JP2012021188A - Method for improving residual stress in pipe, and method for construction management - Google Patents

Method for improving residual stress in pipe, and method for construction management Download PDF

Info

Publication number
JP2012021188A
JP2012021188A JP2010159270A JP2010159270A JP2012021188A JP 2012021188 A JP2012021188 A JP 2012021188A JP 2010159270 A JP2010159270 A JP 2010159270A JP 2010159270 A JP2010159270 A JP 2010159270A JP 2012021188 A JP2012021188 A JP 2012021188A
Authority
JP
Japan
Prior art keywords
pipe
temperature
residual stress
construction
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010159270A
Other languages
Japanese (ja)
Other versions
JP5298081B2 (en
Inventor
Satoshi Aoike
聡 青池
Masaki Tsuruki
昌樹 鶴来
Shinobu Okido
忍 大城戸
Yuka Fukuda
ゆか 福田
Naohiko Oritani
尚彦 折谷
Satoshi Sugano
智 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010159270A priority Critical patent/JP5298081B2/en
Priority to US13/080,686 priority patent/US9085811B2/en
Publication of JP2012021188A publication Critical patent/JP2012021188A/en
Application granted granted Critical
Publication of JP5298081B2 publication Critical patent/JP5298081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for compressing a tensile residual stress working on an inner surface in the vicinity of a pipe welded part at a <350°C construction temperature.SOLUTION: A step is repeated at least twice, wherein, after heating the vicinity of the pipe welded part at the <350°C construction temperature by heater heating from the outer surface, cooling water is supplied to the pipe inside to rapidly cool the inner surface. In the construction management, a temperature difference between inner and outer surfaces is evaluated based on lowering speed of the outer surface temperature when the cooling water is supplied to rapidly cool the inner surface, and on a pipe plate thickness at a temperature measuring position, and it is confirmed that a thermal stress generated by the temperature difference between the inner and outer surfaces is equal to or higher than a yield stress of a pipe material.

Description

本発明は、配管内面に作用する残留応力を圧縮方向に改善する方法と、その施工管理方法に関する。   The present invention relates to a method of improving a residual stress acting on an inner surface of a pipe in a compression direction and a construction management method thereof.

配管溶接部近傍の内面には、溶接時の熱履歴により引張方向の残留応力が作用している場合がある。この引張残留応力は、オーステナイト系ステンレス鋼製の高温水配管における応力腐食割れの発生と進展の一要因となる。このため、溶接部近傍の内面に作用している引張残留応力を圧縮方向に改善、望ましくは圧縮化できれば、応力腐食割れによる配管の損傷を抑制することができる。   Residual stress in the tensile direction may act on the inner surface near the welded portion of the pipe due to the thermal history during welding. This tensile residual stress contributes to the occurrence and development of stress corrosion cracking in high temperature water piping made of austenitic stainless steel. For this reason, if the tensile residual stress acting on the inner surface in the vicinity of the welded portion can be improved in the compression direction, preferably compressed, damage to the pipe due to stress corrosion cracking can be suppressed.

配管溶接部近傍の内面に作用する引張残留応力を圧縮方向に改善する方法の内、配管を加熱した後に内面を急冷することで残留応力を圧縮方向に改善する方法については、加熱温度の調整により内外面の温度差を調整できることから、板厚が薄く内外面に大きな温度差を付与するのが難しい小口径配管でも残留応力を圧縮方向に改善できる。   Of the methods for improving the tensile residual stress acting on the inner surface near the welded part of the pipe in the compression direction, the method for improving the residual stress in the compression direction by rapidly cooling the inner surface after heating the pipe is possible by adjusting the heating temperature. Since the temperature difference between the inner and outer surfaces can be adjusted, the residual stress can be improved in the compression direction even in small-diameter pipes where the plate thickness is thin and it is difficult to apply a large temperature difference to the inner and outer surfaces.

配管を加熱した後の内面急冷により内面に作用する引張残留応力を圧縮方向に改善する代表的な方法は、特許文献1〜3に挙げられている。これらの特許文献には、配管を外面から所定の温度まで加熱した後で内部に冷媒を供給し、配管内外面の温度差で生じる熱応力により配管内面を引張降伏させることで、配管内面の残留応力を圧縮方向に改善させる方法が記載されている。   Typical methods for improving the tensile residual stress acting on the inner surface by rapid cooling of the inner surface after heating the pipe in the compression direction are listed in Patent Documents 1 to 3. In these patent documents, a pipe is heated from the outer surface to a predetermined temperature, and then a refrigerant is supplied to the inside, and the inner surface of the pipe is tensile-yield due to a thermal stress generated by a temperature difference between the inner and outer surfaces of the pipe. A method for improving the stress in the compression direction is described.

特許文献1には、管群全体を均一に加熱した後、管内に冷却材を流入させることで内外面に温度差を与え、内面を引張降伏させることで、配管内面に作用する引張残留応力を緩和もしくは圧縮化する方法が記載されている。   In Patent Document 1, after the entire tube group is heated uniformly, a temperature difference is given to the inner and outer surfaces by flowing a coolant into the tube, and the tensile residual stress acting on the inner surface of the pipe is reduced by tensile yielding the inner surface. A method of relaxation or compression is described.

特許文献2には、残留応力低減のために溶接後200℃〜900℃に加熱し1時間均熱後、空冷した場合と内面水冷した場合の残留応力変化が記載されており、加熱温度が高い方ほど内面軸方向の残留応力低減効果が高いこと、空冷に比べて内面水冷の残留応力低減効果が高いことが記載されている。なお、冷却方法が内面水冷の条件で内面軸方向の残留応力が圧縮残留応力となるのは、加熱温度がおよそ600℃を超過してからである。   Patent Document 2 describes changes in residual stress when heated to 200 ° C. to 900 ° C. after welding and soaked for 1 hour, then air-cooled and internally water-cooled to reduce residual stress, and the heating temperature is high It is described that the effect of reducing the residual stress in the inner surface axial direction is higher, and the effect of reducing the residual stress of inner surface water cooling is higher than that of air cooling. The reason why the residual stress in the axial direction of the inner surface becomes the compressive residual stress when the cooling method is the inner surface water cooling is after the heating temperature exceeds about 600 ° C.

特許文献3には、配管を均一に加熱した後、管内に冷却材を流入させることで内外面に温度差を与え、配管内面に作用する引張残留応力を圧縮方向に改善する方法と、施工管理方法として配管内径毎に冷却水量の最低値を規定する方法が記載されている。   Patent Document 3 describes a method for improving the tensile residual stress acting on the inner surface of the pipe in the compressing direction by giving a temperature difference to the inner and outer surfaces by flowing a coolant into the pipe after the pipe is uniformly heated, and construction management. As a method, a method for defining the minimum value of the cooling water amount for each inner diameter of the pipe is described.

上述したように、オーステナイト系ステンレス鋼製配管の応力腐食割れによる損傷を抑制するためには、溶接時の熱履歴により発生した引張残留応力を圧縮方向に改善、望ましくは圧縮化する必要がある。   As described above, in order to suppress damage due to stress corrosion cracking of austenitic stainless steel pipes, it is necessary to improve, preferably compress, the tensile residual stress generated by the thermal history during welding.

特許文献1〜3で示される配管を加熱した後に内面を急冷することで残留応力を圧縮方向に改善する方法では、特許文献2で示されるように、配管の加熱温度が高くなるに従い配管内面に対する残留応力低減効果が向上する。これは、配管の加熱温度が高くなることで内面水冷時の配管内外面温度差が増大することに起因する。温度差が増大すると発生する熱応力も増大するため、配管内面で生じる引張方向の塑性変形量が増大し、残留応力の低減効果が向上する。   In the method of improving the residual stress in the compression direction by rapidly cooling the inner surface after heating the piping shown in Patent Literatures 1 to 3, as shown in Patent Literature 2, the piping inner surface is increased as the heating temperature of the piping becomes higher. Residual stress reduction effect is improved. This is due to the fact that the temperature difference between the inside and outside of the pipe increases during the water cooling of the inner face by increasing the heating temperature of the pipe. Since the thermal stress generated when the temperature difference increases also increases, the amount of plastic deformation in the tensile direction generated on the inner surface of the pipe increases, and the effect of reducing the residual stress is improved.

しかしながら、配管を均一温度で高温に加熱するには長時間を要する。さらに、高温に長時間保持した場合、温度帯によっては材料の脆化や炭化物の析出などの材料劣化が生じる場合も考えられる。例えば、オーステナイト系ステンレス鋼の場合、600〜900℃の温度帯ではσ相脆化が生じることが知られている。また、オーステナイト系ステンレス鋼の場合でも溶接部には溶接金属中にフェライト相が含まれるため、475℃付近の温度では475℃脆化が生じる場合も考えられる。このため、配管の加熱温度は、施工時間の短縮および材料劣化軽減の観点から低温であることが望ましく、低温の加熱温度でも溶接部近傍内面に作用する残留応力を圧縮化することが、残留応力改善の課題となっている。   However, it takes a long time to heat the piping to a high temperature at a uniform temperature. Furthermore, when kept at a high temperature for a long time, depending on the temperature zone, material deterioration such as material embrittlement or carbide precipitation may occur. For example, in the case of austenitic stainless steel, it is known that σ phase embrittlement occurs in a temperature range of 600 to 900 ° C. Further, even in the case of austenitic stainless steel, the welded portion contains a ferrite phase in the weld metal, so that 475 ° C embrittlement may occur at a temperature around 475 ° C. For this reason, it is desirable that the heating temperature of the pipe is low from the viewpoint of shortening the construction time and reducing material deterioration, and compressing the residual stress acting on the inner surface in the vicinity of the welded portion even at a low heating temperature can reduce the residual stress. It is an issue for improvement.

特開昭54−94415号公報JP 54-94415 A 特許第4196755号公報Japanese Patent No. 4196755 特開2005−320626号公報Japanese Patent Laying-Open No. 2005-320626

本発明の目的は、350℃未満の施工温度で配管の溶接部近傍の内面に作用している引張残留応力を圧縮化する方法を提供することにある。   An object of the present invention is to provide a method for compressing a tensile residual stress acting on an inner surface in the vicinity of a welded portion of a pipe at a construction temperature of less than 350 ° C.

本発明の残留応力改善方法は、配管を加熱した後に配管内面を急冷することで配管内面の残留応力を圧縮方向に改善する方法において、配管溶接部近傍を配管外面からのヒータ加熱により施工温度まで昇温させた後、配管内部に冷却水を供給して配管溶接部近傍の内面を急冷する工程を2回以上繰り返すことを特徴とする。   The method for improving residual stress according to the present invention is a method for improving the residual stress on the inner surface of the pipe in the compression direction by rapidly cooling the inner surface of the pipe after heating the pipe. After raising the temperature, the process of supplying cooling water to the inside of the pipe and rapidly cooling the inner surface near the pipe welded portion is repeated twice or more.

本発明によれば、配管溶接部近傍の内面に作用している引張残留応力を圧縮残留応力に改善できるため、高温水配管(例えばオーステナイト系ステンレス鋼製)に適用することで、応力腐食割れの発生を抑制することが可能である。さらに、施工温度が350℃未満と低いことから475℃脆化やσ相脆化が発生しない、加熱時間の短縮により施工時間を短縮できる、といった効果も同時に得られる。   According to the present invention, since the tensile residual stress acting on the inner surface in the vicinity of the welded portion of the pipe can be improved to the compressive residual stress, by applying it to a high temperature water pipe (for example, made of austenitic stainless steel), stress corrosion cracking can be achieved. It is possible to suppress the occurrence. Furthermore, since the construction temperature is as low as less than 350 ° C., 475 ° C. embrittlement and σ phase embrittlement do not occur, and the construction time can be shortened by shortening the heating time.

本発明の残留応力改善方法について、施工手順の具体例を説明する図。The figure explaining the specific example of a construction procedure about the residual stress improvement method of this invention. 本発明の残留応力改善方法を配管突合せ溶接部近傍に適用する場合の具体例を説明する図。The figure explaining the specific example in the case of applying the residual-stress improvement method of this invention to piping butt-welding part vicinity. 本発明の残留応力改善方法において、配管加熱後に内面を水冷した際の配管外面温度の経時変化から温度低下速度を評価する具体例を説明する図。The figure explaining the specific example which evaluates a temperature decreasing rate from the time-dependent change of piping outer surface temperature at the time of water-cooling the inner surface after piping heating in the residual stress improvement method of this invention. 本発明の残留応力改善方法を適用することで得られる残留応力改善効果の具体例を説明する図。The figure explaining the specific example of the residual stress improvement effect obtained by applying the residual stress improvement method of this invention.

本発明は、以下のような特徴を有する。   The present invention has the following features.

配管溶接部近傍を外面からのヒータ加熱により350℃未満の施工温度に加熱した後、配管内部に冷却水を供給して内面を急冷する工程を少なくとも2回以上繰り返す。また、施工時の管理については、冷却水を供給して内面を急冷した際の外面温度の低下速度と温度測定位置の配管板厚に基づき内外面の温度差を評価し、内外面の温度差により生じる熱応力が配管材料の降伏応力以上であることを確認する。なお、外面温度は、例えば熱電対などの温度測定器を溶接部近傍の配管外面に取付けて測定する。   After heating the vicinity of the welded portion of the pipe to a construction temperature of less than 350 ° C. by heating from the outer surface, the process of supplying cooling water to the inside of the pipe and rapidly cooling the inner surface is repeated at least twice. In addition, regarding the management at the time of construction, the temperature difference between the inner and outer surfaces is evaluated based on the rate of decrease in the outer surface temperature when cooling water is supplied and the inner surface is rapidly cooled and the pipe thickness at the temperature measurement position. Confirm that the thermal stress caused by the above is greater than the yield stress of the piping material. The outer surface temperature is measured by attaching a temperature measuring device such as a thermocouple to the outer surface of the pipe near the weld.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明による小口径配管の残留応力改善方法では、配管溶接部近傍または配管内面の残留応力を圧縮方向に改善したい範囲について、外面からのヒータ加熱により350℃未満の施工温度に加熱した後、配管内部に冷却水を供給して内面を急冷する工程(以下、「加熱後の急冷」と呼ぶ)を少なくとも2回以上繰り返す。施工温度を350℃未満とすることにより、例えば600℃以上の施工温度で加熱後の急冷を施した場合に比べて残留応力低減効果が低下する。これにより、1回目の加熱後の急冷では、初期残留応力が局所的に高い部分では引張残留応力が残存してしまう場合が考えられる。1回目の加熱後の急冷によって局所的に高い引張残留応力は低減しているため、配管内面に残存している引張残留応力は2回目の加熱後の急冷により圧縮化できる。   In the method for improving the residual stress of small-diameter pipes according to the present invention, the range in which the residual stress in the vicinity of the pipe weld or the pipe inner surface is desired to be improved in the compression direction is heated to a construction temperature of less than 350 ° C. by heating from the outer surface, and then the pipe The process of supplying cooling water to the inside and quenching the inner surface (hereinafter referred to as “quenching after heating”) is repeated at least twice. By setting the construction temperature to less than 350 ° C., for example, the residual stress reduction effect is reduced as compared with the case where rapid cooling after heating is performed at a construction temperature of 600 ° C. or higher. Thereby, in the rapid cooling after the first heating, there may be a case where tensile residual stress remains in a portion where the initial residual stress is locally high. Since the high tensile residual stress is locally reduced by the rapid cooling after the first heating, the tensile residual stress remaining on the inner surface of the pipe can be compressed by the rapid cooling after the second heating.

本発明による小口径配管の残留応力改善方法では、施工温度が低いことから、加熱後の急冷により配管内面の残留応力が改善されたことを管理するのが重要となる。配管内面の残留応力が改善されるか否かは、加熱後の急冷により配管内面で生じる熱応力が、配管材料の降伏応力を超過するか否かにより決まる。配管内面で生じる熱応力を直接測定することはできないが、配管内外面の温度差により配管内面に発生する熱応力については、次式(1)(2)に示す中空円筒管の内面に発生する熱応力の式により評価できる。   In the method for improving the residual stress of small-diameter pipes according to the present invention, since the construction temperature is low, it is important to manage that the residual stress on the inner surface of the pipe has been improved by rapid cooling after heating. Whether or not the residual stress on the inner surface of the pipe is improved depends on whether or not the thermal stress generated on the inner surface of the pipe due to rapid cooling after heating exceeds the yield stress of the pipe material. Although the thermal stress generated on the inner surface of the pipe cannot be directly measured, the thermal stress generated on the inner surface of the pipe due to the temperature difference between the inner and outer surfaces of the pipe is generated on the inner surface of the hollow cylindrical tube shown in the following equations (1) and (2). It can be evaluated by the thermal stress formula.

Figure 2012021188
Figure 2012021188

Figure 2012021188


ここで、σθは周方向の熱応力、σaは軸方向の熱応力、αは線膨張率、Eは縦弾性係数、νはポアソン比、ΔTは配管内外面の温度差、aは配管の内半径、bは配管の外半径を示す。
Figure 2012021188


Where σ θ is the thermal stress in the circumferential direction, σ a is the thermal stress in the axial direction, α is the linear expansion coefficient, E is the longitudinal elastic modulus, ν is the Poisson's ratio, ΔT is the temperature difference between the inner and outer surfaces of the pipe, and a is the pipe The inner radius of b indicates the outer radius of the pipe.

例えば、配管外径が60.5mm、配管板厚が5.5mmのオーステナイト系ステンレス鋼製の配管に対して、配管内外面に150℃の温度差を付与した場合、αを15.14×10-6-1、Eを195GPa、νを0.3として評価すると、配管内面には337MPaの熱応力が発生すると評価できる。配管材として使用されるオーステナイト系ステンレス鋼、例えばSUS304鋼やSUS316鋼の降伏応力は337MPaよりも小さいため、配管内外面に150℃の温度差を付与することにより配管内面に引張方向の塑性変形を発生させ、施工後の残留応力を圧縮方向に改善することができる。 For example, when a temperature difference of 150 ° C. is applied to the inner and outer surfaces of an austenitic stainless steel pipe having a pipe outer diameter of 60.5 mm and a pipe plate thickness of 5.5 mm, α is 15.14 × 10. -6 K -1 , E is 195 GPa and ν is 0.3, it can be evaluated that 337 MPa thermal stress is generated on the inner surface of the pipe. Since the yield stress of austenitic stainless steel used as piping material, such as SUS304 steel and SUS316 steel, is smaller than 337 MPa, plastic deformation in the tensile direction is applied to the inner surface of the piping by applying a temperature difference of 150 ° C to the inner and outer surfaces of the piping. The residual stress after construction can be improved in the compression direction.

配管内外面の温度差については、施工時に配管内面の温度を測定するのが困難な場合が考えられる。このため、本発明では、配管外面で測定される温度の低下速度が、配管内外面の温度差および配管板厚と強い相関があることに着目し、外面温度の測定位置における配管板厚と配管外面の温度低下速度に基づき配管内外面の温度差を評価する。具体的には、配管内外面の温度差の増加に伴い配管外面の温度低下速度は増加する。また、配管板厚の増加に伴い配管外面の温度低下速度は減少する。   Regarding the temperature difference between the pipe inner and outer surfaces, it may be difficult to measure the temperature of the pipe inner surface during construction. For this reason, in the present invention, focusing on the fact that the temperature decrease rate measured on the pipe outer surface has a strong correlation with the temperature difference between the pipe inner and outer surfaces and the pipe plate thickness, the pipe plate thickness and the pipe at the outer surface temperature measurement position The temperature difference between the inner and outer surfaces of the pipe is evaluated based on the temperature decrease rate of the outer surface. Specifically, the temperature decrease rate of the pipe outer surface increases with an increase in the temperature difference between the pipe inner and outer surfaces. In addition, the temperature decrease rate of the outer surface of the pipe decreases as the pipe plate thickness increases.

上述した物理的性質を活用することで本発明では、配管溶接部近傍内面または配管内面の残留応力改善方法において、冷却水を供給して配管内面を急冷した際の配管外面温度の低下速度と温度測定位置の配管板厚に基づき、配管内面の残留応力が改善されたことを判定し、施工管理を行う。なお、配管内面を水冷した際に発生する外面温度の低下は、数秒程度の短い時間で完了する事象であるため、本特許では0.1秒以下の間隔で配管外面の温度を測定し、測定した配管外面の温度から、配管外面の温度低下速度を評価する。   By utilizing the physical properties described above, in the present invention, in the method for improving the residual stress near the inner surface of the pipe weld or the inner surface of the pipe, the rate of decrease and the temperature of the outer surface of the pipe when cooling water is supplied to quench the inner surface of the pipe. Based on the pipe thickness at the measurement position, it is determined that the residual stress on the inner surface of the pipe has been improved, and construction management is performed. In addition, since the decrease in the outer surface temperature that occurs when the inner surface of the pipe is cooled with water is an event that is completed in a short time of about several seconds, in this patent, the temperature of the outer surface of the pipe is measured at intervals of 0.1 seconds or less. From the temperature of the pipe outer surface, the temperature decrease rate of the pipe outer surface is evaluated.

以下、本発明による小口径配管の残留応力改善方法および施工管理方法の実施例を説明する。なお、以下の実施例では、オーステナイト系ステンレス鋼(SUS304鋼やSUS316鋼)製配管の突合せ溶接部近傍の配管内面を適用対象とした場合を例に挙げて説明する。   Hereinafter, examples of the residual stress improvement method and construction management method for small-diameter pipes according to the present invention will be described. In the following examples, a case where the inner surface of the pipe near the butt weld portion of the pipe made of austenitic stainless steel (SUS304 steel or SUS316 steel) is applied will be described as an example.

本発明による小口径配管の残留応力改善方法および施工管理方法の実施例を図1と図2を用いて説明する。図1は、本発明の残留応力改善方法について、施工手順の具体例を説明する図である。図2は、本発明の残留応力改善方法を配管突合せ溶接部近傍に適用する場合の具体例を説明する図である。   An embodiment of a method for improving residual stress and a construction management method for small-diameter pipes according to the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating a specific example of a construction procedure for the residual stress improving method of the present invention. FIG. 2 is a diagram for explaining a specific example when the residual stress improving method of the present invention is applied in the vicinity of a pipe butt weld.

本実施例では、まず、個々の外面温度測定位置における配管1の板厚を測定する。なお、外面温度測定位置については、配管外面で測定される温度の低下速度が配管板厚と強い相関があることから、曲面のために配管板厚が連続的に変化する内面開先加工部3の範囲外で配管外面の温度を測定するのが望ましい。   In this embodiment, first, the plate thickness of the pipe 1 at each outer surface temperature measurement position is measured. In addition, about the outer surface temperature measurement position, since the rate of temperature decrease measured on the outer surface of the pipe has a strong correlation with the pipe plate thickness, the inner face groove processing portion 3 in which the pipe plate thickness continuously changes due to the curved surface. It is desirable to measure the temperature of the outer surface of the pipe outside this range.

次に、測定した配管板厚から個々の外面温度測定位置における外面温度の低下速度目標値を評価する。配管外面で測定される温度の低下速度は、配管内外面の温度差および配管板厚と強い相関があることから、配管板厚が決定することで外面温度の低下速度から配管内外面の温度差を評価することができる。これにより、内面を引張降伏させるに十分な熱応力が発生する温度差を、外面温度の低下速度目標値として設定することができる。   Next, the target value for decreasing the outer surface temperature at each outer surface temperature measurement position is evaluated from the measured pipe plate thickness. The rate of temperature decrease measured on the pipe outer surface has a strong correlation with the temperature difference between the pipe inner and outer surfaces and the pipe plate thickness, so the pipe plate thickness determines the temperature difference between the pipe inner and outer surfaces from the rate of decrease in the outer surface temperature. Can be evaluated. As a result, the temperature difference at which thermal stress sufficient to cause the inner surface to yield yield can be set as the target value for the lowering rate of the outer surface temperature.

次に、外面温度測定位置の配管外面に外面温度測定用熱電対8を取付ける。外面温度測定用熱電対8は少なくとも1箇所以上に取付けるものとし、望ましくは冷却水10の供給側を上流として、突合せ溶接部2の下流に90°間隔で4箇所取付けるものとする。加熱温度制御用熱電対6については、加熱温度の最高温度を制御するのが望ましいため、加熱温度が最も高温になると考えられる、加熱範囲11の中央付近の配管外面に取付ける。   Next, the outer surface temperature measuring thermocouple 8 is attached to the outer surface of the pipe at the outer surface temperature measurement position. The outer surface temperature measuring thermocouples 8 are attached at least at one or more locations, and preferably at four locations at 90 ° intervals downstream of the butt weld 2 with the cooling water 10 supply side as the upstream side. The heating temperature control thermocouple 6 is preferably attached to the outer surface of the pipe near the center of the heating range 11 where the heating temperature is considered to be the highest because it is desirable to control the maximum heating temperature.

その後、加熱範囲11内の配管外面にヒータ4を取付け、加熱範囲11を包含する範囲のヒータ4および配管外面に保温材5を取付ける。なお、保温材は、ヒータ4による配管1の加熱効率向上と、外面温度の低下速度から配管内外面の温度差を評価する際の評価精度向上のために取付ける。   Thereafter, the heater 4 is attached to the outer surface of the pipe in the heating range 11, and the heat insulating material 5 is attached to the heater 4 in the range including the heating range 11 and the outer surface of the pipe. The heat insulating material is attached to improve the heating efficiency of the pipe 1 by the heater 4 and to improve the evaluation accuracy when evaluating the temperature difference between the inner and outer surfaces of the pipe from the rate of decrease in the outer surface temperature.

次に、加熱温度制御機能付きヒータ電源7からヒータ4に電力供給を開始し、突合せ溶接部2近傍の配管1を施工温度を目標に加熱する。本発明では、施工時間の短縮および材料劣化防止の観点から施工温度(配管の加熱温度の上限)は、350℃未満の低温とする。配管1の温度が施工温度まで昇温された後、温度測定ユニット9により配管外面温度の測定を開始し、測定ノイズの軽減と、外面温度の低下速度から配管内外面の温度差を評価する際の評価精度向上のために加熱温度制御機能付きヒータ電源7からの電力供給を停止し、加熱範囲11に冷却水10を供給する。なお、冷却水10の供給量については、加熱範囲11に冷却水10が満水状態で到達できる流量とする。   Next, power supply to the heater 4 is started from the heater power supply 7 with a heating temperature control function, and the pipe 1 in the vicinity of the butt weld 2 is heated to the target construction temperature. In the present invention, the construction temperature (upper limit of the heating temperature of the pipe) is set to a low temperature of less than 350 ° C. from the viewpoint of shortening the construction time and preventing material deterioration. After the temperature of the pipe 1 is raised to the construction temperature, the temperature measurement unit 9 starts measuring the outer surface temperature of the pipe, and when the temperature difference between the inner and outer surfaces of the pipe is evaluated based on the reduction in measurement noise and the rate of decrease in the outer surface temperature. In order to improve the evaluation accuracy, the power supply from the heater power supply 7 with the heating temperature control function is stopped, and the cooling water 10 is supplied to the heating range 11. In addition, about the supply amount of the cooling water 10, let it be the flow volume which the cooling water 10 can reach to the heating range 11 in a full state.

施工管理のため、温度測定ユニット9により測定した配管外面温度の経時変化から外面温度の低下速度の最大値を評価する。本発明の残留応力改善方法において、配管加熱後に内面を水冷した際の配管外面温度の経時変化から温度低下速度を評価する具体例を図3を用いて説明する。加熱範囲11内の配管1は施工温度(350℃未満)を上限温度として加熱されている。この状態で配管1の内部に冷却水10を供給すると、配管1は内面から急冷される。配管外面では、内面水冷開始後から時間差をおいて表面温度の低下が開始する。なお、小口径配管では、板厚が薄いことから外面温度の急激な低下は、数秒程度の短い時間で完了する。このため、0.1秒以下の間隔で配管外面の温度を測定し、測定した配管外面の温度データから、配管外面の時間変化(即ち、温度低下速度)を評価する。なお、測定間隔が短いことから、温度低下速度に用いる配管外面の温度測定データについては、移動平均処理(5点平均程度)を施すことが望ましい。   For construction management, the maximum value of the rate of decrease in the external surface temperature is evaluated from the time-dependent change in the external surface temperature of the pipe measured by the temperature measurement unit 9. In the residual stress improvement method of the present invention, a specific example in which the temperature decrease rate is evaluated from the time-dependent change of the pipe outer surface temperature when the inner surface is water-cooled after the pipe is heated will be described with reference to FIG. The piping 1 in the heating range 11 is heated with the construction temperature (less than 350 ° C.) as the upper limit temperature. When the cooling water 10 is supplied to the inside of the pipe 1 in this state, the pipe 1 is rapidly cooled from the inner surface. On the outer surface of the pipe, the surface temperature starts to decrease with a time difference from the start of the inner surface water cooling. In the small-diameter pipe, since the plate thickness is thin, the rapid decrease in the outer surface temperature is completed in a short time of about several seconds. For this reason, the temperature of the pipe outer surface is measured at intervals of 0.1 seconds or less, and the time change (that is, the temperature decrease rate) of the pipe outer surface is evaluated from the measured temperature data of the pipe outer surface. In addition, since the measurement interval is short, it is desirable to perform a moving average process (about five-point average) on the temperature measurement data of the pipe outer surface used for the temperature decrease rate.

施工が適正であるか否かの判定は、配管外面温度の経時変化から評価した外面温度の低下速度最大値が全て外面温度の低下速度目標を満足するか否かにより評価する。なお、個々の温度測定位置における外面温度の低下速度目標については、当該位置で測定した配管板厚により施工目標が異なる。具体的には、板厚が薄い場合は外面温度の低下速度目標は大きくなり、板厚が厚い場合は外面温度の低下速度目標が小さくなる傾向がある。これは、内外面の温度差が同じ場合でも、板厚が薄い方が測定される外面温度の低下速度が大きくなるためである。   Whether or not the construction is appropriate is evaluated based on whether or not the maximum value of the outer surface temperature decrease rate evaluated from the time-dependent change of the pipe outer surface temperature satisfies the outer surface temperature decrease rate target. In addition, about the fall rate target of the outer surface temperature in each temperature measurement position, a construction target changes with piping board thickness measured at the said position. Specifically, when the plate thickness is thin, the outer surface temperature decrease rate target tends to increase, and when the plate thickness is thick, the outer surface temperature decrease rate target tends to decrease. This is because even when the temperature difference between the inner and outer surfaces is the same, the rate at which the outer surface temperature is decreased increases as the plate thickness is thinner.

個々の温度測定位置で評価される外面温度の低下速度については、図3に示すように、内面水冷開始後から時間差をおいて最大となり、その後、時間の経過とともに減少する。
本発明による小口径配管の残留応力改善方法では、過渡的な温度分布により生じる熱応力が配管材の降伏応力を超過することで、配管内面に引張方向の塑性変形を与えて残留応力を圧縮方向に改善している。このため、個々の温度測定位置で評価された外面温度の低下速度最大値が外面温度の低下速度目標を満足することで、個々の温度測定位置における残留応力改善が為されたことになる。本実施例では、配管内面全周の残留応力を圧縮化するのを目標としているため、全ての温度測定位置で施工目標を満足した場合を適正な施工と評価するが、特定角度の残留応力のみを圧縮化する場合においては、当該角度の温度測定位置で施工目標を満足した場合を適正な施工と評価する。
As shown in FIG. 3, the rate of decrease in outer surface temperature evaluated at each temperature measurement position becomes maximum with a time difference from the start of inner surface water cooling, and then decreases with the passage of time.
In the method for improving the residual stress of a small-diameter pipe according to the present invention, the thermal stress generated by the transient temperature distribution exceeds the yield stress of the pipe material, thereby applying a plastic deformation in the tensile direction to the inner surface of the pipe and compressing the residual stress in the compression direction. It has been improved. For this reason, the maximum value of the outer surface temperature decrease rate evaluated at each temperature measurement position satisfies the outer surface temperature decrease rate target, thereby improving the residual stress at each temperature measurement position. In this example, since the goal is to compress the residual stress around the entire inner surface of the pipe, the case where the construction target is satisfied at all temperature measurement positions is evaluated as proper construction, but only the residual stress at a specific angle is evaluated. In the case of compressing, the case where the construction target is satisfied at the temperature measurement position of the angle is evaluated as proper construction.

本発明による小口径配管の残留応力改善方法では、配管内部に冷却水を供給して内面を急冷する工程を少なくとも2回以上繰り返すため、施工が適正であるか否かの判定において、適正と評価された場合は施工回数に1を加え、適正でない場合は施工回数を0のままとする。その後、配管1内の水抜きを行い、配管1の加熱後の急冷を施工回数が2となるまで繰り返す。   In the method for improving residual stress of small-diameter pipes according to the present invention, the process of supplying cooling water to the pipes and rapidly cooling the inner surface is repeated at least twice. If it is done, 1 is added to the number of times of construction, and if it is not appropriate, the number of times of construction is left as 0. Thereafter, the water in the pipe 1 is drained, and the rapid cooling after the heating of the pipe 1 is repeated until the number of executions becomes two.

本発明の残留応力改善方法を適用することで得られる残留応力改善効果の具体例を図4を用いて説明する。本発明では、施工温度を350℃未満と低温にしたため、例えば600℃以上の施工温度で加熱後の急冷を施した場合に比べて残留応力低減効果が低下する。
これにより、1回目の施工(加熱後の急冷)では、平均的には圧縮残留応力の場合でも、初期残留応力が局所的に高い部分では引張残留応力が残存してしまう場合が考えられる。
1回目の施工によって局所的に高い引張残留応力は低減しているため、配管内面に残存している引張残留応力は2回目の施工により圧縮化できる。また、配管材質がオーステナイト系ステンレス鋼の場合、繰返し施工による加工硬化で引張降伏および圧縮降伏を開始する応力の絶対値が増加するため、残留応力の最大値も増加し、残留応力低減効果も増大すると考えられる。これらの理由により、位置毎のばらつきが大きく平均値も引張である溶接後の配管内面に作用していた残留応力は、施工回数が増加するに従い位置毎のばらつきが減少して平均値も圧縮方向に改善される。
A specific example of the residual stress improvement effect obtained by applying the residual stress improvement method of the present invention will be described with reference to FIG. In the present invention, since the construction temperature is set to a low temperature of less than 350 ° C., for example, the residual stress reduction effect is lowered as compared with the case where rapid cooling after heating is performed at a construction temperature of 600 ° C. or higher.
Thereby, in the first construction (rapid cooling after heating), even if the compressive residual stress is on average, the tensile residual stress may remain in a portion where the initial residual stress is locally high.
Since the high tensile residual stress is locally reduced by the first construction, the tensile residual stress remaining on the inner surface of the pipe can be compressed by the second construction. In addition, when the piping material is austenitic stainless steel, the absolute value of the stress that initiates tensile and compressive yield increases due to work hardening by repeated application, so the maximum value of residual stress increases and the residual stress reduction effect also increases. I think that. For these reasons, the residual stress acting on the inner surface of the pipe after welding, which has large variations at each position and the average value is tensile, decreases as the number of constructions increases, and the average value also decreases in the compression direction. To be improved.

1 配管
2 突合せ溶接部
3 内面開先加工部
4 ヒータ
5 保温材
6 加熱温度制御用熱電対
7 加熱温度制御機能付きヒータ電源
8 外面温度測定用熱電対
9 温度測定ユニット
10 冷却水
11 加熱範囲
DESCRIPTION OF SYMBOLS 1 Piping 2 Butt welding part 3 Inner groove processing part 4 Heater 5 Thermal insulation material 6 Heating temperature control thermocouple 7 Heater power supply with heating temperature control function 8 External surface temperature measurement thermocouple 9 Temperature measurement unit 10 Cooling water 11 Heating range

Claims (6)

配管を加熱した後に配管内面を急冷することで配管内面の残留応力を圧縮方向に改善する方法において、
配管溶接部近傍を配管外面からのヒータ加熱により施工温度まで昇温させた後、配管内部に冷却水を供給して配管溶接部近傍の内面を急冷する工程を2回以上繰り返すことを特徴とする配管溶接部の残留応力改善方法。
In the method of improving the residual stress on the inner surface of the pipe in the compression direction by rapidly cooling the inner surface of the pipe after heating the pipe,
After the temperature in the vicinity of the pipe weld is raised to the construction temperature by heating from the outer surface of the pipe, the process of supplying cooling water to the inside of the pipe and rapidly cooling the inner surface in the vicinity of the pipe weld is repeated twice or more. A method for improving residual stress in pipe welds.
請求項1において、前記配管の材質がオーステナイト系ステンレス鋼であることを特徴とする配管溶接部の残留応力改善方法。   2. The method for improving residual stress in a pipe weld according to claim 1, wherein the pipe is made of austenitic stainless steel. 請求項1において、前記施工温度が350℃未満であることを特徴とする配管溶接部の残留応力改善方法。   In Claim 1, the said construction temperature is less than 350 degreeC, The residual stress improvement method of the pipe welding part characterized by the above-mentioned. 請求項1の配管溶接部の残留応力改善方法に用いる施工管理方法であって、
冷却水を供給して配管内面を急冷した際の配管外面温度の低下速度の最大と温度測定位置の配管板厚に基づき、施工が適正に行われたか否かを判定することを特徴とする施工管理方法。
A construction management method for use in the method for improving residual stress in a pipe weld according to claim 1,
Construction that determines whether or not construction has been performed properly based on the maximum rate of decrease in pipe outer surface temperature when cooling water is supplied and the pipe inner surface is rapidly cooled and the pipe thickness at the temperature measurement position Management method.
請求項4において、冷却水を供給して配管内面を急冷した際の配管外面温度を0.1秒以下の間隔で測定することを特徴とする施工管理方法。   5. The construction management method according to claim 4, wherein the pipe outer surface temperature when the cooling water is supplied to quench the pipe inner surface is measured at intervals of 0.1 seconds or less. 請求項5において、配管内面の開先加工範囲外で配管外面の温度を測定することを特徴とする施工管理方法。   6. The construction management method according to claim 5, wherein the temperature of the outer surface of the pipe is measured outside the groove processing range of the inner surface of the pipe.
JP2010159270A 2010-04-09 2010-07-14 Pipe residual stress improvement method and construction management method Active JP5298081B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010159270A JP5298081B2 (en) 2010-07-14 2010-07-14 Pipe residual stress improvement method and construction management method
US13/080,686 US9085811B2 (en) 2010-04-09 2011-04-06 Method for improving residual stress in pipe and method for construction management

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010159270A JP5298081B2 (en) 2010-07-14 2010-07-14 Pipe residual stress improvement method and construction management method

Publications (2)

Publication Number Publication Date
JP2012021188A true JP2012021188A (en) 2012-02-02
JP5298081B2 JP5298081B2 (en) 2013-09-25

Family

ID=45775677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010159270A Active JP5298081B2 (en) 2010-04-09 2010-07-14 Pipe residual stress improvement method and construction management method

Country Status (1)

Country Link
JP (1) JP5298081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844027A (en) * 2016-03-28 2016-08-10 武汉工程大学 Method for rising temperature of large-diameter thick flange joint at high temperature
CN117548823A (en) * 2024-01-09 2024-02-13 深圳市恒永达科技股份有限公司 Titanium metal laser welding process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023354A (en) * 2003-06-30 2005-01-27 Sumitomo Metal Ind Ltd Piping welded joint of low carbon stainless steel and its producing method
JP2005320626A (en) * 2004-04-06 2005-11-17 Hitachi Ltd Heat treatment method and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023354A (en) * 2003-06-30 2005-01-27 Sumitomo Metal Ind Ltd Piping welded joint of low carbon stainless steel and its producing method
JP2005320626A (en) * 2004-04-06 2005-11-17 Hitachi Ltd Heat treatment method and apparatus therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844027A (en) * 2016-03-28 2016-08-10 武汉工程大学 Method for rising temperature of large-diameter thick flange joint at high temperature
CN117548823A (en) * 2024-01-09 2024-02-13 深圳市恒永达科技股份有限公司 Titanium metal laser welding process
CN117548823B (en) * 2024-01-09 2024-03-19 深圳市恒永达科技股份有限公司 Titanium metal laser welding process

Also Published As

Publication number Publication date
JP5298081B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
RU2582326C2 (en) Flexible tube with variable mechanical properties and method of making same by continuous heat treatment
JP4599250B2 (en) High-frequency induction heating outer surface temperature control method and control device
JP4759302B2 (en) Heat treatment method and apparatus
JP5199579B2 (en) Method and apparatus for improving residual stress of tubular body
US20080179377A1 (en) Restotration method for deteriorated part and restoration apparatus for deteriorated part
JP3649223B2 (en) Heat treatment method and heat treatment apparatus for piping system
Guo et al. Numerical simulations and experiments on fabricating bend pipes by push bending with local induction-heating process
JP5298081B2 (en) Pipe residual stress improvement method and construction management method
JP5041282B2 (en) Method for producing martensitic stainless steel pipe
EP2915886B1 (en) Heat treatment method and method for manufacturing machine part
US9085811B2 (en) Method for improving residual stress in pipe and method for construction management
JP6295932B2 (en) Metal strip shape control method and shape control apparatus
Jun et al. Investigation of residual stresses in a repair‐welded rail head considering solid‐state phase transformation
CN107688700B (en) Method for calculating heating power of postweld heat treatment of 9% Cr hot-strength steel pipeline
JP6962084B2 (en) A method for determining the cooling rate of a steel pipe and a method for manufacturing a steel pipe using the method.
JP5167830B2 (en) High-efficiency heat treatment method for ERW steel pipe welds
JP5479985B2 (en) Heat treatment method for piping
JP5349563B2 (en) Shaft enlargement processing method
JP2018047483A (en) Shape control method of metal strip and shape control device
JP3675463B2 (en) Heat treatment method for piping system
JP5688352B2 (en) Heat treatment method for piping
JP6139224B2 (en) High-strength thin-walled heat transfer tube, manufacturing method thereof, and heat transfer tube manufacturing apparatus
JP5750276B2 (en) Heat treatment method
JPWO2005024083A1 (en) Reactor structure and manufacturing method and repair method thereof
JPS61246328A (en) Heat treatment of metal material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Ref document number: 5298081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150