JP2010077289A - Method and apparatus for controlling operation of gas purification apparatus - Google Patents

Method and apparatus for controlling operation of gas purification apparatus Download PDF

Info

Publication number
JP2010077289A
JP2010077289A JP2008247641A JP2008247641A JP2010077289A JP 2010077289 A JP2010077289 A JP 2010077289A JP 2008247641 A JP2008247641 A JP 2008247641A JP 2008247641 A JP2008247641 A JP 2008247641A JP 2010077289 A JP2010077289 A JP 2010077289A
Authority
JP
Japan
Prior art keywords
concentration
gas
gas purification
gasification
poisoning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008247641A
Other languages
Japanese (ja)
Inventor
Kentaro Narai
健太郎 成相
Hiroaki Ohara
宏明 大原
Hiroyuki Kamata
博之 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008247641A priority Critical patent/JP2010077289A/en
Publication of JP2010077289A publication Critical patent/JP2010077289A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control the lifetime of a catalyst in a chemical product manufacturing process by controlling the operation of a gas purification apparatus based on the concentration of poisoning components in a gasification gas. <P>SOLUTION: The apparatus comprises: a raw material composition analyzing means 40 to obtain the poisoning component concentration 41 in a raw material 2 by analyzing the composition of the raw material 2 supplied to a gasification apparatus 5; a gasification operating condition detecting means 42 to detect the operating condition 43 of the gasification apparatus 5; and an outlet composition analyzing means 46 to obtain the poisoning component concentration 47 at an outlet of a gas purification apparatus 6 by analyzing the composition of a gasification gas 3 at the outlet. The poisoning component concentration at an inlet of the gas purification apparatus 6 is predicted from the poisoning component concentration 41 in the raw material and the operating condition 43 of the gasification apparatus 5, performance regulating elements 10a, 10b, 10c of the gas purification apparatus 6 are preliminarily controlled so that the predicted poisoning component concentration is reduced to a set concentration, and the predicted poisoning component concentration is corrected according to the poisoning component concentration 47 at the outlet. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ガス化装置からガス精製装置に供給されるガス化ガス中の被毒成分の濃度に基づいてガス精製装置の運転を制御することにより、化成品製造プロセスにおける触媒の寿命をコントロールするようにしたガス精製装置の運転制御方法及び装置に関する。   The present invention controls the life of a catalyst in a chemical product manufacturing process by controlling the operation of the gas purification device based on the concentration of poisoning components in the gasification gas supplied from the gasification device to the gas purification device. The present invention relates to an operation control method and apparatus for a gas purification apparatus.

近年、石油の枯渇の問題から、石炭やバイオマス等の石油に依存しない資源或いはオイルサンドやペトロコーク等の石油系の未利用資源からの化成品製造プロセスが注目されている。   In recent years, due to the problem of oil depletion, chemical product manufacturing processes from resources that do not depend on oil such as coal and biomass, or from petroleum-based unused resources such as oil sand and petro coke, have attracted attention.

化成品製造プロセスの1つとして、石炭やバイオマス等をガス化炉でガス化し更に必要な場合には改質炉によりガスの改質を行うガス化装置によりガス化ガス(HとCOの混合ガス)を製造し、このガス化ガスを触媒を備えた化成品製造プロセスに供給して様々な化成品を製造する研究・実用化が進められている。 As one of the chemical product manufacturing processes, coal and biomass are gasified in a gasifier and, if necessary, gasified gas (mixed of H 2 and CO) by a gasifier that reforms the gas in a reformer. Research and commercialization of producing various chemical products by supplying the gasified gas to a chemical product manufacturing process equipped with a catalyst is underway.

例えばガス化ガスを用いた液体燃料化プロセスの一つであるFT合成(Fischer-Tropsch合成)は、ガス化ガスから主に直鎖の炭化水素を合成する反応であり、石油に依存せずに液体燃料(軽油,灯油,ガソリン)を生成することが可能である。   For example, FT synthesis (Fischer-Tropsch synthesis), which is one of the liquid fuel processes using gasified gas, is a reaction that mainly synthesizes straight-chain hydrocarbons from gasified gas, without relying on petroleum. Liquid fuel (light oil, kerosene, gasoline) can be generated.

FT合成
2nH+nCO → (−CH−)+nH
(−CH−):液体燃料(軽油,灯油,ガソリン等)
FT synthesis 2nH 2 + nCO → (—CH 2 −) + nH 2 O
(-CH 2 -): liquid fuel (light oil, kerosene, gasoline, etc.)

ガス化ガスを利用したその他の化成品製造プロセスとしては、メタノールやDME(ジメチルエーテル)合成、水素製造、アンモニア製造など様々なものが研究・実用化されている。   As other chemical product manufacturing processes using gasified gas, various processes such as methanol and DME (dimethyl ether) synthesis, hydrogen production, and ammonia production have been studied and put into practical use.

前記ガス化装置で製造されるガス化ガス中には、タール分(芳香族炭化水素等)や硫黄分(HS,COS等)、窒素分(NH,HCN等)といった化成品製造プロセスの触媒の活性を低下させる被毒成分が含まれているため、化成品製造プロセスの前段においてそれらの被毒成分を除去するためのガス精製装置を設置する必要がある。 In the gasified gas produced by the gasifier, a chemical product manufacturing process such as tar content (aromatic hydrocarbons, etc.), sulfur content (H 2 S, COS, etc.), nitrogen content (NH 3 , HCN, etc.) Therefore, it is necessary to install a gas refining device for removing these poisoning components before the chemical product manufacturing process.

ガス精製装置では、吸着や反応によって触媒への影響が無視できるほどの濃度(許容濃度)まで被毒成分を除去・低減している。   In gas purification equipment, poisoning components are removed and reduced to such a concentration (allowable concentration) that the influence on the catalyst can be ignored by adsorption and reaction.

しかし、ガス化ガスを製造するガス化装置の運転条件やガス化する原料の組成の違いによって製造されるガス化ガス中の被毒成分濃度や組成が大きく変化することが考えられ、このために、ガス精製装置を一定の運転条件で運転した場合には被毒成分を処理しきれずに被毒成分が後段の化成品製造プロセスへ移行し、予期せぬ触媒の劣化を招く恐れがあり、この場合には触媒の寿命が著しく短縮されてしまう。特に近年、質の悪い石炭(劣質炭)やバイオマス、廃棄物等といった不純物や被毒成分が多く含まれ且つ組成が一定ではない資源のガス化が検討されており、よってガス化ガス中の被毒成分が予想以上に大きく変動する可能性がある。   However, it is conceivable that the concentration and composition of poisoning components in the gasified gas produced vary greatly depending on the operating conditions of the gasifier that produces the gasified gas and the composition of the raw material to be gasified. When the gas purifier is operated under certain operating conditions, the poisoned components cannot be processed completely, and the poisoned components may shift to the subsequent chemical product manufacturing process, leading to unexpected catalyst deterioration. In some cases, the life of the catalyst is significantly shortened. In particular, in recent years, gasification of resources that are rich in impurities and poisonous components such as poor quality coal (inferior coal), biomass, waste, etc. and whose composition is not constant has been studied. Poison components can fluctuate more than expected.

従って、後段の化成品製造プロセスへの被毒成分の混入を避けるために、ガス精製装置での被毒成分の除去性能を高く設定して安全性を高める等の対策が必要となるが、前記被毒成分の変動を考慮してガス精製装置による被毒成分の除去性能を一定の高い値に設定した場合には、被毒成分が低い場合にガス化ガスを処理するための処理水や薬剤が過剰に供給されることになって、ランニングコストが増加するという問題がある。   Therefore, in order to avoid mixing poisonous components into the chemical production process at the subsequent stage, measures such as setting the removal performance of poisonous components in the gas purifier high to increase safety are necessary. Treated water and chemicals for treating gasified gas when poisoning components are low when the poisoning component removal performance by the gas purifier is set to a certain high value in consideration of fluctuations in poisoning components As a result, the running cost increases.

尚、硫酸プラントの転化器に流入するプロセスガスの温度の制御について技術開示した先行技術情報には特許文献1がある。
特開2002−012413号公報
Note that there is Patent Document 1 as prior art information that discloses a technique for controlling the temperature of a process gas flowing into a converter of a sulfuric acid plant.
JP 2002-012413 A

しかし、特許文献1に記載のものは、硫酸プラントの転化器に供給される二酸化イオウ及び酸素を含む原料ガスの二酸化イオウ濃度及び流量に基づいて転化器の触媒層に流入するプロセスガスの温度を制御するようにしてものであり、ガス化装置で製造されるガス化ガス中の被毒成分の濃度が変動する場合において、ガス化ガス中の被毒成分の濃度に基づいてガス精製装置の運転を制御することにより、化成品製造プロセスの触媒の寿命をコントロールするようにした技術については開示されていない。   However, in Patent Document 1, the temperature of the process gas flowing into the catalyst layer of the converter is determined based on the sulfur dioxide concentration and flow rate of the raw material gas containing sulfur dioxide and oxygen supplied to the converter of the sulfuric acid plant. When the concentration of poisoning components in the gasification gas produced by the gasifier varies, the operation of the gas purification device is performed based on the concentration of poisoning components in the gasification gas. There is no disclosure of a technique for controlling the life of the catalyst in the chemical product manufacturing process by controlling the above.

本発明は、上記課題に鑑みてなしたもので、ガス化装置からガス精製装置に供給されるガス化ガス中の被毒成分の濃度に基づいてガス精製装置の運転を制御することにより、化成品製造プロセスの触媒の寿命をコントロールするようにしたガス精製装置の運転制御方法及び装置を提供しようとするものである。   The present invention has been made in view of the above problems, and by controlling the operation of the gas purification device based on the concentration of poisoning components in the gasification gas supplied from the gasification device to the gas purification device, An object of the present invention is to provide an operation control method and apparatus for a gas purifier that controls the life of a catalyst in a product manufacturing process.

本発明は、ガス化装置からのガス化ガスを触媒が備えられた化成品製造プロセスに供給して化成品を製造する際に、前記ガス化装置からのガス化ガスをガス精製装置に供給し、該ガス精製装置に備えた性能調節部を調節して前記触媒の活性を低下させる被毒成分濃度を低減するようにしているガス精製装置の運転制御方法であって、
ガス化装置に供給する原料の組成を分析して原料中被毒成分濃度を得る原料組成分析手段と、ガス化装置の運転状態を検出するガス化運転条件検出手段と、ガス精製装置出口のガス化ガスの組成を分析して出口被毒成分濃度を得る出口組成分析手段とを備え、
原料組成分析手段により得た原料中被毒成分濃度とガス化運転条件検出手段により検出したガス化装置の運転状態とからガス精製装置入口の被毒成分濃度を予測し、
該予測被毒成分濃度が設定濃度に低減されるように前記性能調節部を先行制御し、且つ出口組成分析手段により得た出口被毒成分濃度により前記予測被毒成分濃度を補正するようにした
ことを特徴とするガス精製装置の運転制御方法、に係るものである。
The present invention supplies gasified gas from the gasifier to a gas purifier when supplying the gasified gas from the gasifier to a chemical product manufacturing process equipped with a catalyst to manufacture a chemical product. An operation control method for a gas purifier that adjusts a performance adjusting unit provided in the gas purifier to reduce the concentration of poisoning components that reduce the activity of the catalyst,
Raw material composition analysis means for analyzing the composition of the raw material supplied to the gasifier and obtaining the concentration of poisoning components in the raw material, gasification operation condition detection means for detecting the operating state of the gasifier, and gas at the gas purifier outlet An outlet composition analyzing means for analyzing the composition of the gasified gas to obtain the outlet poisoning component concentration,
From the raw material poisoning component concentration obtained by the raw material composition analysis means and the operation state of the gasifier detected by the gasification operation condition detection means, the poisoning component concentration at the gas purification device inlet is predicted,
The performance adjustment unit is controlled in advance so that the predicted poisoning component concentration is reduced to a set concentration, and the predicted poisoning component concentration is corrected by the outlet poisoning component concentration obtained by the outlet composition analysis means. The present invention relates to an operation control method for a gas purifier.

上記ガス精製装置の運転制御方法において、ガス精製装置入口のガス化ガスの組成を分析して入口被毒成分濃度を得る入口組成分析手段を設け、該入口組成分析手段により得た入口被毒成分濃度により前記予測被毒成分濃度を補正することは好ましい。   In the operation control method of the above gas purification apparatus, an inlet composition analyzing means is provided for analyzing the composition of the gasified gas at the gas purification apparatus inlet to obtain the inlet poison component concentration, and the inlet poison component obtained by the inlet composition analysis means. It is preferable to correct the predicted poisoning component concentration by the concentration.

又、上記ガス精製装置の運転制御方法において、出口組成分析手段により得た出口被毒成分濃度から化成品製造プロセスの触媒の寿命を評価し、該寿命の評価値に基づいて触媒の目標寿命を達成するのに必要な寿命達成濃度を算出し、該寿命達成濃度を前記設定濃度とすることは好ましい。   Further, in the operation control method of the gas purification apparatus, the life of the catalyst in the chemical product manufacturing process is evaluated from the concentration of the poisoned component at the outlet obtained by the outlet composition analyzing means, and the target life of the catalyst is determined based on the evaluation value of the life. It is preferable to calculate a life achievement concentration necessary to achieve and set the life achievement concentration as the set concentration.

又、上記ガス精製装置の運転制御方法において、化成品製造プロセスが、液体燃料製造装置、メタノール製造装置、DME合成装置、水素製造装置、アンモニア製造装置の少なくとも1つであることは好ましい。   In the operation control method for the gas purification apparatus, the chemical product manufacturing process is preferably at least one of a liquid fuel manufacturing apparatus, a methanol manufacturing apparatus, a DME synthesis apparatus, a hydrogen manufacturing apparatus, and an ammonia manufacturing apparatus.

本発明は、ガス化装置からのガス化ガスを触媒が備えられた化成品製造プロセスに供給して化成品を製造する際に、前記ガス化装置からのガス化ガスをガス精製装置に供給し、該ガス精製装置に備えた性能調節部を調節して前記触媒の活性を低下させる被毒成分濃度を低減するようにしているガス精製装置の運転制御装置であって、
ガス化装置に供給する原料の組成を分析して原料中被毒成分濃度を得る原料組成分析手段と、
ガス化装置における運転状態を検出するガス化運転条件検出手段と、
ガス精製装置出口のガス化ガスの組成を分析して出口被毒成分濃度を得る出口組成分析手段と、
原料組成分析手段により得た原料中被毒成分濃度とガス化運転条件検出手段により検出したガス化装置の運転状態とからガス精製装置入口の被毒成分濃度を予測するオンライン予測部と、該オンライン予測部からの予測被毒成分濃度を入力して該予測被毒成分濃度が設定濃度に低減されるよう操作変数を設定して前記性能調節部を先行制御すると共に、前記出口組成分析手段により得た出口被毒成分濃度により前記予測被毒成分濃度を補正するようにした運転指令部とからなる制御器と
を有することを特徴とするガス精製装置の運転制御装置、に係るものである。
The present invention supplies gasified gas from the gasifier to a gas purifier when supplying the gasified gas from the gasifier to a chemical product manufacturing process equipped with a catalyst to manufacture a chemical product. An operation control device for a gas purification device that adjusts a performance adjusting unit provided in the gas purification device to reduce a concentration of a poisoning component that reduces the activity of the catalyst,
Raw material composition analysis means for analyzing the composition of the raw material supplied to the gasifier and obtaining the concentration of poisoning components in the raw material;
Gasification operation condition detection means for detecting an operation state in the gasifier,
An outlet composition analyzing means for analyzing the composition of the gasification gas at the outlet of the gas purifier and obtaining the concentration of the outlet poisoning component;
An on-line prediction unit for predicting the concentration of poisoning components at the gas purifier inlet from the concentration of poisoning components in the raw material obtained by the raw material composition analysis means and the operating state of the gasifier detected by the gasification operation condition detection means; The predicted poisoning component concentration from the prediction unit is input, an operation variable is set so that the predicted poisoning component concentration is reduced to a set concentration, and the performance adjusting unit is controlled in advance, and obtained by the outlet composition analysis means. And a controller comprising an operation command unit configured to correct the predicted poisoned component concentration based on the outlet poisoned component concentration.

上記ガス精製装置の運転制御装置において、ガス精製装置入口のガス化ガスの組成を分析して入口被毒成分濃度を得、得られた入口被毒成分濃度により前記予測被毒成分濃度を補正する入口組成分析手段を有することは好ましい。   In the operation control device of the gas purification device, the composition of the gasification gas at the gas purification device inlet is analyzed to obtain an inlet poison component concentration, and the predicted poison component concentration is corrected by the obtained inlet poison component concentration. It is preferable to have an inlet composition analysis means.

又、上記ガス精製装置の運転制御装置において、制御器が、出口組成分析手段により得た出口被毒成分濃度から化成品製造プロセスの触媒の寿命を評価する寿命評価部と、該寿命評価部により得られた寿命の評価値から触媒の目標寿命を達成するのに必要な寿命達成濃度を算出し、算出した寿命達成濃度を前記設定濃度として前記運転指令部に入力する寿命達成濃度算出部とを有することは好ましい。   Further, in the operation control device of the gas purification apparatus, the controller includes a life evaluation unit for evaluating the life of the catalyst in the chemical product manufacturing process from the concentration of the exit poison component obtained by the exit composition analysis means, and the life evaluation unit. A life achievement concentration necessary for achieving the target life of the catalyst is calculated from the obtained life evaluation value, and a life achievement concentration calculation unit that inputs the calculated life achievement concentration to the operation command unit as the set concentration It is preferable to have it.

又、上記ガス精製装置の運転制御装置において、ガス精製装置がタール除去装置であり、性能調節部がタール除去装置のスプレーノズルに冷却水を供給する給水ポンプであることは好ましい。   In the operation control device of the gas purification device, it is preferable that the gas purification device is a tar removing device, and the performance adjusting unit is a feed water pump for supplying cooling water to a spray nozzle of the tar removing device.

又、上記ガス精製装置の運転制御装置において、ガス精製装置が脱硫装置であり、性能調節部が脱硫装置に硫黄吸収剤を供給する吸収剤供給手段であることは好ましい。   In the operation control apparatus of the gas purification apparatus, it is preferable that the gas purification apparatus is a desulfurization apparatus and the performance adjusting unit is an absorbent supply means for supplying a sulfur absorbent to the desulfurization apparatus.

又、上記ガス精製装置の運転制御装置において、ガス精製装置が脱硝装置であり、性能調節部が脱硝装置の触媒にアンモニアを供給するアンモニア供給ポンプであることは好ましい。   In the operation control device of the gas purification device, it is preferable that the gas purification device is a denitration device, and the performance adjusting unit is an ammonia supply pump that supplies ammonia to a catalyst of the denitration device.

又、上記ガス精製装置の運転制御装置において、ガス精製装置が脱アンモニア装置であり、性能調節部が脱アンモニア装置にアンモニア吸収剤を供給するポンプであることは好ましい。   In the operation control device of the gas purification device, it is preferable that the gas purification device is a deammonification device, and the performance adjusting unit is a pump for supplying an ammonia absorbent to the deammonification device.

又、上記ガス精製装置の運転制御装置において、ガス精製装置が脱ベンゼン装置であり、性能調節部が脱ベンゼン装置にベンゼン吸収剤を供給するポンプであることは好ましい。   In the operation control apparatus of the gas purification apparatus, it is preferable that the gas purification apparatus is a debenzene apparatus, and the performance adjusting unit is a pump that supplies a benzene absorbent to the debenzene apparatus.

本発明のガス精製装置の運転制御方法及び装置によれば、原料組成分析手段により得た原料中被毒成分濃度とガス化運転条件検出手段により検出したガス化装置の運転状態とからガス精製装置入口の被毒成分濃度を予測し、該予測被毒成分濃度が設定濃度に低減されるように前記性能調節部を先行制御し、出口組成分析手段により得た出口被毒成分濃度により前記予測被毒成分濃度を補正するようにしたので、最小限のガス精製装置の運転によって、化成品製造プロセスに供給されるガス化ガス中の被毒成分を設定濃度に維持することができ、よってガス精製装置のランニングコストを最小限に抑えられる効果がある。   According to the operation control method and apparatus of the gas purification apparatus of the present invention, the gas purification apparatus is based on the concentration of poisoning components in the raw material obtained by the raw material composition analyzing means and the operating state of the gasifier detected by the gasification operating condition detecting means The poisoning component concentration at the entrance is predicted, the performance adjusting unit is controlled in advance so that the predicted poisoning component concentration is reduced to the set concentration, and the predicted poisoning component concentration is obtained from the exit poisoning component concentration obtained by the outlet composition analysis means. Since the poison component concentration was corrected, the poison component in the gasified gas supplied to the chemical product manufacturing process can be maintained at the set concentration with the minimum operation of the gas purification device. There is an effect that the running cost of the apparatus can be minimized.

又、出口組成分析手段により得た出口被毒成分濃度から化成品製造プロセスの触媒の寿命を評価し、該寿命の評価値に基づいて触媒の目標寿命を達成するのに必要な寿命達成濃度を算出し、該寿命達成濃度を前記設定濃度として制御することにより、化成品製造プロセスの触媒を目標寿命まで安定して作用させられる効果がある。   In addition, the life of the catalyst in the chemical product manufacturing process is evaluated from the concentration of the exit poison component obtained by the exit composition analysis means, and the life achievement concentration necessary to achieve the target life of the catalyst is determined based on the estimated value of the life. By calculating and controlling the life achievement concentration as the set concentration, there is an effect that the catalyst of the chemical product manufacturing process can be stably operated to the target life.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の一例を示すブロック図であり、1は石炭、バイオマス等の原料2をガス化してガス化ガス3を製造するガス化炉であり、4は前記ガス化ガス3中のタールを改質してガス化するための必要に応じて設けられる改質炉であり、上記ガス化炉1と改質炉4によってガス化装置5が構成されている。   FIG. 1 is a block diagram showing an example of an embodiment for carrying out the present invention, wherein 1 is a gasification furnace for producing a gasification gas 3 by gasifying a raw material 2 such as coal or biomass, and 4 is the gasification gas. 3 is a reforming furnace provided as necessary for reforming and gasifying the tar in 3, and the gasification apparatus 5 is constituted by the gasification furnace 1 and the reforming furnace 4.

ガス化装置5で製造されたガス化ガス3はガス精製装置6に供給され、ガス精製装置6では後述する化成品製造プロセスに備えられる触媒の活性を低下させる被毒成分を除去するようにしている。図1のガス精製装置6は、ガス化ガス3中のタール分を除去するタール除去装置7と、ガス化ガス3中の硫黄分を除去する脱硫装置8と、ガス化ガス3中の窒素分を除去する脱硝装置9と、ガス化ガス3中のアンモニアを除去する脱アンモニア装置58と、ガス化ガス3中のベンゼンを除去する脱ベンゼン装置59とを備えた場合を示している。   The gasified gas 3 produced by the gasifier 5 is supplied to the gas purifier 6, which removes poisonous components that reduce the activity of the catalyst provided in the chemical product manufacturing process described later. Yes. A gas purification device 6 in FIG. 1 includes a tar removal device 7 that removes a tar content in the gasification gas 3, a desulfurization device 8 that removes a sulfur content in the gasification gas 3, and a nitrogen content in the gasification gas 3. 3 shows a case where a denitration device 9 for removing NO, a deammonia device 58 for removing ammonia in the gasification gas 3, and a debenzene device 59 for removing benzene in the gasification gas 3 are shown.

前記タール除去装置7は、図2に示す如く、給水ポンプ11からの冷却水12をスプレー塔13に設けたスプレーノズル14から噴射してガス化ガス3と接触させることによりガス化ガス3中のタール分を除去するようにしている。ここで、タール除去装置7では冷却水12の供給を調節することによってタール除去性能を調節できるため、前記給水ポンプ11は性能調節部10aとして作用している。又、図2では前記スプレー塔13内のタール混合水15を取り出して分離装置16によりタール分17と水18とに分離しており、分離装置16で分離した水18は前記冷却水12の1部として再利用するようにしている。   As shown in FIG. 2, the tar removing device 7 sprays the cooling water 12 from the feed water pump 11 from the spray nozzle 14 provided in the spray tower 13 and brings it into contact with the gasified gas 3. The tar content is removed. Here, since the tar removal performance can be adjusted by adjusting the supply of the cooling water 12 in the tar removal device 7, the water supply pump 11 acts as the performance adjustment unit 10a. In FIG. 2, the tar mixed water 15 in the spray tower 13 is taken out and separated into a tar content 17 and water 18 by a separation device 16, and the water 18 separated by the separation device 16 is one of the cooling water 12. I reuse it as a part.

前記脱硫装置8は、図3に示す如く、石灰石19と空気20が水に混入された吸収液体21(硫黄吸収剤)を、吸収液体供給ポンプ22(吸収剤供給手段)によって吸収塔23に設けたスプレーノズル24から噴射させてガス化ガス3と接触させることによりガス化ガス3中の硫黄分を湿式脱硫によって除去する場合を示している。ここで、この脱硫装置8では吸収液体21の供給を調節することによって脱硫性能を調節できるため、前記吸収液体供給ポンプ22は性能調節部10bとして作用している。図3では吸収液体供給ポンプ22からの吸収液体21の一部を取り出して石膏を回収するようにしている。   As shown in FIG. 3, the desulfurization apparatus 8 is provided with an absorption liquid 21 (sulfur absorbent) in which limestone 19 and air 20 are mixed with water in an absorption tower 23 by an absorption liquid supply pump 22 (absorbent supply means). The case where the sulfur content in the gasification gas 3 is removed by wet desulfurization by spraying from the spray nozzle 24 and bringing it into contact with the gasification gas 3 is shown. Here, in this desulfurization apparatus 8, since desulfurization performance can be adjusted by adjusting supply of the absorption liquid 21, the said absorption liquid supply pump 22 is functioning as the performance adjustment part 10b. In FIG. 3, a part of the absorbing liquid 21 from the absorbing liquid supply pump 22 is taken out and the gypsum is recovered.

又、図4は前記脱硫装置8の他の例を示すもので、吸収粉体サイロ25に貯留された水酸化カルシウム(Ca(OH))等の吸収粉体26(硫黄吸収剤)を、計量器27を経て空気搬送するようにした吸収粉体搬送ポンプ28(吸収剤供給手段)により吸収塔29に供給してガス化ガス3と接触させることによりガス化ガス3中の硫黄分を乾式脱硫によって除去する場合を示している。ここで、この脱硫装置8では吸収粉体26の供給を調節することによって脱硫性能を調節できるため、前記吸収粉体搬送ポンプ28は性能調節部10bとして作用している。 Further, FIG. 4 shows another example of the desulfurizer 8, absorbent powder 26, such as stored in the absorbent powder silo 25 calcium hydroxide (Ca (OH) 2) and (sulfur absorbent), The sulfur content in the gasification gas 3 is dried by supplying it to the absorption tower 29 by means of an absorption powder conveyance pump 28 (absorbent supply means) adapted to carry air through the measuring device 27 and bringing it into contact with the gasification gas 3. The case of removing by desulfurization is shown. Here, since the desulfurization performance can be adjusted by adjusting the supply of the absorbent powder 26 in the desulfurization apparatus 8, the absorbent powder conveyance pump 28 functions as the performance adjusting unit 10b.

前記脱硝装置9は、図5に示す如く、脱硝触媒30が内部に装填されている脱硝塔31におけるガス化ガス3の入口部32に、アンモニア供給ポンプ33からのアンモニア(NH)34を噴射して脱硝触媒30を通すことにより、ガス化ガス3中の窒素酸化物(NOx)を窒素(H)と水(HO)とに分解するようにしている。ここで、この脱硝装置9ではアンモニア34の供給を調節することによって脱硝性能を調節できるため、前記アンモニア供給ポンプ33は性能調節部10cとして作用している。 As shown in FIG. 5, the denitration device 9 injects ammonia (NH 3 ) 34 from an ammonia supply pump 33 into an inlet 32 of the gasification gas 3 in a denitration tower 31 in which a denitration catalyst 30 is loaded. By passing the denitration catalyst 30, the nitrogen oxide (NOx) in the gasification gas 3 is decomposed into nitrogen (H 2 ) and water (H 2 O). Here, in this denitration device 9, the denitration performance can be adjusted by adjusting the supply of ammonia 34, so the ammonia supply pump 33 acts as the performance adjustment unit 10c.

前記脱アンモニア装置58は、図6に示す如く、ラシヒリング等が充填された充填塔60の上部に、ポンプ61によりアンモニア吸収剤58aとして水を供給し、この水と下部から導入されるガス化ガス3とを接触させることによりガス化ガス3中のアンモニアを吸収除去するようにしている。62はミストセパレータである。ここで、脱アンモニア装置58ではアンモニア吸収剤58aの供給を調節することによって脱アンモニア性能を調節できるため、前記ポンプ61は性能調節部10dとして作用している。   As shown in FIG. 6, the deammonia device 58 supplies water as an ammonia absorbent 58a by a pump 61 to the upper part of a packed tower 60 filled with Raschig rings and the like, and the gasified gas introduced from this water and the lower part. The ammonia in the gasification gas 3 is absorbed and removed. 62 is a mist separator. Here, in the deammonia device 58, the deammonia performance can be adjusted by adjusting the supply of the ammonia absorbent 58a. Therefore, the pump 61 functions as the performance adjustment unit 10d.

前記脱ベンゼン装置59は、図7に示す如く、前記図6と同様に構成された充填塔60の上部に、ポンプ63によりベンゼン吸収剤59aとしてメチルナフタレン等の有機溶媒を供給し、この有機溶媒と下部から導入されるガス化ガス3とを接触させることによりガス化ガス3中のベンゼンを吸収除去するようにしている。ここで、この脱ベンゼン装置59ではベンゼン吸収剤59aの供給を調節することによって脱ベンゼン性能を調節できるため、前記ポンプ63は性能調節部10eとして作用している。   As shown in FIG. 7, the debenzene apparatus 59 supplies an organic solvent such as methylnaphthalene as a benzene absorbent 59a by a pump 63 to the upper part of a packed tower 60 configured in the same manner as in FIG. And the gasified gas 3 introduced from below are brought into contact with each other to absorb and remove benzene in the gasified gas 3. Here, in this debenzene apparatus 59, since the debenzene performance can be adjusted by adjusting the supply of the benzene absorbent 59a, the pump 63 functions as the performance adjusting unit 10e.

図1のガス精製装置6によって被毒成分が除去されたガス化ガス3は、化成品製造プロセス35に供給されて化成品が製造される。   The gasified gas 3 from which poisoning components have been removed by the gas purification apparatus 6 of FIG. 1 is supplied to a chemical product manufacturing process 35 to manufacture a chemical product.

図1の化成品製造プロセス35には、液体燃料製造装置36a、メタノール製造装置36b、DME(ジメチルエーテル)合成装置36c、水素製造装置36d、アンモニア製造装置36e等が設けられており、各製造装置36a,36b,36c,36d,36eには製造する化成品である液体燃料、メタノール、DME、水素、アンモニア等の夫々に応じた触媒37a,37b,37c,37d,37eが備えられている。又、ガス精製装置6からのガス化ガス3を各製造装置36a,36b,36c,36d,36eに導く流路には切換弁38が備えてあり、ガス精製装置6からのガス化ガス3を1つの製造装置に導いて1種類の化成品を製造したり、或いは複数の製造装置に同時に導いて複数種類の化成品を同時に製造できるようにしている。尚、図1では製造装置36a,36b,36c,36d,36eを備えた場合について例示したが、製造装置は前記の1つのみを備えたり、或いは複数を備えるようにしてもよい。   1 includes a liquid fuel production device 36a, a methanol production device 36b, a DME (dimethyl ether) synthesis device 36c, a hydrogen production device 36d, an ammonia production device 36e, and the like. , 36b, 36c, 36d, and 36e are provided with catalysts 37a, 37b, 37c, 37d, and 37e corresponding to the chemical products to be produced, such as liquid fuel, methanol, DME, hydrogen, and ammonia, respectively. In addition, a switching valve 38 is provided in the flow path for guiding the gasified gas 3 from the gas purifier 6 to each of the manufacturing apparatuses 36a, 36b, 36c, 36d, and 36e, and the gasified gas 3 from the gas purifier 6 is supplied to the flow path. One type of chemical product is manufactured by guiding it to one manufacturing device, or a plurality of types of chemical products can be manufactured simultaneously by guiding it to a plurality of manufacturing devices. 1 illustrates the case where the manufacturing apparatuses 36a, 36b, 36c, 36d, and 36e are provided, the manufacturing apparatus may include only one or a plurality of the above-described manufacturing apparatuses.

図1中、39はガス精製装置6の運転を制御する制御器である。40はガス化装置5のガス化炉1に供給する原料2の組成を分析して原料中の被毒成分濃度を得るようにした原料組成分析手段であり、該原料組成分析手段40によって得られた原料中被毒成分濃度41は前記制御器39に入力している。   In FIG. 1, 39 is a controller that controls the operation of the gas purification device 6. 40 is a raw material composition analyzing means for analyzing the composition of the raw material 2 supplied to the gasification furnace 1 of the gasifier 5 to obtain the concentration of poisoning components in the raw material, and is obtained by the raw material composition analyzing means 40. The raw material poisoning component concentration 41 is input to the controller 39.

42は前記ガス化炉1に対する原料2の供給量、ガス化温度、圧力等の運転状態を検出するようにしたガス化運転条件検出手段であり、該ガス化運転条件検出手段42によって得られた運転状態43は前記制御器39に入力している。ここで、ガス化運転条件検出手段42は改質炉4の改質温度、圧力等の運転状態も同時に検出して制御器39に入力するようにしてもよい。   Reference numeral 42 denotes gasification operation condition detection means for detecting an operation state such as a supply amount of the raw material 2 to the gasification furnace 1, a gasification temperature, a pressure, and the like, obtained by the gasification operation condition detection means 42. The operating state 43 is input to the controller 39. Here, the gasification operation condition detection means 42 may simultaneously detect the operation state such as the reforming temperature and pressure of the reforming furnace 4 and input it to the controller 39.

44はガス精製装置6入口のガス化ガス3の組成を分析して入口被毒成分濃度を得るようにした入口組成分析手段であり、該入口組成分析手段44によって得られた入口被毒成分濃度45は前記制御器39に入力している。   44 is an inlet composition analysis means for analyzing the composition of the gasification gas 3 at the inlet of the gas purification device 6 to obtain the inlet poison component concentration. The inlet poison component concentration obtained by the inlet composition analysis means 44 45 is input to the controller 39.

46はガス精製装置6出口のガス化ガス3の組成を分析して出口被毒成分濃度を得るようにした出口組成分析手段であり、該出口組成分析手段46によって得られた出口被毒成分濃度47は前記制御器39に入力している。   46 is an outlet composition analyzing means for analyzing the composition of the gasified gas 3 at the outlet of the gas purification device 6 to obtain the outlet poisoning component concentration. The outlet poisoning component concentration obtained by the outlet composition analyzing means 46 47 is input to the controller 39.

尚、原料組成分析手段40、入口組成分析手段44、出口組成分析手段46には、GC-TCD,GC-FID,GC-MSなどのガスクロマグラフ装置、電極を用いたガス分析装置等を用いることができる。   For the raw material composition analyzing means 40, the inlet composition analyzing means 44, and the outlet composition analyzing means 46, a gas chromatograph apparatus such as GC-TCD, GC-FID, or GC-MS, a gas analyzing apparatus using electrodes, or the like is used. Can do.

又、この形態では説明を簡略化するために、ガス化ガス3の流量を一定とした場合における被毒成分濃度について説明するが、ガス化ガス3の流量が変動してガス精製装置6へ供給される被毒成分の単位時間当たりの量が変動した場合にも触媒37a,37b,37c,37d,37eの活性に影響を及ぼすことになるため、前記被毒成分濃度による制御に加えてガス化ガス3の流量も考慮した制御を行うことが好ましい。   Further, in this embodiment, in order to simplify the description, the concentration of poisoning components when the flow rate of the gasification gas 3 is constant will be described. However, the flow rate of the gasification gas 3 varies and is supplied to the gas purification device 6. Since the activity of the catalysts 37a, 37b, 37c, 37d, and 37e is affected even when the amount of the poisoning component to be changed fluctuates, gasification is performed in addition to the control based on the concentration of the poisoning component. It is preferable to perform control in consideration of the flow rate of the gas 3.

図8は前記制御器39の構成の一例を示すブロック図であり、制御器39はオンライン予測部48を有しており、該オンライン予測部48は、原料組成分析手段40により得た原料中被毒成分濃度41とガス化運転条件検出手段42により検出したガス化装置5の運転状態43とを入力してガス精製装置6入口の被毒成分濃度を予測した予測被毒成分濃度49を出力するようになっている。この時、前記入口組成分析手段44によって得られたガス精製装置6入口における入口被毒成分濃度45を前記オンライン予測部48に入力することにより、前記予測被毒成分濃度49を補正することができる。   FIG. 8 is a block diagram showing an example of the configuration of the controller 39. The controller 39 has an online predicting unit 48, and the online predicting unit 48 includes the raw material cover obtained by the raw material composition analyzing means 40. The poison component concentration 41 and the operation state 43 of the gasifier 5 detected by the gasification operation condition detection means 42 are input, and a predicted poison component concentration 49 predicting the poison component concentration at the inlet of the gas purification device 6 is output. It is like that. At this time, the predicted poisoning component concentration 49 can be corrected by inputting the inlet poisoning component concentration 45 at the inlet of the gas purification device 6 obtained by the inlet composition analyzing means 44 to the online prediction unit 48. .

更に、制御器39は、前記オンライン予測部48からの予測被毒成分濃度49を入力すると共に設定濃度50が入力された運転指令部51を有している。運転指令部51は、前記予測被毒成分濃度49に基づいてガス精製装置6出口の被毒成分濃度が設定濃度50に維持されるように操作変数を設定した制御信号52を出力し、この制御信号52によって前記ガス精製装置6の各性能調節部10a,10b,10c,10d,10eを先行制御するようにしている。更に、前記出口組成分析手段46によって得られた出口被毒成分濃度47が前記運転指令部51に入力されて前記予測被毒成分濃度49を補正するフィードバック制御を行うようになっている。   Further, the controller 39 has an operation command unit 51 to which the predicted poisoned component concentration 49 from the online prediction unit 48 is input and the set concentration 50 is input. The operation command unit 51 outputs a control signal 52 in which an operation variable is set so that the poisoned component concentration at the outlet of the gas purifier 6 is maintained at the set concentration 50 based on the predicted poisoned component concentration 49. The performance control units 10a, 10b, 10c, 10d, and 10e of the gas purification device 6 are controlled in advance by the signal 52. Further, the outlet poisoning component concentration 47 obtained by the outlet composition analyzing means 46 is input to the operation command unit 51 to perform feedback control for correcting the predicted poisoning component concentration 49.

次に、上記図示例の作動を説明する。   Next, the operation of the illustrated example will be described.

図1、図6において、ガス化装置5のガス化炉1に供給する石炭、バイオマス等の原料2の組成を原料組成分析手段40により分析して原料中の被毒成分濃度を得、この原料中被毒成分濃度41を制御器39のオンライン予測部48に入力すると共に、前記ガス化装置5に備えたガス化運転条件検出手段42により検出した原料供給量、ガス化温度、圧力等の運転状態43を前記オンライン予測部48に入力する。オンライン予測部48では、前記原料中被毒成分濃度41と前記運転状態43とからガス精製装置6入口での被毒成分濃度を示す予測被毒成分濃度49を得るようにしている。   1 and 6, the composition of the raw material 2 such as coal and biomass supplied to the gasification furnace 1 of the gasifier 5 is analyzed by the raw material composition analysis means 40 to obtain the concentration of poisoning components in the raw material. The intermediate poisoning component concentration 41 is input to the online prediction unit 48 of the controller 39, and the operation of the raw material supply amount, gasification temperature, pressure, etc. detected by the gasification operation condition detection means 42 provided in the gasifier 5 is performed. The state 43 is input to the online prediction unit 48. The online prediction unit 48 obtains a predicted poisoning component concentration 49 indicating the poisoning component concentration at the inlet of the gas purification device 6 from the poisoning component concentration 41 in the raw material and the operating state 43.

この時、図9に示すように、原料2中に含まれる微量成分a,b,cの濃度と、ガス化後のガス化ガス3中に含まれる前記微量成分a,b,cの濃度との関係を予め求めておくことにより、原料2を分析して得られた各被毒成分濃度から、ガス化ガス3中の各被毒成分濃度を予測して求めることができる。   At this time, as shown in FIG. 9, the concentration of the trace components a, b, c contained in the raw material 2 and the concentration of the trace components a, b, c contained in the gasified gas 3 after gasification Is obtained in advance, the concentration of each poisoning component in the gasification gas 3 can be predicted from the concentration of each poisoning component obtained by analyzing the raw material 2.

前記オンライン予測部48で得られたガス精製装置6出口における予測被毒成分濃度49は、設定濃度50が入力された運転指令部51に入力され、運転指令部51は、図10に示すように、予測被毒成分濃度49に基づいてガス精製装置6出口の被毒成分濃度が設定濃度50に維持されるように操作変数を設定した制御信号52を前記ガス精製装置6の各性能調節部10a,10b,10cに送って先行制御する。   The predicted poisoned component concentration 49 at the outlet of the gas purifier 6 obtained by the online predicting unit 48 is input to the operation command unit 51 to which the set concentration 50 is input, and the operation command unit 51 is as shown in FIG. The control signal 52 in which the operation variable is set so that the poisoned component concentration at the outlet of the gas purifying device 6 is maintained at the set concentration 50 based on the predicted poisoned component concentration 49 is sent to each performance adjusting unit 10a of the gas purifying device 6. , 10b, 10c to control in advance.

即ち、図2のタール除去装置7では給水ポンプ11に制御信号52を送ってタール除去性能を調節し、図3の脱硫装置8では、吸収液体供給ポンプ22(吸収剤供給手段)に制御信号52を送って脱硫性能を調節し、図4の脱硫装置8では吸収粉体搬送ポンプ28(吸収剤供給手段)に制御信号52を送って脱硫性能を調節し、図5の脱硝装置9ではアンモニア供給ポンプ33に制御信号52を送って脱硝性能を調節し、図6の脱アンモニア装置58ではポンプ61に制御信号52を送って脱アンモニア性能を調節し、図7の脱ベンゼン装置59ではポンプ63に制御信号52を送って脱ベンゼン性能を調節する。   That is, the tar removal device 7 in FIG. 2 sends a control signal 52 to the feed water pump 11 to adjust the tar removal performance. In the desulfurization device 8 in FIG. 3, the control signal 52 is sent to the absorbing liquid supply pump 22 (absorbent supply means). 4 to adjust the desulfurization performance. In the desulfurization apparatus 8 of FIG. 4, the control signal 52 is sent to the absorbent powder conveyance pump 28 (absorbent supply means) to adjust the desulfurization performance. In the denitration apparatus 9 of FIG. The control signal 52 is sent to the pump 33 to adjust the denitration performance, the deammonia device 58 in FIG. 6 sends the control signal 52 to the pump 61 to adjust the deammonia performance, and the debenzene device 59 in FIG. A control signal 52 is sent to adjust the debenzene performance.

これにより、原料2の種類や性状が変化したり、或いは、ガス化装置5の運転状態が変化することによってガス化ガス3中の被毒成分の濃度が変化するような場合にも、運転指令部51はオンライン予測部48からの予測被毒成分濃度49に基づいて各性能調節部10a,10b,10cを先行制御するので、ガス精製装置6から化成品製造プロセス35に導かれるガス化ガス3の被毒成分濃度は前記設定濃度50に安定して保持される。   Thereby, even when the type or property of the raw material 2 changes or the concentration of the poisoning component in the gasification gas 3 changes due to the change of the operation state of the gasifier 5, the operation command is issued. Since the unit 51 controls the performance adjusting units 10a, 10b, and 10c in advance based on the predicted poisoned component concentration 49 from the online predicting unit 48, the gasified gas 3 introduced from the gas purifying device 6 to the chemical product manufacturing process 35. The poisoning component concentration of is stably maintained at the set concentration 50.

更に、運転指令部51には、前記出口組成分析手段46によって得られた出口被毒成分濃度47が入力されて前記予測被毒成分濃度49を補正するようにしているので、このフィードバック制御によってガス精製装置6から化成品製造プロセス35に導かれるガス化ガス3の被毒成分濃度は更に精度良く一定に保持される。このように、化成品製造プロセス35に導かれるガス化ガス3の被毒成分濃度を一定に保持することにより、触媒37a,37b,37c,37d,37eの寿命を延長させることができる。   Further, since the outlet poisoning component concentration 47 obtained by the outlet composition analyzing means 46 is input to the operation command unit 51 to correct the predicted poisoning component concentration 49, the feedback control controls the gas. The concentration of poisoning components of the gasification gas 3 led from the refining device 6 to the chemical product manufacturing process 35 is kept constant with higher accuracy. In this way, the life of the catalysts 37a, 37b, 37c, 37d, and 37e can be extended by keeping the concentration of poisoning components of the gasified gas 3 introduced to the chemical product manufacturing process 35 constant.

図11は前記制御器の他の構成を示すブロック図であり、この制御器39'は、出口組成分析手段46によって得られた出口被毒成分濃度47に基づいて化成品製造プロセス35における触媒37a,37b,37c,37d,37eの活性低下による寿命を評価する寿命評価部53を有しており、更に、該寿命評価部53により得られた寿命の評価値54と触媒37a,37b,37c,37d,37eの目標寿命55とが入力される寿命達成濃度算出部56を有している。そして、寿命達成濃度算出部56は、目標寿命55を達成するのに必要な寿命達成濃度57を算出し、この算出した寿命達成濃度57を図8の設定濃度50に代わる設定濃度として前記運転指令部51に入力するようにしている。   FIG. 11 is a block diagram showing another configuration of the controller. The controller 39 ′ is a catalyst 37a in the chemical product manufacturing process 35 based on the outlet poisoning component concentration 47 obtained by the outlet composition analyzing means 46. , 37b, 37c, 37d, and 37e, a life evaluation unit 53 that evaluates the life due to the decrease in activity, and the life evaluation value 54 obtained by the life evaluation unit 53 and the catalysts 37a, 37b, 37c, A life attainment concentration calculation unit 56 to which the target life 55 of 37d and 37e is input is provided. The life achievement concentration calculating unit 56 calculates a life achievement concentration 57 necessary to achieve the target life 55, and uses the calculated life achievement concentration 57 as a set concentration in place of the set concentration 50 in FIG. It inputs to the part 51.

触媒に被毒成分が吸着することによる触媒の活性低下は主に以下の式で示される。

Figure 2010077289
r:反応速度(mol/h)
:初期反応速度(mol/h)
:被毒反応の速度定数 (h/m
:反応開始時の触媒表面の全活性サイト数(HもしくはCO吸着法により測定)(mol)
:被毒物質濃度(mol/m
t:時間(h)
参考文献:J. M. Smith, Chemical Engineering Kinetics, McGRAW-HILL 1981, p381-383 The decrease in the activity of the catalyst due to the adsorption of poisoning components on the catalyst is mainly represented by the following formula.
Figure 2010077289
r: Reaction rate (mol / h)
a 1 : Initial reaction rate (mol / h)
k p : Rate constant of poisoning reaction (h / m 3 )
q 0 : total number of active sites on the catalyst surface at the start of the reaction (measured by H 2 or CO adsorption method) (mol)
C p: poisoning substance concentration (mol / m 3)
t: Time (h)
References: JM Smith, Chemical Engineering Kinetics, McGRAW-HILL 1981, p381-383

例えば、予備試験として、ガス化ガス3中に含まれる既知の物質(被毒成分)を所定の濃度(C)分だけガス化ガス3に添加し、活性測定試験を行う。活性劣化挙動から、aおよびkを算出することにより、物質ごとの被毒成分による設定時間での許容濃度を算出する。可能であれば、全ての物質についての影響を算出すべきであるが、構造が類似する物質に関しては、各物質量(吸着熱や蒸発熱)による近似式より補正して許容濃度を求めることができる。 For example, as a preliminary test, a known substance (poisoned component) contained in the gasification gas 3 is added to the gasification gas 3 by a predetermined concentration (C p ), and an activity measurement test is performed. By calculating a 1 and k p from the activity deterioration behavior, the permissible concentration at the set time by the poisoning component for each substance is calculated. If possible, the impact on all substances should be calculated, but for substances with similar structures, the allowable concentration can be determined by correcting from the approximate expression based on the amount of each substance (heat of adsorption and heat of vaporization). it can.

従って、図12に被毒成分Aと被毒成分Bにおける被毒成分濃度と触媒寿命との関係を示すように、被毒成分濃度が増加すると触媒の活性が急激に低下して寿命が著しく低下することが得られるので、触媒の要求される目標寿命を設定することにより、触媒の目標寿命を達成するのに必要な寿命達成濃度を算出することができる。   Therefore, as shown in FIG. 12 showing the relationship between the poisoning component concentration in the poisoning component A and the poisoning component B and the catalyst life, the activity of the catalyst is drastically lowered when the poisoning component concentration is increased. Therefore, by setting the required target life of the catalyst, it is possible to calculate the life achievement concentration necessary to achieve the target life of the catalyst.

従って、図11の前記寿命達成濃度算出部56に目標寿命55を入力すると、寿命達成濃度算出部56は、出口組成分析手段46によって得られた出口被毒成分濃度47から寿命評価部53により得られた寿命の評価値54に基づき、目標寿命55達成するのに必要な寿命達成濃度57を算出し、この算出した寿命達成濃度57が図8における設定濃度50に代わる設定濃度として前記運転指令部51に入力され、これによりガス精製装置6出口の被毒成分濃度が寿命達成濃度57に維持されるようになり、よって化成品製造プロセス35の触媒37a,37b,37c,37d,37eの寿命は前記目標寿命55にコントロールされるようになる。   Accordingly, when the target life 55 is input to the life achievement concentration calculation unit 56 in FIG. 11, the life achievement concentration calculation unit 56 is obtained by the life evaluation unit 53 from the exit poison component concentration 47 obtained by the exit composition analysis means 46. Based on the obtained life evaluation value 54, a life achievement concentration 57 required to achieve the target life 55 is calculated, and the calculated life achievement concentration 57 is set as a set concentration in place of the set concentration 50 in FIG. 51, whereby the concentration of poisoning components at the outlet of the gas purifier 6 is maintained at the life achievement concentration 57, and thus the life of the catalysts 37a, 37b, 37c, 37d, and 37e of the chemical product manufacturing process 35 is increased. The target life 55 is controlled.

上記したように、原料組成分析手段40により得た原料中被毒成分濃度41とガス化運転条件検出手段42により検出したガス化装置5の運転状態43とからガス精製装置6入口の被毒成分濃度を予測し、この予測被毒成分濃度49が設定濃度50に低減されるようにガス精製装置6の性能調節部10a,10b,10cを先行制御し、且つ、出口組成分析手段46により得た出口被毒成分濃度47により前記予測被毒成分濃度49を補正するようにしたので、最小限のガス精製装置6の運転によって、化成品製造プロセス35に供給されるガス化ガス3中の被毒成分を設定濃度50に維持することができ、よってガス精製装置6のランニングコストを最小限に抑えることができる。   As described above, the poisoning components at the inlet of the gas purification device 6 from the poisoning component concentration 41 in the raw material obtained by the raw material composition analysis means 40 and the operating state 43 of the gasification device 5 detected by the gasification operation condition detection means 42. The concentration was predicted, and the performance adjusting units 10a, 10b, and 10c of the gas purification apparatus 6 were controlled in advance so that the predicted poisoned component concentration 49 was reduced to the set concentration 50, and obtained by the outlet composition analysis means 46. Since the predicted poisoning component concentration 49 is corrected by the outlet poisoning component concentration 47, the poisoning in the gasified gas 3 supplied to the chemical product manufacturing process 35 by the minimum operation of the gas purification device 6 is performed. The components can be maintained at the set concentration 50, and therefore the running cost of the gas purification device 6 can be minimized.

又、出口組成分析手段46により得た出口被毒成分濃度47から化成品製造プロセス35の触媒37a,37b,37c,37d,37eの寿命を評価し、該寿命の評価値54に基づいて触媒の目標寿命55を達成するのに必要な寿命達成濃度57を算出し、該寿命達成濃度57を設定濃度として性能調節部10a,10b,10cを制御することにより、化成品製造プロセス35の触媒37a,37b,37c,37d,37eを目標寿命55まで安定して作用させることができる。   Further, the life of the catalysts 37a, 37b, 37c, 37d, and 37e in the chemical product manufacturing process 35 is evaluated from the concentration 47 of the poisoned component obtained by the outlet composition analysis means 46, and the catalyst By calculating a life achievement concentration 57 necessary to achieve the target life 55 and controlling the performance adjusting units 10a, 10b, and 10c using the life achievement concentration 57 as a set concentration, the catalyst 37a, 37b, 37c, 37d, and 37e can be stably acted up to the target life 55.

なお、上記形態では、被毒成分濃度に基づいた制御を行う場合について説明したが、ガス化ガスの流量も考慮した被毒成分の単位時間当たりの供給量に基づいて制御するようにしてもよいこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In the above embodiment, the case where the control based on the poisoning component concentration is described, but the control may be performed based on the supply amount of the poisoning component per unit time in consideration of the flow rate of the gasification gas. Of course, various changes can be made without departing from the scope of the present invention.

本発明を実施する形態の一例を示すブロック図である。It is a block diagram which shows an example of the form which implements this invention. タール除去装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a tar removal apparatus. 湿式の脱硫装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a wet desulfurization apparatus. 乾式の脱硫装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a dry-type desulfurization apparatus. 脱硝装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a denitration apparatus. 脱アンモニア装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a deammonia device. 脱ベンゼン装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a debenzene apparatus. 本発明における制御器の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the controller in this invention. 原料中に含まれる微量成分の濃度とガス化後のガス化ガス中に含まれる前記微量成分の濃度との関係を示す線図である。It is a diagram which shows the relationship between the density | concentration of the trace component contained in a raw material, and the density | concentration of the said trace component contained in gasification gas after gasification. 予測被毒成分濃度に基づいて性能調節部を制御する制御信号の一例を示す線図である。It is a diagram which shows an example of the control signal which controls a performance adjustment part based on prediction poisoning component density | concentration. 本発明における制御器の構成の他の例を示すブロック図である。It is a block diagram which shows the other example of a structure of the controller in this invention. 被毒成分濃度と触媒寿命との関係の一例を示す線図である。It is a diagram which shows an example of the relationship between poisoning component density | concentration and a catalyst lifetime.

符号の説明Explanation of symbols

2 原料
3 ガス化ガス
5 ガス化装置
6 ガス精製装置
7 タール除去装置
8 脱硫装置
9 脱硝装置
10a,10b,10c,10d,10e 性能調節部
11 給水ポンプ(性能調節部10a)
14 スプレーノズル
21 吸収液体(硫黄吸収剤)
22 吸収液体供給ポンプ(吸収剤供給手段)(性能調節部10b)
26 吸収粉体(硫黄吸収剤)
28 吸収粉体搬送ポンプ(吸収剤供給手段)(性能調節部10b)
33 アンモニア供給ポンプ(性能調節部10c)
34 アンモニア
35 化成品製造プロセス
36a 液体燃料製造装置
36b メタノール製造装置
36c DME合成装置
36d 水素製造装置
36e アンモニア製造装置
37a,37b,37c,37d,37e 触媒
39 制御器
39' 制御器
40 原料組成分析手段
41 原料中被毒成分濃度
42 ガス化運転条件検出手段
43 運転状態
44 入口組成分析手段
45 入口被毒成分濃度
46 出口組成分析手段
47 出口被毒成分濃度
48 オンライン予測部
49 予測被毒成分濃度
50 設定濃度
51 運転指令部
53 寿命評価部
54 評価値
55 目標寿命
56 寿命達成濃度算出部
57 寿命達成濃度
58 脱アンモニア装置
59 脱ベンゼン装置
61 ポンプ
62 ポンプ
2 Raw material 3 Gasification gas 5 Gasification device 6 Gas purification device 7 Tar removal device 8 Desulfurization device 9 Denitration device 10a, 10b, 10c, 10d, 10e Performance adjustment unit 11 Water supply pump (performance adjustment unit 10a)
14 Spray nozzle 21 Absorbing liquid (sulfur absorbent)
22 Absorption liquid supply pump (absorbent supply means) (performance adjusting unit 10b)
26 Absorbent powder (sulfur absorbent)
28 Absorbent Powder Conveyance Pump (Absorbent Supply Unit) (Performance Control Unit 10b)
33 Ammonia supply pump (performance adjusting unit 10c)
34 Ammonia 35 Chemical product production process 36a Liquid fuel production device 36b Methanol production device 36c DME synthesis device 36d Hydrogen production device 36e Ammonia production device 37a, 37b, 37c, 37d, 37e Catalyst 39 Controller 39 'Controller 40 Raw material composition analysis means 41 Concentration of poisoning components in raw material 42 Gasification operation condition detection means 43 Operating state 44 Inlet composition analysis means 45 Inlet poisoning component concentration 46 Outlet composition analysis means 47 Outlet poisoning component concentration 48 Online prediction unit 49 Predicted poisoning component concentration 50 Set concentration 51 Operation command section 53 Life evaluation section 54 Evaluation value 55 Target life 56 Life achievement concentration calculation section 57 Life achievement concentration 58 Deammonizer 59 Debenzene apparatus 61 Pump 62 Pump

Claims (12)

ガス化装置からのガス化ガスを触媒が備えられた化成品製造プロセスに供給して化成品を製造する際に、前記ガス化装置からのガス化ガスをガス精製装置に供給し、該ガス精製装置に備えた性能調節部を調節して前記触媒の活性を低下させる被毒成分濃度を低減するようにしているガス精製装置の運転制御方法であって、
ガス化装置に供給する原料の組成を分析して原料中被毒成分濃度を得る原料組成分析手段と、ガス化装置の運転状態を検出するガス化運転条件検出手段と、ガス精製装置出口のガス化ガスの組成を分析して出口被毒成分濃度を得る出口組成分析手段とを備え、
原料組成分析手段により得た原料中被毒成分濃度とガス化運転条件検出手段により検出したガス化装置の運転状態とからガス精製装置入口の被毒成分濃度を予測し、
該予測被毒成分濃度が設定濃度に低減されるように前記性能調節部を先行制御し、且つ出口組成分析手段により得た出口被毒成分濃度により前記予測被毒成分濃度を補正するようにした
ことを特徴とするガス精製装置の運転制御方法。
When producing a chemical product by supplying the gasification gas from the gasification device to a chemical product production process equipped with a catalyst, the gasification gas from the gasification device is supplied to the gas purification device, and the gas purification An operation control method for a gas purifier that adjusts a performance adjustment unit provided in the apparatus to reduce the concentration of poisoning components that reduce the activity of the catalyst,
Raw material composition analysis means for analyzing the composition of the raw material supplied to the gasifier and obtaining the concentration of poisoning components in the raw material, gasification operation condition detection means for detecting the operating state of the gasifier, and gas at the gas purifier outlet An outlet composition analyzing means for analyzing the composition of the gasified gas to obtain the outlet poisoning component concentration,
From the raw material poisoning component concentration obtained by the raw material composition analysis means and the operation state of the gasifier detected by the gasification operation condition detection means, the poisoning component concentration at the gas purification device inlet is predicted,
The performance adjustment unit is controlled in advance so that the predicted poisoning component concentration is reduced to a set concentration, and the predicted poisoning component concentration is corrected by the outlet poisoning component concentration obtained by the outlet composition analysis means. The operation control method of the gas purification apparatus characterized by the above-mentioned.
ガス精製装置入口のガス化ガスの組成を分析して入口被毒成分濃度を得る入口組成分析手段を設け、該入口組成分析手段により得た入口被毒成分濃度により前記予測被毒成分濃度を補正する請求項1に記載のガス精製装置の運転制御方法。   An inlet composition analysis means is provided for analyzing the composition of the gasification gas at the inlet of the gas purification device to obtain the inlet poison component concentration, and the predicted poison component concentration is corrected by the inlet poison component concentration obtained by the inlet composition analysis means. The operation control method of the gas purification apparatus according to claim 1. 出口組成分析手段により得た出口被毒成分濃度から化成品製造プロセスの触媒の寿命を評価し、該寿命の評価値に基づいて触媒の目標寿命を達成するのに必要な寿命達成濃度を算出し、該寿命達成濃度を前記設定濃度とする請求項1又は2に記載のガス精製装置の運転制御方法。   The life of the catalyst in the chemical product manufacturing process is evaluated from the concentration of the exit poison component obtained by the outlet composition analysis means, and the life achievement concentration necessary to achieve the target life of the catalyst is calculated based on the evaluation value of the life. The operation control method for a gas purifier according to claim 1 or 2, wherein the life achievement concentration is the set concentration. 化成品製造プロセスは、液体燃料製造装置、メタノール製造装置、DME合成装置、水素製造装置、アンモニア製造装置の少なくとも1つである請求項1〜3のいずれか1つに記載のガス精製装置の運転制御方法。   The operation of the gas purification apparatus according to any one of claims 1 to 3, wherein the chemical product production process is at least one of a liquid fuel production apparatus, a methanol production apparatus, a DME synthesis apparatus, a hydrogen production apparatus, and an ammonia production apparatus. Control method. ガス化装置からのガス化ガスを触媒が備えられた化成品製造プロセスに供給して化成品を製造する際に、前記ガス化装置からのガス化ガスをガス精製装置に供給し、該ガス精製装置に備えた性能調節部を調節して前記触媒の活性を低下させる被毒成分濃度を低減するようにしているガス精製装置の運転制御装置であって、
ガス化装置に供給する原料の組成を分析して原料中被毒成分濃度を得る原料組成分析手段と、
ガス化装置における運転状態を検出するガス化運転条件検出手段と、
ガス精製装置出口のガス化ガスの組成を分析して出口被毒成分濃度を得る出口組成分析手段と、
原料組成分析手段により得た原料中被毒成分濃度とガス化運転条件検出手段により検出したガス化装置の運転状態とからガス精製装置入口の被毒成分濃度を予測するオンライン予測部と、該オンライン予測部からの予測被毒成分濃度を入力して該予測被毒成分濃度が設定濃度に低減されるよう操作変数を設定して前記性能調節部を先行制御すると共に、前記出口組成分析手段により得た出口被毒成分濃度により前記予測被毒成分濃度を補正するようにした運転指令部とからなる制御器と
を有することを特徴とするガス精製装置の運転制御装置。
When producing a chemical product by supplying the gasification gas from the gasification device to a chemical product production process equipped with a catalyst, the gasification gas from the gasification device is supplied to the gas purification device, and the gas purification An operation control device for a gas purification device that adjusts a performance adjusting unit provided in the device to reduce the concentration of poisoning components that reduce the activity of the catalyst,
Raw material composition analysis means for analyzing the composition of the raw material supplied to the gasifier and obtaining the concentration of poisoning components in the raw material;
Gasification operation condition detection means for detecting an operation state in the gasifier,
An outlet composition analyzing means for analyzing the composition of the gasification gas at the outlet of the gas purifier and obtaining the concentration of the outlet poisoning component;
An on-line prediction unit for predicting the concentration of poisoning components at the gas purifier inlet from the concentration of poisoning components in the raw material obtained by the raw material composition analysis means and the operating state of the gasifier detected by the gasification operation condition detection means; The predicted poisoning component concentration from the prediction unit is input, an operation variable is set so that the predicted poisoning component concentration is reduced to a set concentration, and the performance adjusting unit is controlled in advance, and obtained by the outlet composition analysis means. And a controller comprising an operation command unit configured to correct the predicted poisoning component concentration based on the outlet poisoning component concentration.
ガス精製装置入口のガス化ガスの組成を分析して入口被毒成分濃度を得、得られた入口被毒成分濃度により前記予測被毒成分濃度を補正する入口組成分析手段を有する請求項5に記載のガス精製装置の運転制御装置。   6. The apparatus according to claim 5, further comprising an inlet composition analysis means for analyzing the composition of the gasification gas at the gas purification apparatus inlet to obtain an inlet poison component concentration and correcting the predicted poison component concentration based on the obtained inlet poison component concentration. The operation control apparatus of the gas purification apparatus as described. 制御器は、出口組成分析手段により得た出口被毒成分濃度から化成品製造プロセスの触媒の寿命を評価する寿命評価部と、該寿命評価部により得られた寿命の評価値から触媒の目標寿命を達成するのに必要な寿命達成濃度を算出し、算出した寿命達成濃度を前記設定濃度として前記運転指令部に入力する寿命達成濃度算出部とを有する請求項5又は6に記載のガス精製装置の運転制御装置。   The controller includes a life evaluation unit that evaluates the life of the catalyst in the chemical product manufacturing process from the concentration of the exit poison component obtained by the exit composition analysis means, and a target life of the catalyst from the life evaluation value obtained by the life evaluation unit. A gas purifying apparatus according to claim 5 or 6, further comprising: a life achievement concentration calculating unit that calculates a life achievement concentration necessary to achieve the above and inputs the calculated life achievement concentration to the operation command unit as the set concentration. Operation control device. ガス精製装置がタール除去装置であり、性能調節部がタール除去装置のスプレーノズルに冷却水を供給する給水ポンプである請求項5〜7のいずれか1つに記載のガス精製装置の運転制御装置。   The gas purification device operation control device according to any one of claims 5 to 7, wherein the gas purification device is a tar removal device, and the performance adjusting unit is a water supply pump that supplies cooling water to a spray nozzle of the tar removal device. . ガス精製装置が脱硫装置であり、性能調節部が脱硫装置に硫黄吸収剤を供給する吸収剤供給手段である請求項5〜7のいずれか1つに記載のガス精製装置の運転制御装置。   The operation control device of the gas purification device according to any one of claims 5 to 7, wherein the gas purification device is a desulfurization device, and the performance adjusting unit is an absorbent supply means for supplying a sulfur absorbent to the desulfurization device. ガス精製装置が脱硝装置であり、性能調節部が脱硝装置の触媒にアンモニアを供給するアンモニア供給ポンプである請求項5〜7のいずれか1つに記載のガス精製装置の運転制御装置。   The operation control apparatus of the gas purification apparatus according to any one of claims 5 to 7, wherein the gas purification apparatus is a denitration apparatus, and the performance adjusting unit is an ammonia supply pump that supplies ammonia to a catalyst of the denitration apparatus. ガス精製装置が脱アンモニア装置であり、性能調節部が脱アンモニア装置にアンモニア吸収剤を供給するポンプである請求項5〜7のいずれか1つに記載のガス精製装置の運転制御装置。   The operation control device of the gas purification device according to any one of claims 5 to 7, wherein the gas purification device is a deammonia device, and the performance adjusting unit is a pump for supplying an ammonia absorbent to the deammonia device. ガス精製装置が脱ベンゼン装置であり、性能調節部が脱ベンゼン装置にベンゼン吸収剤を供給するポンプである請求項5〜7のいずれか1つに記載のガス精製装置の運転制御装置。   The operation control device of the gas purification device according to any one of claims 5 to 7, wherein the gas purification device is a debenzene device, and the performance adjusting unit is a pump that supplies a benzene absorbent to the debenzene device.
JP2008247641A 2008-09-26 2008-09-26 Method and apparatus for controlling operation of gas purification apparatus Pending JP2010077289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247641A JP2010077289A (en) 2008-09-26 2008-09-26 Method and apparatus for controlling operation of gas purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247641A JP2010077289A (en) 2008-09-26 2008-09-26 Method and apparatus for controlling operation of gas purification apparatus

Publications (1)

Publication Number Publication Date
JP2010077289A true JP2010077289A (en) 2010-04-08

Family

ID=42208092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247641A Pending JP2010077289A (en) 2008-09-26 2008-09-26 Method and apparatus for controlling operation of gas purification apparatus

Country Status (1)

Country Link
JP (1) JP2010077289A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021777A (en) * 2010-07-12 2012-02-02 Hitachi-Ge Nuclear Energy Ltd Device for predicting exit hydrogen concentration of exhaust gas recombination device and method of predicting exit hydrogen concentration
CN102585918A (en) * 2012-02-17 2012-07-18 南京工业大学 Process and system for deeply removing tar through biomass gas coupling adsorption
CN103305286A (en) * 2013-06-28 2013-09-18 陕西煤业化工技术研究院有限责任公司 Coke oven gas purifying system for efficiently recycling coking plant heat source and desulfurated liquid waste treatment method
CN105152436A (en) * 2015-07-08 2015-12-16 北京首钢国际工程技术有限公司 Coke oven coal gas desulfurization waste liquid ammonia evaporation apparatus and use method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458322A (en) * 1987-08-28 1989-03-06 Nippon Kokan Kk Method for operating control equipment of benzol group recovery apparatus
JPH09208969A (en) * 1996-01-31 1997-08-12 Ishikawajima Harima Heavy Ind Co Ltd Control system for gasified gas desulfurization apparatus
JP2004067849A (en) * 2002-08-06 2004-03-04 Mitsubishi Heavy Ind Ltd Wet-type gas refining process
JP2006095485A (en) * 2004-09-30 2006-04-13 Toshiba Corp Waste disposal system
JP2008045017A (en) * 2006-08-14 2008-02-28 Mitsubishi Heavy Ind Ltd Apparatus and method for gas cleaning, gasification system and gasification power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458322A (en) * 1987-08-28 1989-03-06 Nippon Kokan Kk Method for operating control equipment of benzol group recovery apparatus
JPH09208969A (en) * 1996-01-31 1997-08-12 Ishikawajima Harima Heavy Ind Co Ltd Control system for gasified gas desulfurization apparatus
JP2004067849A (en) * 2002-08-06 2004-03-04 Mitsubishi Heavy Ind Ltd Wet-type gas refining process
JP2006095485A (en) * 2004-09-30 2006-04-13 Toshiba Corp Waste disposal system
JP2008045017A (en) * 2006-08-14 2008-02-28 Mitsubishi Heavy Ind Ltd Apparatus and method for gas cleaning, gasification system and gasification power generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021777A (en) * 2010-07-12 2012-02-02 Hitachi-Ge Nuclear Energy Ltd Device for predicting exit hydrogen concentration of exhaust gas recombination device and method of predicting exit hydrogen concentration
CN102585918A (en) * 2012-02-17 2012-07-18 南京工业大学 Process and system for deeply removing tar through biomass gas coupling adsorption
CN103305286A (en) * 2013-06-28 2013-09-18 陕西煤业化工技术研究院有限责任公司 Coke oven gas purifying system for efficiently recycling coking plant heat source and desulfurated liquid waste treatment method
CN105152436A (en) * 2015-07-08 2015-12-16 北京首钢国际工程技术有限公司 Coke oven coal gas desulfurization waste liquid ammonia evaporation apparatus and use method thereof

Similar Documents

Publication Publication Date Title
Urban et al. Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells
KR101239313B1 (en) Process for treating a gas stream
US8506917B2 (en) Gas treatment method and apparatus for circulating fluidized-bed gasification system
de Oliveira Carneiro et al. Improving H2S removal in the coke oven gas purification process
CA2801477C (en) System for deaeration in a flash vessel
Üresin et al. An experimental study for H2S and CO2 removal via caustic scrubbing system
EP3031956A1 (en) A process for the preparation of ultra-high purity carbon monoxide
JP2010077289A (en) Method and apparatus for controlling operation of gas purification apparatus
TWI505992B (en) Process for heat recovery from ammonia stripper in andrussow process
US20180297845A1 (en) Systems and processes for removing hydrogen sulfide from gas streams
US20120285863A1 (en) Automated sulfur recovery loop
JP4909371B2 (en) Digestion gas deoxygenation method and apparatus
Procopio et al. Saturation of the MEA solution with CO2: absorption prototype and experimental technique
US20060198780A1 (en) Method and apparatus for removing CO2 in mixed gas such as biogas
JP5277886B2 (en) Energy gas refining wastewater treatment method and energy gas refining wastewater treatment apparatus
Nilsson et al. Kinetics of H2S removal using alkaline residue as in-bed sorbent in fluidized bed gasification of biomass and wastes
RU2544656C1 (en) Apparatus for producing synthesis gas for producing hydrocarbons
EP0787690A2 (en) Wet oxidizing process of waste soda
KR20120033090A (en) Appratus for refining sinter flue gas
JP5387688B2 (en) Ammonia treatment method and apparatus for gasification equipment
Ibrahim Performance monitoring of a sulphur recovery unit: A real startup plant
KR101708960B1 (en) Method and installation for producing sulfuric acid
KR100751167B1 (en) Purification method of carbon dioxide
US20160194211A1 (en) Operational controls for inert gas blanketing for andrussow process
US20230219834A1 (en) Treatment of nitrogen compounds in spent caustic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Effective date: 20130625

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20130808

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130827

Free format text: JAPANESE INTERMEDIATE CODE: A02