JP2012026426A - Swirling flow turbine - Google Patents

Swirling flow turbine Download PDF

Info

Publication number
JP2012026426A
JP2012026426A JP2010180581A JP2010180581A JP2012026426A JP 2012026426 A JP2012026426 A JP 2012026426A JP 2010180581 A JP2010180581 A JP 2010180581A JP 2010180581 A JP2010180581 A JP 2010180581A JP 2012026426 A JP2012026426 A JP 2012026426A
Authority
JP
Japan
Prior art keywords
turbine
nozzle
cross
working fluid
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010180581A
Other languages
Japanese (ja)
Other versions
JP5029976B2 (en
Inventor
Hideo Nakayama
秀夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010180581A priority Critical patent/JP5029976B2/en
Publication of JP2012026426A publication Critical patent/JP2012026426A/en
Application granted granted Critical
Publication of JP5029976B2 publication Critical patent/JP5029976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a turbine that satisfies demands for a small size, higher performance and higher efficiency even in a field of engines and power machines using water, air, gas, steam or the like as a working fluid, to achieve further social development.SOLUTION: A swirling flow turbine is provided, comprising: a suction pipe having a swirl vane inside at a twisting angle of 45° as a reference; and a rotary nozzle having a nozzle flow passage which includes a meridian curve represented by θ=log{r/(ν×R)}-(R-ν×R), a curve (circle) represented by r=R and a curve connecting both curves near the perimeter of the circle r=R. As the rotating flow passage is tubular, the turbine has less frictional loss of a working fluid compared to an impeller type turbine, has a simple structure and is particularly advantageous for reduction in size, microminiaturization, higher efficiency, or the like. The turbine can contribute to the development of new technology using natural energy, various types of exhaust pressure, waste heat and the like in a field of turbine engines, high-speed rotation machines, or the like.

Description

本発明は、低圧、少量の水力や低温、低圧のガス、蒸気等も効率よく利用でき、構造が簡単で小型化、超小型化も可能な外向流ラジアルタービンに関するものである。  The present invention relates to an outward flow radial turbine that can efficiently use low pressure, a small amount of hydraulic power, low temperature, low pressure gas, steam, and the like, has a simple structure, and can be miniaturized and miniaturized.

タービンの歴史は古く、蒸気タービンは産業革命の初期から、また、ガスタービンはその末期に研究、開発が始まり、大出力の水力、火力発電用に、あるいは、航空機のジェットエンジン用に大型の多段軸流タービンが、レシプロエンジンの排気ターボ過給機用等の中、小型の半径流(ラジアル)タービンが多く使用されてきた。(非特許文献1、非特許文献2参照)  Turbine has a long history, steam turbines have been researched and developed since the beginning of the industrial revolution, and gas turbines have been developed at the end of the industrial revolution. Among axial flow turbines, for example, for exhaust turbochargers of reciprocating engines, small radial flow (radial) turbines have been frequently used. (See Non-Patent Document 1 and Non-Patent Document 2)

また、現在実用化されつつあるものとして、分散型電源用のマイクロタービンや小型、高エネルギー密度の携帯電源用超マイクロタービン等がある。(非特許文献2参照)
「ガスタービン」、須之部量寛、藤江邦男著、共立出版株式会社、昭和42年12月25日初版1刷発行、p.1〜7、p.206〜230 「トコトンやさしいマイクロガスタービンの本」、佐藤幸徳著、日刊工業新聞社、2003年12月28日初版1刷発行、p.22〜29、p.34〜39、p.135〜136
In addition, there are micro-turbines for distributed power sources and compact, high energy density portable micro-turbines for portable power sources that are currently in practical use. (See Non-Patent Document 2)
"Gas Turbine", Kazuhiro Sunobe, Kunio Fujie, Kyoritsu Publishing Co., Ltd. 1-7, p. 206-230 “Book of Tocoton-friendly Micro Gas Turbine” written by Kotonori Sato, Nikkan Kogyo Shimbun, December 28, 2003, first edition, 1 edition, p. 22-29, p. 34-39, p. 135-136

タービンは、現在、発電用等各種の動力機関、あるいは、研磨、研削加工用の小型、超小型高速回転機械等の分野で多く使用されているが、近年、二酸化炭素の増加による温暖化阻止、環境保全、危険性排除等の観点から、従来の巨大ダムによる水力発電、原子力発電、あるいは、石油を大量消費する大型火力発電等が嫌疑され、環境負荷の低いマイクロ水力発電、風力や太陽熱等自然エネルギーを利用する発電、水素やカーボンニュートラルといわれるバイオマスエネルギーを利用する中、小形の分散電源や各種排圧、排熱の更なる有効利用等に関する研究、開発が盛んになってきており、このような社会情勢の変化に充分に対応する為には、より低温、低圧の作動流体での稼働も可能であり、小型化、高効率化も可能なタービンが必要とされる。  Currently, turbines are widely used in various power engines for power generation, etc., or in fields such as small, ultra-compact, high-speed rotating machines for polishing and grinding. From the viewpoints of environmental protection and risk exclusion, conventional hydroelectric power generation using huge dams, nuclear power generation, large-scale thermal power generation that consumes a large amount of oil, etc. are accused, and micro hydropower generation with low environmental impact, wind power, solar heat, etc. While power generation using energy and biomass energy called hydrogen and carbon neutral are being used, research and development related to small distributed power sources, various exhaust pressures, and more effective use of exhaust heat have become active. In order to fully respond to changes in social conditions, a turbine that can be operated with lower temperature and lower pressure working fluid, and that can be made smaller and more efficient is required. It is.

しかしながら、現在実用化されているある程度小型のもの、例えば、非特許文献1に記される半径流タービン(内向流ラジアルタービン)等は、羽根車外周部に位置する吸入口の外側に複雑な形状の固定ノズルを必要とし、また、回転する羽根車と静止するケーシングによって流路が形成されているという構造的な問題から、作動流体の摩擦損失や流れの乱れ等が大きく、更なる性能向上、小型化を求めることは非常に難しい。  However, a small-sized one that is currently in practical use, for example, a radial flow turbine (inward flow radial turbine) described in Non-Patent Document 1, has a complicated shape outside the suction port located on the outer periphery of the impeller. From the structural problem that the fixed nozzle is required and the flow path is formed by the rotating impeller and the stationary casing, the friction loss of the working fluid and the turbulence of the flow are large, and further performance improvement, It is very difficult to seek miniaturization.

このような事情からも、構造が簡単で製造コストが低く、軽量で作動流体の温度、圧力が低く、また、変化する場合でも効率よく稼働させることができ、小型、高効率化も可能な新しい形式のタービンの開発が強く望まれる。  For this reason, the new structure is simple, the manufacturing cost is low, the weight is low, the temperature and pressure of the working fluid are low, and it can be operated efficiently even when changing. Development of a type turbine is strongly desired.

図1は旋回流タービンの構成を表し、また、その主要部、旋回羽根▲3▼、吸入管▲4▼、回転ノズル▲5▼およびノズル流路▲6▼の詳細は図2のごとくであり、図1のテーパ吸入管▲1▼から入った作動流体は挿入板▲2▼を経て吸入管に達してその内部に位置する旋回羽根で45°の旋回角を与えられ、回転ノズル内部へ進入する。  FIG. 1 shows the structure of a swirling turbine, and the details of its main part, swirling blade (3), suction pipe (4), rotating nozzle (5) and nozzle flow path (6) are as shown in FIG. The working fluid entering from the tapered suction pipe (1) in FIG. 1 reaches the suction pipe via the insertion plate (2) and is given a turning angle of 45 ° by the swirling blades located inside thereof, and enters the inside of the rotating nozzle. To do.

旋回羽根は吸入管から回転ノズル内部にまで達しており、図3に示すように、回転ノズル内径上に位置するノズル流路▲6▼の吸入口における作動流体の速度は45°の進入角を持ち、半径、円周両方向の速度成分がWで等しい。  The swirl vane reaches from the suction pipe to the inside of the rotary nozzle. As shown in FIG. 3, the speed of the working fluid at the suction port of the nozzle channel (6) located on the inner diameter of the rotary nozzle has an entrance angle of 45 °. The velocity component in both the radius and circumference directions is equal to W.

更に、図3において、ノズル流路吸入口から排出口断面中心が位置する半径Rの円周付近までの作動流体はノズル流路排出口断面中心の周速がノズル流路吸入口での作動流体の半径および円周方向の速度成分Wに等しい時、理想として、任意半径rの円周上の流路断面積が等しく、θ=log{r/(ν・R)}−(r−ν・R)のメリディアン曲線に沿って流れることから、流路吸入口での旋回速度(絶対速度)を変化させることなく進み、半径Rの円周付近で流路壁に回転方向の力を与えると同時に、その反作用により回転と逆の円周方向へ相対速度(半径方向でW)を90°方向転換する。  Further, in FIG. 3, the working fluid from the nozzle channel suction port to the vicinity of the circumference of the radius R where the discharge port cross-sectional center is located is the working fluid at the nozzle channel discharge port cross-sectional center at the nozzle channel suction port. Is ideally equal to the flow velocity cross section on the circumference of an arbitrary radius r, and θ = log {r / (ν · R)} − (r−ν · R) flows along the Meridian curve, so that the turning speed (absolute speed) at the flow path inlet is not changed, and a rotational force is applied to the flow path wall near the circumference of the radius R. By the reaction, the relative speed (W in the radial direction) is changed by 90 ° in the circumferential direction opposite to the rotation.

この方向転換により回転半径Rの円周上で回転と逆の円周方向の相対速度W(絶対速度は0)を持った作動流体は、そのままの状態で半径Rの円周上を排出口まで進み、回転ノズルから外部へ排出する。  By this change of direction, the working fluid having a relative velocity W (absolute velocity is 0) in the circumferential direction opposite to the rotation on the circumference of the radius of rotation R is left as it is on the circumference of the radius R to the discharge port. Advance and discharge to the outside from the rotating nozzle.

本発明の旋回流タービンは、図1、図2で示すように、吸入管▲4▼内の旋回羽根▲3▼が従来の半径流タービンの固定ノズル、回転ノズル▲5▼が羽根車に相当し、構造が簡単で、現在の精密加工技術によれば、小型化、更には、超小型化も容易である。  In the swirling turbine according to the present invention, as shown in FIGS. 1 and 2, the swirling blade (3) in the suction pipe (4) corresponds to a fixed nozzle of a conventional radial flow turbine, and the rotating nozzle (5) corresponds to an impeller. However, the structure is simple, and according to the current precision processing technology, it is easy to miniaturize and further to miniaturize.

また、このタービンは回転ノズル内部のノズル流路▲6▼が管状である為、従来の半径流タービンにおいて羽根車とケーシングの間に見られるような回転する羽根状の流路と静止する壁との間を作動流体が高速で流れることから生ずる流線の乱れ等による様々な問題は存在せず、回転ノズル前方、吸入管後方の間隙には、その個所からの漏れを押さえる目的で、回転ノズル内面に回転と逆方向の左テーパ2条ネジが設けられ、特に、低圧の作動流体を使用する場合には、回転ノズルを覆うケーシングは不要であり、作動流体の漏洩損失等を考慮する必要もない。  Further, since this turbine has a tubular nozzle flow path (6) inside the rotating nozzle, a rotating blade-shaped flow path and a stationary wall as seen between an impeller and a casing in a conventional radial flow turbine are provided. There are no various problems due to turbulence of streamlines caused by the working fluid flowing at a high speed between them, and the gap between the front of the rotary nozzle and the rear of the suction pipe is for the purpose of suppressing leakage from the location. The left taper double thread is provided on the inner surface in the direction opposite to the rotation. Especially when low pressure working fluid is used, the casing that covers the rotating nozzle is unnecessary, and it is necessary to consider the leakage loss of the working fluid. Absent.

更に、図3に示すよう、理論的には、ノズル流路排出口断面中心の周速がノズル流路吸入口での作動流体の半径および円周方向の速度成分に等しい時、排出口での作動流体の排出速度(絶対速度)が0となり、吸入口で持っている作動流体の運動エネルギーが全て流路の回転動力に変換されることになる為、この旋回流タービンの稼働状態をそのような条件に近づけることによって、小型のものでも高い効率が期待できる。  Further, as shown in FIG. 3, theoretically, when the peripheral speed at the center of the nozzle channel discharge port cross section is equal to the radius of the working fluid at the nozzle channel suction port and the velocity component in the circumferential direction, Since the discharge speed (absolute speed) of the working fluid becomes zero and all the kinetic energy of the working fluid held at the suction port is converted into the rotational power of the flow path, High efficiency can be expected even with a small size by approaching to the appropriate conditions.

旋回流タービンは従来の羽根車式の半径流タービン等に比べて、このように、構造が簡単で、特に小型化、超小型化、高効率化等の面で勝れ、水力、空気、ガス、蒸気等を作動流体とする動力機関、高速回転で研磨、研削加工等を行う動力機械等の分野での、また、近代社会の最も大きな課題である環境問題等の解決に向けて、水力、太陽熱等各種の自然エネルギーやバイオマスエネルギー、様々な排圧、排熱等を広範に、効率よく利用できるようにする為の技術革新に大きな役割を為すことが期待できる。  Compared to conventional impeller-type radial flow turbines and the like, swirling flow turbines have a simple structure, and are particularly superior in terms of miniaturization, ultra-miniaturization, and high efficiency. In the fields of power engines that use steam as working fluid, power machines that perform polishing, grinding, etc. at high speed, and to solve environmental problems that are the biggest issues of modern society, It can be expected to play a major role in technological innovation to make various natural energy such as solar heat, biomass energy, various exhaust pressures, exhaust heat, etc. widely and efficiently available.

図1は旋回流タービンの構成例であり、全ての機器は切削加工を想定した場合の構造になっている。
テーパ吸入管▲1▼、挿入板▲2▼、旋回羽根▲3▼および吸入管▲4▼はいずれもフランジ接続で位置出し、結合されて吸入系を、また、回転ノズル▲5▼、出力軸▲7▼および出力軸支持器▲8▼は出力系を形成する。
FIG. 1 shows a configuration example of a swirling turbine, and all the devices have a structure assuming cutting.
The taper suction pipe (1), the insertion plate (2), the swirl vane (3) and the suction pipe (4) are all located by flange connection and combined to form the suction system, and the rotary nozzle (5), output shaft. (7) and the output shaft support (8) form an output system.

45°を基準とするネジレ角の旋回羽根は吸入管内部から回転ノズル内径部にまで達し、圧縮機等から吸入系へ流入する作動流体を旋回させ、45°の進入角で回転ノズル内部に形成されたノズル流路▲6▼の吸入口へ供給する。回転ノズル前方、内周部には、回転によって生ずる吸込み圧によって吸入管後方、外周部との隙間からの作動流体の漏れを防ぐ為に左テーパ2条ネジが切られている。  A swirling blade with a twist angle of 45 ° as a reference reaches from the inside of the suction pipe to the inner diameter of the rotary nozzle, and swirls the working fluid flowing into the suction system from a compressor or the like, and is formed inside the rotary nozzle at an entrance angle of 45 °. Is supplied to the suction port of the nozzle passage (6). A left taper double thread is cut in the front and inner peripheral portions of the rotary nozzle in order to prevent leakage of working fluid from the gap between the rear and outer peripheral portions of the suction pipe due to suction pressure generated by rotation.

図3に示すような任意半径rの円周上の流路断面積が等しく、θ=log{r/(ν・R)}−(r−ν・R)、r=Rの曲線とr=Rの円周付近で両者に内接する曲線を結んだメリディアン曲線を持つノズル流路を内部に形成する回転ノズルはノズル流路内で作動流体が90°方向変換する際に流路壁に生ずる回転動力を出力軸支持器にベアリング軸受け等で支えられた出力軸を介して、発電機、各種加工機等後続する作業機械へ伝達する。  As shown in FIG. 3, the cross-sectional area of the channel on the circumference of the arbitrary radius r is equal, θ = log {r / (ν · R)} − (r−ν · R), r = R curve and r = A rotating nozzle that forms a nozzle flow path having a meridian curve that is inscribed in the vicinity of the circumference of the R around the circumference of the R rotates in the flow path wall when the working fluid changes 90 ° in the nozzle flow path. Power is transmitted to subsequent work machines such as a generator and various processing machines via an output shaft supported by a bearing bearing or the like on an output shaft support.

旋回流タービンの構成図(横軸と外管内径の半円でカットした断面図)  Schematic diagram of a swirling turbine (cross-sectional view cut by a semicircle of the horizontal axis and inner diameter of the outer tube) 旋回流タービンの主要部である吸入管、旋回羽根および回転ノズルの内部配置を表す図(斜視図)  The figure (perspective view) showing the internal arrangement of the suction pipe, the swirl vane, and the rotating nozzle, which are the main parts of the swirling turbine 旋回流タービンの回転ノズル内部のノズル流路における作動流体の速度変化を表すイメージ図  Image diagram showing changes in working fluid velocity in nozzle flow path inside rotating nozzle of swirling turbine

▲1▼ テーパ吸入管
▲2▼ 挿入板
▲3▼ 旋回羽根
▲4▼ 吸入管
▲5▼ 回転ノズル
▲6▼ ノズル流路
▲7▼ 出力軸
▲8▼ 出力軸支持器
(1) Tapered suction pipe (2) Insert plate (3) Swivel blade (4) Suction pipe (5) Rotating nozzle (6) Nozzle flow path (7) Output shaft (8) Output shaft support

Claims (4)

加熱、加圧した流体、すなわち、水等液体やガス、空気、蒸気等気体あるいはそれらの混合物を作動流体とし、図1、図2に示す吸入管▲4▼から回転ノズル▲5▼内部に達する旋回羽根▲3▼で回転方向に旋回させた作動流体を内部、内径上の吸入口と外径円に直交する断面を持つ排出口の間を回転前方から後方へ湾曲する特殊な曲線で結ぶ数本のノズル流路▲6▼を持つ回転ノズルに供給し、その速度と方向の変化に伴う反作用によって回転動力を得るタービン。  A heated or pressurized fluid, that is, a liquid such as water, a gas such as water, a gas such as air or steam, or a mixture thereof is used as a working fluid, and reaches the inside of the rotary nozzle (5) from the suction pipe (4) shown in FIGS. A number that connects the working fluid swirled in the rotation direction with swirling vanes (3) between the suction port on the inner diameter and the discharge port having a cross section perpendicular to the outer diameter circle with a special curve that curves from the front to the back. A turbine that supplies rotational power by a reaction caused by a change in the speed and direction of the rotating nozzle having a nozzle flow path (6). 図1、図2に示すように、吸入管▲4▼は内部に軸方向からネジレ角45°を基準とする螺旋状の曲線で形成される旋回羽根▲3▼を装備するものである。  As shown in FIGS. 1 and 2, the suction pipe (4) is equipped with a swirl vane (3) formed in a spiral curve with a twist angle of 45 ° as a reference from the axial direction. 回転ノズル内のノズル流路は図3に示す半径ν・R上に位置する流路吸入口から排出口の断面中心が位置する半径Rの円周辺りまでの任意半径rの円周上に形成される断面積とそれ以降、排出口に至るまでの曲管部分の断面中心線に直交する断面の面積が全て等しい。また、流路のメリディアン曲線は吸入口から排出口の断面中心が位置する半径Rの円周辺りまでの間、任意半径rの円周上の断面の中心を結び、曲線θ=log{r/(ν・R)}−(r−ν・R)で表わされ、その後、曲折、半径Rの円周(r=R)に内接し、更に、その円周上を排出口まで達する。  The nozzle flow path in the rotary nozzle is formed on the circumference of an arbitrary radius r from the flow path suction port located on the radius ν · R shown in FIG. 3 to the circumference of the circle of radius R where the cross-sectional center of the discharge port is located. The cross-sectional area and the area of the cross-section perpendicular to the cross-sectional center line of the curved pipe portion up to the discharge port thereafter are all equal. Further, the meridian curve of the flow path connects the center of the cross section on the circumference of the arbitrary radius r from the suction port to the periphery of the circle of the radius R where the cross section center of the discharge port is located, and the curve θ = log {r / (Ν · R)} − (r−ν · R), and then is inscribed in the bend, the circumference of the radius R (r = R), and further reaches the discharge port on the circumference. 図1、図2に示すように、回転ノズル▲5▼の前方内面には、吸入管▲4▼の外部テーパ面との間隙の作動流体に作用する遠心力に対抗して漏れ出しを防ぐよう、内部への吸い込み圧を与える為の回転と逆の左2条テーパネジを施すものとする。  As shown in FIGS. 1 and 2, the front inner surface of the rotary nozzle (5) is prevented from leaking against the centrifugal force acting on the working fluid in the gap with the outer tapered surface of the suction pipe (4). The left two taper screw reverse to the rotation to give the suction pressure to the inside is applied.
JP2010180581A 2010-07-26 2010-07-26 Swirl turbine Expired - Fee Related JP5029976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010180581A JP5029976B2 (en) 2010-07-26 2010-07-26 Swirl turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010180581A JP5029976B2 (en) 2010-07-26 2010-07-26 Swirl turbine

Publications (2)

Publication Number Publication Date
JP2012026426A true JP2012026426A (en) 2012-02-09
JP5029976B2 JP5029976B2 (en) 2012-09-19

Family

ID=45779630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010180581A Expired - Fee Related JP5029976B2 (en) 2010-07-26 2010-07-26 Swirl turbine

Country Status (1)

Country Link
JP (1) JP5029976B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720602A (en) * 2012-06-26 2012-10-10 郭荣民 Novel oil pipe and application thereof
CN109339867A (en) * 2018-11-15 2019-02-15 翁志远 Reaction nozzle-type impeller, rotor, steam turbine, steamer equipment and prime mover

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR508098A (en) * 1919-12-31 1920-10-01 Compressed gas turbo-engine
US4222231A (en) * 1978-07-20 1980-09-16 Linn Wallace L Engine
JPS60222528A (en) * 1984-02-21 1985-11-07 ハンス・ゲルハルト・アルブレヒト Internal combustion turbine engine
JPH02161103A (en) * 1988-12-13 1990-06-21 Shin Murata Turbine
JPH0481502A (en) * 1989-12-09 1992-03-16 Yasuro Nakanishi Turbine and turbocharger using it
JPH05195808A (en) * 1992-01-21 1993-08-03 Mitsui Eng & Shipbuild Co Ltd Screw engine
JP2007500594A (en) * 2003-05-15 2007-01-18 マン ウント フンメル ゲゼルシャフト ミット ベシュレンクテル ハフツング Centrifuge and rotor therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR508098A (en) * 1919-12-31 1920-10-01 Compressed gas turbo-engine
US4222231A (en) * 1978-07-20 1980-09-16 Linn Wallace L Engine
JPS60222528A (en) * 1984-02-21 1985-11-07 ハンス・ゲルハルト・アルブレヒト Internal combustion turbine engine
JPH02161103A (en) * 1988-12-13 1990-06-21 Shin Murata Turbine
JPH0481502A (en) * 1989-12-09 1992-03-16 Yasuro Nakanishi Turbine and turbocharger using it
JPH05195808A (en) * 1992-01-21 1993-08-03 Mitsui Eng & Shipbuild Co Ltd Screw engine
JP2007500594A (en) * 2003-05-15 2007-01-18 マン ウント フンメル ゲゼルシャフト ミット ベシュレンクテル ハフツング Centrifuge and rotor therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720602A (en) * 2012-06-26 2012-10-10 郭荣民 Novel oil pipe and application thereof
CN109339867A (en) * 2018-11-15 2019-02-15 翁志远 Reaction nozzle-type impeller, rotor, steam turbine, steamer equipment and prime mover

Also Published As

Publication number Publication date
JP5029976B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
MY155494A (en) Direct-connected low-speed small mixed flow type water turbine applied in hydrodynamic energy-saving cooling tower
CN103775387A (en) AP1000 nuclear main pump radial direction guide vane hydraulic design
CN201568196U (en) Inside and outside sleeve spindle single bulb body through-flow type two-stage rotary wheel hydraulic turbine
CN110043323A (en) A kind of supersonic speed radial-inward-flow turbine
CN205858418U (en) A kind of slant shaft type variable-geometry power turbine stator
JP5029976B2 (en) Swirl turbine
CN101737224A (en) Tubular turbine with two-stage rotating wheels, internal and external sleeved shafts and a single bulb body
WO2018219254A1 (en) Heat pipe engine
JP2010209824A (en) Scroll part structure and supercharger
CN211819520U (en) Adjustable nozzle mechanism of megawatt radial turbo expander
CN103306736B (en) A kind of power turbine and power engine thereof
JP4885302B1 (en) Radial turbine
CN108278221A (en) Inlet seal structure and wind turbine
CN106545363A (en) A kind of miniature blade-free turbine
CN108005834A (en) A kind of flow type centripetal turbine
CN208396755U (en) A kind of novel advanced technique
CN210509298U (en) Improved high-efficiency radial turbine distributed residual pressure power generation system
CN207974908U (en) A kind of pipe type power generation machine
US20110164966A1 (en) Method and apparatus to improve wake flow and power production of wind and water turbines
JP2018123819A (en) Flow body compressor and electric generator utilizing flow torque of spiral revolution flow body
CN207892856U (en) A kind of single stage centrifugal high pressure ratio compressor
CN208040454U (en) Rotor, steam turbine and prime mover equipment of steam turbine
CN108643978A (en) A kind of novel advanced technique
CN109764000A (en) A kind of mixed-flow pump runner envelope with spiral shape pumping groove
CN107762713A (en) A kind of Multifunction pressure-reducing valve suitable for big flow

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees