側にオ−トサンプラ−50が介挿されている。
前記プレヒ−トチュ−ブ49は、リサイクル目的成分が溶出するまで溶離液44を流入され、該溶離液44を前記チュ−ブ49に付設したヒ−タ−(図示略)で加温可能にしている。
A connecting conduit 28 having a minimum inner diameter is connected between the fitting 18 and a fitting 21 communicating with the port 13, and a preheat tube 49 is inserted upstream of the conduit 28. An autosampler 50 is inserted downstream of 49.
The preheat tube 49 is supplied with the eluent 44 until the recycle target component is eluted, and the eluent 44 can be heated by a heater (not shown) attached to the tube 49. Yes.

実施形態では接続導管28にオ−トサンプラ−50を配置しているが、分離カラム48より上流側の接続導管27に配置することも可能である。
ただ、後者の場合はオ−トサンプラ−50がリサイクル流路のデッドボリュ−ムになるため、リサイクル分離の精度上は前者の方が望ましい。
なお、分離カラム48とプレヒ−トチュ−ブ49はオーブン(図示略)内に配置され、オ−トサンプラ−50は手動操作の場合、前記オーブン内に配置するようにしている。
In the embodiment, the autosampler 50 is disposed in the connection conduit 28, but may be disposed in the connection conduit 27 upstream of the separation column 48.
However, in the latter case, since the autosampler 50 becomes a dead volume of the recycle channel, the former is preferable in terms of accuracy of recycle separation.
The separation column 48 and the preheat tube 49 are arranged in an oven (not shown), and the autosampler 50 is arranged in the oven in the case of manual operation.

この他、図中、52はバルブボックス3に設けたモ−タ駆動用の押しボタンスイッチ、53,54は切換バルブ4の作動モ−ド表示部で、試料導入時や分取時等の通常作動時と、リサイクル作動時を表示可能にしている。   In addition, in the drawing, 52 is a push button switch for driving a motor provided in the valve box 3, and 53 and 54 are operation mode display portions of the switching valve 4, which are usually used at the time of sample introduction or sorting. It is possible to display the time of operation and the time of recycle operation.

このように構成したリサイクル機能を備えたHPLCは、新規な切換バルブ4と配管を要する。
前記切換バルブ4は、ステ−タを兼ね備えたバルブヘッド5と、新規なロ−タ37の製作を要し、このうちバルブヘッド5は、表面の錐面5aに8個のポ−ト6〜13を内外同心円上に形成し、外側円上にポ−ト6,7とポ−ト8,9を離間して形成し、内側円上に4つのポ−ト10〜13を離間して形成する。この状況は図1のようである。
The HPLC having the recycling function configured as described above requires a new switching valve 4 and piping.
The switching valve 4 requires production of a valve head 5 having a stator and a new rotor 37. Among these, the valve head 5 has eight ports 6 to 6 on a conical surface 5a on the surface. 13 are formed on inner and outer concentric circles, ports 6 and 7 and ports 8 and 9 are formed on the outer circle, and four ports 10 to 13 are formed on the inner circle. To do. This situation is as shown in FIG.

前記各ポ−ト6〜13は、円周方向およびその内外方向にシ−ル可能な十分の間隔を設けて配置し、かつそれらに装着するフィッティング14〜21の接触を回避可能にする。
前記各ポ−ト6〜13は、各円周を基本的に8等分した等角度位置に形成し、ポ−ト6,7、ポ−ト8,9、ポ−ト10,11、ポ−ト12,13をそれぞれ対に形成し、その対同士を同径に形成する。
Each of the ports 6 to 13 is arranged with a sufficient space that can be sealed in the circumferential direction and the inside and outside directions thereof, and makes it possible to avoid contact of the fittings 14 to 21 attached to them.
Each of the ports 6 to 13 is formed at an equiangular position where each circumference is basically divided into eight, and the ports 6 and 7, the ports 8 and 9, the ports 10 and 11, and the ports are formed. -G and 12 are formed in pairs, and the pairs are formed to have the same diameter.

前記各ポ−ト6〜13を大小異径に形成し、このうちポ−ト6,7を最大径に形成し、ポ−ト8,9を次に大径の中間に形成し、ポ−ト10〜13を最小径に形成し、それらの口径比をポ−ト6,7を1として、約1:0.8:0.5に形成し、より厳密には分析条件や流量に応じて、1:0.7〜1.0:0.4〜0.6に形成する。   Each of the ports 6 to 13 is formed to have a large and a small diameter, among which the ports 6 and 7 are formed to the maximum diameter, and the ports 8 and 9 are then formed in the middle of the large diameter. 10 to 13 are formed to the minimum diameter, and the port diameter ratio is set to about 1: 0.8: 0.5 with Ports 6 and 7 being 1, and more strictly according to analysis conditions and flow rate. And 1: 0.7 to 1.0: 0.4 to 0.6.

そして、各ポ−ト6〜13の内面に各フィッティング14〜21のネジ込み用のネジ部を形成し、バルブヘッド5の内部に、各ポ−ト6〜13と各オリフィス29〜36に連通する小孔通路(図示略)を形成する。
この場合、各ポ−ト6〜13を内外同心円上に形成しているから、各小孔通路のスペ−スを広く確保でき、それらの交差を回避して確実かつ容易に形成できる。
Then, screw portions for screwing the fittings 14 to 21 are formed on the inner surfaces of the ports 6 to 13, and communicated with the ports 6 to 13 and the orifices 29 to 36 inside the valve head 5. A small hole passage (not shown) is formed.
In this case, since the ports 6 to 13 are formed on the inner and outer concentric circles, it is possible to secure a wide space for each small hole passage, and to reliably and easily form a space between them.

次に、バルブヘッド5の内端面のステ−タとして機能するシ−ル面5aに、8個のオリフィス29〜36を内外同心円位置に開口し、外側円上にオリフィス29,30とオリフィス31,32を離間して形成し、内側円上に4つのオリフィス33〜36を離間して形成する。   Next, eight orifices 29 to 36 are opened at inner and outer concentric positions on the seal surface 5a functioning as a stator on the inner end surface of the valve head 5, and the orifices 29, 30 and the orifice 31, 32 are spaced apart and four orifices 33-36 are spaced apart on the inner circle.

前記各オリフィス29〜36は、円周方向および内外方向にシ−ル可能に十分な間隔を設けて配置し、それらは各円周を基本的に8等分した等角度位置に形成し、オリフィス29,30、オリフィス31,32、オリフィス33,34、オリフィス35,36をそれぞれ対に形成し、かつその対同士を同径に形成する。   Each of the orifices 29 to 36 is arranged with a sufficient interval so that it can be sealed in the circumferential direction and the inner and outer directions, and they are formed at equiangular positions where each circumference is basically divided into eight parts. 29, 30, orifices 31, 32, orifices 33, 34, and orifices 35, 36 are formed in pairs, and the pairs are formed in the same diameter.

前記各オリフィス29〜36は対応する小孔通路と同径の大小異径に形成し、オリフィス29,30を最大径に形成し、オリフィス31,32を次に大径の中間径に形成し、オリフィス33〜36を最小径に形成し、それらの口径比はオリフィス29,30を1として、約1:0.8:0.5に形成し、より厳密には分析条件や流量に応じて、1:0.7〜1.0:0.4〜0.6に形成する。この状況は図2および図4のようである。
この場合、各オリフィス29〜36を内外同心円上に形成しているから、各オリフィスのスペ−スを広く確保でき、それらの重合を回避して確実かつ容易に形成できるとともに、シ−ル面の同一円上にオリフィスを9個形成することなく、8個のオリフィスで対応し得る利点がある。
Each of the orifices 29 to 36 is formed to have the same diameter as that of the corresponding small hole passage, the orifices 29 and 30 are formed to the maximum diameter, and the orifices 31 and 32 are formed to the next intermediate diameter. The orifices 33 to 36 are formed to have a minimum diameter, and the aperture ratio is set to about 1: 0.8: 0.5 with the orifices 29 and 30 being 1, and more strictly, depending on the analysis conditions and flow rate, 1: 0.7 to 1.0: 0.4 to 0.6. This situation is as shown in FIGS.
In this case, since the orifices 29 to 36 are formed on the inner and outer concentric circles, it is possible to secure a wide space for each orifice, to avoid the polymerization of these orifices, and to form them reliably and easily, and to improve the seal surface. There is an advantage that eight orifices can be used without forming nine orifices on the same circle.

また、ロ−タ37の凸状円板形のシ−ル面37aに、略円弧状の4個のロ−タ溝38〜41を内外同心円位置に形成し、その外側円上にロ−タ溝38,39を離間して形成し、内側円上に2つのロ−タ溝40,41を離間して形成する。
前記各ロ−タ溝38〜41は、円周方向および内外方向にシ−ル可能な十分の間隔を設けて配置し、それらは各円周を基本的に8等分した等角度位置に形成し、このうちロ−タ溝38を2つの等角度域に亘って最長に形成し、他のロ−タ溝39,40,41を各等角度域で同長に形成する。
Further, on the convex disc-shaped seal surface 37a of the rotor 37, four substantially arc-shaped rotor grooves 38 to 41 are formed at inner and outer concentric positions, and the rotor is formed on the outer circle. The grooves 38 and 39 are formed apart from each other, and the two rotor grooves 40 and 41 are formed separately on the inner circle.
Each of the rotor grooves 38 to 41 is arranged with a sufficient interval that can be sealed in the circumferential direction and the inner and outer directions, and they are formed at equiangular positions that basically divide each circumference into eight equal parts. Of these, the rotor groove 38 is formed to be the longest over two equiangular regions, and the other rotor grooves 39, 40, 41 are formed to have the same length in each equiangular region.

前記ロ−タ溝38〜41の溝幅を三様に形成し、このうちロ−タ溝38の溝幅を対応するオリフィス29,30と同径の最大幅に形成し、ロ−タ溝39の溝幅を対応するオリフィス31,32と同径の中間幅に形成し、ロ−タ溝40,41の溝幅を対応するオリフィス33〜36と同径の最小幅に形成する。   The groove widths of the rotor grooves 38 to 41 are formed in three ways. Among these, the groove width of the rotor groove 38 is formed to the maximum width having the same diameter as the corresponding orifices 29 and 30, and the rotor groove 39 is formed. The groove widths of the rotor grooves 40 and 41 are formed to have a minimum width of the same diameter as that of the corresponding orifices 33 to 36.

前記ロ−タ溝38〜41の溝幅は、ロ−タ溝38の溝幅を1とすると、ロ−タ溝38とロ−タ溝39とロ−タ溝40,41は前述のオリフィスの口径比と同様に、約1:0.8:0.5に形成し、より厳密には分析条件や流量に応じて、1:0.7〜1.0:0.4〜0.6に形成する。この状況は図3および図4のようである。
この場合、各ロ−タ溝38〜41を内外同心円上に形成しているから、各ロ−タ溝38〜41のスペ−スを広く確保でき、それらの重合を回避して確実かつ容易に形成できるとともに、確実なシ−ル効果を得られる。
The groove widths of the rotor grooves 38 to 41 are such that the rotor groove 38, the rotor groove 39, and the rotor grooves 40 and 41 are formed of the above-mentioned orifice. Similar to the aperture ratio, it is formed at about 1: 0.8: 0.5, more strictly, 1: 0.7 to 1.0: 0.4 to 0.6 depending on the analysis conditions and flow rate. Form. This situation is as shown in FIGS.
In this case, since the rotor grooves 38 to 41 are formed on the inner and outer concentric circles, a wide space for the rotor grooves 38 to 41 can be secured, and polymerization thereof is avoided reliably and easily. It can be formed and a reliable seal effect can be obtained.

こうして製作したステ−タを兼ね備えたバルブヘッド5と、ロ−タ37を用いた切換バルブ4の組み立ては、従来と同様である。
すなわち、バルブヘッド5の内端面にロ−タ37を回動可能に組み付け、該バルブヘッド5の外周部をバルブハウジング(図示略)に連結する。
The assembly of the valve head 5 having the stator thus manufactured and the switching valve 4 using the rotor 37 is the same as in the prior art.
That is, the rotor 37 is rotatably assembled to the inner end surface of the valve head 5, and the outer periphery of the valve head 5 is connected to a valve housing (not shown).

次に、バルブハウジングの内部に軸受を取付け、該軸受に皿バネ等の付勢手段を介して回動軸(図示略)を支持し、該回動軸にロ−タ37を一体的に装着する。
そして、ロ−タ37のシ−ル面37aを、バルブヘッド5のシ−ル面5aに液密で回動かつ摺動可能に密接し、前記バルブヘッド5をバルブハウジングに一体的に連結する。
その際、各オリフィス29〜36を対応するロ−タ溝38〜41に位置付け、それらを図4のように連通可能に配置する。
Next, a bearing is mounted inside the valve housing, and a rotating shaft (not shown) is supported on the bearing via a biasing means such as a disc spring, and a rotor 37 is integrally attached to the rotating shaft. To do.
Then, the seal surface 37a of the rotor 37 is brought into close contact with the seal surface 5a of the valve head 5 in a liquid-tight manner so as to be rotatable and slidable, and the valve head 5 is integrally connected to the valve housing. .
At that time, the orifices 29 to 36 are positioned in the corresponding rotor grooves 38 to 41, and they are arranged so as to communicate with each other as shown in FIG.

この後、前記組み立てた切換バルブ4をバルブボックス3に収容し、該ボックス3の前部に突出したバルブヘッド5の各ポ−ト6〜13にフィッテング14〜21を取付け、該フィッテング14〜21に接続導管22〜28を配管する。   Thereafter, the assembled switching valve 4 is accommodated in the valve box 3, and fittings 14 to 21 are attached to the ports 6 to 13 of the valve head 5 protruding from the front portion of the box 3. The connecting conduits 22 to 28 are piped.

前記配管は、フィッテング14に最大内径で短かな接続導管22の一端を装着し、この他端をHPLC1内に配置した送液ポンプ42の吸引側端部に接続し、該ポンプ42の吐出側端部に最小内径またはそれより若干大径の接続導管23の一端部を接続し、その他端をフィッテング19に装着する。
また、フィッテング15に最大内径の接続導管24の一端を装着し、この他端をHPLC1内に配置した溶離液収納容器43の溶離液44に挿入する。
The pipe has one end of a connecting pipe 22 having a shortest maximum inner diameter attached to the fitting 14, and the other end is connected to the suction side end of the liquid feed pump 42 disposed in the HPLC 1, and the discharge side end of the pump 42 is connected. One end of the connecting conduit 23 having a minimum inner diameter or a slightly larger diameter is connected to the portion, and the other end is attached to the fitting 19.
Further, one end of the connection conduit 24 having the maximum inner diameter is attached to the fitting 15, and the other end is inserted into the eluent 44 in the eluent storage container 43 disposed in the HPLC 1.

更に、フィッテング16に中間内径の接続導管25の一端を装着し、この他端をHPLC1の外側に配置した分取装置45の導入口に接続する。
また、フィッテング17に中間内径の接続導管26の一端を装着し、この他端をHPLC1の内側に配置した検出器47の出口側端部に接続する。
前記検出器47の導入側端部に、最小内径またはそれより若干大径の接続導管27の一端を接続し、その他端をフィッテング20に装着し、該接続導管27の上流側に、HPLC1内のオーブン(図示略)に配置した分離カラム48を介挿する。
Further, one end of a connecting conduit 25 having an intermediate inner diameter is attached to the fitting 16, and the other end is connected to an inlet of a sorting device 45 disposed outside the HPLC 1.
Further, one end of a connecting conduit 26 having an intermediate inner diameter is attached to the fitting 17, and the other end is connected to an outlet side end portion of a detector 47 disposed inside the HPLC 1.
One end of a connecting conduit 27 having a minimum inner diameter or a slightly larger diameter is connected to the introduction end of the detector 47, and the other end is attached to the fitting 20. A separation column 48 arranged in an oven (not shown) is inserted.

更に、フィッテング18に接続導管28の一端を装着し、この他端をフィッテング21に装着し、該接続導管28の上流側に、オーブン内に配置したヒ−トチュ−ブ49を介挿し、該導管28の下流側にオートサンプラ−50を介挿する。   Furthermore, one end of the connecting conduit 28 is attached to the fitting 18, the other end is attached to the fitting 21, and a heat tube 49 disposed in the oven is inserted upstream of the connecting conduit 28, An autosampler 50 is inserted on the downstream side of 28.

このように本発明は、各ポ−ト6〜21および検出器47等の機器に応じて、内径と長さを異にした種々の接続導管22〜28を用意し、かつこれを配管して、移動流体の円滑かつ効率良い給排を図るとともに、各導管22〜28のデッドボリュ−ムを低減して、分離精度の向上を図っている。   Thus, according to the present invention, various connection conduits 22 to 28 having different inner diameters and lengths are prepared according to the devices such as the ports 6 to 21 and the detector 47, and these are connected to the piping. In addition to smooth and efficient supply and discharge of the moving fluid, the dead volume of each conduit 22 to 28 is reduced to improve the separation accuracy.

また、バルブヘッド5はステ−タの機能を兼ね備え、その内端面のシ−ル面5aにロ−タ37のシ−ル面37aを密接して配置したから、バルブヘッド5とロ−タ37との間に介在する構成部品を削減し、該部品に対する小孔通路の形成を省略して、その分デッドボリュ−ムの低減を図れる。   Further, since the valve head 5 has a function of a stator and the seal surface 37a of the rotor 37 is disposed in close contact with the seal surface 5a of the inner end surface thereof, the valve head 5 and the rotor 37 are arranged. It is possible to reduce the number of components interposed between the two and reduce the dead volume by omitting the formation of small hole passages for the components.

こうして接続導管22〜28を配管後、HPLC1による分離を開始する。
すなわち、サンプルの導入時と分取時の通常時は、切換バルブ4を通常作動モ−ドに設定し、各ポ−ト6〜13と各オリフィス29〜36を連通し、送液ポンプ42を駆動する
Thus, after connecting pipes 22 to 28 are piped, separation by HPLC 1 is started.
That is, at the normal time of sample introduction and sorting, the switching valve 4 is set to the normal operation mode, the ports 6 to 13 and the orifices 29 to 36 are communicated, and the liquid feed pump 42 is connected. Drive

このようにすると、溶離液収納容器43内の溶離液44が、接続導管24に導かれてオリフィス30からロ−タ溝38に流入し、該ロ−タ溝38のオリフィス29から接続導管22に流出し、送液ポンプ42に吸入される。
前記溶離液44は送液ポンプ42から吐出後、接続導管23に流出して該導管23を移動し、オリフィス34からロ−タ溝40に流入する。
In this way, the eluent 44 in the eluent container 43 is guided to the connection conduit 24 and flows into the rotor groove 38 from the orifice 30, and from the orifice 29 of the rotor groove 38 to the connection conduit 22. It flows out and is sucked into the liquid feed pump 42.
After the eluent 44 is discharged from the liquid feed pump 42, it flows out into the connecting conduit 23, moves through the conduit 23, and flows into the rotor groove 40 from the orifice 34.

その際、接続導管22,24は最大内径に形成されているから、溶離液収納容器43からロ−タ溝38への溶離液44の供給と、ロ−タ溝38から送液ポンプ42への溶離液44の吸引が円滑かつ効率良く行なわれる。
しかも、接続導管22は可及的に短く形成されているから、当該部のデッドボリュ−ムを可及的に小さく抑えられる。
At this time, since the connecting conduits 22 and 24 are formed to have a maximum inner diameter, the supply of the eluent 44 from the eluent container 43 to the rotor groove 38 and the supply from the rotor groove 38 to the liquid feed pump 42 are performed. The eluent 44 is sucked smoothly and efficiently.
Moreover, since the connecting conduit 22 is formed as short as possible, the dead volume of the part can be suppressed as small as possible.

また、送液ポンプ42からポ−ト11までの間は、最小内径またはそれより若干大径の接続導管23で接続されているから、当該部のデッドボリュ−ムが低減され、前述と相俟って溶離液44の移動流路である接続導管22,23のデッドボリュ−ムが小さく抑えられる。   In addition, since the liquid feed pump 42 to the port 11 are connected by the connecting conduit 23 having a minimum inner diameter or slightly larger than that, the dead volume of the part is reduced, which is combined with the above. Thus, the dead volume of the connection conduits 22 and 23, which are the flow paths for the eluent 44, can be kept small.

この後、前記溶離液44は、ロ−タ溝40のオリフィス33から流出して接続導管28へ移動し、該導管28に介挿したヒ−トチュ−ブ49に導かれて加温され、またオートサンプラ−50の移動時にサンプルを導入され、オリフィス36からロ−タ溝41に流入する。
その際、接続導管28は最小内径に形成されているから、当該部のデッドボリュ−ムを小さく抑えられる。
Thereafter, the eluent 44 flows out from the orifice 33 of the rotor groove 40 and moves to the connection conduit 28, where it is guided to a heat tube 49 inserted in the conduit 28 and heated. A sample is introduced when the autosampler 50 is moved, and flows into the rotor groove 41 from the orifice 36.
At that time, since the connecting conduit 28 is formed to have a minimum inner diameter, the dead volume of the part can be kept small.

その後、溶離液44はサンプルと一緒にオリフィス35から接続導管27に流出し、該導管27に介挿した分離カラム48で目的成分を分離されて接続導管27を移動し、下流の検出器47に導かれる。
その際、フィッティング20から検出器47までの間は、最小内径の接続導管27で接続されているから、当該部のデッドボリュ−ムを小さく抑えられ、サンプルの拡散を抑えて、分離カラム48による分離を精度良く行なえる。
しかも、分離カラム48は、オーブン(図示略)による加温に加え、ヒ−タチュ−ブ49で加温した溶離液44が移動することによって、内外の温度差が無くなり、分離精度が向上する。
Thereafter, the eluent 44 flows out of the orifice 35 together with the sample into the connection conduit 27, the target component is separated by the separation column 48 inserted in the conduit 27, moves through the connection conduit 27, and flows to the downstream detector 47. Led.
At that time, since the fitting 20 to the detector 47 are connected by the connecting conduit 27 having the smallest inner diameter, the dead volume of the part can be suppressed to be small, the sample diffusion is suppressed, and the separation by the separation column 48 is performed. Can be performed with high accuracy.
Moreover, the separation column 48 is heated by an oven (not shown), and the eluent 44 heated by the heater tube 49 is moved, so that the temperature difference between the inside and outside is eliminated, and the separation accuracy is improved.

そして、前記検出器47のセル46でサンプルの目的成分が検出され、接続導管26に流出後、オリフィス32からロ−タ溝39に導かれ、該ロ−タ溝39のオリフィス31から接続導管25に流出して分取装置45へ移動し、該分取装置45で目的成分毎に分取される。
その際、接続導管25,26の内径が中間に形成されているから、該導管25,26の圧力上昇を抑制され、それらによるセル46の高圧負荷を回避し、セル46の故障を防止し得る。
Then, the target component of the sample is detected in the cell 46 of the detector 47, flows out to the connection conduit 26, is guided to the rotor groove 39 from the orifice 32, and is connected to the connection conduit 25 from the orifice 31 of the rotor groove 39. To the sorting device 45, and the sorting device 45 sorts each target component.
At this time, since the inner diameters of the connecting conduits 25 and 26 are formed in the middle, the pressure increase of the conduits 25 and 26 can be suppressed, and the high-pressure load on the cell 46 caused by them can be avoided, and the failure of the cell 46 can be prevented. .

こうしてサンプルの目的成分が溶出し、これを検出器47で確認したところで、ロ−タ駆動用モ−タ(図示略)を駆動し、ロ−タ37を所定角度(約45°)回動し、各ロ−タ溝38〜41を同動させて、切換バルブ4をリサイクルモ−ドに切換える。
この状況は図5のようで、オリフィス29〜30,32がロ−タ溝38に連通し、オリフィス31がロ−タ溝39に連通し、オリフィス33がロ−タ溝40に連通し、オリフィス34,35がロ−タ溝41に連通する。
Thus, when the target component of the sample is eluted and confirmed by the detector 47, the rotor driving motor (not shown) is driven, and the rotor 37 is rotated by a predetermined angle (about 45 °). The rotor grooves 38 to 41 are moved in the same manner to switch the switching valve 4 to the recycling mode.
This situation is as shown in FIG. 5. The orifices 29 to 30 and 32 communicate with the rotor groove 38, the orifice 31 communicates with the rotor groove 39, the orifice 33 communicates with the rotor groove 40, and the orifice 34 and 35 communicate with the rotor groove 41.

すなわち、接続導管22の一端がオリフィス29を介してロ−タ溝38に連通し、接続導管23の他端がオリフィス34を介してロ−タ溝41に連通し、接続導管27の一端がオリフィス35を介してロ−タ溝41に連通し、更に接続導管26の一端がオリフィス32を介してロ−タ溝38に連通し、これらで閉ル−プのリサイクル流路を形成する。
その際、オリフィス33,36に連通する接続導管28が前記リサイクル流路から切り離され、前記接続導管28に介挿したヒ−タチュ−ブ49とオ−トサンプラ−50によるデッドボリュ−ムがリサイクル流路から取り除かれる。
That is, one end of the connection conduit 22 communicates with the rotor groove 38 via the orifice 29, the other end of the connection conduit 23 communicates with the rotor groove 41 via the orifice 34, and one end of the connection conduit 27 communicates with the orifice. 35 is connected to the rotor groove 41, and one end of the connecting conduit 26 is connected to the rotor groove 38 via the orifice 32, thereby forming a closed loop recycle flow path.
At that time, the connecting conduit 28 communicating with the orifices 33 and 36 is disconnected from the recycling passage, and the dead volume by the heater tube 49 and the autosampler 50 inserted into the connecting conduit 28 is recycled. Removed from.

また、オリフィス31はロ−タ37のシ−ル面37aで閉塞され、該オリフィス31に連通する接続導管25が前記リサイクル流路から切り離され、分取装置45による分取が停止される。
この場合、接続導管24の一端がオリフィス30を介してロ−タ溝38に連通するが、該接続導管24はリサイクル流路の一種のバッファとして機能する。
In addition, the orifice 31 is closed by the seal surface 37a of the rotor 37, the connection conduit 25 communicating with the orifice 31 is disconnected from the recycling flow path, and the sorting by the sorting device 45 is stopped.
In this case, one end of the connection conduit 24 communicates with the rotor groove 38 via the orifice 30, and the connection conduit 24 functions as a kind of buffer for the recycle flow path.

そして、前記リサイクル流路を溶離液44とサンプルの移動流体が送液ポンプ42を介して循環し、サンプル中の目的成分が分離カラム48で分離され、これを検出器47で検出する。   Then, the eluent 44 and the sample moving fluid circulate through the recycling flow path via the liquid feed pump 42, and the target component in the sample is separated by the separation column 48, which is detected by the detector 47.

このようなリサイクル分離の際、最大内径の接続導管22によって、送液ポンプ42によるロ−タ溝38からの移動流体の吸引が円滑かつ能率良く行なわれる。
また、接続導管22は可及的に短かく形成され、この吐出側の接続導管23,27は最小内径であるから、該流路のデッドボリュ−ムが低減され、サンプルの拡散を抑制して、分離カラム48による分離精度が向上する。
しかも、検出器47の出口側とロ−タ溝38とは中間の接続導管26で連通し、当該部の圧力上昇を抑制しているから、セル46に対する高圧負荷を回避し、セル46の故障を防止する。
During such recycle separation, the moving conduit 42 sucks the moving fluid from the rotor groove 38 smoothly and efficiently by the connection pipe 22 having the maximum inner diameter.
Further, since the connecting conduit 22 is formed as short as possible, and the connecting conduits 23 and 27 on the discharge side have the minimum inner diameter, the dead volume of the flow path is reduced, and the diffusion of the sample is suppressed, The separation accuracy by the separation column 48 is improved.
In addition, since the outlet side of the detector 47 and the rotor groove 38 communicate with each other through the intermediate connection conduit 26 to suppress the pressure increase in the relevant portion, a high-pressure load on the cell 46 is avoided, and the cell 46 fails. To prevent.

このように本発明は、リサイクルバルブと、リサイクル流路に介挿した流路切換バルブを単一の切換バルブ4で構成したから、従来のように二つのバルブを要さず、その分部品点数が低減し構成が簡潔になって、HPLCの小形軽量化を図れるとともに、これを安価に製作できる。
しかも、試料導入時や分取時の通常時やリサイクル時は、単一の切換バルブ4を切換え操作すれば良いから、従来のように二つのバルブを切換え操作する煩雑を解消し得る。
Thus, in the present invention, the recycle valve and the flow path switching valve interposed in the recycle flow path are configured by a single switching valve 4, so that two valves are not required as in the prior art, and the number of parts accordingly. This makes it possible to reduce the size and weight of the HPLC and to manufacture it at low cost.
In addition, since it is sufficient to switch the single switching valve 4 at the normal time of sample introduction or sorting, or at the time of recycling, the trouble of switching between the two valves as in the conventional case can be eliminated.

また、本発明は、バルブヘッド5の内端面のシ−ル面5aがステ−タの機能を備え、該シ−ル面5aにロ−タ37のシ−ル面37aを直接密接させて配置しているから、それらの間に介在させる部品点数を削減し、かつそれらに小孔通路を形成する製作上の手間を解消し、前記小孔通路によるデッドボリュ−ムの増加を阻止する。
更に、バルブヘッド5とロ−タ37の各シ−ル面5a,37aの同心円上の内外位置に、オリフィス29〜32と33〜36、ロ−タ溝38,39と40,41を形成し、これらを合理的に配置したから、バルブヘッド5とロ−タ37、およびそれらのシ−ル面5a,37aの小形軽量化を図れ、また前述のように9ポ−ト要するものを、8ポ−トで対応できる利点がある。
Further, according to the present invention, the seal surface 5a of the inner end surface of the valve head 5 has the function of a stator, and the seal surface 37a of the rotor 37 is arranged in direct contact with the seal surface 5a. Therefore, the number of parts interposed between them is reduced, and the manufacturing labor for forming the small hole passages in them is eliminated, and an increase in dead volume due to the small hole passages is prevented.
Further, orifices 29 to 32 and 33 to 36 and rotor grooves 38, 39, 40 and 41 are formed at the inner and outer positions on the concentric circles of the seal surfaces 5a and 37a of the valve head 5 and the rotor 37, respectively. Since these are rationally arranged, it is possible to reduce the size and weight of the valve head 5 and the rotor 37, and their seal surfaces 5a and 37a. There is an advantage that can be handled at the port.

しかも、オリフィス29〜36の径とロ−タ溝38〜41の幅を、接続導管ないし接続機器、および分析条件と流量に応じて合理的に形成したから、各流路のデッドボリュ−ムを合理的に低減し得る。
また、本発明は、バルブヘッド5表面の同心円上の内外位置に、大小異径のポ−ト6〜9と、10〜13を合理的に配置したから、バルブヘッド5の小形軽量化を図れる。
Moreover, since the diameters of the orifices 29 to 36 and the width of the rotor grooves 38 to 41 are rationally formed according to the connecting conduit or connecting device, the analysis conditions and the flow rate, the dead volume of each flow path is rationalized. Can be reduced.
Further, according to the present invention, the ports 6 to 9 and 10 to 13 having large and small diameters are rationally arranged at the inner and outer positions on the concentric circles on the surface of the valve head 5, so that the valve head 5 can be reduced in size and weight. .

そして、前記ポ−ト6〜13に大小のフィッティング14〜21を配置し、該フィッティング14〜21に、接続機器および分析条件と流量に応じて大小異径で、かつ長さを異にした接続導管22〜28を接続し、該接続導管22〜28のデッドボリュ−ムを合理的に低減するとともに、バルブヘッド5の内外円上から接続導管22〜28を接続することによって、その配管スペ−スのコンパクト化を図れる。   Then, large and small fittings 14 to 21 are arranged on the ports 6 to 13, and the fittings 14 to 21 are connected to the fittings 14 to 21 with different diameters and different lengths according to the connecting device, analysis conditions, and flow rate. By connecting the conduits 22 to 28, the dead volume of the connection conduits 22 to 28 is reasonably reduced, and by connecting the connection conduits 22 to 28 from the inner and outer circles of the valve head 5, the piping space thereof is obtained. Can be made compact.

図6乃至図8は本発明の他の実施形態を示し、前述した構成と対応する部分に同一の符号を用いている。
このうち、図6および図7は本発明の第2の実施形態を示し、この実施形態は本発明を9ポ−ト以上の10ポ−ト切換バルブ4aに適用しており、そのステ−タとして機能するバルブヘッド5のシ−ル面5aの円周上に、10個のオリフィス29a〜36a,55,56を等角度(36°)位置に形成し、またロ−タ37のシ−ル面37aの円周上に4個のロ−タ溝38a〜41aを形成している。図中、56aはオリフィス56を閉塞する盲栓である。
6 to 8 show other embodiments of the present invention, and the same reference numerals are used for portions corresponding to the above-described configuration.
Of these, FIGS. 6 and 7 show a second embodiment of the present invention, in which the present invention is applied to a 10-port switching valve 4a of 9 ports or more, and its status is shown. Ten orifices 29a to 36a, 55, 56 are formed at equiangular (36 °) positions on the circumference of the seal surface 5a of the valve head 5 functioning as a seal. Four rotor grooves 38a to 41a are formed on the circumference of the surface 37a. In the drawing, reference numeral 56 a denotes a blind plug that closes the orifice 56.

前記オリフィス29a〜36a,55,56は同径に形成され、またロ−タ溝38a〜41aの溝幅はオリフィス29aと同径の同一幅に形成され、その長さは基本的にロ−タ溝38a〜41aの円周の10等分長に形成され、このうちロ−タ溝38aはその約2倍長に形成され、通常時またはリサイクル時に前記オリフィス29a〜36a,55,56を各ロ−タ溝38a〜41aに連通可能にしている。   The orifices 29a to 36a, 55 and 56 are formed to have the same diameter, and the groove widths of the rotor grooves 38a to 41a are formed to the same width as the orifice 29a, and the length thereof is basically the rotor. The grooves 38a to 41a are formed to have a length equal to 10 times the circumference of the grooves. Among these, the rotor groove 38a is formed approximately twice as long as that, and the orifices 29a to 36a, 55, and 56 are arranged at the respective times during normal operation or recycling. -Communication with the groove 38a-41a is enabled.

前記バルブヘッド5表面の円周上に、10個の同径のポ−トを等角度(36°)位置に形成し、該ポ−トに同様のフィッティングをねじ込み、該フィッティングに前述と同様な大小異径の内径を有する接続導管22a〜28aを接続している。図中、56aはオリフィス56を閉塞する盲栓である。
この実施形態における通常時とリサイクル時における切換バルブ4aの操作法は、前述の実施形態と実質的に同一である。
On the circumference of the surface of the valve head 5, ten ports having the same diameter are formed at equiangular (36 °) positions, and the same fitting is screwed into the port, and the fitting is the same as described above. Connecting conduits 22a to 28a having different inner diameters are connected. In the drawing, reference numeral 56 a denotes a blind plug that closes the orifice 56.
The operation method of the switching valve 4a at the normal time and at the time of recycling in this embodiment is substantially the same as the above-described embodiment.

このように、この実施形態はステ−タの機能を備えたバルブヘッド5の内端面のシ−ル面の円周上に、10個の同径のオリフィス29a〜36a,55,56を形成し、またロ−タ37のシ−ル面37aの円周上に4個の同幅のロ−タ溝38a〜41aを形成しているから、オリフィス29a〜36a,55,56とロ−タ溝38a〜41aの構成が簡潔になり、これを容易かつ安価に製作できる。
しかも、ロ−タ溝39a〜41aの長さは、その円周の10等分長に形成されているから、前述の実施形態の8ポ−ト切換バルブ4のロ−タ溝に比べて短くなり、それだけデッドボリュ−ムの低減を図れる。
Thus, in this embodiment, ten orifices 29a to 36a, 55, 56 having the same diameter are formed on the circumference of the seal surface of the inner end face of the valve head 5 having the function of a stator. Since four rotor grooves 38a to 41a having the same width are formed on the circumference of the seal surface 37a of the rotor 37, the orifices 29a to 36a, 55, 56 and the rotor groove are formed. The structure of 38a-41a becomes simple and can be manufactured easily and inexpensively.
Moreover, since the length of the rotor grooves 39a to 41a is formed to be equal to the circumference of the circumference, the length is shorter than that of the rotor groove of the 8-port switching valve 4 of the above-described embodiment. Therefore, the dead volume can be reduced accordingly.

また、バルブヘッド5の円周上に、10個の同径のポ−トを形成し、該ポ−トに同一のフィッティングをねじ込み、該フィッティングに大小異径の内径を有する前述と同様の接続導管22a〜28aを接続しているから、構成が簡単でフィッティングや接続導管22a〜28aを容易かつ安価に製作でき、しかもこれを容易に取付けられる。   Further, ten ports having the same diameter are formed on the circumference of the valve head 5, the same fitting is screwed into the port, and the same connection as described above having inner diameters of large and small diameters is attached to the fitting. Since the conduits 22a to 28a are connected, the configuration is simple, the fitting and the connecting conduits 22a to 28a can be easily and inexpensively manufactured, and they can be easily attached.

図8は本発明の第3の実施形態を示し、この実施形態は本発明を12ポ−ト切換バルブ4bに適用しており、ステ−タとして機能するバルブヘッド5の内端面のシ−ル面5bの円周上に、12個のオリフィス29b〜36b,55b,56b,57,58を等角度(30°)位置に形成し、またロ−タ37のシ−ル面37bの円周上に4個のロ−タ溝38b〜41bを形成している。   FIG. 8 shows a third embodiment of the present invention. This embodiment applies the present invention to a 12-port switching valve 4b, and seals the inner end face of the valve head 5 functioning as a stator. Twelve orifices 29b to 36b, 55b, 56b, 57, 58 are formed at equiangular (30 °) positions on the circumference of the surface 5b, and on the circumference of the seal surface 37b of the rotor 37. The four rotor grooves 38b to 41b are formed in each of them.

前記オリフィス29b〜36b,55b,56b,57,58は同径に形成され、またロ−タ溝38b〜41bの溝幅はオリフィス29bと同径の同一幅に形成し、ロ−タ溝38b〜41bの長さは基本的にその円周の12等分長に形成され、このうちロ−タ溝38bはその約2倍長に形成され、通常時またはリサイクル時に前記オリフィス29b〜36b,55b,56b,57,58を各ロ−タ溝38b〜41bに連通可能にしている。
前記バルブヘッド5の表面の円周上に、12個の同径のポ−トを等角度(30°)位置に形成し、該ポ−トに同一のフィッティングをねじ込み、該フィッティングに大小異径の内径を有する前述と同様な接続導管22b〜28bを接続している。図中、57b,58bはオリフィス57,58を閉塞する盲栓である。
The orifices 29b to 36b, 55b, 56b, 57 and 58 are formed to have the same diameter, and the groove widths of the rotor grooves 38b to 41b are formed to the same width as the orifice 29b, and the rotor grooves 38b to The length of 41b is basically formed to be equal to 12 times the circumference of the circumference, and the rotor groove 38b is approximately twice as long as that of the orifices 29b to 36b, 55b, 56b, 57, and 58 can communicate with the rotor grooves 38b to 41b.
On the circumference of the surface of the valve head 5, twelve ports having the same diameter are formed at equiangular (30 °) positions, and the same fitting is screwed into the port. Connecting conduits 22b to 28b having the same inner diameter as described above are connected. In the figure, 57b and 58b are blind plugs for closing the orifices 57 and 58.

前記切換バルブ4bの通常時とリサイクル時における操作法および作用効果は、前述の第2の実施形態と実質的に同様で、ロ−タ溝38b〜41bの長さをより短くすることで、当該部のデッドボリュ−ムが一層低減される。   The operation method and the effect of the switching valve 4b at the normal time and at the time of recycling are substantially the same as those of the second embodiment described above, and the length of the rotor grooves 38b to 41b is shortened. The dead volume of the part is further reduced.

本発明の液体クロマトグラフは、リサイクル切換バルブと、リサイクル流路に介挿する切換バルブとを単一のバルブで構成し、部品点数を低減し構成を簡潔化して小形軽量化と低廉化を図るとともに、バルブ操作の煩雑を解消し、これを容易かつ正確に行なえるとともに、各接続導管の寸法を合理的に構成し、そのデッドボリュ−ムを低減して分離時における試料の拡散を防止し、通常およびリサイクル分離の精度を向上するとともに、切換バルブに設けたオリフィスとロ−タのロ−タ溝を合理的に構成し、試料導入時とリサイクル分離時の流体の移動を円滑かつ安全に行なえるようにしたから、例えばリサイクル分離機能を備えたHPLCに好適である。   In the liquid chromatograph of the present invention, the recycle switching valve and the switching valve inserted in the recycle flow path are configured as a single valve, the number of parts is reduced, the configuration is simplified, and the size, weight, and cost are reduced. At the same time, the complexity of valve operation can be eliminated, and this can be done easily and accurately, the dimensions of each connecting conduit are rationally configured, and the dead volume is reduced to prevent sample diffusion during separation, In addition to improving the accuracy of normal and recycle separation, the orifice and rotor rotor grooves provided in the switching valve are rationally configured to allow smooth and safe fluid movement during sample introduction and recycle separation. Therefore, for example, it is suitable for HPLC having a recycle separation function.

1 HPLC
4,4a,4b 切換バルブ
5 バルブヘッド
22〜28 接続導管
22a〜28a 接続導管
22b〜28b 接続導管
5a,37a シ−ル面
29〜36 オリフィス
29a〜36a,55,56 オリフィス
29b〜36b,55b,56b,57,58 オリフィス
1 HPLC
4, 4a, 4b Switching valve 5 Valve head 22-28 Connection conduit 22a-28a Connection conduit 22b-28b Connection conduit 5a, 37a Seal surface 29-36 Orifice 29a-36a, 55, 56 Orifice 29b-36b, 55b, 56b, 57, 58 Orifice

37 ロ−タ
37a,37b シ−ル面
38〜41 ロ−タ溝
38a〜41a ロ−タ溝
38b〜41b ロ−タ溝
42 送液ポンプ
46 セル
47 検出器
48 分離カラム
37 rotor 37a, 37b seal surface 38-41 rotor groove 38a-41a rotor groove 38b-41b rotor groove 42 liquid feed pump 46 cell 47 detector 48 separation column

Claims (8)

移動相の供給流路と、送液ポンプと分離カラムと検出器とを介挿し、かつ導入したサンプルを循環可能にしたリサイクル流路とに接続され、前記供給流路とリサイクル流路とを切換え可能にした単一の切換バルブを有する液体クロマトグラフにおいて、前記送液ポンプの吸引側と切換バルブとを接続する接続導管を、前記切換バルブへ配管する複数の接続導管の中で最大の内径に形成し、かつその長さを可及的に短く形成するとともに、検出器の出口側端部と切換バルブとを接続する接続導管を、前記切換バルブへ配管する複数の接続導管の中で中間の内径に形成し、検出器の入口側端部と切換バルブとを接続する接続導管と、前記送液ポンプの吐出側と切換バルブとを接続する接続導管との各内径を切換バルブへ配管する複数の接続導管の中で最小に形成したことを特徴とする液体クロマトグラフ   Connected to the supply flow path of the mobile phase and the recycle flow path through which the introduced sample can be circulated, and the supply flow path and the recycle flow path are switched. In a liquid chromatograph having a single switching valve enabled, a connecting conduit connecting the suction side of the liquid feeding pump and the switching valve has a maximum inner diameter among a plurality of connecting conduits piped to the switching valve. And a connecting conduit that connects the outlet end of the detector and the switching valve is intermediate among the plurality of connecting conduits that are connected to the switching valve. A plurality of pipes each having an inner diameter of a connection conduit formed on the inner diameter and connecting the inlet side end of the detector and the switching valve and a connection conduit connecting the discharge side of the liquid feed pump and the switching valve to the switching valve Connecting conduit Liquid chromatograph, characterized in in that the minimum formation 前記切換バルブのバルブヘッドの表面に8個以上のポ−トを設け、前記バルブヘッドのシ−ル面に前記ポ−トに連通する8個以上のオリフィスを形成した請求項1記載の液体クロマトグラフ。   2. The liquid chromatograph according to claim 1, wherein eight or more ports are provided on a surface of the valve head of the switching valve, and eight or more orifices communicating with the port are formed on a seal surface of the valve head. Graph. 前記切換バルブのバルブヘッドの内端面に設けたシ−ル面に大小異径の複数のオリフィスを形成するとともに、前記シ−ル面に液密で回動かつ摺動可能に設けたロ−タのシ−ル面に溝幅を異にする複数のロ−タ溝を形成した請求項1記載の液体クロマトグラフ。   A plurality of orifices having large and small diameters are formed on a seal surface provided on the inner end surface of the valve head of the switching valve, and a rotor provided on the seal surface so as to be liquid-tight and rotatable and slidable. The liquid chromatograph according to claim 1, wherein a plurality of rotor grooves having different groove widths are formed on the seal surface. 前記各シ−ル面の半径方向の内外位置に、大小異径の複数のオリフィスと、溝幅を異にする複数のロ−タ溝を形成した請求項3記載の液体クロマトグラフ。   The liquid chromatograph according to claim 3, wherein a plurality of orifices having different diameters and a plurality of rotor grooves having different groove widths are formed at inner and outer positions in the radial direction of each seal surface. 送液ポンプの吸引側に連通する切換バルブ内のオリフィスとロ−タ溝を最大径および最大幅に形成し、検出器の出口側端部に連通する切換バルブ内のオリフィスとロ−タ溝を中間径および中間幅に形成し、検出器の入口側端部に連通する切換バルブ内のオリフィスとロ−タ溝、および前記送液ポンプの吐出側端部に連通する切換バルブ内のオリフィスとロ−タ溝とを最小径および最小幅に形成した請求項4記載の液体クロマトグラフ。   The orifice and rotor groove in the switching valve that communicates with the suction side of the liquid feed pump are formed to the maximum diameter and width, and the orifice and rotor groove in the switching valve that communicates with the outlet side end of the detector. An orifice and a rotor groove in the switching valve that are formed in an intermediate diameter and an intermediate width and communicate with the inlet side end of the detector, and an orifice and a rotor in the switching valve that communicate with the discharge side end of the liquid feed pump. 5. The liquid chromatograph according to claim 4, wherein the groove is formed with a minimum diameter and a minimum width. 前記接続導管の内径の最大と、中間と最小の内径比を、約1:0.5:0.3に形成した請求項1記載の液体クロマトグラフ。   2. The liquid chromatograph according to claim 1, wherein a maximum inner diameter and a minimum inner diameter ratio of the connection conduit are formed to be about 1: 0.5: 0.3. 前記オリフィスの最大径と、中間径と最小径の比を約1:0.8:0.5に形成した請求項3記載の液体クロマトグラフ。   The liquid chromatograph according to claim 3, wherein a ratio of the maximum diameter of the orifice and the ratio between the intermediate diameter and the minimum diameter is set to about 1: 0.8: 0.5. 前記ロ−タ溝の最大幅と、中間幅と最小幅の比を、約1:0.8:0.5に形成した請求項3記載の液体クロマトグラフ。   4. The liquid chromatograph according to claim 3, wherein a ratio of the maximum width of the rotor groove and the ratio between the intermediate width and the minimum width is about 1: 0.8: 0.5.
JP2010166481A 2010-07-23 2010-07-23 Liquid chromatograph Withdrawn JP2012026893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010166481A JP2012026893A (en) 2010-07-23 2010-07-23 Liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010166481A JP2012026893A (en) 2010-07-23 2010-07-23 Liquid chromatograph

Publications (1)

Publication Number Publication Date
JP2012026893A true JP2012026893A (en) 2012-02-09

Family

ID=45779986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166481A Withdrawn JP2012026893A (en) 2010-07-23 2010-07-23 Liquid chromatograph

Country Status (1)

Country Link
JP (1) JP2012026893A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175251A1 (en) * 2013-04-22 2014-10-30 積水メディカル株式会社 Switching valve for flow-type analysis device
CN115552236A (en) * 2020-04-29 2022-12-30 纯化迪发有限公司 Preparative chromatography system and method for chromatographic separations

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175251A1 (en) * 2013-04-22 2014-10-30 積水メディカル株式会社 Switching valve for flow-type analysis device
JP5677649B1 (en) * 2013-04-22 2015-02-25 積水メディカル株式会社 Switching valve for flow analyzer
JP2015092166A (en) * 2013-04-22 2015-05-14 積水メディカル株式会社 Changeover valve for flow type analyzer
CN105324665A (en) * 2013-04-22 2016-02-10 积水医疗株式会社 Switching valve for flow-type analysis device
CN105324665B (en) * 2013-04-22 2017-10-13 积水医疗株式会社 The switching valve of flow cytometer showed equipment
US9841406B2 (en) 2013-04-22 2017-12-12 Sekisui Medical Co., Ltd. Switching valve for flow type analysis apparatus
CN115552236A (en) * 2020-04-29 2022-12-30 纯化迪发有限公司 Preparative chromatography system and method for chromatographic separations

Similar Documents

Publication Publication Date Title
JP5611699B2 (en) Multi-way selector valve
JP6625584B2 (en) Flow switching valve
CN107407664B (en) Rotary valve and chromatography system
US10571033B2 (en) Cleaning of rotary valves
US20230243433A1 (en) Directional valve and valve cage for a directional valve
TWI623372B (en) Tool machine turret high-pressure cutting fluid water guiding device
JP6608673B2 (en) Vane pump device
US20190162320A1 (en) Flow control valve
US20170037877A1 (en) Hydraulic Valve
JP2012026893A (en) Liquid chromatograph
JP2017110572A (en) Vane pump device
JP5982101B2 (en) Three-way valve
US9657852B2 (en) Flow through isolation valve for high pressure fluids
JP6615579B2 (en) Vane pump device
CN111157662B (en) Multi-column rotary valve and chromatograph
US8196896B2 (en) Combination flow through injection and isolation valve for high pressure fluids
CN217682543U (en) Combination valve, oil treatment assembly and apparatus
JP6681705B2 (en) Vane pump device
WO2017220351A1 (en) Flow control valve
US20200256331A1 (en) Peristaltic pump
JP2017082750A (en) Vane pump device and hydraulic device
JP6594191B2 (en) Vane pump device
JP2017115839A (en) Vane pump device
JP2021167646A (en) Flow path switching valve and flow path switching system
JP2019065976A (en) Ball screw shaft with cooling flow channel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131001