JP2012021777A - Device for predicting exit hydrogen concentration of exhaust gas recombination device and method of predicting exit hydrogen concentration - Google Patents

Device for predicting exit hydrogen concentration of exhaust gas recombination device and method of predicting exit hydrogen concentration Download PDF

Info

Publication number
JP2012021777A
JP2012021777A JP2010157435A JP2010157435A JP2012021777A JP 2012021777 A JP2012021777 A JP 2012021777A JP 2010157435 A JP2010157435 A JP 2010157435A JP 2010157435 A JP2010157435 A JP 2010157435A JP 2012021777 A JP2012021777 A JP 2012021777A
Authority
JP
Japan
Prior art keywords
hydrogen concentration
exhaust gas
catalyst
hydrogen
recombiner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010157435A
Other languages
Japanese (ja)
Other versions
JP5686539B2 (en
Inventor
Toru Kawasaki
透 川嵜
Hidehiro Iizuka
秀宏 飯塚
Naoki Kumagai
直己 熊谷
Motohiro Aizawa
元浩 会沢
Hirofumi Matsubara
宏文 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010157435A priority Critical patent/JP5686539B2/en
Publication of JP2012021777A publication Critical patent/JP2012021777A/en
Application granted granted Critical
Publication of JP5686539B2 publication Critical patent/JP5686539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a device for predicting the exit hydrogen concentration of an exhaust gas recombination device in a boiling water reactor nuclear power plant from inflow conditions of gas and the state of a catalyst.SOLUTION: A device for predicting the exit hydrogen concentration of an exhaust gas recombination device includes: an input device 7 which inputs the flow rate of components of exhaust gas flowing into the exhaust gas recombination device within a gaseous waste processing system of a boiling water reactor nuclear power plant, the temperature of the exhaust gas, an index indicating the state of a catalyst in the exhaust gas recombination device, and the amount of inflow of a poisoning material that affects the properties of the catalyst; a calculating device 2 for calculating the hydrogen concentration at the exit of the exhaust gas recombination device from information input by the input device 7; and a display device for displaying the hydrogen concentration calculated or temporal change of the hydrogen concentration.

Description

本発明は、沸騰水型原子力プラントに係り、特に、オフガス系に再結合装置を有する沸騰水型原子力プラントに適用するのに好適な沸騰水型原子力プラントンの再結合器の出口水素濃度の予測装置及び出口水素濃度の予測方法に関する。   The present invention relates to a boiling water nuclear power plant, and more particularly to prediction of a recombiner outlet hydrogen concentration of a boiling water nuclear planton suitable for application to a boiling water nuclear power plant having a recombination device in an off-gas system. The present invention relates to an apparatus and a method for predicting outlet hydrogen concentration.

二酸化炭素(以下CO2と略す)などによる地球温暖化が深刻になる状況において、運転時にCO2を発生しない原子力発電システムは将来のエネルギー供給源として、年々、全世界で需要が高まっている。 In a situation where global warming due to carbon dioxide (hereinafter abbreviated as CO 2 ) becomes serious, the demand for nuclear power generation systems that do not generate CO 2 during operation is increasing year by year as a future energy supply source.

原子力発電システムの方式には、沸騰水型原子炉プラント(以下、BWRプラントと称す)、及び改良型沸騰水型原子炉プラント(以下、ABWRプラントと称す)がある。このようなBWRプラントでは、原子炉圧力容器内の炉心に装荷された複数の燃料集合体に含まれる核燃料物質の核分裂によって発生する熱により冷却水を加熱して蒸気を発生させる。原子炉圧力容器内で発生したその蒸気がタービンに直接供給される。BWRプラントの運転中、炉心内の冷却水は、核分裂によって発生する中性子及びγ線等の放射線の照射により、放射線分解され、水素及び酸素が発生する。このような水素と酸素が、蒸気と共にタービン系に移行する。この際、蒸気は最終的に復水器において凝縮水となるが、水素と酸素は非凝縮性のガスとして残る。復水器内部の非凝縮性ガスは安全な状態を確保した上で排気される。特に水素と酸素の混合ガスは、気相反応で再結合すると燃焼の危険性がある。このため、BWRプラントでは、水素と酸素の再結合を促進させる燃焼触媒を充填した再結合器をオフガス系の配管に設け、この再結合器で、放射線分解により発生した水素と酸素を再結合させている。水素と酸素を再結合は、(式1)に示す反応によって行われる。   The nuclear power generation system includes a boiling water reactor plant (hereinafter referred to as a BWR plant) and an improved boiling water reactor plant (hereinafter referred to as an ABWR plant). In such a BWR plant, the cooling water is heated by the heat generated by the nuclear fission of the nuclear fuel material contained in the plurality of fuel assemblies loaded in the core in the reactor pressure vessel to generate steam. The steam generated in the reactor pressure vessel is fed directly to the turbine. During operation of the BWR plant, the cooling water in the reactor core is decomposed by irradiation with radiation such as neutrons and γ rays generated by fission, and hydrogen and oxygen are generated. Such hydrogen and oxygen are transferred to the turbine system together with the steam. At this time, the steam finally becomes condensed water in the condenser, but hydrogen and oxygen remain as noncondensable gases. The non-condensable gas inside the condenser is exhausted after ensuring a safe state. In particular, a mixed gas of hydrogen and oxygen has a risk of combustion when recombined in a gas phase reaction. For this reason, in the BWR plant, a recombiner filled with a combustion catalyst that promotes recombination of hydrogen and oxygen is provided in the off-gas piping, and this recombiner recombines hydrogen and oxygen generated by radiolysis. ing. Hydrogen and oxygen are recombined by the reaction shown in (Formula 1).

Figure 2012021777
Figure 2012021777

最近、BWRプラントの起動時に、オフガス系の配管に設けられた再結合器から排出されるガス中の水素濃度が増大し、BWRプラントの運転を停止しなければならないという事象が発生した。   Recently, when the BWR plant is started, an event has occurred in which the operation of the BWR plant has to be stopped due to an increase in the hydrogen concentration in the gas discharged from the recombiner provided in the off-gas piping.

再結合器の上流に設置されている低圧タービンでは、従来はパッキン部のシール材として亜麻仁油を使用していた。しかしながら、亜麻仁油の使用により気密性が低く、タービン効率が低下したため、タービン効率の低下を改善するためにシール材を液状パッキンに変更した。上記の再結合器から排出されたガスの水素濃度の上昇事象の発生時期は、シール剤を変更した時期とほぼ一致しており、また、再結合器から回収された触媒からケイ素が検出された。   In low-pressure turbines installed upstream of the recombiner, linseed oil has been conventionally used as a seal material for the packing part. However, due to the use of linseed oil, the airtightness was low and the turbine efficiency was lowered. Therefore, the sealing material was changed to liquid packing in order to improve the decrease in turbine efficiency. The occurrence time of the hydrogen concentration increase event of the gas discharged from the recombiner is almost the same as the time when the sealant was changed, and silicon was detected from the catalyst recovered from the recombiner. .

〔非特許文献1〕〔非特許文献2〕〔非特許文献3〕に開示されるように、室温でも液状パッキンから微量のヘキサメチルジシロキサン(HMDS)が発生し、これが可燃式水素センサーの電極に付着して性能が低下することに関する研究例は多くある。   [Non-patent document 1] [Non-patent document 2] [Non-patent document 3] As disclosed in [Non-patent document 2], a small amount of hexamethyldisiloxane (HMDS) is generated from the liquid packing even at room temperature, and this is the electrode of the combustible hydrogen sensor. There are many examples of research on the deterioration of performance due to adhesion.

Karl Arnby, Mohammad Rahmani, Mehri Sanati:Applied Catalysis B, pp.1-7(2004)Karl Arnby, Mohammad Rahmani, Mehri Sanati: Applied Catalysis B, pp.1-7 (2004) Masahiko Matsumiya, Woosuck Shin, Fabin Qiu et al: Sensors and Actuators B, pp516-522(2003)Masahiko Matsumiya, Woosuck Shin, Fabin Qiu et al: Sensors and Actuators B, pp516-522 (2003) Jean-Jacques Ehrhardt, Lionel Colin, Didier Jamois, et al:Sensors and Actuators B, pp117-124(1997)Jean-Jacques Ehrhardt, Lionel Colin, Didier Jamois, et al: Sensors and Actuators B, pp117-124 (1997)

本発明者らは、オフガス系配管に設けられた再結合器から排出されたガスに含まれた水素の濃度上昇に関する検討が行った。HMDSはSi原子を2個含む鎖状化合物だが、Si原子数が3以上に増えると、図2に示すような環状シロキサン化合物(以下、D類と略す)になる。このD類は、燃焼触媒の被毒物質になり得る。これらのことから、低圧タービンにおけるパッキング部のシール剤に用いた液状パッキングから発生したHMDSが、オフガス系の再結合器に充填された燃焼触媒の触媒毒になり、燃焼触媒の触媒作用が低下して再結合器から排出されるガス中の水素濃度が増大したものと考えられる。原子力発電プラントの安全性を維持するためには、事前に再結合器から排出されるガス中の水素濃度を予測できることが望ましい。   The inventors of the present invention have examined the increase in the concentration of hydrogen contained in the gas discharged from the recombiner provided in the off-gas piping. HMDS is a chain compound containing two Si atoms, but when the number of Si atoms increases to 3 or more, it becomes a cyclic siloxane compound (hereinafter abbreviated as class D) as shown in FIG. This class D can be a poison for the combustion catalyst. As a result, HMDS generated from the liquid packing used as the sealant for the packing part in the low-pressure turbine becomes the catalyst poison of the combustion catalyst charged in the off-gas recombiner, and the catalytic action of the combustion catalyst is reduced. It is thought that the hydrogen concentration in the gas discharged from the recombiner increased. In order to maintain the safety of the nuclear power plant, it is desirable to be able to predict the hydrogen concentration in the gas discharged from the recombiner in advance.

本発明の目的は、沸騰水型原子力プラントのオフガス系配管に設けられた再結合器から排出されるガス中の水素濃度を予測する沸騰水型原子力プラントの運転方法,沸騰水型原子力プラント、及び水素濃度の予測装置を提供することにある。   An object of the present invention is to provide a method for operating a boiling water nuclear plant that predicts a hydrogen concentration in a gas discharged from a recombiner provided in an off-gas piping of the boiling water nuclear plant, a boiling water nuclear plant, and An object of the present invention is to provide an apparatus for predicting hydrogen concentration.

上記した課題を解決するための本発明の特徴は、
(1)沸騰水型原子力プラントの気体廃棄物処理系の排ガス再結合器に流入する排ガスの構成成分の濃度,排ガスの温度,排ガス再結合器内の触媒の状態を示す指標、及び前記触媒の性能に影響を及ぼす物質の流入量を入力する入力装置と、前記入力された情報から排ガス再結合器出口の水素濃度を算出する演算装置と算出した水素濃度を表示する表示装置を備えることである。
The feature of the present invention for solving the above-described problems is as follows.
(1) Concentrations of constituents of exhaust gas flowing into the exhaust gas recombiner of the gas waste treatment system of the boiling water nuclear power plant, the temperature of the exhaust gas, the index indicating the state of the catalyst in the exhaust gas recombiner, and the catalyst An input device that inputs an inflow amount of a substance that affects performance, an arithmetic device that calculates the hydrogen concentration at the outlet of the exhaust gas recombiner from the input information, and a display device that displays the calculated hydrogen concentration. .

(2)(1)において好ましくは、入力する排ガスの構成成分が、少なくとも水素,酸素,水蒸気を含むことである。   (2) Preferably in (1), the component of the input exhaust gas contains at least hydrogen, oxygen, and water vapor.

(3)(1)または(2)において好ましくは、排ガス再結合器内の触媒性能の状態を示す指標は、水素酸素再結合反応の活性化エネルギー及び頻度因子,触媒貴金属の添着量,一酸化炭素(CO)化学吸着量の少なくとも一つを含むことである。   (3) Preferably, in (1) or (2), the index indicating the state of catalyst performance in the exhaust gas recombiner is the activation energy and frequency factor of the hydrogen-oxygen recombination reaction, the amount of catalyst noble metal applied, the monoxide It includes at least one of carbon (CO) chemisorption.

(4)(1)乃至(3)において好ましくは、流入量を入力する触媒性能に影響を及ぼす物質が有機ケイ素化合物であることである。   (4) Preferably, in (1) to (3), the substance that affects the catalyst performance for inputting the inflow amount is an organosilicon compound.

本発明によれば、オフガス系配管に設けられた再結合器から排出されるガス中の水素濃度を予測することができるため、原子力発電プラントの安全性をより向上させることができる。   According to the present invention, since the hydrogen concentration in the gas discharged from the recombiner provided in the off-gas piping can be predicted, the safety of the nuclear power plant can be further improved.

本発明の好適な一実施例である実施例1の沸騰水型原子力プラントの構造図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a structural diagram of a boiling water nuclear power plant according to embodiment 1, which is a preferred embodiment of the present invention. 環状シロキサンの化学構造を示す説明図である。It is explanatory drawing which shows the chemical structure of cyclic siloxane. 実施例1の沸騰水型原子力プラントに設ける水素濃度予測装置を示す構成図である。It is a block diagram which shows the hydrogen concentration prediction apparatus provided in the boiling water nuclear power plant of Example 1. FIG. 水素と酸素の再結合反応の試験に用いた再結合反応試験装置を示す構成図である。It is a block diagram which shows the recombination reaction test apparatus used for the test of recombination reaction of hydrogen and oxygen. 再結合器に用いる触媒に対する有機ケイ素の影響評価を行うための有機ケイ素試験装置を示す構成図である。It is a block diagram which shows the organosilicon test apparatus for performing the influence evaluation of the organosilicon with respect to the catalyst used for a recombiner. 図5に示した有機ケイ素試験装置を用いた評価試験の結果を示し、出口水素濃度の時間変化を示す図である。It is a figure which shows the result of the evaluation test using the organosilicon test apparatus shown in FIG. 5, and shows the time change of outlet hydrogen concentration. 仮想の原子力プラントの起動時の出口水素濃度の予測例を示す図である。It is a figure which shows the example of prediction of the exit hydrogen concentration at the time of starting of a virtual nuclear power plant. 仮想の原子力プラントの定格運転時の出口水素濃度の予測例を示す図である。It is a figure which shows the example of prediction of the exit hydrogen concentration at the time of rated operation of a virtual nuclear power plant.

以下、本発明を実施例で具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples.

本発明の好適な一実施例である実施例1の沸騰水型原子力プラント(BWRプラント)を、図1を用いて説明する。本実施例のBWRプラント137は、原子炉,低圧タービン104,復水器106,オフガス系配管131,再結合器(再結合装置)101を備えている。原子炉は、原子炉圧力容器105及び原子炉圧力容器105内に配置した炉心134を備える。核燃料物質を含む複数の燃料集合体111が炉心134に装荷されている。
原子炉には複数の制御棒112が設けられ、これらの制御棒112が炉心に出し入れされることによって原子炉の出力が制御される。
A boiling water nuclear power plant (BWR plant) according to a first embodiment which is a preferred embodiment of the present invention will be described with reference to FIG. The BWR plant 137 of the present embodiment includes a nuclear reactor, a low-pressure turbine 104, a condenser 106, an off-gas system pipe 131, and a recombiner (recombining device) 101. The nuclear reactor includes a reactor pressure vessel 105 and a core 134 disposed in the reactor pressure vessel 105. A plurality of fuel assemblies 111 containing nuclear fuel material are loaded on the core 134.
A plurality of control rods 112 are provided in the nuclear reactor, and the output of the nuclear reactor is controlled by these control rods 112 being taken in and out of the core.

高圧タービン(図示せず)及び低圧タービン104が主蒸気配管109によって原子炉圧力容器105に接続される。低圧タービン104は、高圧タービンの下流に配置されて復水器106に設置される。低圧タービン104のパッキング部にシール材として液状パッキングが用いられる。復水器106に接続された給水配管110が原子炉圧力容器105に接続される。給水ポンプ107が給水配管110に設けられる。発電機108が高圧タービン及び低圧タービン104の回転軸に連結される。   A high pressure turbine (not shown) and a low pressure turbine 104 are connected to the reactor pressure vessel 105 by a main steam line 109. The low pressure turbine 104 is disposed downstream of the high pressure turbine and installed in the condenser 106. Liquid packing is used as a sealing material in the packing portion of the low-pressure turbine 104. A water supply pipe 110 connected to the condenser 106 is connected to the reactor pressure vessel 105. A water supply pump 107 is provided in the water supply pipe 110. A generator 108 is connected to the rotary shafts of the high pressure turbine and the low pressure turbine 104.

オフガス系配管131が復水器106に接続される。オフガス系配管131には、空気抽出器115,除湿冷却器114,排ガス予熱器120,再結合器101,排ガス復水器113がこの順番で設けられる。再結合器101内には、水素と酸素の結合反応を促進させる再結合触媒(以下、触媒という)が充填される。本実施例では、この触媒として、多孔性のスポンジ状金属基材上に担体と活性成分を有する触媒(以下、金属触媒という)を用いた例を示す。この活性成分とは、酸素と水素を水に変換可能な活性成分を示し、水素分子を解離して活性化させる成分である貴金属(Pt,Pd,Rh,Ru及びIr)、及び酸素分子を活性化する成分であるAuから選ばれた少なくとも一種で構成される。本実施例では、スポンジ状金属基材上の表面にアルミナ担体を添着し、その上に活性成分として貴金属である白金(Pt)を分散させた金属触媒を例に説明する。なお、本実施例では、再結合器101に金属触媒を充填した例を示すが、担体を粒状または柱状などに成形したものに活性成分を担持した触媒(セラミック触媒)を充填した再結合器101であってもよい。このセラミック触媒の場合にも、活性成分とは、酸素と水素を水に変換可能な活性成分を示し、水素分子を解離して活性化させる成分である貴金属(Pt,Pd,Rh,Ru及びIr)、及び酸素分子を活性化する成分であるAuから選ばれた少なくとも一種で構成される。   An off-gas piping 131 is connected to the condenser 106. In the off-gas piping 131, an air extractor 115, a dehumidifying cooler 114, an exhaust gas preheater 120, a recombiner 101, and an exhaust gas condenser 113 are provided in this order. The recombiner 101 is filled with a recombination catalyst (hereinafter referred to as catalyst) that promotes the bonding reaction between hydrogen and oxygen. In this example, an example in which a catalyst having a carrier and an active component (hereinafter referred to as a metal catalyst) on a porous sponge-like metal substrate is used as the catalyst. This active component is an active component capable of converting oxygen and hydrogen into water, and activates noble metals (Pt, Pd, Rh, Ru and Ir), which are components that dissociate and activate hydrogen molecules, and oxygen molecules. It is comprised with at least 1 type chosen from Au which is a component to convert. In this embodiment, a metal catalyst in which an alumina carrier is attached to the surface of a sponge-like metal substrate and platinum (Pt), which is a noble metal, is dispersed thereon will be described as an example. In this embodiment, an example in which the recombiner 101 is filled with a metal catalyst is shown. However, the recombiner 101 in which a catalyst (ceramic catalyst) loaded with an active ingredient is packed in a granular or columnar support. It may be. Also in the case of this ceramic catalyst, the active component is an active component capable of converting oxygen and hydrogen into water, and is a noble metal (Pt, Pd, Rh, Ru and Ir) which is a component that dissociates and activates hydrogen molecules. And at least one selected from Au, which is a component that activates oxygen molecules.

BWRプラント137の運転中、原子炉圧力容器105内の冷却水が、図示されていない再循環ポンプ(またはインターナルポンプ)で昇圧され、炉心134に供給される。この冷却水は、燃料集合体111内の核燃料物質の核分裂で発生する熱によって加熱され、一部が蒸気になる。この蒸気は、主蒸気配管109を通って、高圧タービン及び低圧タービン104に順次供給され、高圧タービン及び低圧タービン104を回転させる。これらのタービンに連結された発電機108も回転し、電力を発生させる。低圧タービン104から排気された蒸気は復水器106で凝縮されて水になる。復水器106の底部に溜まっている水は、給水として、給水ポンプ107により昇圧され、給水配管110を通って原子炉圧力容器105に供給される。   During the operation of the BWR plant 137, the cooling water in the reactor pressure vessel 105 is pressurized by a recirculation pump (or an internal pump) not shown and supplied to the core 134. This cooling water is heated by the heat generated by the nuclear fission of the nuclear fuel material in the fuel assembly 111, and a part thereof becomes steam. The steam is sequentially supplied to the high-pressure turbine and the low-pressure turbine 104 through the main steam pipe 109 to rotate the high-pressure turbine and the low-pressure turbine 104. The generator 108 connected to these turbines also rotates and generates electric power. The steam exhausted from the low-pressure turbine 104 is condensed by the condenser 106 to become water. The water accumulated at the bottom of the condenser 106 is boosted by the feed water pump 107 as feed water and supplied to the reactor pressure vessel 105 through the feed water pipe 110.

復水器106内のガスが、空気抽出器115によって吸引され、オフガス系配管131内に排出される。炉心134内の冷却水は、核分裂によって発生する放射線(中性子及びγ線等)を照射されることによって水素及び酸素に分解される。この水素及び酸素は、炉心134で発生する蒸気に随伴し、高圧タービン及び低圧タービン104を経て復水器106に排出される。復水器104に排出された水素及び酸素も、空気抽出器の吸引作用により、オフガス系配管131に排出される。   The gas in the condenser 106 is sucked by the air extractor 115 and discharged into the off-gas system pipe 131. Cooling water in the core 134 is decomposed into hydrogen and oxygen by being irradiated with radiation (neutrons, γ rays, etc.) generated by fission. The hydrogen and oxygen accompany the steam generated in the core 134 and are discharged to the condenser 106 through the high-pressure turbine and the low-pressure turbine 104. Hydrogen and oxygen discharged to the condenser 104 are also discharged to the off-gas piping 131 by the suction action of the air extractor.

復水器104から排出された水素及び酸素を含むガスは、オフガス系配管131を通って流れ、除湿冷却器114に到達する。ガスに含まれた水分が除湿冷却器114で除去され、水分が取り除かれたガスが排ガス予熱器120で所定温度まで加熱される。再結合器101内の触媒による水素と酸素の結合反応は温度が高いほど促進されるので、排ガス予熱器120でのガスの加熱は再結合器101内での水素と酸素の結合反応を促進させることになる。温度が上昇して排ガス予熱器120から排出されたガスは、再結合器101に供給される。ガスに含まれている水素と酸素が、再結合器101内の触媒の作用によって再結合され、水になる。このため、再結合器101から排出されるガスに含まれる水素の濃度が許容範囲内に低減される。再結合器101から排出されたガスは、オフガス系配管131に設けられた冷却器(図示せず)にて冷却され、ガスに含まれている水分が除去される。その後、ガスは、活性炭吸着装置(図示せず)に供給されてガスに含まれている放射性物質が除去されて排出される。   The gas containing hydrogen and oxygen discharged from the condenser 104 flows through the off-gas system pipe 131 and reaches the dehumidifying cooler 114. The moisture contained in the gas is removed by the dehumidifying cooler 114, and the gas from which the moisture has been removed is heated to a predetermined temperature by the exhaust gas preheater 120. Since the hydrogen / oxygen bonding reaction by the catalyst in the recombiner 101 is promoted as the temperature increases, the heating of the gas in the exhaust gas preheater 120 promotes the hydrogen / oxygen bonding reaction in the recombiner 101. It will be. The gas whose temperature rises and is discharged from the exhaust gas preheater 120 is supplied to the recombiner 101. Hydrogen and oxygen contained in the gas are recombined by the action of the catalyst in the recombiner 101 to become water. For this reason, the concentration of hydrogen contained in the gas discharged from the recombiner 101 is reduced within an allowable range. The gas discharged from the recombiner 101 is cooled by a cooler (not shown) provided in the off-gas system pipe 131, and moisture contained in the gas is removed. Thereafter, the gas is supplied to an activated carbon adsorption device (not shown), and the radioactive substance contained in the gas is removed and discharged.

次に、本実施例の沸騰水型原子力プラントの再結合器101から排出されるガス中の水素濃度(以下、出口水素濃度という)を予測する水素濃度予測装置7について、図3を用いて説明する。水素濃度予測装置7は、必要なデータを操作者が入力する入力装置1と、この入力装置1から入力されデータに基づいて出口水素濃度などを演算する演算装置2と、入力装置1から入力されたデータを表示し、かつ、演算装置2で演算された結果を表示する表示装置3を備える。入力装置1が演算装置2に接続され、演算装置2が表示装置3に接続される。水素濃度予測装置7は、より好ましくは、演算装置2の演算結果を記憶するデータ記憶装置6を有する。このデータ記憶装置6は、演算装置2に接続される。   Next, a hydrogen concentration prediction device 7 that predicts the hydrogen concentration in the gas discharged from the recombiner 101 of the boiling water nuclear power plant of the present embodiment (hereinafter referred to as outlet hydrogen concentration) will be described with reference to FIG. To do. The hydrogen concentration prediction device 7 is input from the input device 1 for inputting necessary data by the operator, the arithmetic device 2 for calculating the outlet hydrogen concentration or the like based on the data input from the input device 1, and the input device 1. And a display device 3 for displaying the data calculated by the calculation device 2. The input device 1 is connected to the arithmetic device 2, and the arithmetic device 2 is connected to the display device 3. More preferably, the hydrogen concentration prediction device 7 includes a data storage device 6 that stores the calculation result of the calculation device 2. The data storage device 6 is connected to the arithmetic device 2.

入力装置1は、キーボードやマウス等の一般的な入力装置で構成することができる。演算装置2は、一般的な情報処理装置(パーソナルコンピュータなど)で構成される。表示装置3は、演算装置2に接続可能なディスプレイやモニタで構成される。データ記憶装置6は、演算装置2に接続可能な記憶装置であり、ハードディスクドライブなどで構成される。これらの入力装置1,演算装置2,表示装置3及びデータ記憶装置6は、上記のような汎用品でなく、水素濃度予測装置7の専用機器として設計されたものであってもよい。   The input device 1 can be configured by a general input device such as a keyboard and a mouse. The arithmetic device 2 is composed of a general information processing device (such as a personal computer). The display device 3 includes a display and a monitor that can be connected to the arithmetic device 2. The data storage device 6 is a storage device that can be connected to the arithmetic device 2 and is composed of a hard disk drive or the like. These input device 1, arithmetic device 2, display device 3, and data storage device 6 are not general-purpose products as described above, but may be designed as dedicated devices for the hydrogen concentration prediction device 7.

操作者が入力装置1から排ガスデータ4と触媒状態データ5を入力すると、排ガスデータ4と触媒状態データ5が演算装置2に入力される。この排ガスデータ4には、再結合器101に流入する排ガスに含まれる水素,酸素,窒素及び水蒸気の各流量のデータと、再結合器101に流入する排ガスの温度のデータと、再結合器101に流入する排ガスに含まれる触媒被毒物質(本実施例では、有機ケイ素)の流量のデータが含まれている。再結合器101に流入する水素流量とは、原子炉にて放射線分解により発生する水素量に等しく、原子炉の出力にほぼ比例しているため、原子炉の出力に基づいて求めることができる。なお、水の放射線分解によって生じた原子炉水中の酸素及び過酸化水素濃度を低減することを目的として、給水系から水素を添加する技術(水素注入)を実施する原子力プラントに対しては、再結合器101に流入する水素流量は、放射線分解によって発生する水素量と水素注入で添加される水素量を考慮した値となる。再結合器101に流入する酸素流量とは、原子炉にて放射線分解により発生する酸素量と、タービン等の真空機器の内部に流入する空気に含まれる酸素量と、気体廃棄物処理系に注入される空気に含まれる酸素量から求めることができる。この放射線分解によって発生する酸素量は、原子炉の出力にほぼ比例する値であるため、原子炉の出力に基づいて求めることができる。再結合器101に流入する窒素流量とは、タービン等の真空機器の内部に流入する空気に含まれる窒素量と、気体廃棄物処理系で混合される空気に含まれる窒素量から求めることができる。再結合器101に流入する排ガスの温度とは、排ガス予熱器120に設定される温度条件によって決まる値であるため、この温度条件に基づいて決定さる。再結合器101に流入する排ガスに含まれる有機ケイ素の流量とは、原子炉内で使用したシール材などに含まれる有機ケイ素化合物の量に基づいて求めることができる。しかしながら、原子炉内で用いたシール材の量を全て把握することは困難であるため、本実施例では、事前に、再結合器101に流入する排ガスをサンプリングし、この排ガスに含まれる有機ケイ素の流量を分析することによって、排ガスに含まれる有機ケイ素の流量を求めることとする。この分析方法としては、ガスクロマトグラフ質量分析計(GC−MS)を適用することができる。   When the operator inputs the exhaust gas data 4 and the catalyst state data 5 from the input device 1, the exhaust gas data 4 and the catalyst state data 5 are input to the arithmetic device 2. The exhaust gas data 4 includes data on the flow rates of hydrogen, oxygen, nitrogen and water vapor contained in the exhaust gas flowing into the recombiner 101, data on the temperature of the exhaust gas flowing into the recombiner 101, and the recombiner 101. The flow rate data of the catalyst poisoning substance (in this embodiment, organosilicon) contained in the exhaust gas flowing into the gas is included. The flow rate of hydrogen flowing into the recombiner 101 is equal to the amount of hydrogen generated by radiolysis in the nuclear reactor and is substantially proportional to the output of the nuclear reactor, and can be obtained based on the output of the nuclear reactor. For nuclear power plants that implement technology for adding hydrogen from the water supply system (hydrogen injection) for the purpose of reducing the oxygen and hydrogen peroxide concentrations in the reactor water caused by the radiolysis of water. The flow rate of hydrogen flowing into the coupler 101 is a value considering the amount of hydrogen generated by radiolysis and the amount of hydrogen added by hydrogen injection. The flow rate of oxygen flowing into the recombiner 101 includes the amount of oxygen generated by radiolysis in the nuclear reactor, the amount of oxygen contained in the air flowing into the vacuum equipment such as the turbine, and the gas waste treatment system. It can be determined from the amount of oxygen contained in the air. Since the amount of oxygen generated by this radiolysis is a value substantially proportional to the output of the reactor, it can be obtained based on the output of the reactor. The flow rate of nitrogen flowing into the recombiner 101 can be determined from the amount of nitrogen contained in the air flowing into the vacuum equipment such as the turbine and the amount of nitrogen contained in the air mixed in the gas waste treatment system. . Since the temperature of the exhaust gas flowing into the recombiner 101 is a value determined by the temperature condition set in the exhaust gas preheater 120, it is determined based on this temperature condition. The flow rate of the organosilicon contained in the exhaust gas flowing into the recombiner 101 can be determined based on the amount of the organosilicon compound contained in the sealing material used in the nuclear reactor. However, since it is difficult to grasp all the amount of the sealing material used in the nuclear reactor, in this embodiment, the exhaust gas flowing into the recombiner 101 is sampled in advance, and the organosilicon contained in the exhaust gas The flow rate of the organosilicon contained in the exhaust gas is determined by analyzing the flow rate of. As this analysis method, a gas chromatograph mass spectrometer (GC-MS) can be applied.

触媒状態データ5には、再結合器101に充填される触媒に含まれる活性成分の量、触媒の活性化エネルギー及び頻度因子のデータが含まれている。本実施例では、金属触媒の活性成分として貴金属(Pt)を用いた例を示すため、触媒に含まれる活性成分量とは金属触媒に添加された貴金属添着量となる。なお、触媒状態データ5の活性成分の量として貴金属添着量が含まれる例を示したが、この貴金属添着量の替わりに、触媒における一酸化炭素(CO)化学吸着量のデータであっても良い。触媒の活性化エネルギー及び頻度因子のデータについては、図4に示す再結合反応試験装置16と図5に示す有機ケイ素試験装置17を用いて、事前に求めることができる。ここで、再結合反応試験装置16及び有機ケイ素試験装置17を用いた触媒の活性化エネルギー及び頻度因子のデータの取得方法について説明する。   The catalyst state data 5 includes data on the amount of active components contained in the catalyst charged in the recombiner 101, the activation energy of the catalyst, and the frequency factor. In this embodiment, an example in which noble metal (Pt) is used as the active component of the metal catalyst is shown. Therefore, the amount of the active component contained in the catalyst is the amount of noble metal added to the metal catalyst. Although an example in which the noble metal deposition amount is included as the amount of the active component in the catalyst state data 5 is shown, data of carbon monoxide (CO) chemisorption amount on the catalyst may be used instead of the noble metal deposition amount. . The catalyst activation energy and frequency factor data can be obtained in advance using the recombination reaction test apparatus 16 shown in FIG. 4 and the organosilicon test apparatus 17 shown in FIG. Here, a method for obtaining catalyst activation energy and frequency factor data using the recombination reaction test apparatus 16 and the organosilicon test apparatus 17 will be described.

まずは、図4に示す再結合反応試験装置16を用いて、触媒の反応率について説明する。再結合反応試験装置16は、図4に示すように、径25mm,高さ11mmの円盤状に成形された金属触媒を高さ方向に5枚積層させた触媒層11と、反応管12と、断熱材13と、温度測定装置18と、水素流量を測定する水素測定装置19と、除湿器20を備える。反応管12の内部に触媒層11を設置し、反応管12と触媒層11の間に断熱材13が敷き詰められる。この触媒層11は、再結合器101に用いる金属触媒と同じ成分で構成され、本実施例の場合、スポンジ状金属基材上の表面にアルミナ担体を添着し、その上に活性成分として貴金属である白金(Pt)を分散させた金属触媒となる。触媒層11の下流側に、温度測定装置18と、水素測定装置19と、除湿器20が設置される。除湿器20は、水素測定装置19の上流側に設置され、触媒層11から排出されるガスに含まれる水蒸気を取り除く機能を有する。   First, the reaction rate of a catalyst is demonstrated using the recombination reaction test apparatus 16 shown in FIG. As shown in FIG. 4, the recombination reaction test apparatus 16 includes a catalyst layer 11 in which five metal catalysts formed in a disk shape having a diameter of 25 mm and a height of 11 mm are stacked in the height direction, a reaction tube 12, A heat insulating material 13, a temperature measuring device 18, a hydrogen measuring device 19 that measures a hydrogen flow rate, and a dehumidifier 20 are provided. A catalyst layer 11 is installed inside the reaction tube 12, and a heat insulating material 13 is spread between the reaction tube 12 and the catalyst layer 11. This catalyst layer 11 is composed of the same components as the metal catalyst used in the recombiner 101. In this embodiment, an alumina carrier is attached to the surface of the sponge-like metal substrate, and noble metal is used as the active component thereon. It becomes a metal catalyst in which some platinum (Pt) is dispersed. A temperature measuring device 18, a hydrogen measuring device 19, and a dehumidifier 20 are installed on the downstream side of the catalyst layer 11. The dehumidifier 20 is installed on the upstream side of the hydrogen measuring device 19 and has a function of removing water vapor contained in the gas discharged from the catalyst layer 11.

再結合反応試験装置16の上部から水素,酸素,窒素,蒸気を含む反応ガス10を流入させると、反応ガス10は、触媒層11を通過して下流側から排出される。温度測定装置18は、触媒層11から排出されるガスの温度を測定する。また、除湿器20にて水蒸気が取り除かれたガスが水素測定装置19に送られ、水素測定装置19が触媒層11から排出されるガスに含まれる水素の流量(触媒層11を通過した後のガスに含まれる水素の流量、以下、出口水素流量という)を測定する。再結合反応試験装置16に流入する水素流量(以下、入口水素流量という)は、触媒層11に流入する前の反応ガス10に含まれる水素の流量である。この入口水素流量と水素測定装置19で測定した出口水素流量から、(式2)を用いて触媒の反応率を求めることができる。   When a reaction gas 10 containing hydrogen, oxygen, nitrogen, and steam is introduced from the upper part of the recombination reaction test apparatus 16, the reaction gas 10 passes through the catalyst layer 11 and is discharged from the downstream side. The temperature measuring device 18 measures the temperature of the gas discharged from the catalyst layer 11. Further, the gas from which the water vapor has been removed by the dehumidifier 20 is sent to the hydrogen measuring device 19, and the hydrogen measuring device 19 detects the flow rate of hydrogen contained in the gas discharged from the catalyst layer 11 (after passing through the catalyst layer 11. The flow rate of hydrogen contained in the gas (hereinafter referred to as the outlet hydrogen flow rate) is measured. The flow rate of hydrogen flowing into the recombination reaction test apparatus 16 (hereinafter referred to as inlet hydrogen flow rate) is the flow rate of hydrogen contained in the reaction gas 10 before flowing into the catalyst layer 11. From the inlet hydrogen flow rate and the outlet hydrogen flow rate measured by the hydrogen measuring device 19, the reaction rate of the catalyst can be obtained using (Equation 2).

Figure 2012021777
Figure 2012021777

ここで、触媒の温度は水素の反応量で決まることから、触媒層11の流入する前の反応ガス10に含まれる水素と酸素の流量を複数種類に設定して、再結合反応試験装置16の出口水素流量を、水素測定装置19を用いて測定した。このように、水素と酸素の流量を替えた複数の条件下で試験することによって、複数の温度条件での触媒の反応率を求めることができる。本実施例では、表1に示すように、反応ガス10に含まれる水素と酸素の流量を6つの条件に変更して水素酸素の再結合反応試験を行った。ここで、反応ガス10に含まれる窒素の流量及び反応ガス10の入口温度、流速は、全ての試験条件でほぼ一定となるように設定した。本実施例では、水素と酸素の流量を変更して複数種類の温度条件で触媒の反応率を求めるが、再結合反応試験装置16に流入する反応ガス10の温度(以下、入口温度という)を変化させることによって、複数種類の温度条件での触媒の反応率を求めても良い。さらに、反応ガス10に含まれる水素,酸素及び窒素の各成分の濃度や流量などの試験条件を、実機の原子力プランを模擬するように設定することによって、実機での出口水素濃度の予測精度を向上させることができる。   Here, since the temperature of the catalyst is determined by the reaction amount of hydrogen, the flow rates of hydrogen and oxygen contained in the reaction gas 10 before flowing into the catalyst layer 11 are set to a plurality of types, and the recombination reaction test apparatus 16 The outlet hydrogen flow rate was measured using a hydrogen measuring device 19. Thus, the reaction rate of the catalyst under a plurality of temperature conditions can be obtained by performing the test under a plurality of conditions in which the flow rates of hydrogen and oxygen are changed. In this example, as shown in Table 1, a hydrogen-oxygen recombination reaction test was performed by changing the flow rates of hydrogen and oxygen contained in the reaction gas 10 to six conditions. Here, the flow rate of nitrogen contained in the reaction gas 10 and the inlet temperature and flow rate of the reaction gas 10 were set to be substantially constant under all test conditions. In this embodiment, the reaction rate of the catalyst is obtained under a plurality of types of temperature conditions by changing the flow rates of hydrogen and oxygen, but the temperature of the reaction gas 10 flowing into the recombination reaction test apparatus 16 (hereinafter referred to as inlet temperature) is determined. By changing, the reaction rate of the catalyst under a plurality of types of temperature conditions may be obtained. Furthermore, by setting the test conditions such as the concentration and flow rate of each component of hydrogen, oxygen and nitrogen contained in the reaction gas 10 so as to simulate the nuclear plan of the actual machine, the prediction accuracy of the outlet hydrogen concentration in the actual machine can be improved. Can be improved.

Figure 2012021777
Figure 2012021777

表1に示す6つの試験条件で実験した水素酸素の再結合反応試験の結果を、表2に示す。表2の「反応率」の「実験値」が、それぞれの試験条件で得られた入口水素流量と出口水素流量に基づいて得られた反応率を示し、表2の「出口温度」の「実験値」が、それぞれの試験条件において温度測定装置18で測定された出口温度を示す。このようにして、複数の温度条件での触媒の反応率と出口温度のデータを取得する。   Table 2 shows the results of the hydrogen-oxygen recombination reaction test conducted under the six test conditions shown in Table 1. The “experimental value” of “reaction rate” in Table 2 indicates the reaction rate obtained based on the inlet hydrogen flow rate and the outlet hydrogen flow rate obtained under the respective test conditions. The “value” indicates the outlet temperature measured by the temperature measuring device 18 under each test condition. In this way, data on the reaction rate and outlet temperature of the catalyst under a plurality of temperature conditions is acquired.

複数の温度条件での反応率が求まれば、アレニウスの式である(式3)から触媒の活性化エネルギーと頻度因子を求めることができる。以下、触媒の活性化エネルギーと頻度因子を求める方法について説明する。   If the reaction rate under a plurality of temperature conditions is obtained, the activation energy and frequency factor of the catalyst can be obtained from the Arrhenius equation (Equation 3). Hereinafter, a method for obtaining the activation energy and frequency factor of the catalyst will be described.

Figure 2012021777
Figure 2012021777

ここで、(式3)に示すEaは活性化エネルギー、Aは頻度因子、Rは気体定数、Tは絶対温度、pは水素の反応次数、qは酸素の反応次数を表す。また、[H2],[O2]はそれぞれ水素,酸素の濃度を表す。フィッティングにより実験結果をよく再現できる触媒の活性化エネルギーEaと、頻度因子Aを設定することで、反応速度の算出が可能となる。 Here, E a shown in (Expression 3) is activation energy, A is a frequency factor, R is a gas constant, T is an absolute temperature, p is a reaction order of hydrogen, and q is a reaction order of oxygen. [H 2 ] and [O 2 ] represent the concentrations of hydrogen and oxygen, respectively. The reaction rate can be calculated by setting the activation energy E a of the catalyst and the frequency factor A that can reproduce experimental results well by fitting.

水素の反応次数pと酸素の反応次数qについては、化学反応の量論的にはp=1,q=0.5となる。しかしながら、実際の触媒上の反応における各成分濃度の反応への寄与の程度から水素の反応次数pと酸素の反応次数qの値を調整することにより、実機での出口水素濃度の予測精度を向上させることができる。例えば、酸素原子の白金への乖離吸着エネルギーが水素原子よりも大きく、白金表面上にはより多くの酸素原子が吸着していることから、気相の酸素濃度が触媒での反応に対しての寄与が低くなることから、水素の反応次数pの値を1とし、酸素の反応次数qの値を0.5よりも小さくすることで、より正確に実験結果を再現可能である。   The reaction order p of hydrogen and the reaction order q of oxygen are p = 1 and q = 0.5 in terms of the stoichiometry of the chemical reaction. However, by adjusting the values of the reaction order p of hydrogen and the reaction order q of oxygen from the degree of contribution of each component concentration to the reaction in the actual reaction on the catalyst, the prediction accuracy of the outlet hydrogen concentration in the actual machine is improved. Can be made. For example, the dissociative adsorption energy of oxygen atoms to platinum is greater than that of hydrogen atoms, and more oxygen atoms are adsorbed on the platinum surface. Since the contribution becomes lower, the experimental result can be reproduced more accurately by setting the value of the reaction order p of hydrogen to 1 and the value of the reaction order q of oxygen to less than 0.5.

出口温度の計算方法を以下に示す。水素1molと酸素0.5molから水蒸気1molを生成するときの発熱量は241.8kJ/molである。したがって、上記のアレニウスの(式3)により反応速度が求められるため、触媒に滞留する時間とその時の反応量から発熱量が求まり、その体積を占める気体の比熱で除することにより温度上昇量が求まる。それを反応前の温度に加えることにより、反応後の温度が求まる。なお、分単位よりも長いタイムスケールでの評価を行う場合には、熱伝導に要する時間を無視することが可能であり、上記の平衡状態の計算により十分高精度の予測が可能である。また、本実施例の再結合反応試験装置16のように小規模の体系で放熱の影響が無視できない場合には、触媒から外気への熱伝達を考慮することも可能である。   The method for calculating the outlet temperature is shown below. The calorific value when producing 1 mol of water vapor from 1 mol of hydrogen and 0.5 mol of oxygen is 241.8 kJ / mol. Therefore, since the reaction rate is obtained by the above-mentioned Arrhenius (Equation 3), the calorific value is obtained from the residence time in the catalyst and the reaction amount at that time, and the temperature rise is obtained by dividing by the specific heat of the gas occupying the volume. I want. By adding it to the temperature before the reaction, the temperature after the reaction is determined. When the evaluation is performed on a time scale longer than a minute unit, the time required for heat conduction can be ignored, and sufficiently accurate prediction can be performed by the above-described calculation of the equilibrium state. Further, when the influence of heat radiation cannot be ignored in a small scale system like the recombination reaction test apparatus 16 of the present embodiment, heat transfer from the catalyst to the outside air can be considered.

アレニウスの式(式3)を用い、活性化エネルギーEa,頻度因子A,水素の反応次数p及び酸素の反応次数qのパラメータを変化させて、触媒の反応率及び出口温度を算出する。ここで算出された触媒の反応率及び出口温度が、再結合反応試験装置16の実験で得られた触媒の反応率及び出口温度をよく再現するような活性化エネルギーEa,頻度因子A,水素の反応次数p及び酸素の反応次数qが、本実施例の金属触媒における活性化エネルギーEa,頻度因子A,水素の反応次数p及び酸素の反応次数qの値となる。表2には、活性化エネルギーEa=2220,頻度因子A=3600,水素の反応次数p=1.0,酸素の反応次数q=0.2、触媒層から外気への熱伝達係数を約5.8W/m2Kと設定したときに得られる反応率を「反応率」の「計算値」の欄に示し、出口温度を「出口温度」の「計算値」の欄に示し、この値のときに実験値と計算値がよい一致を示した。つまり、本実施例に用いる金属触媒の活性化エネルギーはEa=2220、頻度因子はA=3600となる。 Using the Arrhenius equation (Equation 3), the reaction rate of the catalyst and the outlet temperature are calculated by changing the parameters of the activation energy E a , the frequency factor A, the hydrogen reaction order p, and the oxygen reaction order q. The activation rate E a , frequency factor A, hydrogen such that the calculated reaction rate and outlet temperature of the catalyst well reproduce the catalyst reaction rate and outlet temperature obtained in the experiment of the recombination reaction test apparatus 16. The reaction order p and oxygen reaction order q are the activation energy E a , frequency factor A, hydrogen reaction order p and oxygen reaction order q in the metal catalyst of this example. Table 2 shows activation energy E a = 2220, frequency factor A = 3600, hydrogen reaction order p = 1.0, oxygen reaction order q = 0.2, and heat transfer coefficient from the catalyst layer to the outside air. The reaction rate obtained when 5.8 W / m 2 K is set is indicated in the “calculated value” column of “reaction rate”, and the outlet temperature is indicated in the “calculated value” column of “exit temperature”. The experimental value and the calculated value are in good agreement. That is, the activation energy of the metal catalyst used in this example is E a = 2220, and the frequency factor is A = 3600.

Figure 2012021777
Figure 2012021777

以上のように、操作者は、再結合器101に流入する排ガスデータ4と再結合器101に充填する触媒の状態を示す触媒状態データ5を、事前に取得して、入力装置1に入力することとなる。   As described above, the operator acquires the exhaust gas data 4 flowing into the recombiner 101 and the catalyst state data 5 indicating the state of the catalyst filled in the recombiner 101 in advance and inputs them to the input device 1. It will be.

次に、水素濃度予測装置7(図3)を用いて、騰水型原子力プラントの再結合器101から排出されるガスに含まれる水素濃度(出口水素濃度)を予測する方法について説明する。前述したアレニウスの式(式3)に、被毒物質による活性低下の項を加えた式(式4)を用いることで再結合器101から排出されるガスに含まれる水素濃度を、求めることができる。   Next, a method for predicting the hydrogen concentration (outlet hydrogen concentration) contained in the gas discharged from the recombiner 101 of the rising water nuclear plant using the hydrogen concentration prediction device 7 (FIG. 3) will be described. The concentration of hydrogen contained in the gas discharged from the recombiner 101 can be obtained by using the equation (equation 4) obtained by adding the term of activity decrease due to the poisonous substance to the above-mentioned Arrhenius equation (equation 3). it can.

Figure 2012021777
Figure 2012021777

(式4)に示すM0は触媒の初期の活性量、Mは時刻tでの触媒の活性量を表す。触媒の活性量Mは本実施例においては以下の方法によって求める。ただし、これに限定するものではない。 In Equation (4), M 0 represents an initial activity amount of the catalyst, and M represents an activity amount of the catalyst at time t. In this embodiment, the catalyst activity amount M is determined by the following method. However, the present invention is not limited to this.

Figure 2012021777
Figure 2012021777

Figure 2012021777
Figure 2012021777

(式5)(式6)に示すCSIL,jは積層された触媒のj層目における有機ケイ素化合物の濃度、XSILは有機ケイ素の付着係数、nは被毒係数、rは回復係数を表す。層数jは触媒が積層された構造の場合は実際の層数と合わせても良いし、計算上仮想的に分割された層でも良い。また、付着係数XSILは流入した有機ケイ素の内、触媒に付着する割合を示し、被毒係数nは触媒に付着した有機ケイ素により白金が失活する割合を示し、回復係数rは失活した白金が活性を回復する割合を示す。これらのパラメータは、実験室規模の触媒層を用い、流入ガス中に有機ケイ素化合物を混入させ、触媒性能が低下するときの出口水素濃度の経時変化を測定することにより、求めることができる。より具体的には、(式4)の算出結果が、試験の出口水素濃度の経時変化を最もよく再現できる付着係数,被毒係数,回復係数を選定することで、該当する触媒の付着係数,被毒係数,回復係数を求めることができる。 C SIL, j shown in (Equation 5) and (Equation 6) is the concentration of the organosilicon compound in the j-th layer of the laminated catalyst, X SIL is the adhesion coefficient of organosilicon, n is the poisoning coefficient, and r is the recovery coefficient. To express. The number of layers j may be the same as the actual number of layers in the case of a structure in which catalysts are stacked, or may be a layer virtually divided in calculation. In addition, the adhesion coefficient X SIL indicates the ratio of adhering organic silicon adhering to the catalyst, the poisoning coefficient n indicates the ratio of inactivation of platinum by the organic silicon adhering to the catalyst, and the recovery coefficient r is inactivated. Indicates the rate at which platinum recovers activity. These parameters can be obtained by using a laboratory-scale catalyst layer, mixing an organosilicon compound in the inflow gas, and measuring the change over time in the outlet hydrogen concentration when the catalyst performance deteriorates. More specifically, the calculation result of (Equation 4) selects the adhesion coefficient, poisoning coefficient, and recovery coefficient that can best reproduce the change over time in the outlet hydrogen concentration of the test. The poisoning coefficient and recovery coefficient can be obtained.

以下に、図5に示す有機ケイ素試験装置17を用いた、触媒に対する有機ケイ素の影響評価試験について説明する。有機ケイ素試験装置17は、図4に示す再結合反応試験装置16の上流側に、有機ケイ素注入機構14及びシリンジポンプ15を備えた構成を有する。触媒層11は、図4と同様、径25mm,高さ11mmの円盤状に成形された金属触媒を高さ方向に5枚積層させた触媒層である。有機ケイ素試験装置17の上部から流入させる反応ガス10は、水素,酸素,窒素及び水蒸気を含んでいる。この反応ガス10の条件は、水素流量が0.028Nm3/h、酸素流量が0.015Nm3/h、窒素流量が0.011Nm3/h、水蒸気流量:3.9kg/h、反応ガスの入口温度が155℃、線流速が2.8Nm/sとして試験した。また、有機ケイ素化合物としてデカメチルシクロペンタシロキサン(以下、D5という)を用いた。D5の流入速度をパラメータとし3種類の流入速度の試験を行った。D5の3種類の流入速度としては、ケース1が6μL/h、ケース2が1.5μL/h、ケース3が0.75μL/hとする。D5はヘキサンで希釈し、希釈液をシリンジポンプ15にて60μL/hの割合で注入した。図6に各ケースの試験結果と、(式4)〜(式6)を用いて算出した出口水素濃度の経時変化を示す。図6の実線が算出結果であり、各点が試験結果を示す。なお、水素濃度とは全非凝縮性ガス中に対する水素の体積比で表す。各パラメータとしては、活性化エネルギーEa=2220,頻度因子A=3600,水素の反応次数p=1.0,酸素の反応次数q=0.2,有機ケイ素の付着係数XSIL=0.95,被毒係数n=3.7,回復係数r=0.0007の値を用いたときの計算結果が、実験結果をよく再現した。また、M0は触媒の貴金属添着量や一酸化炭素(CO)化学吸着量から設定することができる。 Below, the influence evaluation test of the organosilicon with respect to a catalyst using the organosilicon test apparatus 17 shown in FIG. 5 is demonstrated. The organosilicon test apparatus 17 has a configuration including an organosilicon injection mechanism 14 and a syringe pump 15 on the upstream side of the recombination reaction test apparatus 16 shown in FIG. As in FIG. 4, the catalyst layer 11 is a catalyst layer in which five metal catalysts formed in a disk shape with a diameter of 25 mm and a height of 11 mm are stacked in the height direction. The reaction gas 10 introduced from the upper part of the organosilicon test apparatus 17 contains hydrogen, oxygen, nitrogen and water vapor. The conditions of the reaction gas 10 are as follows: the hydrogen flow rate is 0.028 Nm 3 / h, the oxygen flow rate is 0.015 Nm 3 / h, the nitrogen flow rate is 0.011 Nm 3 / h, the water vapor flow rate is 3.9 kg / h, The test was conducted at an inlet temperature of 155 ° C. and a linear flow rate of 2.8 Nm / s. Decamethylcyclopentasiloxane (hereinafter referred to as D5) was used as the organosilicon compound. Three types of inflow rates were tested using the inflow rate of D5 as a parameter. The three inflow velocities of D5 are 6 μL / h for case 1, 1.5 μL / h for case 2, and 0.75 μL / h for case 3. D5 was diluted with hexane, and the diluted solution was injected by the syringe pump 15 at a rate of 60 μL / h. FIG. 6 shows the test results of each case and the change over time in the outlet hydrogen concentration calculated using (Equation 4) to (Equation 6). The solid line in FIG. 6 is the calculation result, and each point indicates the test result. The hydrogen concentration is expressed as a volume ratio of hydrogen to the total non-condensable gas. As parameters, activation energy E a = 2220, frequency factor A = 3600, hydrogen reaction order p = 1.0, oxygen reaction order q = 0.2, organosilicon adhesion coefficient X SIL = 0.95 The calculation results using the values of poisoning coefficient n = 3.7 and recovery coefficient r = 0.0007 reproduced the experimental results well. M 0 can be set from the amount of precious metal adsorbed on the catalyst and the amount of carbon monoxide (CO) chemisorption.

以上のようにして設定したパラメータを用いて、実際の原子力プラントの予測を行うことができる。以下に例を示す。本実施例においては、再結合器101の触媒層の寸法を径800mm,層高200mmとした。パラメータは上述した活性化エネルギーEa=2220,頻度因子A=3600,水素の反応次数p=1.0,酸素の反応次数q=0.2,有機ケイ素の付着係数XSIL=0.95,被毒係数n=3.7,回復係数r=0.0007を用いた。有機ケイ素(D5)の流入量としては、3とおりの計算を行い、各流入量はケース1:5×10-4mol/min、ケース2:3×10-4mol/min、ケース3:1×10-4mol/minとした。また、再結合器101に流入するガスの条件としてはプラント起動時を想定し表3のとおりとした。表3では、原子力プラントの起動開始からの経過時間が0−12時間と、12−24時間と、24−36時間と、36−48時間の各々での水素,酸素,窒素,水蒸気の流入量を示す。 The actual nuclear power plant can be predicted using the parameters set as described above. An example is shown below. In this embodiment, the dimensions of the catalyst layer of the recombiner 101 are a diameter of 800 mm and a layer height of 200 mm. The parameters are the activation energy E a = 2220, frequency factor A = 3600, hydrogen reaction order p = 1.0, oxygen reaction order q = 0.2, organosilicon adhesion coefficient X SIL = 0.95, The poisoning coefficient n = 3.7 and the recovery coefficient r = 0.0007 were used. As the inflow amount of organosilicon (D5), three kinds of calculations are performed, and each inflow amount is Case 1: 5 × 10 −4 mol / min, Case 2: 3 × 10 −4 mol / min, Case 3: 1 × 10 -4 mol / min. The conditions for the gas flowing into the recombiner 101 are as shown in Table 3 assuming that the plant is started. In Table 3, the inflows of hydrogen, oxygen, nitrogen, and water vapor in the elapsed time from the start of the nuclear power plant at 0-12 hours, 12-24 hours, 24-36 hours, and 36-48 hours, respectively. Indicates.

Figure 2012021777
Figure 2012021777

上記の条件を用いてD5の流入量が5×10-4mol/min,3×10-4mol/minまたは1×10-4mol/minのときに出口水素濃度の経時間変化を予測した。 Using the above conditions, the change in outlet hydrogen concentration over time was predicted when the inflow of D5 was 5 × 10 −4 mol / min, 3 × 10 −4 mol / min, or 1 × 10 −4 mol / min. .

予測計算を行った結果例を、図7に示す。図7の横軸が原子力プラントの起動開始からの経過時間、縦軸が出口水素濃度を示す。この結果から、D5の流入量が1×10-4mol/minを超える場合には起動時に水素濃度が上昇する可能性が想定される。したがって、排ガス中の有機ケイ素濃度を分析などにより予め定めておき、さらに触媒の活性を評価したりしておくことで、起動時の健全性を本実施例により評価できる。 An example of the result of the prediction calculation is shown in FIG. The horizontal axis of FIG. 7 shows the elapsed time from the start of the nuclear power plant, and the vertical axis shows the outlet hydrogen concentration. From this result, when the inflow amount of D5 exceeds 1 × 10 −4 mol / min, it is assumed that the hydrogen concentration may increase at the time of startup. Therefore, the soundness at the time of start-up can be evaluated according to the present embodiment by previously determining the organosilicon concentration in the exhaust gas by analysis or the like and further evaluating the activity of the catalyst.

即ち、操作者は排ガスデータ4としては、水素流量が0.028Nm3/h、酸素流量が0.015Nm3/h、窒素流量が0.011Nm3/h、水蒸気流量:3.9kg/h、入口温度が155℃とし、触媒状態データ5としては、活性化エネルギーEa=2220,頻度因子A=3600,水素の反応次数p=1.0、酸素の反応次数q=0.2を入力装置1に入力し、有機ケイ素濃度としては、5×10-4mol/min(ケース1),3×10-4mol/min(ケース2),1×10-4mol/min(ケース3)の3つのケースを入力装置1に入力する。演算装置5は、これらの入力データを用いて出口水素濃度の経時変化を演算し、演算結果(例えば、図7)を表示装置3に表示することにより、触媒性能の健全性を評価できる。なお、表示装置3は、入力データを表示できる機能を有することで、入力データの正誤を視覚的に確認できるので好ましい。 That is, as the exhaust gas data 4, the operator has a hydrogen flow rate of 0.028 Nm 3 / h, an oxygen flow rate of 0.015 Nm 3 / h, a nitrogen flow rate of 0.011 Nm 3 / h, a water vapor flow rate of 3.9 kg / h, The inlet temperature is 155 ° C., and the catalyst state data 5 includes activation energy E a = 2220, frequency factor A = 3600, hydrogen reaction order p = 1.0, oxygen reaction order q = 0.2. 1 and the organosilicon concentrations are 5 × 10 −4 mol / min (case 1), 3 × 10 −4 mol / min (case 2), and 1 × 10 −4 mol / min (case 3). Three cases are input to the input device 1. The calculation device 5 can evaluate the soundness of the catalyst performance by calculating the change over time in the outlet hydrogen concentration using these input data and displaying the calculation result (for example, FIG. 7) on the display device 3. In addition, since the display apparatus 3 has a function which can display input data, since the correctness of input data can be confirmed visually, it is preferable.

実施例1では、原子力プラントの起動時における再結合器101の健全性を評価したが、本実施例では定格運転時の長期的な再結合触媒の健全性を評価した例を示す。再結合器101は実施例1と同様に触媒層の寸法を径800mm,層高200mmとした。また、パラメータは活性化エネルギーEa=2220,頻度因子A=3600,水素の反応次数p=1.0,酸素の反応次数q=0.2,有機ケイ素の付着係数XSIL=0.95,被毒係数n=3.7,回復係数r=0とした。ここでは、長期的な評価を行うので、保守性を確保するために回復率rを0としている。それ以外は、実施例1と同じ値である。有機ケイ素(D5)の流入量は3とおりの計算を行い、各流入量はケース1:3×10-7mol/min、ケース2:1×10-7mol/min、ケース3:5×10-8mol/minとした。 In Example 1, although the soundness of the recombiner 101 at the time of starting of a nuclear power plant was evaluated, this example shows the example which evaluated the soundness of the long-term recombination catalyst at the time of rated operation. As in Example 1, the recombiner 101 had a catalyst layer with a diameter of 800 mm and a layer height of 200 mm. The parameters are activation energy E a = 2220, frequency factor A = 3600, hydrogen reaction order p = 1.0, oxygen reaction order q = 0.2, organosilicon adhesion coefficient X SIL = 0.95, The poisoning coefficient n = 3.7 and the recovery coefficient r = 0. Here, since a long-term evaluation is performed, the recovery rate r is set to 0 in order to ensure maintainability. Other than that, it is the same value as Example 1. The amount of inflow of organosilicon (D5) is calculated in three ways, and each inflow amount is Case 1: 3 × 10 −7 mol / min, Case 2: 1 × 10 −7 mol / min, Case 3: 5 × 10 -8 mol / min.

図8は上記の条件により予測計算を行った結果例を示す。横軸が原子力プラントの起動開始からの経過時間、縦軸が再結合器101から排出されるガスの水素濃度の予測値を示す。ケース1では約400日、ケース2では約1100日で水素濃度の上昇が始まる予測結果となった。保守性を含んでいるため、現実的には水素濃度上昇が起こるのは予測よりも遅くなるが、本結果を元に触媒の点検や交換の周期を設定することが可能である。   FIG. 8 shows an example of the result of predictive calculation under the above conditions. The horizontal axis represents the elapsed time from the start of the nuclear power plant, and the vertical axis represents the predicted value of the hydrogen concentration of the gas discharged from the recombiner 101. In case 1, the predicted hydrogen concentration started to increase in about 400 days and in case 2 in about 1100 days. Because it includes conservativeness, the hydrogen concentration actually rises later than expected, but based on this result, it is possible to set the inspection and replacement cycle of the catalyst.

以上のことから、表示装置3は、予め決められた出口水素濃度(例えば、4%)に達する時間を予測して表示する機能を有していても良い。さらに、表示装置3は、予測された時間が予め決められた時間(例えば、次回点検までの時間)を超えないと判断された場合には、再結合触媒の交換を促す表示をする機能を有しても良い。   From the above, the display device 3 may have a function of predicting and displaying the time for reaching a predetermined outlet hydrogen concentration (for example, 4%). Further, the display device 3 has a function of displaying a prompt to replace the recombination catalyst when it is determined that the predicted time does not exceed a predetermined time (for example, the time until the next inspection). You may do it.

1 入力装置
2 演算装置
3 表示装置
4 排ガスデータ
5 触媒状態データ
6 データ記憶装置
10 反応ガス
11 触媒層
12 反応管
13 断熱材
14 有機ケイ素注入機構
15 シリンジポンプ
16 再結合反応試験装置
17 有機ケイ素試験装置
101 再結合器
115 空気抽出器
120 排ガス予熱器
DESCRIPTION OF SYMBOLS 1 Input device 2 Arithmetic device 3 Display device 4 Exhaust gas data 5 Catalyst state data 6 Data storage device 10 Reaction gas 11 Catalyst layer 12 Reaction tube 13 Heat insulating material 14 Organosilicon injection mechanism 15 Syringe pump 16 Recombination reaction test device 17 Organosilicon test Apparatus 101 recombiner 115 air extractor 120 exhaust gas preheater

Claims (8)

沸騰水型原子力プラントの気体廃棄物処理系の排ガス再結合器に流入する排ガスの構成成分の流量,前記排ガスの温度,前記排ガス再結合器内に充填される触媒の状態を示す指標、及び前記触媒の性能に影響を及ぼす被毒物質の流入量を入力する入力装置と、
前記入力装置から入力された情報に基づいて、排ガス再結合器出口の水素濃度を算出する演算装置と、
算出した前記水素濃度または前記水素濃度の時間変化を表示する表示装置を備えることを特徴とする排ガス再結合器の出口水素濃度予測装置。
The flow rate of exhaust gas components flowing into the exhaust gas recombiner of the gas waste treatment system of the boiling water nuclear power plant, the temperature of the exhaust gas, the index indicating the state of the catalyst filled in the exhaust gas recombiner, and An input device for inputting the inflow of poisonous substances that affect the performance of the catalyst;
An arithmetic device that calculates the hydrogen concentration at the exhaust gas recombiner outlet based on the information input from the input device;
An apparatus for predicting the outlet hydrogen concentration of an exhaust gas recombiner, comprising: a display device that displays the calculated hydrogen concentration or a temporal change in the hydrogen concentration.
請求項1に記載の出口水素濃度予測装置において、
前記入力装置に入力する排ガスの構成成分は、少なくとも水素,酸素,水蒸気を含むことを特徴とする排ガス再結合器の出口水素濃度予測装置。
In the outlet hydrogen concentration prediction apparatus according to claim 1,
An exhaust gas recombiner outlet hydrogen concentration predicting device, wherein the exhaust gas constituents input to the input device include at least hydrogen, oxygen, and water vapor.
請求項1又は2に記載の出口水素濃度予測装置において、
前記排ガス再結合器内の触媒の状態を示す指標は、水素酸素再結合反応の活性化エネルギー及び頻度因子,前記触媒に含まれる貴金属の添着量,前記触媒の一酸化炭素化学吸着量の少なくとも一つを含むことを特徴とする排ガス再結合器の出口水素濃度予測装置。
In the outlet hydrogen concentration prediction apparatus according to claim 1 or 2,
The indicator indicating the state of the catalyst in the exhaust gas recombiner is at least one of the activation energy and frequency factor of the hydrogen-oxygen recombination reaction, the amount of precious metal contained in the catalyst, and the amount of carbon monoxide chemisorption of the catalyst. The exhaust hydrogen recombiner outlet hydrogen concentration prediction apparatus characterized by including one.
請求項1乃至3のいずれか1項に記載の出口水素濃度予測装置において、
前記触媒の性能に影響を及ぼす被毒物質が有機ケイ素化合物であることを特徴とする排ガス再結合器の出口水素濃度予測装置。
In the outlet hydrogen concentration prediction apparatus according to any one of claims 1 to 3,
An apparatus for predicting the outlet hydrogen concentration of an exhaust gas recombiner, wherein the poisoning substance affecting the performance of the catalyst is an organosilicon compound.
入力装置と演算装置と表示装置を備える出口水素濃度予測装置を用いた、沸騰水型原子力プラントの気体廃棄物処理系の排ガス再結合器から排出される出口ガス中の水素濃度を予測する水素濃度予測方法であって、
前記出口水素濃度予測装置は、
前記入力装置から入力された前記排ガス再結合器に流入する排ガス情報及び前記排ガス再結合器に充填される触媒の状態を示す触媒情報に基づいて、前記演算装置が前記排ガス再結合器から排出される出口ガス中の水素濃度を予測し、
予測した前記水素濃度または前記水素濃度の時間変化を前記表示装置に表示することを特徴とする水素濃度予測方法。
Hydrogen concentration that predicts the hydrogen concentration in the outlet gas discharged from the exhaust gas recombiner of the gas waste treatment system of the boiling water nuclear plant using the outlet hydrogen concentration prediction device equipped with the input device, the arithmetic device and the display device A prediction method,
The outlet hydrogen concentration prediction device
Based on the exhaust gas information flowing into the exhaust gas recombiner input from the input device and the catalyst information indicating the state of the catalyst filled in the exhaust gas recombiner, the arithmetic unit is discharged from the exhaust gas recombiner. Predict the hydrogen concentration in the outlet gas
A hydrogen concentration prediction method, comprising: displaying the predicted hydrogen concentration or a temporal change in the hydrogen concentration on the display device.
請求項5に記載の水素濃度予測方法において、
前記排ガス情報は、前記排ガス再結合器に流入する前記排ガスに含まれる水素の流量,酸素の流量,水蒸気の流量及び前記触媒の性能に影響を及ぼす被毒物質の流量の情報を含み、
前記触媒情報は、水素酸素の再結合反応の活性化エネルギー及び頻度因子、前記触媒の活性成分量の情報を含み、
前記演算装置は、これらの前記排ガス情報及び前記触媒情報に基づいて、前記排ガス再結合器から排出される前記出口ガス中の水素濃度を予測することを特徴とする水素濃度予測方法。
In the hydrogen concentration prediction method according to claim 5,
The exhaust gas information includes information on the flow rate of hydrogen contained in the exhaust gas flowing into the exhaust gas recombiner, the flow rate of oxygen, the flow rate of water vapor, and the flow rate of poisonous substances that affect the performance of the catalyst,
The catalyst information includes activation energy and frequency factor of hydrogen-oxygen recombination reaction, information on the amount of active components of the catalyst,
The arithmetic unit predicts a hydrogen concentration in the outlet gas discharged from the exhaust gas recombiner based on the exhaust gas information and the catalyst information.
請求項6に記載の水素濃度予測方法において、
前記触媒の活性化成分の情報とは、前記触媒に含まれる貴金属の添着量又は前記触媒の一酸化炭素の化学吸着量の情報のいずれか一方であることを特徴とする水素濃度予測方法。
In the hydrogen concentration prediction method according to claim 6,
The information on the activation component of the catalyst is either information on the amount of precious metal added to the catalyst or information on the amount of chemical adsorption of carbon monoxide contained in the catalyst.
請求項6又は7に記載の水素濃度予測方法において、
前記触媒の性能に影響を及ぼす被毒物質が有機ケイ素化合物であることを特徴とする水素濃度予測方法。
In the hydrogen concentration prediction method according to claim 6 or 7,
A method for predicting hydrogen concentration, wherein the poisoning substance affecting the performance of the catalyst is an organosilicon compound.
JP2010157435A 2010-07-12 2010-07-12 Exhaust gas recombiner outlet hydrogen concentration prediction apparatus and outlet hydrogen concentration prediction method Active JP5686539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157435A JP5686539B2 (en) 2010-07-12 2010-07-12 Exhaust gas recombiner outlet hydrogen concentration prediction apparatus and outlet hydrogen concentration prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157435A JP5686539B2 (en) 2010-07-12 2010-07-12 Exhaust gas recombiner outlet hydrogen concentration prediction apparatus and outlet hydrogen concentration prediction method

Publications (2)

Publication Number Publication Date
JP2012021777A true JP2012021777A (en) 2012-02-02
JP5686539B2 JP5686539B2 (en) 2015-03-18

Family

ID=45776186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157435A Active JP5686539B2 (en) 2010-07-12 2010-07-12 Exhaust gas recombiner outlet hydrogen concentration prediction apparatus and outlet hydrogen concentration prediction method

Country Status (1)

Country Link
JP (1) JP5686539B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101657250B1 (en) * 2015-06-16 2016-09-13 한국원자력기술 주식회사 Inservice inspection equipment for passive autocatalytic recombiners
CN106448754A (en) * 2016-10-19 2017-02-22 中国核电工程有限公司 Periodic test strategic analysis method of nuclear power plant containment passive hydrogen elimination system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275995A (en) * 1987-05-08 1988-11-14 Toshiba Corp Apparatus for measuring concentration of hydrogen in reactor container
JPH0395498A (en) * 1989-09-07 1991-04-19 Toshiba Corp Recombining system for off-gas system
JPH1090484A (en) * 1996-09-19 1998-04-10 Toshiba Eng Co Ltd Hydrogen/oxygen injection system of boiling water reactor plant
JP2000258580A (en) * 1999-03-04 2000-09-22 Toshiba Corp Method for evaluating performance of inflammable gas- eliminating device
JP2005010160A (en) * 2003-06-16 2005-01-13 General Electric Co <Ge> Method for mitigate stress corrosion cracking of structural material in high temperature water
JP2009216707A (en) * 2008-03-07 2009-09-24 Areva Np Gmbh Method for catalytic recombining hydrogen carried together in gas flow with oxygen and recombination system for implementing the method
JP2010077289A (en) * 2008-09-26 2010-04-08 Ihi Corp Method and apparatus for controlling operation of gas purification apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275995A (en) * 1987-05-08 1988-11-14 Toshiba Corp Apparatus for measuring concentration of hydrogen in reactor container
JPH0395498A (en) * 1989-09-07 1991-04-19 Toshiba Corp Recombining system for off-gas system
JPH1090484A (en) * 1996-09-19 1998-04-10 Toshiba Eng Co Ltd Hydrogen/oxygen injection system of boiling water reactor plant
JP2000258580A (en) * 1999-03-04 2000-09-22 Toshiba Corp Method for evaluating performance of inflammable gas- eliminating device
JP2005010160A (en) * 2003-06-16 2005-01-13 General Electric Co <Ge> Method for mitigate stress corrosion cracking of structural material in high temperature water
JP2009216707A (en) * 2008-03-07 2009-09-24 Areva Np Gmbh Method for catalytic recombining hydrogen carried together in gas flow with oxygen and recombination system for implementing the method
JP2010077289A (en) * 2008-09-26 2010-04-08 Ihi Corp Method and apparatus for controlling operation of gas purification apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101657250B1 (en) * 2015-06-16 2016-09-13 한국원자력기술 주식회사 Inservice inspection equipment for passive autocatalytic recombiners
CN106448754A (en) * 2016-10-19 2017-02-22 中国核电工程有限公司 Periodic test strategic analysis method of nuclear power plant containment passive hydrogen elimination system
CN106448754B (en) * 2016-10-19 2021-11-16 中国核电工程有限公司 Periodic test strategy analysis method for passive hydrogen elimination system of containment vessel of nuclear power plant

Also Published As

Publication number Publication date
JP5686539B2 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5686539B2 (en) Exhaust gas recombiner outlet hydrogen concentration prediction apparatus and outlet hydrogen concentration prediction method
JP2014083511A (en) Siloxane decomposition apparatus
Weilert et al. Measurement of effective Sr diffusion coefficients in IG-110 graphite
Piazza et al. Predictive atomistic model for hydrogen adsorption on metal surfaces: Comparison with low-energy ion beam analysis on tungsten
Tanaka et al. Development of an active tritium sampler for discriminating chemical forms without the use of combustion gases in a fusion test facility
Reinecke et al. Performance tests of catalysts for the safe conversion of hydrogen inside the nuclear waste containers in Fukushima Daiichi
CN107478764B (en) Hydrocarbon steam conversion catalyst activity evaluation device and test method and application thereof
Gardner et al. Hydrogen recombination scaling experiments at CNL’s hydrogen safety test facility
JP2012108059A (en) Performance evaluation method of recombiner and performance evaluation device thereof
JP5340211B2 (en) Boiling water nuclear power plant
Chen et al. Molecular reactions and oxidation corrosion on UN (001) surface under exposure to environment gases: A DFT study
Murdoch et al. ITER Fuel Cycle Development: EU-PT Activities
Dörr et al. A decade of tritium technology development and operation at the Tritium Laboratory Karlsruhe
Tanaka et al. Monitoring and recovery of tritium in a fusion test facility
Edao et al. Evaluation of tritium release behavior from Li2TiO3 during DT neutron irradiation by use of an improved tritium collection method
D'Entremont et al. Measurement of radiolytic hydrogen generation from surrogate zr-based materials in a" mini-canister"
JP5372794B2 (en) Operation method of boiling water nuclear plant and boiling water nuclear plant
Sharma et al. Experimental assessment of hydrogen removal rate for passive auto catalytic recombiners
Welte et al. Setup and commissioning of a combined water detritiation and isotope separation experiment at the Tritium Laboratory Karlsruhe
CN105973804B (en) VOC substance online test method in a kind of gas based on UV photodissociation
JP2012002611A (en) Evaluation method and evaluation device for volatile catalytic poisoning component produced from liquid packing
Wang et al. Development of a tritium release system for ceramic tritium breeder pebbles irradiated by high intensity DT fusion neutron Generator at INEST
Chakraborty et al. Investigation of ignition characteristics of passive autocatalytic recombiners
Gogniat et al. PRELIMINARY SYSTEM ANALYSIS FOR THE PENNSYLVANIA ADVANCED REACTOR
Chung et al. Development of tritium technologies at KAERI

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150120

R150 Certificate of patent or registration of utility model

Ref document number: 5686539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150