JP2012026812A - Potential difference measuring instrument - Google Patents

Potential difference measuring instrument Download PDF

Info

Publication number
JP2012026812A
JP2012026812A JP2010164435A JP2010164435A JP2012026812A JP 2012026812 A JP2012026812 A JP 2012026812A JP 2010164435 A JP2010164435 A JP 2010164435A JP 2010164435 A JP2010164435 A JP 2010164435A JP 2012026812 A JP2012026812 A JP 2012026812A
Authority
JP
Japan
Prior art keywords
ion exchange
measurement
solution
potential difference
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010164435A
Other languages
Japanese (ja)
Inventor
Kotaro Yamashita
浩太郎 山下
Masafumi Miyake
雅文 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010164435A priority Critical patent/JP2012026812A/en
Publication of JP2012026812A publication Critical patent/JP2012026812A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a highly accurate analysis method with a minute amount of a sample in a potential difference measurement method.SOLUTION: Anions in an electrolyte solution are prevented from infiltrating into an ion exchange resin and an ion exchange film of them by electrostatic repulsion to the ion exchange group having an opposite charge. Further, cations are difficult to infiltrate into the ion exchange resin and the ion exchange film by electrostatic repulsion to the ion exchange group having an opposite charge if an ion exchange resin and an ion exchange film having an anion exchange group are arranged side by side therewith. It is considerable that the arrangement of the ion exchange resin and the ion exchange film having the cation exchange group or the anion exchange group in this way can demonstrate an effect for preventing ion transmission. It is considered that an effect on a measurement potential given by ions leaked out of a reference electrode by soaking into a measurement solution can be reduced by providing a region obtained by laminating the ion exchange resin or the ion exchange film between the reference solution and the measurement solution.

Description

本発明は、血液,尿などの生体サンプルの分析に適用できる電位差計測装置に係り、特に、微量なサンプルの測定に好適な電位差計測装置に関する。   The present invention relates to a potential difference measuring apparatus applicable to analysis of biological samples such as blood and urine, and more particularly to a potential difference measuring apparatus suitable for measuring a very small amount of sample.

血液,尿等を検体として人の病気を診断する方法の一つとして、ウェットケミストリー分析法がある。これは、いわゆる溶液試薬を用いる方法であって歴史も古く、多数の項目について検出試薬も開発されており、測定機も簡易小型機から大型全自動機まで各種ある。   One method for diagnosing a human disease using blood, urine, or the like as a sample is a wet chemistry analysis method. This is a method using a so-called solution reagent, which has a long history, and detection reagents have been developed for many items, and there are various measuring instruments ranging from simple small machines to large fully automatic machines.

ウェットケミストリー分析法では試薬は安定性を考慮していくつかの群に分けておき、溶解,調製時に混合することもできるし、試薬添加の手順をいくつかのステップに分けることも可能である。更に、測定検体の数に応じて、適量の試薬を溶解,調製しておくことができるので、1測定当り試薬コストも少なくて済む。試薬など多数の溶液の取扱いを組み合わせて自動化することは複雑で厄介ではあるが、臨床検査機器の開発は歴史もあり、社会的な要請も高かったので、既に大・中・小いずれの処理能力を必要とする分野についても、ウェットケミストリー分析法を用いた効率良い生化学自動分析装置が開発,実用化されている。   In the wet chemistry analysis method, the reagents are divided into several groups in consideration of stability, and can be mixed at the time of dissolution and preparation, or the reagent addition procedure can be divided into several steps. Furthermore, since an appropriate amount of reagent can be dissolved and prepared according to the number of measurement specimens, the reagent cost per measurement can be reduced. It is complicated and cumbersome to automate the handling of a large number of solutions such as reagents, but the development of clinical laboratory equipment has a history and high social demand, so it already has a large, medium and small processing capacity. Efficient biochemical automatic analyzers using wet chemistry analysis methods have also been developed and put to practical use in fields that require water.

生化学自動分析装置には測定原理として主に生体試料の定量分析は検体と試薬を反応させてその反応液の吸光度変化を測定する比色法が用いられている。比色法では測定液が入った分光セルに特定の波長を有する光を当てて特定の成分に対する吸光度を測定することで生体試料中の成分を定量することができる。   As a measurement principle, a biochemical automatic analyzer mainly uses a colorimetric method in which a biological sample is quantitatively analyzed by reacting a specimen with a reagent and measuring a change in absorbance of the reaction solution. In the colorimetric method, a component in a biological sample can be quantified by applying light having a specific wavelength to a spectroscopic cell containing a measurement solution and measuring the absorbance of the specific component.

比色法以外では検体と酸化還元性試薬を加えた反応試薬と反応させて酸化還元試薬の酸化還元反応に伴う電流を測定する手法と化学反応に伴い変化する電極の界面電位を測定する手法である電気化学的計測法などがある。これらの手法は光学系が不要なので測定システムが小型になる利点がある。これらの技術は、特許文献1,非特許文献1などに記載されている。   In addition to the colorimetric method, there is a method of measuring the current associated with the oxidation-reduction reaction of the oxidation-reduction reagent by reacting with the sample and a reaction reagent containing the oxidation-reduction reagent, and a method of measuring the interfacial potential of the electrode that changes with the chemical reaction There is an electrochemical measurement method. Since these methods do not require an optical system, there is an advantage that the measurement system becomes small. These techniques are described in Patent Document 1, Non-Patent Document 1, and the like.

特許第3387926号公報Japanese Patent No. 3387926

Donald T. Sawyer, Andrzej Sobkowiak and Julian L.Roberts,Jr.著 「電気化学測定法の基礎」丸善株式会社 2003年Donald T. Sawyer, Andrzej Sobkowiak and Julian L. Roberts, Jr. “Basics of Electrochemical Measurements” Maruzen Co., Ltd. 2003

検体量の微量化や測定液量の微量化を目指す場合、比色法では分光セルの微小化が考えられるが、分光セルの微小化による吸光度測定の感度低下を考慮する必要がある。つまり分光セルの微小化のために短くするセルの光路長には感度低下を避けるために長さの下限があり、現状では最低測定液量が50μL程度に限られてくる。また、電流計測法では測定液量の減少に伴い含まれる測定対象物質の絶対量が減り電流値が減少するため感度が低下する。一方、電位差計測法では電極電圧は原理的に測定液量に依存しないため微量化の可能性が高いと考えられる。   When aiming to reduce the amount of sample or the amount of liquid to be measured, the colorimetric method can reduce the size of the spectroscopic cell. However, it is necessary to consider a decrease in the sensitivity of the absorbance measurement due to the miniaturization of the spectroscopic cell. In other words, the optical path length of a cell that is shortened for miniaturization of a spectroscopic cell has a lower limit of length in order to avoid a decrease in sensitivity. At present, the minimum measurement liquid volume is limited to about 50 μL. In addition, in the current measurement method, the absolute amount of the substance to be measured contained with the decrease in the amount of the measurement liquid decreases and the current value decreases, so the sensitivity decreases. On the other hand, in the potential difference measurement method, the electrode voltage does not depend on the amount of the measurement liquid in principle, so it is considered that there is a high possibility that the amount will be reduced.

本発明の目的は電位差計測法において微量サンプルで精度が高い分析手法を提供することである。   An object of the present invention is to provide an analysis method with high accuracy with a small amount of sample in a potentiometric method.

電位差計測法では検体試料と反応試薬溶液を含む2液以上の溶液を用いた電位差計測法において、下記ネルンスト式
E=E0+RT/nF×ln(Cox/Cred)
E:電極表面の電位、E0:酸化還元物質の標準電位、R:気体定数、T:温度、n:化学反応における電子数、F:ファラデー定数、Cox:酸化還元物質の酸化型濃度、Cred:酸化還元物質の還元型濃度
が成り立つことが知られている。上記式より目的とする対象物と試薬との化学反応に伴い酸化還元物質が酸化型から還元型へ変化するためCox/Credの比率から系の電位変化を求めて目的反応物の濃度に相関させることができる。ネルンスト式では電位差は温度と濃度の関数なので測定液量は原理的には無関係である。
In the potentiometric method, the following Nernst equation E = E0 + RT / nF × ln (Cox / Cred) is used in a potentiometric method using two or more solutions including a specimen sample and a reaction reagent solution.
E: potential of electrode surface, E0: standard potential of redox substance, R: gas constant, T: temperature, n: number of electrons in chemical reaction, F: Faraday constant, Cox: oxidation type concentration of redox substance, Cred: It is known that a reduced concentration of a redox substance is established. From the above formula, the redox substance changes from the oxidized form to the reduced form with the chemical reaction between the target object and the reagent, so the potential change of the system is obtained from the ratio of Cox / Cred and correlated with the concentration of the desired reactant. be able to. In the Nernst equation, since the potential difference is a function of temperature and concentration, the amount of liquid to be measured is irrelevant in principle.

電位差計測法では測定液中に測定電極と対に参照電極を組み合わせることで測定電極中の界面電位を測定する。測定液中に参照電極の先端にある接合部(ジャンクション)から内部液が極微量漏れ出すことで測定液との電気的な接続をとり測定用電極との間の電位差を計測する。検体量の微量化や測定液量の微量化を目指す際、測定液量そのものが少ない場合は内部液に用いられる塩水溶液の極微量の漏れでも漏れ出した塩による電位に対する影響が顕著に現れる。漏れ出し量は参照電極の構造や材料によって異なり、特に接合部の材料に大きく関わっていると考えられている。   In the potentiometric measurement method, the interfacial potential in a measurement electrode is measured by combining a reference electrode with a measurement electrode in a measurement solution. When a very small amount of internal liquid leaks from the junction (junction) at the tip of the reference electrode in the measurement liquid, an electrical connection with the measurement liquid is made and the potential difference with the measurement electrode is measured. When aiming to reduce the amount of the sample or the amount of the measuring solution, if the amount of the measuring solution itself is small, even if the salt solution used in the internal solution leaks in a very small amount, the effect of the leaked salt on the potential appears remarkably. The amount of leakage differs depending on the structure and material of the reference electrode, and is considered to be particularly related to the material of the joint.

参照電極が測定溶液に接すると同時に参照電極の接合部から参照電極の内部液(一般に飽和塩化カリウム水溶液を使用)に含まれるイオンが測定溶液中に拡散する。拡散したイオンが測定用の電極表面に達するに従い電位は変動していくが、測定溶液量が漏れイオンに比べて過剰量であるならば極わずかの漏れイオンの影響は測定電位変動としては検出されにくい。測定液量を例えば10μL程度にまで微量化する場合、参照電極からの漏れイオン量は極わずかであり測定時間がたとえ1分であったとしても電位への影響は無視できなくなると考えられる。このような漏れイオンによる影響を受けにくくするには参照電極からの漏れイオンの拡散を制限できればよい。   At the same time that the reference electrode is in contact with the measurement solution, ions contained in the internal solution of the reference electrode (generally using a saturated aqueous potassium chloride solution) diffuse into the measurement solution from the joint of the reference electrode. The potential fluctuates as the diffused ions reach the surface of the measurement electrode, but if the amount of the solution to be measured is excessive compared to the leaked ions, the effect of a very small amount of leaked ions is detected as the measured potential fluctuation. Hateful. When the amount of the measurement liquid is reduced to about 10 μL, for example, the amount of leaked ions from the reference electrode is very small, and even if the measurement time is 1 minute, it is considered that the influence on the potential cannot be ignored. In order to make it less susceptible to such leakage ions, it is only necessary to limit the diffusion of leakage ions from the reference electrode.

イオンは正又は負の電荷を帯びているため周囲に同様な正負の電荷が存在するとイオンの電荷と周囲の電荷との間で静電的なクーロン力が生じる。カチオンの場合周囲に同符号の正電荷があると反発力が生じ負電荷では吸引力が生じる。同様にアニオンの場合は同符号の負電荷では反発力、正電荷では吸引力が生じる。電解質溶液をカチオン交換基を持つイオン交換樹脂やイオン交換膜に接触させた場合、電解質溶液中のカチオンは異符号電荷のイオン交換基との静電的相互作用によりイオン交換基のカチオンとの間でイオン交換が起きる。一方電解質溶液中のアニオンは反対電荷をもつイオン交換基との静電的な反発作用によりこれらのイオン交換樹脂やイオン交換膜中への浸入が妨げられる。さらにアニオン交換基を持つイオン交換樹脂やイオン交換膜をその隣に並べるとカチオンが反対電荷をもつイオン交換基との静電的な反発作用によりこれらのイオン交換樹脂やイオン交換膜中には浸入しにくくなる。このようにカチオン交換基またはアニオン交換基を有するイオン交換樹脂やイオン交換膜を並べることでイオンの透過を妨げる効果を発揮できると考えられる。   Since ions have a positive or negative charge, if a similar positive or negative charge exists in the surrounding area, an electrostatic Coulomb force is generated between the charge of the ion and the surrounding charge. In the case of a cation, if there is a positive charge of the same sign around it, a repulsive force is generated, and if it is a negative charge, an attractive force is generated. Similarly, in the case of anions, a repulsive force is generated with a negative charge of the same sign, and an attractive force is generated with a positive charge. When the electrolyte solution is brought into contact with an ion exchange resin or ion exchange membrane having a cation exchange group, the cation in the electrolyte solution is exchanged with the cation of the ion exchange group by electrostatic interaction with the ion exchange group of a different sign charge. Ion exchange occurs. On the other hand, anions in the electrolyte solution are prevented from penetrating into these ion exchange resins and ion exchange membranes by electrostatic repulsion with ion exchange groups having opposite charges. Furthermore, when an ion exchange resin or ion exchange membrane having an anion exchange group is arranged next to it, the cation penetrates into these ion exchange resin or ion exchange membrane by electrostatic repulsion with an ion exchange group having an opposite charge. It becomes difficult to do. Thus, it is thought that the effect which prevents permeation | transmission of ion can be exhibited by arranging the ion exchange resin and ion exchange membrane which have a cation exchange group or an anion exchange group.

参照電極溶液と測定溶液の間に上述したイオン交換樹脂またはイオン交換膜を積層した領域を設けることで参照電極から漏れでるイオンが測定溶液へ染みだして測定電位に与える影響を低減することが可能であると考えられる。イオン交換体から構成される緩衝領域を設けることでイオン交換がおこり無視できないような液間電位が発生することも懸念される。そのため実際のサンプル測定の際には最初にサンプルを含まない試薬のみでの測定を実施後、サンプルが試薬と反応した溶液を測定しこれらの差分(変化分)を算出することで反応のみに対応した結果を得ることが可能である。   By providing a region where the above-mentioned ion exchange resin or ion exchange membrane is laminated between the reference electrode solution and the measurement solution, it is possible to reduce the influence of ions leaking from the reference electrode to the measurement solution and affecting the measurement potential. It is thought that. There is also a concern that by providing a buffer region constituted by an ion exchanger, an ion exchange occurs and a liquid potential that cannot be ignored is generated. Therefore, in actual sample measurement, after measuring with only the reagent that does not contain the sample, measure the solution in which the sample reacted with the reagent and calculate the difference (change) between them. It is possible to obtain the result.

以上により本発明では参照電極の内部液漏洩による電位変動を防ぐために参照電極と測定溶液の間にイオン交換体から構成される緩衝領域を設けたことを特徴とした。   As described above, the present invention is characterized in that a buffer region composed of an ion exchanger is provided between the reference electrode and the measurement solution in order to prevent potential fluctuation due to leakage of the internal liquid of the reference electrode.

本発明によると検体試料と反応試薬溶液を含む2液以上の溶液を用いた電位差計測法において測定液量が微量であっても電位変動が少ない高精度の電位差計測法を実現し、検体試料中の測定対象物の濃度を正確に定量できるようになる。   According to the present invention, in a potentiometric measurement method using two or more solutions including a sample sample and a reaction reagent solution, a highly accurate potentiometric measurement method with little potential fluctuation is realized even in a small amount of measurement solution. It becomes possible to accurately quantify the concentration of the measurement object.

測定セルの一例を示すブロック図である(実施例1)。It is a block diagram which shows an example of a measurement cell (Example 1). イオン交換膜の配置を示す図である(実施例2)。(Example 2) which is a figure which shows arrangement | positioning of an ion exchange membrane. イオン交換樹脂の配置を示す図である(実施例3)。It is a figure which shows arrangement | positioning of an ion exchange resin (Example 3). 測定セルのマルチチャンネル構成例を示すブロック図である(実施例4)。(Example 4) which is a block diagram which shows the example of a multichannel structure of a measurement cell. 測定装置を示すブロック図である(実施例5)。(Example 5) which is a block diagram which shows a measuring apparatus.

以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples.

計測セル模式図
図1は本発明による計測セルの一例を示すブロック図である。測定用電極1,測定液2,イオン透過膜3,イオン交換体4,参照電極液層5,参照電極6,参照電極用リード線7から構成される。測定用電極1は金などの貴金属やカーボンからなる電極を用いることができる。また、測定液中の夾雑物の影響を低減するために電極表面に酸化還元物質を固定化しても良い。酸化還元物質としてはフェロセン,ピリジン,ピリミジンなどが使用できる。参照電極6は測定液2に接触した測定用電極1上での電位変化を安定に測定するために基準となる電位を与える。
FIG. 1 is a block diagram showing an example of a measurement cell according to the present invention. It consists of a measurement electrode 1, a measurement liquid 2, an ion permeable membrane 3, an ion exchanger 4, a reference electrode liquid layer 5, a reference electrode 6, and a reference electrode lead wire 7. As the measurement electrode 1, an electrode made of a noble metal such as gold or carbon can be used. Further, a redox substance may be immobilized on the electrode surface in order to reduce the influence of impurities in the measurement liquid. Ferrocene, pyridine, pyrimidine, etc. can be used as the redox material. The reference electrode 6 gives a reference potential to stably measure a potential change on the measurement electrode 1 in contact with the measurement liquid 2.

イオン交換膜での電位安定性
参照電極が測定溶液に接すると同時に参照電極の接合部から参照電極の内部液(一般に飽和塩化カリウム水溶液を使用)に含まれるイオンが測定溶液中に拡散する。拡散したイオンが測定用の電極表面にまで達するに従い電位は変動していくが、測定溶液量が漏れイオンに比べて過剰量であるならば極わずかの漏れイオンの影響は測定電位変動としては検出されにくい。測定液量を微量化する場合、参照電極からの漏れイオン量はわずかであったとしても電位への影響は無視できなくなると考えられる。このような漏れイオンによる影響を受けにくくするには参照電極からの漏れイオンの拡散を制限すればよいと考えられる。
Potential stability in ion exchange membrane At the same time that the reference electrode is in contact with the measurement solution, ions contained in the internal solution of the reference electrode (generally using a saturated potassium chloride aqueous solution) diffuse into the measurement solution from the junction of the reference electrode. The potential fluctuates as the diffused ions reach the surface of the electrode for measurement. However, if the amount of the solution to be measured is excessive compared to the leaked ions, the influence of a very small amount of leaked ions is detected as the measured potential fluctuation. It is hard to be done. When the amount of the measurement liquid is reduced, it is considered that the influence on the potential cannot be ignored even if the amount of leaked ions from the reference electrode is small. In order to make it less susceptible to such leakage ions, it is considered that the diffusion of leakage ions from the reference electrode may be limited.

参照電極から漏れ出す内部溶液のイオンは濃度勾配に従い測定溶液に拡散していくが拡散速度を抑えるために本発明では測定溶液と参照電極の間にイオン交換体から構成される緩衝領域を設けた。イオン交換体4にはアニオン交換体及びカチオン交換体を使用し、各々の交換体を積層して用いる。参照電極から漏れ出したイオンは参照電極液層に染みだした後、イオン透過膜3を通ってイオン交換体に達する。アニオンは一部はアニオン交換体に結合されているアニオン交換基でイオン交換されるが、残りは隣接したカチオン交換体にカチオン交換基が結合されているためアニオンの透過が妨げられる。一方カチオンはアニオン交換体にアニオン交換基が結合されているため透過が妨げられる。一部のカチオンは隣接したカチオン交換体に結合されているカチオン交換基でイオン交換される。このようにして参照電極から漏れ出したイオンはイオン交換体により透過が妨げられるためイオン透過膜8から測定液2への流れ込みを抑えることができる。   The ions in the internal solution leaking from the reference electrode diffuse into the measurement solution according to the concentration gradient, but in the present invention, a buffer region composed of an ion exchanger is provided between the measurement solution and the reference electrode in order to suppress the diffusion rate. . As the ion exchanger 4, an anion exchanger and a cation exchanger are used, and the respective exchangers are stacked and used. Ions leaking from the reference electrode ooze into the reference electrode liquid layer and then reach the ion exchanger through the ion permeable membrane 3. A part of the anion is ion-exchanged with an anion exchange group bonded to the anion exchanger, and the rest of the anion is impeded from permeation of the anion because the cation exchange group is bonded to the adjacent cation exchanger. On the other hand, permeation of the cation is hindered because the anion exchange group is bonded to the anion exchanger. Some cations are ion exchanged with a cation exchange group attached to an adjacent cation exchanger. Since the ions leaking from the reference electrode are blocked by the ion exchanger, the flow from the ion permeable membrane 8 to the measurement liquid 2 can be suppressed.

イオン結合を形成しているカチオン,アニオンのいずれかが、それと同符号の他種イオンと交換することをイオン交換という。イオン交換する能力を有する固体で、正の電荷を持ちアニオンを捕捉するものをアニオン交換体、負の電荷を持ちカチオンを捕捉するものをカチオン交換体という。イオン交換体はイオン結合を形成できる官能基を有しており、カチオン交換基としてスルホン酸基,カルボキシル基,アニオン交換基ではアミノ基,アンモニウム基などである。   It is called ion exchange that either a cation or an anion forming an ionic bond exchanges with another ion of the same sign. Solids having the ability to exchange ions and having positive charges and trapping anions are called anion exchangers, and those having negative charges and trapping cations are called cation exchangers. The ion exchanger has a functional group capable of forming an ionic bond, and examples of the cation exchange group include a sulfonic acid group, a carboxyl group, and an anion exchange group such as an amino group and an ammonium group.

アニオン交換基は強塩基型と弱塩基型の2種類の型がある。強塩基型のイオン交換基はアンモニウム基であり、水中で強く解離して強塩基性の性質をもつ。同様にカチオン交換体の交換基は強酸型と弱酸型の2種類の型がある。強酸型のイオン交換基はスルホン酸基であり、水中で強く解離して強酸性の性質をもつ。   There are two types of anion exchange groups: strong base type and weak base type. The strong base type ion exchange group is an ammonium group, and is strongly dissociated in water and has a strong basic property. Similarly, there are two types of cation exchanger exchange groups: strong acid type and weak acid type. The strong acid type ion exchange group is a sulfonic acid group, and is strongly dissociated in water and has a strongly acidic property.

一方、弱酸型又は弱塩基型の強弱の程度はプロトンの解離定数Kaで表し、化学便覧などで調べることができる。Ka値が小さいほど程度は弱いとみなされる。弱酸型であるカルボキシル基のKaは化合物によって異なるが例えば安息香酸では6.6×10-5(25℃)、弱塩基型であるアミノ基のKaは例えばトリエチルアミンがプロトンで4級化したものは1.8×10-11(25℃)となる。 On the other hand, the strength of weak acid type or weak base type is expressed by proton dissociation constant Ka, and can be examined by chemical handbook. The smaller the Ka value, the weaker the degree is considered. The weak acid type carboxyl group has a different Ka depending on the compound, for example, benzoic acid is 6.6 × 10 −5 (25 ° C.). It becomes 1.8 × 10 −11 (25 ° C.).

本発明に使用できるイオン交換体はイオン交換膜とイオン交換樹脂に大別できる。アニオン交換体とカチオン交換体を交互に積層する必要があるためイオン交換膜では貼りあわせるが、イオン交換樹脂ではアニオン交換樹脂とカチオン交換樹脂は混合しないように各々別々の容器に入れてイオン透過性の膜を介して接触させる(図2,図3)。   The ion exchangers that can be used in the present invention can be broadly classified into ion exchange membranes and ion exchange resins. Since anion exchangers and cation exchangers need to be laminated alternately, they are bonded together in ion exchange membranes. However, in ion exchange resins, anion exchange resins and cation exchange resins are put in separate containers so that they do not mix. The contact is made through the membrane (FIGS. 2 and 3).

アニオン交換体の交換基は強塩基型と弱塩基型の2種類の型がある。強塩基型はアンモニウム塩のトリメチルアミン型(化合物1)とジメチルエタノール型(化合物2)に分けられる。弱塩基型はアミンを(化合物3)に示す。   The anion exchanger has two types of exchange groups: strong base type and weak base type. Strong base type is divided into trimethylamine type (compound 1) and dimethylethanol type (compound 2) of ammonium salt. The weak base type represents an amine in (Compound 3).

Figure 2012026812
Figure 2012026812

Figure 2012026812
Figure 2012026812

Figure 2012026812
Figure 2012026812

塩基性の程度は弱塩基型<ジメチルエタノール型<トリメチル型となりイオン交換能力が異なる。   The degree of basicity is weak base type <dimethylethanol type <trimethyl type, and ion exchange ability is different.

カチオン交換体のカチオン交換基はスルホン酸の強酸型(化合物4)とカルボキシルの弱酸型(化合物5)がある。   The cation exchange groups of the cation exchanger include a strong acid type of sulfonic acid (compound 4) and a weak acid type of carboxyl (compound 5).

Figure 2012026812
Figure 2012026812

Figure 2012026812
Figure 2012026812

以上に挙げたイオン交換基を有するイオン交換膜又はイオン交換樹脂を組み合わせて用いることができる。   The ion exchange membrane or ion exchange resin having the ion exchange group mentioned above can be used in combination.

測定溶液中のイオン以外の物質が上記イオン交換膜又はイオン交換樹脂中に浸入してイオン交換基などに吸着することを防ぐためにイオン交換体と参照電極液又は測定溶液はイオン透過膜で隔てられる。イオン透過膜には参照電極の接合部に用いられているような材料を使用することができる。一般的には多孔質セラミック,多孔質バイコールガラス,セラミックフリット,石英,セルロースパルプ,ガラスフリット、などである。   In order to prevent substances other than ions in the measurement solution from entering the ion exchange membrane or ion exchange resin and adsorbing to the ion exchange groups, the ion exchanger and the reference electrode solution or measurement solution are separated by an ion permeable membrane. . For the ion permeable membrane, a material such as that used for the junction of the reference electrode can be used. Generally, porous ceramic, porous Vycor glass, ceramic frit, quartz, cellulose pulp, glass frit, and the like.

強酸型と強塩基型および弱酸型と弱塩基型のイオン交換膜を組み合わせて図1及び図2に示す測定セルとイオン交換膜を用いて測定電位の変動を検討した結果を表1に示す。強酸型イオン交換膜はアストム社 ネオセプタCMX、強塩基型イオン交換膜は同じくアストム社 ネオセプタAMXを用いた。弱酸型イオン交換膜は旭硝子社 HSF、弱塩基型イオン交換膜は同じく旭硝子社 AAVを用いた。本実験で用いた測定条件は以下の通りである。   Table 1 shows the results of examining the variation in measurement potential using the measurement cell and ion exchange membrane shown in FIGS. 1 and 2 in combination of strong acid type and strong base type and weak acid type and weak base type ion exchange membranes. Astom Neoceptor CMX was used as the strong acid ion exchange membrane, and Neoceptor AMX Astom was used as the strong base ion exchange membrane. Asahi Glass Co., Ltd. HSF was used as the weak acid type ion exchange membrane, and Asahi Glass Co., Ltd. AAV was used as the weak base type ion exchange membrane. The measurement conditions used in this experiment are as follows.

参照電極:BAS社 RE−1C
作用電極:BAS社 リングディスク電極Au
イオン透過膜:多孔質バイコールガラス
参照電極液:飽和 塩化カリウム水溶液
測定液:10mMフェリシアン化カリウムと10mM フェロシアン化カリウムの濃 度比は100:1
測定液量:10μL
測定値:測定液を測定電極上に添加後、参照電極を測定液に浸せき直後から1分間に おける電位の変動をmV/分で示した。
Reference electrode: BAS RE-1C
Working electrode: BAS ring disk electrode Au
Ion permeable membrane: Porous Vycor glass Reference electrode solution: Saturated aqueous solution of potassium chloride Measurement solution: Concentration ratio of 10 mM potassium ferricyanide and 10 mM potassium ferrocyanide is 100: 1
Measurement liquid volume: 10 μL
Measurement value: After adding the measurement solution on the measurement electrode, the potential change in mV / min was shown in 1 minute immediately after the reference electrode was immersed in the measurement solution.

イオン交換膜を用いることで電位変動が抑えられることが示された。   It was shown that potential fluctuations can be suppressed by using an ion exchange membrane.

Figure 2012026812
Figure 2012026812

イオン交換樹脂での電位安定性
強酸型と強塩基型および弱酸型と弱塩基型のイオン交換樹脂を組み合わせて図1及び図3に示す測定セルとイオン交換膜を用いて測定電位の変動を検討した結果を表2に示す。強酸型イオン交換樹脂は三菱化学社 ダイヤイオンSK1B、強塩基型イオン交換樹脂は同じく三菱化学社 ダイヤイオンSA10Aを用いた。弱酸型イオン交換樹脂は三菱化学社 WK10、弱塩基型イオン交換樹脂は同じく三菱化学社 WA10を用いた。本実験で用いた測定条件は以下の通りである。
Potential stability in ion exchange resin We investigated fluctuations in measurement potential using the measurement cell and ion exchange membrane shown in Fig. 1 and Fig. 3 in combination of strong acid type and strong base type and weak acid type and weak base type ion exchange resin. The results are shown in Table 2. Mitsubishi Chemical Corporation Diaion SK1B was used as the strong acid type ion exchange resin, and Mitsubishi Chemical Corporation Diaion SA10A was used as the strong base type ion exchange resin. Mitsubishi Chemical Corporation WK10 was used as the weak acid type ion exchange resin, and Mitsubishi Chemical Corporation WA10 was used as the weak base type ion exchange resin. The measurement conditions used in this experiment are as follows.

参照電極:BAS社 RE−1C
作用電極:BAS社 リングディスク電極Au
イオン透過膜:多孔質セラミック
参照電極液:飽和 塩化カリウム水溶液
測定液:10mMフェリシアン化カリウムと10mM フェロシアン化カリウムの濃
度比は100:1
測定液量:10μL
測定値:測定液を測定電極上に添加後、参照電極を測定液に浸せき直後から1分間に
おける電位の変動をmV/分で示した。
Reference electrode: BAS RE-1C
Working electrode: BAS ring disk electrode Au
Ion permeable membrane: Porous ceramic Reference electrode solution: Saturated aqueous potassium chloride solution Measuring solution: Concentration of 10 mM potassium ferricyanide and 10 mM potassium ferrocyanide
The ratio is 100: 1
Measurement liquid volume: 10 μL
Measurement value: After adding the measuring solution on the measuring electrode, immediately after immersing the reference electrode in the measuring solution for 1 minute
The potential fluctuation in mV / min was shown.

イオン交換樹脂を用いることで電位変動が抑えられることが示された。   It was shown that potential fluctuations can be suppressed by using an ion exchange resin.

Figure 2012026812
Figure 2012026812

マルチチャンネル
図4は本発明による計測セルの一例を示すブロック図で、図1に示した計測セルを基板上に複数個並べて多項目または多検体測定に対応したものである。測定用電極1,測定液2,イオン透過膜3,8,イオン交換体4,参照電極液層5,基板13から構成される。測定用電極1は金などの貴金属やカーボンからなる電極を用いることができる。また、測定液中の夾雑物の影響を低減するために電極表面に酸化還元物質を固定化しても良い。酸化還元物質としてはフェロセン,ピリジン,ピリミジンなどが使用できる。参照電極は1個で各計測セルに対応する。
Multi-channel FIG. 4 is a block diagram showing an example of a measurement cell according to the present invention, in which a plurality of measurement cells shown in FIG. 1 are arranged on a substrate and correspond to multi-item or multi-analyte measurement. The measuring electrode 1, the measuring liquid 2, the ion permeable membranes 3 and 8, the ion exchanger 4, the reference electrode liquid layer 5, and the substrate 13 are included. As the measurement electrode 1, an electrode made of noble metal such as gold or carbon can be used. Further, a redox substance may be immobilized on the electrode surface in order to reduce the influence of impurities in the measurement liquid. Ferrocene, pyridine, pyrimidine, etc. can be used as the redox material. One reference electrode corresponds to each measurement cell.

計測装置模式図
図5は本発明による計測装置の一例を示すブロック図である。測定用電極1,測定液2,参照電極6,制御装置14,データ処理装置15から構成される。データ処理装置15は測定用電極1で取得した信号をデータ処理して試料中の測定対象物の濃度を計算する。測定用電極1は金などの貴金属やカーボンからなる電極を用いることができる。また、測定液中の夾雑物の影響を低減するために電極表面に酸化還元物質を固定化しても良い。酸化還元物質としてはフェロセン,ピリジン,ピリミジンなどが使用できる。参照電極6は測定液2に接触した測定用電極1上での電位変化を安定に測定するために基準となる電位を与える。
FIG. 5 is a block diagram showing an example of a measuring apparatus according to the present invention. The measurement electrode 1, the measurement liquid 2, the reference electrode 6, the control device 14, and the data processing device 15 are included. The data processor 15 processes the signal acquired by the measurement electrode 1 and calculates the concentration of the measurement object in the sample. As the measurement electrode 1, an electrode made of a noble metal such as gold or carbon can be used. Further, a redox substance may be immobilized on the electrode surface in order to reduce the influence of impurities in the measurement liquid. Ferrocene, pyridine, pyrimidine, etc. can be used as the redox material. The reference electrode 6 gives a reference potential to stably measure a potential change on the measurement electrode 1 in contact with the measurement liquid 2.

1 測定用電極
2 測定液
3,12 イオン透過膜
4 イオン交換体
5 参照電極溶液層
6 参照電極
7 参照電極用リード線
8 アニオン交換膜
9 カチオン交換膜
10 アニオン交換体
11 カチオン交換体
13 基板
14 制御装置
15 データ処理装置
DESCRIPTION OF SYMBOLS 1 Measuring electrode 2 Measuring liquid 3,12 Ion permeable membrane 4 Ion exchanger 5 Reference electrode solution layer 6 Reference electrode 7 Reference electrode lead wire 8 Anion exchange membrane 9 Cation exchange membrane 10 Anion exchanger 11 Cation exchanger 13 Substrate 14 Control device 15 Data processing device

Claims (10)

反応溶液を収容する測定容器と、
該測定容器中の反応溶液と接触するように設けられた測定電極と、
測定容器中の反応溶液と接触するように設けられた参照電極と、
前記測定電極の界面電位を測定する測定手段と、を備えた電位差計測装置において、
前記反応容器に、前記参照電極と反応溶液が直接接触しないよう、間にイオン交換体を備えたことを特徴とする電位差計測装置。
A measurement container containing the reaction solution;
A measurement electrode provided in contact with the reaction solution in the measurement container;
A reference electrode provided in contact with the reaction solution in the measurement vessel;
In a potential difference measuring device comprising a measuring means for measuring an interface potential of the measuring electrode,
An electric potential difference measuring apparatus comprising an ion exchanger provided in the reaction container so that the reference electrode and the reaction solution are not in direct contact with each other.
請求項1記載の電位差計測装置において、
前記イオン交換体が酸性及び塩基性のイオン交換体を組み合わせたものであることを特徴とする電位差計測装置。
The potential difference measuring apparatus according to claim 1,
A potentiometric device characterized in that the ion exchanger is a combination of acidic and basic ion exchangers.
請求項2記載の電位差計測装置において、
前記イオン交換体が強酸性及び強塩基性のイオン交換体を組み合わせたものであることを特徴とする電位差計測装置。
In the potential difference measuring device according to claim 2,
A potentiometric device characterized in that the ion exchanger is a combination of a strongly acidic and strongly basic ion exchanger.
請求項2記載の電位差計測装置において、
前記イオン交換体が弱酸性及び弱塩基性のイオン交換体を組み合わせたものであることを特徴とする電位差計測装置。
In the potential difference measuring device according to claim 2,
A potentiometric device characterized in that the ion exchanger is a combination of a weakly acidic and weakly basic ion exchanger.
請求項1記載の電位差計測装置において、
前記イオン交換体が酸性及び塩基性のイオン交換膜を組み合わせたものであることを特徴とする電位差計測装置。
The potential difference measuring apparatus according to claim 1,
The potentiometer is characterized in that the ion exchanger is a combination of acidic and basic ion exchange membranes.
請求項5記載の電位差計測装置において、
前記イオン交換膜が強酸性及び強塩基性のイオン交換膜を組み合わせたものであることを特徴とする電位差計測装置。
In the potential difference measuring apparatus according to claim 5,
A potentiometric device characterized in that the ion exchange membrane is a combination of a strongly acidic and strongly basic ion exchange membrane.
請求項5記載の電位差計測装置において、
前記イオン交換体が弱酸性及び弱塩基性のイオン交換膜を組み合わせたものであることを特徴とする電位差計測装置。
In the potential difference measuring apparatus according to claim 5,
A potentiometric device characterized in that the ion exchanger is a combination of weakly acidic and weakly basic ion exchange membranes.
請求項1記載の電位差計測装置において、
前記イオン交換体が酸性及び塩基性のイオン交換樹脂を組み合わせたものであることを特徴とする電位差計測装置。
The potential difference measuring apparatus according to claim 1,
A potentiometric device characterized in that the ion exchanger is a combination of acidic and basic ion exchange resins.
請求8記載の電位差計測装置において、
前記イオン交換膜が強酸性及び強塩基性のイオン交換樹脂を組み合わせたものであることを特徴とする電位差計測装置。
In the potential difference measuring device according to claim 8,
A potentiometric device characterized in that the ion exchange membrane is a combination of strongly acidic and strongly basic ion exchange resins.
請求項8記載の電位差計測装置において、
前記イオン交換体が弱酸性及び弱塩基性のイオン交換樹脂を組み合わせたものであることを特徴とする電位差計測装置。
In the potential difference measuring device according to claim 8,
A potentiometric device characterized in that the ion exchanger is a combination of weakly acidic and weakly basic ion exchange resins.
JP2010164435A 2010-07-22 2010-07-22 Potential difference measuring instrument Pending JP2012026812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010164435A JP2012026812A (en) 2010-07-22 2010-07-22 Potential difference measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010164435A JP2012026812A (en) 2010-07-22 2010-07-22 Potential difference measuring instrument

Publications (1)

Publication Number Publication Date
JP2012026812A true JP2012026812A (en) 2012-02-09

Family

ID=45779929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010164435A Pending JP2012026812A (en) 2010-07-22 2010-07-22 Potential difference measuring instrument

Country Status (1)

Country Link
JP (1) JP2012026812A (en)

Similar Documents

Publication Publication Date Title
CN102317773B (en) DIAGNOSTIC MULTI-LAYER DRY PHASE TEST STRIP WITH INTEGRATED BIOSENSORs
Lan et al. based electroanalytical devices with an integrated, stable reference electrode
Arnold et al. Ion-selective electrodes
FI81677C (en) MEMBRANKYVETT.
JP5600434B2 (en) Analysis chip and analyzer
JP2546786Y2 (en) Graphite-based solid-state polymer membrane ion-selective electrode
US20100116660A1 (en) Electrophoresis Chip, Electrophoresis Apparatus, and Method for Analyzing Sample by Capillary Electrophoresis
JP2016529515A (en) Device for detection of hyperammonemia and method of using the device
Bakker et al. Modern directions for potentiometric sensors
US9885683B2 (en) Ion-selective electrode
US8702957B2 (en) Electrochemical detection of silica species
Blaz et al. Multielectrode potentiometry in a one-drop sample
Greenawalt et al. Voltammetric characterization of ion–ionophore complexation using thin polymeric membranes: asymmetric thin-layer responses
Benvidi et al. Cd2+ transfer across water/1, 2-dichloroethane microinterfaces facilitated by complex formation with 1, 10-Phenanthroline
Cammann Ion-selective bulk membranes as models for biomembranes: Active ion transport as a consequence of stationary state situations at asymmetric biomembranes
Mario et al. Capillary zone electrophoresis for the diagnosis of congenital hemoglobinopathies
Matysik et al. A disposable electrode based on zeolite–polymer membranes for potentiometric titrations of ionic surfactants
JP2012026812A (en) Potential difference measuring instrument
Nantaphol et al. Ultrasensitive and Simple Method for Determination of N‐Acetyl‐l‐Cysteine in Drug Formulations Using a Diamond Sensor
Kishioka et al. Detection of Interfering Ions Using Ion Flux Phenomena in Flow-Through Cl-ISEs with Ion Exchange Membranes
Petrovic et al. Analytical Electrochemistry
JP3973657B2 (en) Continuous separation detection chip
Fievet et al. Response of ion-selective sodium and potassium electrodes in the Beckman Astra 4 and Astra 8 analyzers.
RU2092829C1 (en) Method of potentiometer determination of substance concentration
CN217587022U (en) Sample detection device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120517