JP2012026077A - Method for producing phenol-based carbon fiber and method for producing phenol-based activated carbon fiber - Google Patents

Method for producing phenol-based carbon fiber and method for producing phenol-based activated carbon fiber Download PDF

Info

Publication number
JP2012026077A
JP2012026077A JP2011239470A JP2011239470A JP2012026077A JP 2012026077 A JP2012026077 A JP 2012026077A JP 2011239470 A JP2011239470 A JP 2011239470A JP 2011239470 A JP2011239470 A JP 2011239470A JP 2012026077 A JP2012026077 A JP 2012026077A
Authority
JP
Japan
Prior art keywords
phenol
fiber
carbon fiber
phenolic
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011239470A
Other languages
Japanese (ja)
Other versions
JP5499007B2 (en
Inventor
Masaru Kimura
勝 木村
Toru Takase
徹 高瀬
Shinichi Murata
晋一 村田
Toichiro Hatori
東一郎 羽鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Toyobo Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd, Toyobo Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2011239470A priority Critical patent/JP5499007B2/en
Publication of JP2012026077A publication Critical patent/JP2012026077A/en
Application granted granted Critical
Publication of JP5499007B2 publication Critical patent/JP5499007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a phenol-based carbon fiber and a method for producing a phenol-based activated carbon fiber that use a phenol-based fiber which has good heat resistance, flame retardancy and chemical resistance, as well as high mechanical strength, and whose fiber diameter is made larger than that of conventional fibers.SOLUTION: There is provided a method for producing a phenol-based carbon fiber which is characterized in carbonizing a phenol-based fiber that is produced by a method for producing a phenol-based fiber including a raw material mixing step of mixing a phenol resin and phosphate esters and a spinning step of spinning a raw material mixture obtained in the raw material mixing step to obtain a yarn. There is provided a method for producing a phenol-based activated carbon fiber which is characterized in activating a phenol-based carbon fiber that is produced by the method for producing a phenol-based carbon fiber.

Description

本発明は、フェノール系炭素繊維の製造方法及びフェノール系活性炭素繊維の製造方法に関する。   The present invention relates to a method for producing phenolic carbon fibers and a method for producing phenolic activated carbon fibers.

フェノール系繊維は、耐熱性、難燃性及び耐薬品性に優れていることから、これらの特性が要求される一般産業資材分野をはじめ、幅広い分野で長年に渡り利用されている。
また、フェノール系繊維を炭素化することによりフェノール系炭素繊維が得られることが知られている。このフェノール系炭素繊維は、たとえばポリアクリロニトリル系やピッチ系の炭素繊維に比べ、強度や弾性率が低いものの、柔軟性に富んで加工が容易である点、炭素化後の残存率が高い点、良好な潤滑性を示す点から、特定分野では不可欠な材料とされている。
また、フェノール系繊維を炭素化した後、賦活することによりフェノール系活性炭素繊維が得られることが知られている。このフェノール系活性炭素繊維も、特定の有機溶剤に対して極めて高い吸着性を示す等、特定分野では不可欠な材料とされている。
Phenolic fibers are excellent in heat resistance, flame retardancy, and chemical resistance, and have been used for many years in a wide range of fields including general industrial materials where these characteristics are required.
It is also known that phenolic carbon fibers can be obtained by carbonizing phenolic fibers. This phenolic carbon fiber is low in strength and elastic modulus compared to, for example, polyacrylonitrile-based and pitch-based carbon fibers, but is flexible and easy to process, has a high residual rate after carbonization, From the point of showing good lubricity, it is considered an indispensable material in a specific field.
Further, it is known that a phenolic activated carbon fiber can be obtained by activating the phenolic fiber after carbonization. This phenol-based activated carbon fiber is also an indispensable material in a specific field, such as exhibiting extremely high adsorptivity to a specific organic solvent.

フェノール系繊維は、従来一般的に、熱可塑性のノボラック型フェノール樹脂を溶融紡糸し、その後、酸性触媒下でアルデヒド類と反応させることにより三次元架橋を行い、熱不融化する製造方法により製造されている(たとえば、特許文献1参照)。   Phenol-based fibers are conventionally produced by a production method in which a thermoplastic novolac-type phenol resin is melt-spun and then reacted with aldehydes under an acidic catalyst to perform three-dimensional crosslinking and heat infusibilize. (For example, refer to Patent Document 1).

特公昭48−11284号公報Japanese Patent Publication No. 48-11284

原料となるノボラック型フェノール樹脂は、完全非晶質であることに加えて、重合度が低く、粘度の温度依存性が高い。そのため、ノボラック型フェノール樹脂を溶融紡糸して得られる糸條は、周囲の温度の低下に伴って急速に固化する反面、極めて脆い性質を有する。特に、架橋反応前の糸條は脆弱である。したがって、たとえば、ポリアミド系繊維やポリエステル系繊維などの他の熱可塑性繊維を製造する際には、糸條に対して延伸を加えることが可能であるが、フェノール系繊維を製造する際に延伸を加えることは不可能であった。
このように、従来の製造方法によりノボラック型フェノール樹脂を紡糸することは、他の熱可塑性樹脂を紡糸することに比べて困難である。
In addition to being completely amorphous, the novolak-type phenol resin used as a raw material has a low degree of polymerization and a high temperature dependency of viscosity. For this reason, a yarn basket obtained by melt spinning a novolac-type phenolic resin rapidly solidifies as the ambient temperature decreases, but has extremely brittle properties. Particularly, the yarn before the crosslinking reaction is fragile. Therefore, for example, when producing other thermoplastic fibers such as polyamide-based fibers and polyester-based fibers, it is possible to add stretching to the yarn string, but when producing phenolic fibers It was impossible to add.
As described above, it is difficult to spin a novolac type phenol resin by a conventional manufacturing method as compared to spinning other thermoplastic resins.

ところで、近年、フェノール系繊維を織物、不織布、フィルター等の用途に使用する場合、高性能化の観点から圧力損失の低減が求められている。この圧力損失の低減を図るため、繊維直径が従来に比して太いフェノール系繊維(太径化)が要望されている。
しかしながら、上記のように、ノボラック型フェノール樹脂を溶融紡糸して得られる架橋反応前の糸條は脆弱である。また、該糸條を、アルデヒド類を用いて硬化(三次元架橋して熱不融化)した繊維は可とう性がなくなり、極めて脆くなる。そのため、従来の製造方法によりフェノール系繊維を太径化した場合、織布、不織布、フェルト等の調製や紡績に必要とされる機械的強度(特に繊維強度と繊維伸度)が不足するため、これまで実用に耐え得る太径化の限界は繊維直径25μm程度であった。
Incidentally, in recent years, when phenolic fibers are used for applications such as woven fabrics, non-woven fabrics, and filters, reduction of pressure loss is required from the viewpoint of high performance. In order to reduce this pressure loss, there is a demand for phenolic fibers (thickened) having a larger fiber diameter than conventional ones.
However, as described above, the yarn before the crosslinking reaction obtained by melt spinning a novolac type phenolic resin is fragile. In addition, fibers obtained by curing (using three-dimensional cross-linking and heat infusibility) the cocoons with aldehydes lose flexibility and become extremely brittle. Therefore, when the diameter of the phenolic fiber is increased by the conventional manufacturing method, the mechanical strength (particularly fiber strength and fiber elongation) required for preparation and spinning of woven fabric, nonwoven fabric, felt, etc. is insufficient. Until now, the limit of increasing the diameter that can withstand practical use has been about a fiber diameter of about 25 μm.

本発明は、上記事情を鑑みてなされたもので、耐熱性、難燃性及び耐薬品性が良好であると共に機械的強度が高く、かつ、繊維直径が従来に比して太径化されたフェノール系繊維を用いたフェノール系炭素繊維及びフェノール系活性炭素繊維の各製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and has good heat resistance, flame retardancy and chemical resistance and high mechanical strength, and the fiber diameter has been increased compared to the conventional one. It aims at providing each manufacturing method of the phenol type carbon fiber and phenol type activated carbon fiber which used the phenol type fiber.

上記の課題を解決するため、本発明は以下の構成を採用した。
すなわち、本発明のフェノール系炭素繊維の製造方法は、フェノール樹脂とリン酸エステル類とを混合する原料混合工程と、前記原料混合工程で得られた原料混合物を紡糸して糸條を得る紡糸工程とを有するフェノール系繊維の製造方法により製造されたフェノール系繊維を、炭素化することを特徴とする。
本発明のフェノール系炭素繊維の製造方法においては、前記原料混合工程で、前記フェノール樹脂と前記リン酸エステル類とを溶融混合することが好ましい。
また、本発明のフェノール系炭素繊維の製造方法においては、前記紡糸工程で得られた糸條を硬化する硬化工程を有することが好ましい。
In order to solve the above problems, the present invention employs the following configuration.
That is, the method for producing a phenolic carbon fiber of the present invention includes a raw material mixing step of mixing a phenol resin and a phosphate ester, and a spinning step of spinning the raw material mixture obtained in the raw material mixing step to obtain a yarn thread The phenolic fiber produced by the method for producing a phenolic fiber having the above is carbonized.
In the method for producing phenolic carbon fiber of the present invention, it is preferable that the phenol resin and the phosphate ester are melt-mixed in the raw material mixing step.
Moreover, in the manufacturing method of the phenol type carbon fiber of this invention, it is preferable to have a hardening process which hardens the yarn thread | yarn obtained at the said spinning process.

また、本発明のフェノール系活性炭素繊維の製造方法は、前記本発明のフェノール系炭素繊維の製造方法により製造されたフェノール系炭素繊維を賦活することを特徴とする。   Moreover, the manufacturing method of the phenol type activated carbon fiber of this invention activates the phenol type carbon fiber manufactured by the manufacturing method of the said phenol type carbon fiber of this invention, It is characterized by the above-mentioned.

本発明のフェノール系炭素繊維及びフェノール系活性炭素繊維の各製造方法により、耐熱性、難燃性及び耐薬品性が良好であると共に機械的強度が高く、かつ、繊維直径が従来に比して太径化されたフェノール系繊維を製造し、この太径化されたフェノール系繊維を用いて、フェノール系炭素繊維及びフェノール系活性炭素繊維をそれぞれ製造することができる。   By the respective production methods of the phenolic carbon fiber and the phenolic activated carbon fiber of the present invention, the heat resistance, flame retardancy and chemical resistance are good and the mechanical strength is high, and the fiber diameter is larger than the conventional one. A thickened phenolic fiber can be produced, and a phenolic carbon fiber and a phenolic activated carbon fiber can be produced using the thickened phenolic fiber.

<フェノール系繊維の製造方法>
本発明におけるフェノール系繊維の製造方法は、フェノール樹脂とリン酸エステル類とを混合する原料混合工程と、前記原料混合工程で得られた原料混合物を紡糸して糸條を得る紡糸工程とを有する。
<Method for producing phenolic fiber>
The method for producing a phenolic fiber in the present invention includes a raw material mixing step of mixing a phenol resin and a phosphate ester, and a spinning step of spinning the raw material mixture obtained in the raw material mixing step to obtain a yarn string. .

[原料混合工程]
原料混合工程では、フェノール樹脂とリン酸エステル類とを混合して原料混合物を得る。
[Raw material mixing process]
In the raw material mixing step, the phenol resin and phosphate esters are mixed to obtain a raw material mixture.

(フェノール樹脂)
フェノール樹脂としては、酸性触媒の存在下でフェノール類とアルデヒド類とを反応させて得られるノボラック型フェノール樹脂、塩基性触媒の存在下でフェノール類とアルデヒド類とを反応させて得られるレゾール型フェノール樹脂、各種変性フェノール樹脂又はこれらの混合物等を使用できる。
(Phenolic resin)
As the phenol resin, a novolac type phenol resin obtained by reacting phenols and aldehydes in the presence of an acidic catalyst, or a resol type phenol obtained by reacting phenols and aldehydes in the presence of a basic catalyst Resins, various modified phenolic resins or mixtures thereof can be used.

前記フェノール類としては、酸性又は塩基性触媒の存在下でアルデヒド類と反応させて各フェノール樹脂が得られるものであればよく、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−キシレノール、3,5−キシレノール、m−エチルフェノール、m−プロピルフェノール、m−ブチルフェノール、p−ブチルフェノール、o−ブチルフェノール、レゾルシノール、ハイドロキノン、カテコール、3−メトキシフェノール、4−メトキシフェノール、3−メチルカテコール、4−メチルカテコール、メチルハイドロキノン、2−メチルレゾルシノール、2,3−ジメチルハイドロキノン、2,5−ジメチルレゾルシノール、2−エトキシフェノール、4−エトキシフェノール、4−エチルレゾルシノール、3−エトキシ−4−メトキシフェノール、2−プロペニルフェノール、2−イソプロピルフェノール、3−イソプロピルフェノール、4−イソプロピルフェノール、3,4,5−トリメチルフェノール、2−イソプロポキシフェノール、4−ピロポキシフェノール、2−アリルフェノール、3,4,5−トリメトキシフェノール、4−イソプロピル−3−メチルフェノール、ピロガロール、フロログリシノール、1,2,4−ベンゼントリオール、5−イソプロピル−3−メチルフェノール、4−ブトキシフェノール、4−t−ブチルカテコール、t−ブチルハイドロキノン、4−t−ペンチルフェノール、2−t−ブチル−5−メチルフェノール、2−フェニルフェノール、3−フェニルフェノール、4−フェニルフェノール、3−フェノキシフェノール、4−フェノキシフェノール、4−へキシルオキシフェノール、4−ヘキサノイルレゾルシノール、3,5−ジイソプロピルカテコール、4−ヘキシルレゾルシノール、4−ヘプチルオキシフェノール、3,5−ジ−t−ブチルフェノール、3,5−ジ−t−ブチルカテコール、2,5−ジ−t−ブチルハイドロキノン、ジ−sec−ブチルフェノール、4−クミルフェノール、ノニルフェノール、2−シクロペンチルフェノール、4−シクロペンチルフェノール、ビスフェノールA、ビスフェノールF等が挙げられる。
なかでも、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、ビスフェノールA、2,3−キシレノール、3,5−キシレノール、m−ブチルフェノール、p−ブチルフェノール、o−ブチルフェノール、4−フェニルフェノール、レゾルシノールが好ましく、フェノールが最も好ましい。前記フェノール類は、一種を単独で用いてもよく、二種以上を併用してもよい。
The phenols are not particularly limited as long as they can be reacted with aldehydes in the presence of an acidic or basic catalyst to obtain each phenol resin. Phenol, o-cresol, m-cresol, p-cresol, 2, 3 -Xylenol, 3,5-xylenol, m-ethylphenol, m-propylphenol, m-butylphenol, p-butylphenol, o-butylphenol, resorcinol, hydroquinone, catechol, 3-methoxyphenol, 4-methoxyphenol, 3-methyl Catechol, 4-methylcatechol, methylhydroquinone, 2-methylresorcinol, 2,3-dimethylhydroquinone, 2,5-dimethylresorcinol, 2-ethoxyphenol, 4-ethoxyphenol, 4-ethylresorcinol, 3-e Xyl-4-methoxyphenol, 2-propenylphenol, 2-isopropylphenol, 3-isopropylphenol, 4-isopropylphenol, 3,4,5-trimethylphenol, 2-isopropoxyphenol, 4-pyropoxyphenol, 2- Allylphenol, 3,4,5-trimethoxyphenol, 4-isopropyl-3-methylphenol, pyrogallol, phloroglicinol, 1,2,4-benzenetriol, 5-isopropyl-3-methylphenol, 4-butoxyphenol 4-t-butylcatechol, t-butylhydroquinone, 4-t-pentylphenol, 2-t-butyl-5-methylphenol, 2-phenylphenol, 3-phenylphenol, 4-phenylphenol, 3-phenoxyv Nord, 4-phenoxyphenol, 4-hexyloxyphenol, 4-hexanoylresorcinol, 3,5-diisopropylcatechol, 4-hexylresorcinol, 4-heptyloxyphenol, 3,5-di-t-butylphenol, 3, 5-di-t-butylcatechol, 2,5-di-t-butylhydroquinone, di-sec-butylphenol, 4-cumylphenol, nonylphenol, 2-cyclopentylphenol, 4-cyclopentylphenol, bisphenol A, bisphenol F, etc. Is mentioned.
Among them, phenol, o-cresol, m-cresol, p-cresol, bisphenol A, 2,3-xylenol, 3,5-xylenol, m-butylphenol, p-butylphenol, o-butylphenol, 4-phenylphenol, resorcinol Are preferred, with phenol being most preferred. The said phenols may be used individually by 1 type, and may use 2 or more types together.

前記アルデヒド類としては、ホルムアルデヒド、トリオキサン、フルフラール、パラホルムアルデヒド、ベンズアルデヒド、メチルヘミホルマール、エチルへミホルマール、プロピルへミホルマール、サリチルアルデヒド、ブチルヘミホルマール、フェニルへミホルマール、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、α−フェニルプロピルアルデヒド、β−フェニルプロピルアルデヒド、o−ヒドロキシベンズアルデヒド、m−ヒドロキシベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−クロロベンズアルデヒド、o−ニトロベンズアルデヒド、m−ニトロベンズアルデヒド、p−ニトロベンズアルデヒド、o―メチルベンズアルデヒド、m−メチルベンズアルデヒド、p−メチルベンズアルデヒド、p−エチルベンズアルデヒド、p−n−ブチルベンズアルデヒド等が挙げられる。
なかでも、ホルムアルデヒド、パラホルムアルデヒド、フルフラール、ベンズアルデヒド、サリチルアルデヒドが好ましく、ホルムアルデヒド、パラホルムアルデヒドが特に好ましい。前記アルデヒド類は、一種を単独で用いてもよく、二種以上を併用してもよい。
Examples of the aldehydes include formaldehyde, trioxane, furfural, paraformaldehyde, benzaldehyde, methyl hemiformal, ethyl hemiformal, propyl hemiformal, salicylaldehyde, butyl hemiformal, phenyl hemiformal, acetaldehyde, propylaldehyde, phenylacetaldehyde, α- Phenylpropylaldehyde, β-phenylpropylaldehyde, o-hydroxybenzaldehyde, m-hydroxybenzaldehyde, p-hydroxybenzaldehyde, o-chlorobenzaldehyde, o-nitrobenzaldehyde, m-nitrobenzaldehyde, p-nitrobenzaldehyde, o-methylbenzaldehyde, m-methylbenzaldehyde, p-methylbenzaldehyde, p -Ethylbenzaldehyde, pn-butylbenzaldehyde, etc. are mentioned.
Of these, formaldehyde, paraformaldehyde, furfural, benzaldehyde, and salicylaldehyde are preferable, and formaldehyde and paraformaldehyde are particularly preferable. The aldehydes may be used alone or in combination of two or more.

前記酸性触媒としては、塩酸、硫酸、リン酸、蟻酸、酢酸、蓚酸、酪酸、乳酸、ベンゼンスルフォン酸、p−トルエンスルフォン酸、硼酸、又は塩化亜鉛もしくは酢酸亜鉛などの金属との塩等が挙げられる。前記酸性触媒は、一種を単独で用いてもよく、二種以上を併用してもよい。   Examples of the acidic catalyst include hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, succinic acid, butyric acid, lactic acid, benzenesulfonic acid, p-toluenesulfonic acid, boric acid, and salts with metals such as zinc chloride or zinc acetate. It is done. The said acidic catalyst may be used individually by 1 type, and may use 2 or more types together.

前記塩基性触媒としては、水酸化ナトリウム、水酸化リチウム等のアルカリ金属の水酸化物;水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物;水酸化アンモニウム;ジエチルアミン、トリエチルアミン、トリエタノールアミン、エチレンジアミン、ヘキサメチレンテトラミン等のアミン類等が挙げられる。前記塩基性触媒は、一種を単独で用いてもよく、二種以上を併用してもよい。   Examples of the basic catalyst include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide; ammonium hydroxide; diethylamine, triethylamine, Examples include amines such as ethanolamine, ethylenediamine, and hexamethylenetetramine. The said basic catalyst may be used individually by 1 type, and may use 2 or more types together.

各種変性フェノール樹脂は、ノボラック型又はレゾール型フェノール樹脂を、ホウ素変性、ケイ素変性、重金属変性、窒素変性、イオウ変性、油変性、ロジン変性等の公知の技法により変性させたものが挙げられる。   Examples of the various modified phenol resins include those obtained by modifying novolac-type or resol-type phenol resins by known techniques such as boron modification, silicon modification, heavy metal modification, nitrogen modification, sulfur modification, oil modification, and rosin modification.

上記のなかでも、フェノール樹脂としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂が好ましい。
たとえばリン酸エステル類と溶融混合し、後述の紡糸工程で最も一般的な紡糸方法である溶融紡糸を行う場合、フェノール樹脂としては、ノボラック型又はレゾール型フェノール樹脂のいずれも使用可能である。しかし、レゾール型は、ノボラック型に比べて熱安定性に劣り、溶融時の加熱で容易に重合が進んでしまうために溶融紡糸装置内での固化が避けられず、連続的に安定に紡糸するのが難しい。したがって、工業的に製造する場合の工程の容易さ、汎用性を勘案してノボラック型フェノール樹脂を選択することが特に好ましい。
フェノール樹脂は、一種を単独で用いてもよく、二種以上を併用してもよい。
Among the above, as the phenol resin, a novolac type phenol resin and a resol type phenol resin are preferable.
For example, in the case of melt-mixing with phosphate esters and performing melt spinning, which is the most common spinning method in the spinning process described later, either a novolac type or a resol type phenol resin can be used as the phenol resin. However, the resol type is inferior in thermal stability to the novolak type, and the polymerization proceeds easily by heating during melting, so solidification in the melt spinning apparatus is inevitable, and continuous and stable spinning is performed. It is difficult. Therefore, it is particularly preferable to select a novolac type phenol resin in consideration of the ease of the process in industrial production and versatility.
A phenol resin may be used individually by 1 type, and may use 2 or more types together.

(リン酸エステル類)
本発明において「リン酸」とは、十酸化四リン(P10)が加水分解を受けて生ずる種々のオキソ酸の総称であり、下記化学式で表されるオルトリン酸、ピロリン酸(二リン酸)、三リン酸、四リン酸、メタリン酸等を包含する。
(Phosphate esters)
In the present invention, “phosphoric acid” is a general term for various oxo acids produced by hydrolysis of tetraphosphorus decaoxide (P 4 O 10 ). Orthophosphoric acid and pyrophosphoric acid (diphosphoric acid) represented by the following chemical formulas are used. Acid), triphosphoric acid, tetraphosphoric acid, metaphosphoric acid and the like.

Figure 2012026077
Figure 2012026077

本発明における「リン酸エステル類」とは、リン酸における−OHの一つ以上が下記一般式(1)で表される基に置換されたもの(リン酸エステル)又はその塩を意味する。   “Phosphate esters” in the present invention means one in which one or more of —OH in phosphoric acid is substituted with a group represented by the following general formula (1) (phosphate ester) or a salt thereof.

Figure 2012026077
[式中、Rはヘテロ原子(炭素と水素以外の原子)を有していてもよい炭素数4以上の炭化水素基であり、AOは炭素数2〜4のオキシアルキレン基であり、nは平均付加モル数であり0〜100の数を示す。]
Figure 2012026077
[Wherein, R 1 is a hydrocarbon group having 4 or more carbon atoms which may have a hetero atom (atom other than carbon and hydrogen), AO is an oxyalkylene group having 2 to 4 carbon atoms, and n Is the average number of moles added and represents a number from 0 to 100. ]

前記式(1)中、Rの炭化水素基としては、アルキル基、アルケニル基、アリール基、アルキル基の水素原子の一部がアリール基で置換された基、アルケニル基の水素原子の一部がアリール基で置換された基などが好ましい。
の炭化水素基がアルキル基又はアルケニル基の場合、Rの炭素数は4〜22がより好ましく、炭素数は8〜18がさらに好ましい。
の炭化水素基がアリール基の場合、Rの炭素数は6〜35がより好ましく、炭素数は6〜27がさらに好ましく、具体的にはフェニル基、ナフチル基、ベンジル基、トリル基、キシリル基などが挙げられる。
の炭化水素基がいずれの場合も、Rの炭素数が上限値を超えると、前記フェノール樹脂との相溶性が低下しやすくなる。Rがアリール基の場合、Rがアルキル基又はアルケニル基の場合に比べて、比較的フェノール樹脂との相溶性が良好となる。
In the formula (1), as the hydrocarbon group for R 1 , an alkyl group, an alkenyl group, an aryl group, a group in which part of the hydrogen atom of the alkyl group is substituted with an aryl group, or a part of the hydrogen atom in the alkenyl group Are preferably substituted with an aryl group.
When the hydrocarbon group for R 1 is an alkyl group or an alkenyl group, R 1 has more preferably 4 to 22 carbon atoms, and more preferably 8 to 18 carbon atoms.
When the hydrocarbon group of R 1 is an aryl group, the carbon number of R 1 is more preferably 6 to 35, and further preferably 6 to 27, specifically phenyl group, naphthyl group, benzyl group, tolyl group. And xylyl group.
In any case of the hydrocarbon group of R 1 , if the carbon number of R 1 exceeds the upper limit value, the compatibility with the phenol resin tends to decrease. When R 1 is an aryl group, the compatibility with the phenol resin is relatively better than when R 1 is an alkyl group or an alkenyl group.

前記式(1)中、AOは炭素数2〜4のオキシアルキレン基であり、オキシエチレン基、オキシプロピレン基、オキシブチレン基が挙げられる。なお、リン原子には、オキシアルキレン基中の酸素原子が結合する。
前記式(1)中、nは0〜100の数であり、0〜50が好ましく、0〜10がより好ましい。
In said Formula (1), AO is a C2-C4 oxyalkylene group, and an oxyethylene group, an oxypropylene group, and an oxybutylene group are mentioned. Note that an oxygen atom in the oxyalkylene group is bonded to the phosphorus atom.
In said Formula (1), n is a number of 0-100, 0-50 are preferable and 0-10 are more preferable.

なかでも、リン酸エステル類としては、特に太径のフェノール系繊維とした際に機械的強度が高まりやすいことから、オルトリン酸における−OHの一つ以上が前記式(1)で表される基に置換されたもの(オルトリン酸エステル)又はその塩が好ましい。
オルトリン酸エステルとして具体的には、下記一般式で表されるオルトリン酸のモノエステル、ジエステル、トリエステルが挙げられる。なかでも、オルトリン酸のモノエステル、ジエステルが好ましい。
Among these, as phosphate esters, since mechanical strength tends to increase particularly when a large-diameter phenolic fiber is used, at least one of —OH in orthophosphoric acid is a group represented by the above formula (1). Those substituted with (orthophosphate) or salts thereof are preferred.
Specific examples of the orthophosphoric acid ester include monoesters, diesters, and triesters of orthophosphoric acid represented by the following general formula. Of these, monoesters and diesters of orthophosphoric acid are preferable.

Figure 2012026077
[式中、R、AO、nはそれぞれ前記と同じである。ジエステルとトリエステルにおいて、複数存在する−(AO)ORは互いに同一でも異なっていてもよい。]
Figure 2012026077
[Wherein, R 1 , AO and n are the same as defined above. In the diester and triester, a plurality of — (AO) n OR 1 may be the same as or different from each other. ]

リン酸エステルの塩としては、リン酸エステルのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩等が挙げられる。
リン酸エステル類は、一種を単独で用いてもよく、二種以上を併用してもよい。
Examples of the phosphate ester salt include alkali metal salts, alkaline earth metal salts, ammonium salts and amine salts of phosphate esters.
Phosphoric esters may be used alone or in combination of two or more.

(混合)
原料混合工程において、フェノール樹脂とリン酸エステル類とを混合する際、フェノール樹脂の使用量は、得られる原料混合物中のフェノール樹脂の割合が55〜99.9質量%となる量であることが好ましく、70〜99質量%となる量であることがより好ましく、85〜95質量%となる量であることが特に好ましい。
リン酸エステル類の使用量は、得られる原料混合物中のリン酸エステル類の割合が0.1〜45質量%となる量であることが好ましく、1〜30質量%となる量であることがより好ましく、5〜15質量%となる量であることが特に好ましい。リン酸エステル類の割合が好ましい下限値以上であれば、フェノール系繊維を太径化した際の機械的強度向上の効果が得られやすい。一方、フェノール樹脂の割合が好ましい上限値以下であれば、フェノール系繊維が有する耐熱性、難燃性及び耐薬品性等の特性を保持しやすい。
(mixture)
In the raw material mixing step, when the phenol resin and the phosphate ester are mixed, the amount of the phenol resin used is such that the ratio of the phenol resin in the obtained raw material mixture is 55 to 99.9% by mass. The amount is preferably 70 to 99% by mass, and more preferably 85 to 95% by mass.
The amount of phosphate esters used is preferably such that the proportion of phosphate esters in the resulting raw material mixture is 0.1 to 45% by mass, and 1 to 30% by mass. It is more preferable that the amount is 5 to 15% by mass. If the ratio of phosphate esters is equal to or more than the preferred lower limit, the effect of improving the mechanical strength when the phenolic fiber is increased in diameter is likely to be obtained. On the other hand, if the ratio of the phenol resin is equal to or less than the preferable upper limit value, it is easy to maintain characteristics such as heat resistance, flame retardancy, and chemical resistance of the phenol fiber.

フェノール樹脂とリン酸エステル類とを混合する方法としては、両者を溶融混合する方法、溶媒を用いて両者を溶解混合する方法等が挙げられる。なかでも、工程の煩雑さ、環境への負荷、経済性の点から、両者を溶融混合する方法が好ましい。   Examples of the method of mixing the phenol resin and the phosphate ester include a method of melt-mixing both, a method of dissolving and mixing both using a solvent, and the like. Among these, from the viewpoint of complexity of the process, environmental load, and economical efficiency, a method of melt-mixing both is preferable.

フェノール樹脂とリン酸エステル類との溶融混合は、一例として、両者を加熱混練する方法が挙げられる。
フェノール樹脂とリン酸エステル類との加熱混練には、公知の混練装置を用いて行うことができ、混練装置としては、押出機型混練機、ミキシングロール、バンバリーミキサー、高速二軸連続ミキサー等が挙げられる。
加熱混練の温度は、原料の性状等により適宜選択すればよく、200℃以下が好ましく、140〜180℃がより好ましい。加熱混練の温度を好ましい上限値以下にすることで、高温に原料を曝すことによる熱変性、劣化を抑制しやすい。加熱混練の温度を好ましい下限値以上にすることで、効率良く両者を混合することが可能となる。
加熱混練の時間は15分間以上が好ましく、30〜120分間がより好ましい。加熱混練の時間を好ましい下限値以上にすることで、両者をより均一に混合することが可能となる。加熱混練の時間を好ましい上限値以下にすることで、原料の熱変性、劣化を抑制しやすい。
As an example of the melt mixing of the phenol resin and the phosphate ester, there is a method of heating and kneading both.
The heating and kneading of the phenol resin and the phosphate ester can be performed using a known kneading apparatus. Examples of the kneading apparatus include an extruder-type kneader, a mixing roll, a Banbury mixer, and a high-speed biaxial continuous mixer. Can be mentioned.
What is necessary is just to select the temperature of heat-kneading suitably with the property etc. of a raw material, 200 degrees C or less is preferable and 140-180 degreeC is more preferable. By setting the temperature of the heat-kneading to a preferable upper limit value or less, thermal denaturation and deterioration due to exposure of the raw material to a high temperature can be easily suppressed. By setting the temperature of the heat-kneading to a preferable lower limit value or more, it becomes possible to efficiently mix both.
The heat kneading time is preferably 15 minutes or more, more preferably 30 to 120 minutes. By setting the heating and kneading time to be equal to or more than the preferable lower limit value, it becomes possible to mix both more uniformly. By making the time of heating and kneading below the preferable upper limit, it is easy to suppress thermal denaturation and deterioration of the raw material.

フェノール樹脂とリン酸エステル類とを溶媒を用いて溶解混合する方法では、両者を溶解し得る溶媒に両者を溶解混合した後、該溶媒を蒸発除去することにより原料混合物が得られる。
両者を溶解し得る溶媒としては、ケトン系溶剤、エーテル系溶剤、含窒素系溶剤、炭化水素系溶剤、エステル系溶剤、アルコール系溶剤等から選択される一種又は二種以上を混合した溶剤を使用できる。
フェノール樹脂とリン酸エステル類との溶解混合は、溶媒を撹拌しながら、フェノール樹脂とリン酸エステル類を徐々に加えていくことが好ましい。その際、フェノール樹脂又はリン酸エステル類が溶媒に溶けにくいようであれば加熱することが有効である。また、加圧することで、常圧での溶媒の沸点以上に加温することが可能となってさらに有効である。但し、高温に原料を曝すことで熱変性、劣化を及ぼすおそれがあることから、加熱は原料が完全溶解するまで限定的に行うことが好ましい。
In a method in which a phenol resin and phosphate esters are dissolved and mixed using a solvent, a raw material mixture is obtained by dissolving and mixing both in a solvent that can dissolve both, and then evaporating and removing the solvent.
As a solvent that can dissolve both, a solvent selected from a ketone solvent, an ether solvent, a nitrogen-containing solvent, a hydrocarbon solvent, an ester solvent, an alcohol solvent, or a mixture of two or more of them is used. it can.
In the dissolution and mixing of the phenol resin and the phosphate ester, it is preferable to gradually add the phenol resin and the phosphate ester while stirring the solvent. At that time, it is effective to heat the phenol resin or phosphate ester if it is difficult to dissolve in the solvent. Further, by applying pressure, it is possible to heat the solvent at a temperature higher than the boiling point of the solvent at normal pressure, which is further effective. However, since exposure to the raw material at a high temperature may cause thermal denaturation and deterioration, it is preferable to perform the heating limitedly until the raw material is completely dissolved.

溶媒に溶解するフェノール樹脂とリン酸エステル類の濃度については、特に限定されるものではなく、原料の性状、後の紡糸工程における紡糸方法を考慮して適宜設定すればよい。また、蒸発除去される溶媒の回収に多大な時間とエネルギーを要する点から、フェノール樹脂とリン酸エステル類の濃度は、それぞれの溶解度を考慮し、でき得る限り高濃度に設定することが好ましい。  The concentration of the phenolic resin and phosphate ester dissolved in the solvent is not particularly limited, and may be appropriately set in consideration of the properties of the raw material and the spinning method in the subsequent spinning step. In addition, from the point that much time and energy are required to recover the solvent to be removed by evaporation, it is preferable to set the concentration of the phenol resin and the phosphate ester as high as possible in consideration of their respective solubilities.

フェノール樹脂とリン酸エステル類とを混合する方法としては、前記の溶融混合、溶解混合以外の方法でもよい。たとえば、後の紡糸工程における紡糸方法として乾式紡糸、湿式紡糸又は乾・湿式紡糸の方法を用いる場合には、フェノール樹脂とリン酸エステル類の両者を溶解し得る溶媒に両者を溶解混合した原料混合物溶液を調製してもよい。該原料混合物溶液は、直接、紡糸用原液として用いることができる。
また、フェノール樹脂の合成反応を阻害せず、かつ、該合成反応中の温度で原料が劣化しない範疇であれば、フェノール樹脂の合成反応の途中に、リン酸エステル類を配合することにより、両者を混合することも有効である。
As a method of mixing the phenol resin and the phosphate ester, a method other than the above-mentioned melt mixing and dissolution mixing may be used. For example, when a dry spinning, wet spinning or dry / wet spinning method is used as a spinning method in the subsequent spinning step, a raw material mixture obtained by dissolving and mixing both in a solvent capable of dissolving both phenolic resin and phosphate ester A solution may be prepared. The raw material mixture solution can be used directly as a stock solution for spinning.
In addition, if the raw material does not deteriorate at the temperature during the synthesis reaction without inhibiting the synthesis reaction of the phenol resin, both can be added by adding phosphate esters during the phenol resin synthesis reaction. It is also effective to mix.

原料混合工程では、原料混合物を得るのにいずれの方法を用いた場合であっても、必要に応じて公知の添加剤、可塑剤、相溶化剤、酸化防止剤、紫外線吸収剤、浸透剤、増粘剤、防黴剤、染料、顔料、充填剤などを用いてもよい。
特に、フェノール樹脂とリン酸エステル類とを溶融混合する場合であって、リン酸エステル類の溶融粘度がフェノール樹脂のそれに比べて極端に異なる場合は、相溶化剤を使用することが好ましい。これにより、紡糸時に分離を生じることを防止できる。
In the raw material mixing step, even if any method is used to obtain the raw material mixture, known additives, plasticizers, compatibilizers, antioxidants, ultraviolet absorbers, penetrants, if necessary. Thickeners, antifungal agents, dyes, pigments, fillers and the like may be used.
In particular, when the phenol resin and the phosphate ester are melt-mixed and the melt viscosity of the phosphate ester is extremely different from that of the phenol resin, it is preferable to use a compatibilizing agent. This can prevent separation during spinning.

[紡糸工程]
紡糸工程では、前記原料混合工程で得られた原料混合物を紡糸して糸條を得る。
紡糸の方法は、原料混合物の性状等の点から公知の方法を適宜選択することができ、湿式紡糸、乾式紡糸、乾・湿式紡糸、溶融紡糸、ゲル紡糸、液晶紡糸などの方法が挙げられる。なかでも、装置の簡便さ、経済的に有利なことから、溶融紡糸が好ましい。
[Spinning process]
In the spinning step, the raw material mixture obtained in the raw material mixing step is spun to obtain a yarn.
As the spinning method, a known method can be appropriately selected in view of the properties of the raw material mixture, and examples thereof include wet spinning, dry spinning, dry / wet spinning, melt spinning, gel spinning, and liquid crystal spinning. Of these, melt spinning is preferred because of the simplicity of the apparatus and economic advantages.

紡糸の方法として溶融紡糸を用いる場合、一般的な溶融紡糸装置が使用できる。
該溶融紡糸装置の溶解装置としては、グリッドメルター式、単軸押出し機方式、二軸押出し機方式、タンデム押出し機方式などを使用できる。
なお、溶融した原料混合物の酸化を防止するために、溶融紡糸装置内の窒素置換を行ってもよく、又はベントを具備した押出し機を使用して、微量の残留溶媒もしくはモノマー類を除去する操作を行ってもよい。
When melt spinning is used as a spinning method, a general melt spinning apparatus can be used.
As a melting apparatus of the melt spinning apparatus, a grid melter type, a single screw extruder method, a twin screw extruder method, a tandem extruder method, or the like can be used.
In order to prevent oxidation of the melted raw material mixture, nitrogen replacement in the melt spinning apparatus may be performed, or an operation of removing a trace amount of residual solvent or monomers using an extruder equipped with a vent. May be performed.

溶融紡糸の際、温度条件は、120〜200℃が好ましく、140〜170℃がより好ましい。温度条件を好ましい下限値以上とすることで、効率良く紡糸することができる。温度条件を好ましい上限値以下とすることで、熱変性、劣化を抑制しやすく、かつ、フェノール樹脂とリン酸エステル類とが分離しにくくなる。
紡糸口金としては、通常のものが使用可能であり、孔径は0.05mm以上1mm未満が好ましく、0.1mm以上0.5mm未満がより好ましく、キャピラー部の(長さL/直径D)は0.5以上10未満が好ましく、1〜5がより好ましい。孔径とL/Dをそれぞれ前記の好ましい範囲とすることで、安定して紡糸することができる。
特別な繊維の製造方法の場合(たとえば並列型複合繊維、芯鞘型複合繊維、海島型複合繊維の場合など)には、サイドバイサイド型もしくはシースコア型、又は第三成分のポリマーを組み合わせるコンジュゲート口金を使用することもできる。
In melt spinning, the temperature condition is preferably 120 to 200 ° C, more preferably 140 to 170 ° C. By setting the temperature condition to be equal to or higher than the preferable lower limit, spinning can be performed efficiently. By setting the temperature condition to a preferable upper limit value or less, thermal denaturation and deterioration are easily suppressed, and the phenol resin and the phosphate ester are difficult to separate.
As the spinneret, a normal one can be used, and the hole diameter is preferably 0.05 mm or more and less than 1 mm, more preferably 0.1 mm or more and less than 0.5 mm, and the (length L / diameter D) of the capilla part is 0. 5 or more and less than 10 is preferable, and 1 to 5 is more preferable. By setting the pore diameter and L / D within the above preferred ranges, stable spinning can be achieved.
In the case of a special fiber manufacturing method (for example, in the case of side-by-side conjugate fiber, core-sheath type conjugate fiber, sea-island type conjugate fiber, etc.), a conjugate base that combines a side-by-side type or sea core type or a third component polymer Can also be used.

紡糸速度は、15m/分以上、3000m/分未満が好ましく、30m/分以上、2000m/分未満がより好ましく、50m/分以上、1600m/分未満がさらに好ましい。
紡糸速度を好ましい下限値以上とすることで、効率良く紡糸できる。紡糸速度を好ましい上限値未満とすることで、紡糸時の糸切れの発生を抑制できる。
The spinning speed is preferably 15 m / min or more and less than 3000 m / min, more preferably 30 m / min or more and less than 2000 m / min, and further preferably 50 m / min or more and less than 1600 m / min.
By setting the spinning speed to a preferable lower limit value or more, spinning can be performed efficiently. By making the spinning speed less than the preferred upper limit, the occurrence of yarn breakage during spinning can be suppressed.

[硬化工程]
本発明のフェノール系繊維の製造方法においては、前記紡糸工程で得られた糸條を硬化する硬化工程を有することが好ましい。硬化工程で該糸條を硬化することにより、主にフェノール樹脂部分が架橋されるので、太径化されたフェノール系繊維の機械的強度が高まる。
[Curing process]
In the method for producing a phenolic fiber of the present invention, it is preferable to have a curing step of curing the yarn obtained in the spinning step. By curing the yarn thread in the curing step, the phenol resin portion is mainly cross-linked, so that the mechanical strength of the thickened phenolic fiber is increased.

原料のフェノール樹脂としてノボラック型フェノール樹脂を用いた場合、前記紡糸工程で得られた糸條を硬化する方法は、ステープル状もしくはトウ状に加工したものを反応容器内の処理液に浸漬させてバッチ式で硬化処理する方法、ボビン状もしくはかせ状に加工したものを処理液と接触させて硬化処理する方法、又はトウ状に加工したものを連続的に処理液と接触させて硬化処理する方法などが挙げられる。   When a novolac type phenol resin is used as a raw material phenol resin, the method of curing the yarn obtained in the spinning step is to immerse the staple or tow-shaped material in a treatment liquid in a reaction vessel and batch A method of curing by a formula, a method of curing a bobbin or skein processed with a processing liquid, a method of continuously curing a tow-shaped processed with a processing liquid, etc. Is mentioned.

処理液は、触媒とアルデヒド類からなる。
触媒としては、塩酸、硫酸、リン酸、蟻酸、酢酸、蓚酸、酪酸、乳酸、ベンゼンスルフォン酸、p−トルエンスルフォン酸、硼酸、塩化亜鉛もしくは酢酸亜鉛などの金属との塩、又はこれらの混合物等の酸性触媒;水酸化ナトリウム、水酸化リチウム等のアルカリ金属の水酸化物、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物、水酸化アンモニウム、ジエチルアミン、トリエチルアミン、トリエタノールアミン、エチレンジアミン、ヘキサメチレンテトラミン等のアミン類、又はこれらの混合物等の塩基性触媒などが挙げられる。触媒は、一種を単独で用いてもよく、二種以上を併用してもよい。
The treatment liquid consists of a catalyst and aldehydes.
Examples of the catalyst include hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, succinic acid, butyric acid, lactic acid, benzenesulfonic acid, p-toluenesulfonic acid, boric acid, zinc chloride, zinc acetate, a salt with a metal, or a mixture thereof. Acidic catalysts of sodium hydroxide, alkali metal hydroxides such as lithium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide, ammonium hydroxide, diethylamine, triethylamine, triethanolamine, Examples include basic catalysts such as amines such as ethylenediamine and hexamethylenetetramine, or mixtures thereof. A catalyst may be used individually by 1 type and may use 2 or more types together.

アルデヒド類としては、ホルムアルデヒド、トリオキサン、フルフラール、パラホルムアルデヒド、ベンズアルデヒド、メチルヘミホルマール、エチルへミホルマール、プロピルへミホルマール、サリチルアルデヒド、ブチルヘミホルマール、フェニルへミホルマール、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、α−フェニルプロピルアルデヒド、β−フェニルプロピルアルデヒド、o−ヒドロキシベンズアルデヒド、m−ヒドロキシベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−クロロベンズアルデヒド、o−ニトロベンズアルデヒド、m−ニトロベンズアルデヒド、p−ニトロベンズアルデヒド、o―メチルベンズアルデヒド、m−メチルベンズアルデヒド、p−メチルベンズアルデヒド、p−エチルベンズアルデヒド、p−n−ブチルベンズアルデヒド等が使用できる。
なかでも、ホルムアルデヒド、パラホルムアルデヒド、フルフラール、ベンズアルデヒド、サリチルアルデヒドが好ましく、ホルムアルデヒド、パラホルムアルデヒドが特に好ましい。アルデヒド類は、一種を単独で用いてもよく、二種以上を併用してもよい。
Examples of aldehydes include formaldehyde, trioxane, furfural, paraformaldehyde, benzaldehyde, methyl hemiformal, ethyl hemiformal, propyl hemiformal, salicylaldehyde, butyl hemiformal, phenyl hemiformal, acetaldehyde, propylaldehyde, phenylacetaldehyde, α-phenylpropylene. Aldehyde, β-phenylpropylaldehyde, o-hydroxybenzaldehyde, m-hydroxybenzaldehyde, p-hydroxybenzaldehyde, o-chlorobenzaldehyde, o-nitrobenzaldehyde, m-nitrobenzaldehyde, p-nitrobenzaldehyde, o-methylbenzaldehyde, m -Methylbenzaldehyde, p-methylbenzaldehyde, p-d Tilbenzaldehyde, pn-butylbenzaldehyde and the like can be used.
Of these, formaldehyde, paraformaldehyde, furfural, benzaldehyde, and salicylaldehyde are preferable, and formaldehyde and paraformaldehyde are particularly preferable. Aldehydes may be used alone or in combination of two or more.

硬化は、液相にて、60℃以上110℃未満の温度で3時間以上30時間未満、加熱して行うことが好ましい。また、本発明においては、気相下で加熱することにより硬化してもよい。
さらには該加熱の後、水洗乾燥し、窒素、ヘリウム、炭酸ガス等の不活性ガス中、100〜300℃の温度で加熱することによりさらに硬化させる等、公知の硬化処理を行うことができる。この硬化処理によって、糸條中のフェノール樹脂部分が架橋して、充分な強度を備えたフェノール系繊維を得ることができる。
Curing is preferably performed in the liquid phase by heating at a temperature of 60 ° C. or higher and lower than 110 ° C. for 3 hours or longer and less than 30 hours. Moreover, in this invention, you may harden | cure by heating in a gaseous phase.
Furthermore, after the heating, it is possible to perform a known curing treatment such as washing with water and drying and further curing by heating at a temperature of 100 to 300 ° C. in an inert gas such as nitrogen, helium, carbon dioxide. By this curing treatment, the phenol resin portion in the yarn can be cross-linked, and a phenol fiber having sufficient strength can be obtained.

一方、原料のフェノール樹脂としてレゾール型フェノール樹脂を用いた場合、湿熱法又は乾熱法で加熱処理を行うことにより糸條を硬化することができる。
加熱処理条件は、温度は100〜220℃が好ましく、120〜180℃がより好ましく、処理時間は5〜120分間が好ましく、20〜60分間がより好ましい。
On the other hand, when a resol type phenol resin is used as a raw material phenol resin, the yarn string can be cured by heat treatment by a wet heat method or a dry heat method.
As for the heat treatment conditions, the temperature is preferably 100 to 220 ° C, more preferably 120 to 180 ° C, and the treatment time is preferably 5 to 120 minutes, more preferably 20 to 60 minutes.

本発明のフェノール系繊維の製造方法においては、機械的強度の高いフェノール系繊維が製造される。
具体的には、引張強度が12kg/mm以上であるフェノール系繊維が容易に得られる。また、伸度が8%以上であるフェノール系繊維が容易に得られる。
ここで「引張強度」と「伸度」は、JIS L−1015に準拠した方法によりそれぞれ測定される値を示す。
In the method for producing phenolic fibers of the present invention, phenolic fibers having high mechanical strength are produced.
Specifically, a phenol fiber having a tensile strength of 12 kg / mm 2 or more can be easily obtained. Moreover, a phenol fiber having an elongation of 8% or more can be easily obtained.
Here, “tensile strength” and “elongation” indicate values measured by methods according to JIS L-1015, respectively.

そして、本発明のフェノール系繊維の製造方法は、繊維直径が従来に比して太径化されたフェノール系繊維を製造できる。具体的には、繊維直径が25μmを超えるフェノール系繊維が容易に得られる。   And the manufacturing method of the phenol type fiber of this invention can manufacture the phenol type fiber by which the fiber diameter was enlarged compared with the past. Specifically, phenolic fibers having a fiber diameter exceeding 25 μm can be easily obtained.

以上説明した本発明のフェノール系繊維の製造方法においては、フェノール樹脂とリン酸エステル類とを混合した原料混合物を紡糸してフェノール系繊維を得る。該原料混合物を用いていることにより、理由は定かではないが、フェノール樹脂とリン酸エステル類との相互作用によって機械的強度が高まり、従来は機械的強度の不足から工業的には極めて製造が困難であった太径化されたフェノール系繊維を製造することができる。
また、本発明のフェノール系繊維の製造方法により製造されるフェノール系繊維は、従来のフェノール系繊維と同様、耐熱性、難燃性及び耐薬品性のいずれも良好である。
また、本発明のフェノール系繊維の製造方法は、あらたに用いるリン酸エステル類をフェノール樹脂と混合するだけであり、工程上の煩雑さがなく、安価かつ高品質に、太径化されたフェノール系繊維を製造できる。
In the method for producing a phenolic fiber of the present invention described above, a phenolic fiber is obtained by spinning a raw material mixture obtained by mixing a phenol resin and a phosphate ester. By using the raw material mixture, the reason is not clear, but the mechanical strength is increased by the interaction between the phenol resin and the phosphate ester. It was possible to produce a thickened phenolic fiber that was difficult.
In addition, the phenolic fiber produced by the method for producing a phenolic fiber of the present invention has good heat resistance, flame retardancy, and chemical resistance as in the conventional phenolic fiber.
In addition, the method for producing a phenolic fiber of the present invention is merely mixing a phosphate ester used newly with a phenol resin, and there is no complication in the process. System fibers can be produced.

<フェノール系炭素繊維の製造方法>
本発明のフェノール系炭素繊維の製造方法は、前記本発明のフェノール系繊維の製造方法により製造されたフェノール系繊維を炭素化することによりフェノール系炭素繊維が製造される。
フェノール系繊維の炭素化は、不活性ガス存在下で加熱する従来公知の方法を用いることができる。
炭素化する際、使用する不活性ガスとしては、窒素、アルゴン等が挙げられる。温度条件は600〜1200℃の範囲が好ましく、800〜1000℃の範囲がより好ましい。
本発明によれば、フェノール系繊維の機械的強度が高いため、実用的価値のあるフェノール系炭素繊維を工業的に製造できる。
<Method for producing phenolic carbon fiber>
In the method for producing a phenolic carbon fiber of the present invention, the phenolic carbon fiber is produced by carbonizing the phenolic fiber produced by the method for producing a phenolic fiber of the present invention.
For the carbonization of the phenol fiber, a conventionally known method of heating in the presence of an inert gas can be used.
When carbonizing, nitrogen, argon etc. are mentioned as an inert gas to be used. The temperature condition is preferably in the range of 600 to 1200 ° C, more preferably in the range of 800 to 1000 ° C.
According to the present invention, since the phenolic fiber has high mechanical strength, a practically valuable phenolic carbon fiber can be produced industrially.

<フェノール系活性炭素繊維の製造方法>
本発明のフェノール系活性炭素繊維の製造方法は、前記本発明のフェノール系繊維の製造方法により製造されたフェノール系繊維を炭素化した後、賦活することによりフェノール系活性炭素繊維が製造される。
フェノール系繊維を炭素化した後に賦活するには、ガス賦活法、薬剤賦活法などの従来公知の賦活方法を用いることができる。
ガス賦活法では、賦活ガスを、炭素化されたフェノール系繊維に接触させて賦活する。賦活ガスとしては、水蒸気、空気、一酸化炭素、二酸化炭素、塩化水素、酸素又はこれらを混合したものからなるガスが挙げられる。
薬剤賦活法では、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;水酸化カルシウム等のアルカリ土類金属の水酸化物;ホウ酸、リン酸、硫酸、塩酸等の無機酸類;又は塩化亜鉛などの無機塩類などを、炭素化されたフェノール系繊維に接触させて賦活する。
本発明によれば、フェノール系繊維の機械的強度が高いため、実用的価値のあるフェノール系活性炭素繊維を工業的に製造できる。
<Method for producing phenol-based activated carbon fiber>
In the method for producing a phenol-based activated carbon fiber of the present invention, the phenol-based activated carbon fiber is produced by carbonizing the phenol-based fiber produced by the method for producing a phenol-based fiber of the present invention and then activating.
In order to activate the phenol-based fiber after carbonization, a conventionally known activation method such as a gas activation method or a drug activation method can be used.
In the gas activation method, activation gas is activated by bringing it into contact with a carbonized phenol fiber. Examples of the activation gas include water vapor, air, carbon monoxide, carbon dioxide, hydrogen chloride, oxygen, or a gas composed of a mixture thereof.
In the chemical activation method, hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; hydroxides of alkaline earth metals such as calcium hydroxide; inorganic acids such as boric acid, phosphoric acid, sulfuric acid and hydrochloric acid; or An inorganic salt such as zinc chloride is activated by bringing it into contact with a carbonized phenol fiber.
According to the present invention, a phenolic activated carbon fiber having practical value can be industrially produced because the mechanical strength of the phenolic fiber is high.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
本実施例において、繊維直径、繊度、引張強度、引張弾性率、伸度及び比表面積は、以下の方法によりそれぞれ測定した。また、耐熱性、難燃性及び耐薬品性は、以下の方法によりそれぞれ評価した。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
In this example, the fiber diameter, fineness, tensile strength, tensile modulus, elongation, and specific surface area were measured by the following methods. In addition, heat resistance, flame retardancy and chemical resistance were evaluated by the following methods, respectively.

[繊維直径]
フェノール系繊維とフェノール系炭素繊維の繊維直径(μm)は、(株)キーエンス製のVK−8500レーザー顕微鏡を使用して測定した。
[Fiber diameter]
The fiber diameter (μm) of the phenolic fiber and the phenolic carbon fiber was measured using a VK-8500 laser microscope manufactured by Keyence Corporation.

[繊度]
フェノール系繊維の繊度(デニール)は、サーチ(株)製のDC11B デニールコンピューターを使用して測定した。
[Fineness]
The fineness (denier) of the phenolic fiber was measured using a DC11B denier computer manufactured by Search Corporation.

[引張強度]
フェノール系繊維とフェノール系炭素繊維の引張強度(kg/mm)は、(株)エー・アンド・ディ社製のRTG−1210テンシロン万能試験機を使用し、JIS L−1015に準拠した方法により測定した。
[Tensile strength]
The tensile strength (kg / mm 2 ) of the phenolic fiber and the phenolic carbon fiber is determined by a method based on JIS L-1015 using an RTG-1210 Tensilon universal testing machine manufactured by A & D Co., Ltd. It was measured.

[引張弾性率]
フェノール系繊維とフェノール系炭素繊維の引張弾性率(kg/mm)は、(株)エー・アンド・ディ社製のRTG−1210テンシロン万能試験機を使用し、JIS L−1015に準拠した方法により測定した。
[Tensile modulus]
Tensile modulus (kg / mm 2 ) of phenolic fiber and phenolic carbon fiber is a method based on JIS L-1015 using an RTG-1210 Tensilon universal testing machine manufactured by A & D Co., Ltd. It was measured by.

[伸度]
フェノール系繊維の伸度(%)は、(株)エー・アンド・ディ社製のRTG−1210テンシロン万能試験機を使用し、JIS L−1015に準拠した方法により測定した。
[Elongation]
The elongation (%) of the phenol fiber was measured by a method based on JIS L-1015 using an RTG-1210 Tensilon universal testing machine manufactured by A & D Co., Ltd.

[比表面積]
フェノール系活性炭素繊維の比表面積(m/g)は、日本ベル社製のベルソープ28SAを使用して測定した。
[Specific surface area]
The specific surface area (m 2 / g) of the phenol-based activated carbon fiber was measured using Bell Soap 28SA manufactured by Bell Japan.

[耐熱性]
フェノール系繊維の耐熱性は、得られたフェノール系繊維を、150℃及び180℃の空気中にそれぞれ100時間暴露した後、上記の方法により引張強度を測定し、下式に基づいて強度保持率(%)を算出することにより評価した。
強度保持率(%)=(暴露後の引張強度/暴露前の引張強度)×100
[Heat-resistant]
The heat resistance of the phenol fiber is determined by measuring the tensile strength by the above method after exposing the obtained phenol fiber to air at 150 ° C. and 180 ° C. for 100 hours, respectively. (%) Was evaluated by calculating.
Strength retention (%) = (Tensile strength after exposure / Tensile strength before exposure) × 100

[難燃性]
フェノール系繊維の難燃性は、得られたフェノール系繊維の限界酸素指数(LOI)をJIS L−1091に準拠した方法で測定することにより評価した。一般に、LOIの値が28以上であれば、難燃性を有していると判断される。
[Flame retardance]
The flame retardancy of the phenol fiber was evaluated by measuring the limiting oxygen index (LOI) of the obtained phenol fiber by a method based on JIS L-1091. Generally, if the LOI value is 28 or more, it is determined that the material has flame retardancy.

[耐薬品性]
フェノール系繊維の耐薬品性は、得られたフェノール系繊維を、各種の薬品(36質量%塩酸、25質量%アンモニア水、アセトン、N,N−ジメチルホルムアミド(DMF))に、それぞれ25℃で100時間浸漬した後、上記の方法により引張強度を測定し、前記の耐熱性の評価と同様にして強度保持率(%)を算出することにより評価した。
[chemical resistance]
The chemical resistance of the phenol fiber is obtained by applying the obtained phenol fiber to various chemicals (36 mass% hydrochloric acid, 25 mass% aqueous ammonia, acetone, N, N-dimethylformamide (DMF)) at 25 ° C., respectively. After immersion for 100 hours, the tensile strength was measured by the above method, and the strength retention (%) was calculated in the same manner as in the heat resistance evaluation.

<フェノール系繊維の製造例>
以下に示すフェノール樹脂とリン酸エステル類とを用いて、各製造例によりフェノール系繊維をそれぞれ製造した。
<Production example of phenol fiber>
Using the phenol resin and phosphate esters shown below, phenolic fibers were produced according to the respective production examples.

・フェノール樹脂
フェノール樹脂は、以下のようにして合成したノボラック型フェノール樹脂を用いた。
[フェノール樹脂の合成]
フェノール1000gと37質量%ホルマリン733gとシュウ酸5gを、還流冷却器を備えた反応容器に仕込み、40分間で常温から100℃に昇温させ、さらに100℃で4時間反応させた後、200℃まで加熱して脱水濃縮した後、冷却してノボラック型フェノール樹脂を得た。
-Phenol resin The novolak type phenol resin synthesize | combined as follows was used for the phenol resin.
[Synthesis of phenolic resin]
1000 g of phenol, 733 g of 37% by mass formalin and 5 g of oxalic acid were charged into a reaction vessel equipped with a reflux condenser, heated from room temperature to 100 ° C. over 40 minutes, and further reacted at 100 ° C. for 4 hours. And dehydrated and concentrated, and then cooled to obtain a novolak type phenol resin.

・リン酸エステル類
リン酸エステル類は、以下に示すリン酸エステル(1)、リン酸エステル(2)を用いた。
リン酸エステル(1):フォスファノール SM−172(商品名、東邦化学工業(株)製、下式(IA)のモノエステルと下式(IB)のジエステルとの質量比が(IA)/(IB)=1/1の混合物)。
リン酸エステル(2):フォスファノール RP−710(商品名、東邦化学工業(株)製、ポリオキシエチレン(平均付加モル数6)フェニルエーテルリン酸。下式(II)のモノエステルの他にジエステルとトリエステルとを含有する混合物)。
-Phosphate ester Phosphate ester (1) and phosphate ester (2) shown below were used for phosphate ester.
Phosphate ester (1): Phosphanol SM-172 (trade name, manufactured by Toho Chemical Industry Co., Ltd., the mass ratio of the monoester of the following formula (IA) to the diester of the following formula (IB) is (IA) / (IB) = 1/1 mixture).
Phosphate ester (2): Phosphanol RP-710 (trade name, manufactured by Toho Chemical Industry Co., Ltd., polyoxyethylene (average addition mole number 6) phenyl ether phosphoric acid. Other than monoester of the following formula (II) A mixture containing a diester and a triester).

Figure 2012026077
Figure 2012026077

(実施例1)
原料混合工程:
ノボラック型フェノール樹脂450gとリン酸エステル(1)50gとを、二軸混練機(高速二軸連続ミキサー)に投入して、150℃で50分間の混練(溶融混合)を行い、淡桃色透明なブロック状物を得た。
Example 1
Raw material mixing process:
450 g of novolak-type phenol resin and 50 g of phosphoric acid ester (1) are put into a twin-screw kneader (high-speed twin-screw continuous mixer) and kneaded (melted and mixed) at 150 ° C. for 50 minutes. A block was obtained.

紡糸工程:
次に、このブロック状物を粗粉砕し、溶融紡糸装置(グリッドメルター式)を用いて180℃で溶融し、該溶融により得られた溶融物を、160℃に保たれた孔径0.1mm、長さL/直径D=3、ホール数10個の紡糸口金から一定吐出量を保ちながら紡糸速度75m/分で紡糸(溶融紡糸)して糸條を得た。
Spinning process:
Next, this block-like product is coarsely pulverized and melted at 180 ° C. using a melt spinning apparatus (grid melter type), and the melt obtained by the melting has a pore diameter of 0.1 mm maintained at 160 ° C., A yarn was obtained by spinning (melt spinning) at a spinning speed of 75 m / min while maintaining a constant discharge rate from a spinneret having a length L / diameter D = 3 and 10 holes.

硬化工程:
紡糸工程で得られた糸條を、長さ51mmにカットしてフラスコに入れ、塩酸14質量%かつホルムアルデヒド8質量%の水溶液に常温で30分間浸漬した後、2時間で98℃まで昇温し、さらに98℃で2時間保持することにより硬化を行った。
Curing process:
The yarn thread obtained in the spinning process was cut into a length of 51 mm, placed in a flask, immersed in an aqueous solution of 14% by mass hydrochloric acid and 8% by mass formaldehyde for 30 minutes at room temperature, and then heated to 98 ° C. in 2 hours. Further, curing was carried out by holding at 98 ° C. for 2 hours.

次いで、硬化工程で得られた硬化物を、前記フラスコから取り出して充分に水洗した後、3質量%アンモニア水溶液で60℃、30分間の中和を行った。その後、再度、充分に水洗し、90℃、30分間乾燥することによりフェノール系繊維を得た。   Next, the cured product obtained in the curing step was taken out from the flask and thoroughly washed with water, and then neutralized with a 3% by mass aqueous ammonia solution at 60 ° C. for 30 minutes. Thereafter, it was thoroughly washed with water again and dried at 90 ° C. for 30 minutes to obtain a phenol fiber.

(実施例2)
原料混合工程で、リン酸エステル(1)50gの代わりに、リン酸エステル(2)50gを用いた以外は、実施例1と同様にしてフェノール系繊維を得た。
(Example 2)
A phenolic fiber was obtained in the same manner as in Example 1 except that 50 g of phosphate ester (2) was used instead of 50 g of phosphate ester (1) in the raw material mixing step.

(比較例1)
原料混合工程で、ノボラック型フェノール樹脂450gとリン酸エステル(1)50gの代わりに、ノボラック型フェノール樹脂500gを用いた以外は、実施例1と同様にしてフェノール系繊維を得た。
(Comparative Example 1)
Phenol fibers were obtained in the same manner as in Example 1 except that in the raw material mixing step, 500 g of novolac type phenol resin was used instead of 450 g of novolac type phenol resin and 50 g of phosphoric ester (1).

得られたフェノール系繊維について、繊維直径、繊度、引張強度、引張弾性率、伸度、強度保持率(耐熱性)、LOI(難燃性)、強度保持率(耐薬品性)を測定した結果を表1に示す。但し、実施例1、2は参考例である。   Results of measurement of fiber diameter, fineness, tensile strength, tensile modulus, elongation, strength retention (heat resistance), LOI (flame resistance), strength retention (chemical resistance) of the obtained phenolic fiber Is shown in Table 1. However, Examples 1 and 2 are reference examples.

Figure 2012026077
Figure 2012026077

表1の結果から、実施例1、2でそれぞれ製造されたフェノール系繊維は、いずれも繊維直径が太径化されているにもかかわらず、引張強度が高く、伸度も高いことが分かる。
また、実施例1、2でそれぞれ製造されたフェノール系繊維は、耐熱性、難燃性及び耐薬品性も良好であることが分かる。
一方、比較例1で製造されたフェノール系繊維は、引張強度が低く、伸度も著しく低いことから、実用上使用できないものであった。
From the results in Table 1, it can be seen that the phenolic fibers produced in Examples 1 and 2 have high tensile strength and high elongation, regardless of whether the fiber diameter is increased.
Moreover, it turns out that the phenol-type fiber each manufactured in Example 1, 2 has favorable heat resistance, a flame retardance, and chemical resistance.
On the other hand, the phenolic fiber produced in Comparative Example 1 cannot be used practically because of its low tensile strength and extremely low elongation.

<フェノール系炭素繊維の製造例>
(実施例3)
実施例1で得られたフェノール系繊維を試験炭素化炉に入れ、窒素気流中、900℃、30分間の条件で炭素化することによりフェノール系炭素繊維を得た。
<Production example of phenolic carbon fiber>
(Example 3)
The phenolic fiber obtained in Example 1 was put in a test carbonization furnace and carbonized in a nitrogen stream at 900 ° C. for 30 minutes to obtain a phenolic carbon fiber.

(実施例4)
実施例1で得られたフェノール系繊維の代わりに、実施例2で得られたフェノール系繊維を用いた以外は、実施例3と同様にしてフェノール系炭素繊維を得た。
Example 4
A phenolic carbon fiber was obtained in the same manner as in Example 3 except that the phenolic fiber obtained in Example 2 was used instead of the phenolic fiber obtained in Example 1.

(比較例2)
実施例1で得られたフェノール系繊維の代わりに、比較例1で得られたフェノール系繊維を用いた以外は、実施例3と同様にしてフェノール系炭素繊維を得た。
なお、比較例1で製造されたフェノール系繊維は、非常に脆いため、試験炭素化炉に入れるまでの作業には細心の注意が必要であった。
(Comparative Example 2)
A phenolic carbon fiber was obtained in the same manner as in Example 3 except that the phenolic fiber obtained in Comparative Example 1 was used instead of the phenolic fiber obtained in Example 1.
In addition, since the phenol fiber produced in Comparative Example 1 was very brittle, it was necessary to pay close attention to the work until it was put in the test carbonization furnace.

得られたフェノール系炭素繊維について、繊維直径、引張強度、引張弾性率、収率を測定した結果を表2に示す。   Table 2 shows the results of measuring the fiber diameter, tensile strength, tensile modulus, and yield of the obtained phenolic carbon fiber.

Figure 2012026077
Figure 2012026077

表2の結果から、実施例1、2のフェノール系繊維を炭素化することにより、太径のフェノール系炭素繊維を製造できることが確認できた。   From the results shown in Table 2, it was confirmed that a phenolic carbon fiber having a large diameter could be produced by carbonizing the phenolic fibers of Examples 1 and 2.

<フェノール系活性炭素繊維の製造例>
(実施例5)
実施例1で得られたフェノール系繊維を内径70mmの石英管に入れ、窒素気流中、室温から5℃/分の昇温速度で900℃まで昇温した。この時点で、予め80℃に調整されている温水中に窒素ガスを導入し、窒素と水蒸気との混合ガスを前記石英管に10分間導入した。続いて、窒素のみを導入しながら冷却することによりフェノール系活性炭素繊維を得た。
<Example of production of phenolic activated carbon fiber>
(Example 5)
The phenolic fiber obtained in Example 1 was put in a quartz tube having an inner diameter of 70 mm, and the temperature was increased from room temperature to 900 ° C. at a temperature increase rate of 5 ° C./min in a nitrogen stream. At this point, nitrogen gas was introduced into warm water that had been adjusted to 80 ° C. in advance, and a mixed gas of nitrogen and water vapor was introduced into the quartz tube for 10 minutes. Then, the phenol type activated carbon fiber was obtained by cooling, introducing only nitrogen.

(実施例6)
実施例1で得られたフェノール系繊維の代わりに、実施例2で得られたフェノール系繊維を用いた以外は、実施例5と同様にしてフェノール系活性炭素繊維を得た。
(Example 6)
A phenol-based activated carbon fiber was obtained in the same manner as in Example 5 except that the phenol-based fiber obtained in Example 2 was used instead of the phenol-based fiber obtained in Example 1.

(比較例3)
実施例1で得られたフェノール系繊維の代わりに、比較例1で得られたフェノール系繊維を用いた以外は、実施例5と同様にしてフェノール系活性炭素繊維を得た。
(Comparative Example 3)
Instead of the phenolic fiber obtained in Example 1, a phenolic activated carbon fiber was obtained in the same manner as in Example 5 except that the phenolic fiber obtained in Comparative Example 1 was used.

得られたフェノール系活性炭素繊維について、比表面積、収率を測定した結果を表3に示す。   Table 3 shows the results of measuring the specific surface area and the yield of the obtained phenol-based activated carbon fiber.

Figure 2012026077
Figure 2012026077

表3の結果から、実施例1、2のフェノール系繊維を炭素化した後、賦活することにより、フェノール系活性炭素繊維を製造できることが確認できた。   From the results in Table 3, it was confirmed that the phenolic activated carbon fibers could be produced by carbonizing the phenolic fibers of Examples 1 and 2 and then activating them.

Claims (4)

フェノール樹脂とリン酸エステル類とを混合する原料混合工程と、前記原料混合工程で得られた原料混合物を紡糸して糸條を得る紡糸工程とを有するフェノール系繊維の製造方法により製造されたフェノール系繊維を、炭素化することを特徴とするフェノール系炭素繊維の製造方法。   Phenol produced by a method for producing a phenolic fiber, comprising: a raw material mixing step of mixing a phenol resin and phosphate esters; and a spinning step of spinning the raw material mixture obtained in the raw material mixing step to obtain a yarn thread A method for producing a phenolic carbon fiber, characterized by carbonizing a carbon fiber. 前記原料混合工程で、前記フェノール樹脂と前記リン酸エステル類とを溶融混合する請求項1に記載のフェノール系炭素繊維の製造方法。   The method for producing a phenolic carbon fiber according to claim 1, wherein in the raw material mixing step, the phenol resin and the phosphate ester are melt-mixed. 前記紡糸工程で得られた糸條を硬化する硬化工程を有する請求項1又は請求項2に記載のフェノール系炭素繊維の製造方法。   The method for producing a phenolic carbon fiber according to claim 1 or 2, further comprising a curing step of curing the yarn obtained in the spinning step. 請求項1〜3のいずれか1項に記載のフェノール系炭素繊維の製造方法により製造されたフェノール系炭素繊維を賦活することを特徴とするフェノール系活性炭素繊維の製造方法。   The manufacturing method of the phenol type activated carbon fiber characterized by activating the phenol type carbon fiber manufactured by the manufacturing method of the phenol type carbon fiber of any one of Claims 1-3.
JP2011239470A 2011-10-31 2011-10-31 Method for producing phenolic carbon fiber and method for producing phenolic activated carbon fiber Active JP5499007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239470A JP5499007B2 (en) 2011-10-31 2011-10-31 Method for producing phenolic carbon fiber and method for producing phenolic activated carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239470A JP5499007B2 (en) 2011-10-31 2011-10-31 Method for producing phenolic carbon fiber and method for producing phenolic activated carbon fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010120711A Division JP5443268B2 (en) 2010-05-26 2010-05-26 Method for producing phenolic fiber

Publications (2)

Publication Number Publication Date
JP2012026077A true JP2012026077A (en) 2012-02-09
JP5499007B2 JP5499007B2 (en) 2014-05-21

Family

ID=45779331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239470A Active JP5499007B2 (en) 2011-10-31 2011-10-31 Method for producing phenolic carbon fiber and method for producing phenolic activated carbon fiber

Country Status (1)

Country Link
JP (1) JP5499007B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880822A (en) * 1972-02-04 1973-10-29
JPS4896690A (en) * 1972-02-28 1973-12-10
JP2004353096A (en) * 2003-05-27 2004-12-16 Gun Ei Chem Ind Co Ltd Fibrillated phenolic resin-based fiber and method for producing the same
JP2005075936A (en) * 2003-09-01 2005-03-24 Sumitomo Bakelite Co Ltd Novolac type phenolic resin and its manufacturing process
JP2005075938A (en) * 2003-09-01 2005-03-24 Sumitomo Bakelite Co Ltd Manufacturing process of high ortho novolac type phenolic resin
JP2005082937A (en) * 2003-09-10 2005-03-31 Sumitomo Bakelite Co Ltd Method for producing phenol resin fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880822A (en) * 1972-02-04 1973-10-29
JPS4896690A (en) * 1972-02-28 1973-12-10
JP2004353096A (en) * 2003-05-27 2004-12-16 Gun Ei Chem Ind Co Ltd Fibrillated phenolic resin-based fiber and method for producing the same
JP2005075936A (en) * 2003-09-01 2005-03-24 Sumitomo Bakelite Co Ltd Novolac type phenolic resin and its manufacturing process
JP2005075938A (en) * 2003-09-01 2005-03-24 Sumitomo Bakelite Co Ltd Manufacturing process of high ortho novolac type phenolic resin
JP2005082937A (en) * 2003-09-10 2005-03-31 Sumitomo Bakelite Co Ltd Method for producing phenol resin fiber

Also Published As

Publication number Publication date
JP5499007B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5250717B2 (en) Activated carbon fiber nonwoven fabric and element using the nonwoven fabric
JP5443268B2 (en) Method for producing phenolic fiber
WO2013027674A1 (en) Carbon fiber composite material
JP5315293B2 (en) Method for producing phenolic fiber
JP5453373B2 (en) Method for producing phenolic carbon fiber and method for producing phenolic activated carbon fiber
JP2007070738A (en) Extra fine phenol resin fiber, its assembly and method for producing the same
JP5499007B2 (en) Method for producing phenolic carbon fiber and method for producing phenolic activated carbon fiber
JP2013023790A (en) Phenolic fiber sheet, phenolic carbon fiber sheet, phenolic activated carbon fiber sheet and method for producing the same
JP4153529B2 (en) Carbon fiber and method for producing activated carbon fiber
JP2005105452A (en) Conjugate fiber, phenol resin-based ultrafine fiber, phenol resin-based ultrafine carbon fiber, phenol resin-based ultrafine active carbon fiber and method for producing them
JP6006625B2 (en) Phenol fiber nonwoven fabric and filter using the nonwoven fabric
JP2005256183A (en) Method for producing activated carbon fiber
JP4611457B2 (en) Reactive diluent for acid curable phenolic resin compositions
CN104364291A (en) Resin composition and cured product thereof
JP4178164B2 (en) Manufacturing method of composite fiber
WO2023153519A1 (en) Composition for producing activated carbon, method for producing same, molded body for producing activated carbon, method for producing same, fibers for producing activated carbon fibers, method for producing same, activated carbon precursor, activated carbon fiber precursor, carbide, carbon fibers, activated carbon, method for producing same, activated carbon fibers, and method for producing same
JP2004043997A (en) Fine phenolic resin-based fiber and fine phenolic resin-based carbon fiber and fine phenolic resin-based activated carbon fiber
JP2005105450A (en) Conjugate fiber, phenol resin-based ultrafine fiber, phenol resin-based ultrafine carbon fiber, phenol resin-based ultrafine active carbon fiber and method for producing them
JP2005105451A (en) Conjugate fiber, phenol resin-based ultrafine fiber, phenol resin-based ultrafine carbon fiber, phenol resin-based ultrafine active carbon fiber and method for producing them
JP2005082937A (en) Method for producing phenol resin fiber
JP2023118120A (en) Composition for producing activated carbon, method for producing the same, molded body for producing activated carbon, method for producing the same, fiber for producing activated carbon fiber, method for producing the same, activated carbon precursor, activated carbon fiber precursor, carbide, carbon fiber, activated carbon, method for producing the same, activated carbon fiber and method for producing the same
JP2006083281A (en) Resin composition and molded product thereof
CN118748982A (en) Composition for producing activated carbon, method for producing same, molded article for producing activated carbon, method for producing same, fiber for producing activated carbon fiber, method for producing same, activated carbon precursor, activated carbon fiber precursor, carbide, carbon fiber, activated carbon, method for producing same, activated carbon fiber, and method for producing same
JP2005256182A (en) Phenol resin-based fiber and method for producing the same
JP2003003329A (en) Phenol resin fiber and method of producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5499007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250