JP2012021084A - Molded product obtained by heat curing thermosetting molding material - Google Patents

Molded product obtained by heat curing thermosetting molding material Download PDF

Info

Publication number
JP2012021084A
JP2012021084A JP2010160311A JP2010160311A JP2012021084A JP 2012021084 A JP2012021084 A JP 2012021084A JP 2010160311 A JP2010160311 A JP 2010160311A JP 2010160311 A JP2010160311 A JP 2010160311A JP 2012021084 A JP2012021084 A JP 2012021084A
Authority
JP
Japan
Prior art keywords
molding material
thermal conductivity
resin
molded product
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010160311A
Other languages
Japanese (ja)
Inventor
Shinichi Tsujimoto
慎一 辻本
Tomoaki Butani
友章 部谷
Ryunosuke Murakami
竜之介 村上
Masaji Yoshimura
正司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2010160311A priority Critical patent/JP2012021084A/en
Publication of JP2012021084A publication Critical patent/JP2012021084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molded product exhibiting the insulation property and simultaneously having a high thermal conductivity and an excellent mechanical strength.SOLUTION: The molded product is obtained by thermally curing a molding material including a polybenzoxazine resin produced using as raw materials phenols having two hydroxyphenyl groups, diamines and aldehydes, and a heat-conductive filler having an insulation property, in the mass ratio in the range of 5/95 to 50/50. 50 mol% or more of the phenols having two hydroxyphenyl groups is preferably 4,4'-biphenol.

Description

本発明は、ポリベンゾオキサジン樹脂及び絶縁性を有する熱伝導性フィラーを含有する熱硬化性成形材料を加熱硬化したことを特徴とする成形品に関する。   The present invention relates to a molded article obtained by heat-curing a thermosetting molding material containing a polybenzoxazine resin and a thermally conductive filler having insulating properties.

最近、電子製品の小型化や高性能化、高機能化が急速に進んでいる。それに伴い、半導体等が実装された回路基板や、各種のチップ、デバイス等が搭載された電子部品の放熱対策が重要となってきている。
具体例として、LED照明、ノートPC、液晶テレビ、PDPテレビ、携帯電話、デジタルカメラ、ゲーム機、DVDプレーヤー、DVDレコーダー、ブルーレイプレーヤー、ブルーレイレコーダー、カーナビゲーションシステム、ハイブリッドカー、電気自動車等の部品の放熱対策である。
Recently, electronic products have been rapidly reduced in size, performance, and functionality. Along with this, measures for heat dissipation of circuit boards on which semiconductors and the like are mounted and electronic components on which various chips, devices, and the like are mounted have become important.
Specific examples of LED lighting, notebook PCs, LCD TVs, PDP TVs, mobile phones, digital cameras, game machines, DVD players, DVD recorders, Blu-ray players, Blu-ray recorders, car navigation systems, hybrid cars, electric cars, etc. This is a heat dissipation measure.

従来、熱伝導性フィラーを含有したエポキシ樹脂組成物の成形品は、耐熱性や機械的強度、寸法安定性などに優れていることから、上記に示すような用途に使用される放熱材料部品として使用されている。こうした分野では、部品自体の発熱や高温雰囲気での使用によって部品そのものの性能が低下するという問題があり、材料の熱伝導率を高くすることが求められていた。
こうした問題に対し、フィラーとしてグラファイトやカーボン繊維を用いることで材料の熱伝導率を向上させるという方法が検討されていたが、これらの基材は導電性を有するため絶縁抵抗が大幅に低下してしまい絶縁性の必要な電気電子部品には適用しにくいという問題があった。
Conventionally, molded products of epoxy resin compositions containing thermally conductive fillers are excellent in heat resistance, mechanical strength, dimensional stability, etc. in use. In such a field, there is a problem that the performance of the component itself deteriorates due to heat generation of the component itself or use in a high temperature atmosphere, and it has been required to increase the thermal conductivity of the material.
To solve these problems, a method of improving the thermal conductivity of the material by using graphite or carbon fiber as a filler has been studied. However, since these base materials have conductivity, the insulation resistance is greatly reduced. Therefore, there is a problem that it is difficult to apply to electrical and electronic parts that require insulation.

また、フィラーとしてシリカ粉末やアルミナ粉末等の絶縁性を有する熱伝導率の高いフィラーを用いる場合もあるが(例えば、特許文献1参照。)、熱伝導率を高めるためにこれらのフィラーを多量に配合する必要があり、機械的強度が低下する、材料の流動性が低下し、混練作業性、成形性を損なうという問題もあったため、従来の一般的なフェノール樹脂に比べ硬化前の溶融粘度が低く流動性が優れているベンゾオキサジン樹脂を用い、材料の流動性を確保する試みがなされてきた(例えば、特許文献2及び特許文献3参照。)。   In addition, a filler having a high thermal conductivity having an insulating property such as silica powder or alumina powder may be used as the filler (see, for example, Patent Document 1), but a large amount of these fillers are used to increase the thermal conductivity. There is a problem that the mechanical strength is lowered, the fluidity of the material is lowered, the kneading workability and the moldability are impaired, so the melt viscosity before curing is higher than that of a conventional general phenol resin. Attempts have been made to ensure the fluidity of the material by using a low-flowing benzoxazine resin (see, for example, Patent Document 2 and Patent Document 3).

特開2002−220507号公報JP 2002-220507 A 特開平11−71498号公報Japanese Patent Laid-Open No. 11-71498 特開2001−64480号公報JP 2001-64480 A

しかしながら、特許文献2及び特許文献3に記載のベンゾオキサジン樹脂では、機械的強度が不十分であった。また、絶縁性を有し熱伝導率が2.5W/m・Kを超えることはフィラーの高含有のみでは困難であった。
本発明では、熱伝導率が高く、機械的強度に優れた成形品を提供することを目的とする。
However, the benzoxazine resins described in Patent Document 2 and Patent Document 3 have insufficient mechanical strength. Moreover, it was difficult to have an insulating property and a thermal conductivity exceeding 2.5 W / m · K only with a high filler content.
An object of the present invention is to provide a molded article having high thermal conductivity and excellent mechanical strength.

本発明者らは鋭意検討を行なった結果、特定の化学構造を有するポリベンゾオキサジン樹脂と絶縁性を有する熱伝導性フィラーを特定の割合で含有する熱硬化性成形材料を加熱硬化した成形品が前記目的を達成し得ることの知見を得た。   As a result of intensive studies, the present inventors have found that a molded product obtained by heat-curing a thermosetting molding material containing a polybenzoxazine resin having a specific chemical structure and a thermally conductive filler having an insulating property in a specific ratio. The knowledge that the said objective can be achieved was acquired.

[1]ヒドロキシフェニル基を二つ有するフェノール類と、ジアミン類と、アルデヒド類とを原料として用いて製造した、下記式(1)で示される、ベンゾオキサジン環構造を主鎖中に有するポリベンゾオキサジン樹脂(式(1)において、Arは芳香族基を示し、Rは有機基を示し、nは2以上の整数を示す。)と、絶縁性を有する熱伝導性フィラーを、質量比5/95〜50/50の範囲で含有する成形材料を加熱硬化することを特徴とする成形品。 [1] A polybenzo having a benzoxazine ring structure in the main chain, represented by the following formula (1), produced using phenols having two hydroxyphenyl groups, diamines, and aldehydes as raw materials An oxazine resin (in the formula (1), Ar 1 represents an aromatic group, R 1 represents an organic group, and n represents an integer of 2 or more) and a thermally conductive filler having insulating properties are mixed in a mass ratio. A molded article comprising heat-curing a molding material contained in a range of 5/95 to 50/50.

Figure 2012021084
Figure 2012021084

[2]上記ヒドロキシフェニル基を二つ有するフェノール類の50モル%以上が、4,4’−ビフェノールであることを特徴とする[1]記載の成形品。   [2] The molded article according to [1], wherein 50 mol% or more of the phenols having two hydroxyphenyl groups is 4,4′-biphenol.

[3]上記絶縁性を有する熱伝導性フィラーがアルミナ化合物、酸化マグネシウム、及び窒化ホウ素を含有することを特徴とする[1]または[2]記載の成形品。   [3] The molded article according to [1] or [2], wherein the thermally conductive filler having an insulating property contains an alumina compound, magnesium oxide, and boron nitride.

[4]上記アルミナ化合物が、球状であることを特徴とする[3]記載の成形品。   [4] The molded article according to [3], wherein the alumina compound is spherical.

本発明によれば、熱伝導率が高く、機械的強度に優れた成形品を得ることができる。   According to the present invention, a molded article having high thermal conductivity and excellent mechanical strength can be obtained.

以下、本発明の実施の形態について詳細に説明する。
本発明の成形品は、上記式(1)に記載のポリベンゾオキサジン樹脂と絶縁性を有する熱伝導性フィラーを含有する成形材料を加熱硬化することにより得られる。
まずは、上記式(1)記載のポリベンゾオキサジン樹脂について説明する。
上記式(1)記載のポリベンゾオキサジン樹脂は、ヒドロキシフェニル基を二つ有するフェノール類とジアミン類とアルデヒド類とを有機溶剤中において反応させ、製造するものである。
上記ヒドロキシフェニル基を二つ有するフェノール類は、下記式(2)で表され、ヒドロキシフェニル基の水酸基と結合する炭素に対して、少なくとも一方のオルソ位に置換可能な水素を有するものであれば、特に限定されない。(式(2)において、Arは芳香族基を示す。)
ヒドロキシフェニル基を二つ有するフェノール類としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールE、ビスフェノールZ、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ビフェノール、4,4’−ジヒドロキシベンゾフェノン、4,4’−[1,3−フェニレンビス(1−メチル−エチリデン)]ビスフェノール(三井化学ファイン製「ビスフェノールM」)、4,4’−[1,4−フェニレンビス(1−メチル−エチリデン)]ビスフェノール(三井化学ファイン製「ビスフェノールP」)等が挙げられ、これらは1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また、ヒドロキシフェニル基を二つ有するフェノール類として、50モル%以上が4,4’−ビフェノールであることが、熱伝導率が向上するため好ましい。
Hereinafter, embodiments of the present invention will be described in detail.
The molded article of the present invention is obtained by heat-curing a molding material containing a polybenzoxazine resin described in the above formula (1) and a thermally conductive filler having insulating properties.
First, the polybenzoxazine resin described in the above formula (1) will be described.
The polybenzoxazine resin described in the above formula (1) is produced by reacting phenols having two hydroxyphenyl groups, diamines and aldehydes in an organic solvent.
The phenols having two hydroxyphenyl groups are represented by the following formula (2) and have a hydrogen that can be substituted in at least one ortho position with respect to carbon bonded to the hydroxyl group of the hydroxyphenyl group. There is no particular limitation. (In Formula (2), Ar 1 represents an aromatic group.)
Examples of phenols having two hydroxyphenyl groups include bisphenol A, bisphenol F, bisphenol S, bisphenol E, bisphenol Z, 4,4′-dihydroxydiphenyl ether, 4,4′-biphenol, 4,4′-dihydroxybenzophenone, 4,4 ′-[1,3-phenylenebis (1-methyl-ethylidene)] bisphenol (“Bisphenol M” manufactured by Mitsui Chemicals Fine), 4,4 ′-[1,4-phenylenebis (1-methyl-ethylidene) )] Bisphenol (“Bisphenol P” manufactured by Mitsui Chemicals Fine) and the like may be mentioned, and these may be used alone or in combination of two or more. Moreover, as phenols which have two hydroxyphenyl groups, it is preferable that 50 mol% or more is 4,4′-biphenol because the thermal conductivity is improved.

Figure 2012021084
Figure 2012021084

上記ジアミン類は、下記式(3)で表され、芳香族ジアミン、脂肪族ジアミン、脂環式ジアミン等、両末端にアミノ基を有するものであれば、特に限定されない。(式(3)において、Rは有機基を示す。)
芳香族ジアミンとしては、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−[1,4−フェニレンビス(1−メチル−エチリデン)]ビスアニリン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン等が挙げられ、中でも、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテルが安価であることから好ましい。
また、脂肪族ジアミンとしては、エチレンジアミン、1,3−プロパンジアミン、1,4−ブタンジアミン、1,5−ペンタンジアミン、1,6−ヘキサンジアミン、1,8−オクタンジアミン、1,10−デカンジアミン、1,11−ウンデカンジアミン、1,12−ドデカンジアミン、1,18−オクタデカンジアミン等が挙げられ、中でも、エチレンジアミン、1,3−プロパンジアミン、1,6−ヘキサンジアミンが安価であることから好ましい。
さらに、その他のジアミン類として、脂環式ジアミン、不飽和や分岐した炭化水素基を持つジアミン等も使用することができる。脂環式ジアミンとしては、1,4−ビス(アミノメチル)シクロヘキサン、1,3−ビス(アミノメチル)シクロヘキサン、4,4’−メチレンビス(シクロヘキシルアミン)、4,4’−メチレンビス(2−メチルシクロヘキシルアミン)、イソホロンジアミン、1,3−ジアミノアダマンタン、ノルボルナンジアミン等が挙げられる。
これらジアミン類は1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
The diamines are not particularly limited as long as they are represented by the following formula (3) and have amino groups at both ends, such as aromatic diamines, aliphatic diamines, and alicyclic diamines. (In Formula (3), R 1 represents an organic group.)
As aromatic diamines, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 4,4 ′-[1,4 -Phenylenebis (1-methyl-ethylidene)] bisaniline, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene and the like, among others, 4,4′- Diaminodiphenylmethane and 4,4′-diaminodiphenyl ether are preferred because they are inexpensive.
Examples of the aliphatic diamine include ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,8-octanediamine, and 1,10-decane. Examples include diamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,18-octadecanediamine and the like. Among them, ethylenediamine, 1,3-propanediamine, and 1,6-hexanediamine are inexpensive. preferable.
Furthermore, as other diamines, alicyclic diamines, diamines having unsaturated or branched hydrocarbon groups, and the like can also be used. Examples of the alicyclic diamine include 1,4-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, 4,4′-methylenebis (cyclohexylamine), 4,4′-methylenebis (2-methyl). Cyclohexylamine), isophoronediamine, 1,3-diaminoadamantane, norbornanediamine and the like.
These diamines may be used individually by 1 type, and may be used in combination of 2 or more type.

Figure 2012021084
Figure 2012021084

上記アルデヒド類としては、特に限定されるものではないが、例えば、アセトアルデヒド、ホルムアルデヒド等が挙げられ、これらは1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。該ホルムアルデヒドとしては、パラホルムアルデヒドやホルムアルデヒドの水溶液が挙げられるが、合成のしやすさから、ホルムアルデヒドの水溶液が好ましい。   Although it does not specifically limit as said aldehydes, For example, acetaldehyde, formaldehyde, etc. are mentioned, These may be used individually by 1 type and may be used in combination of 2 or more type. . Examples of the formaldehyde include paraformaldehyde and an aqueous solution of formaldehyde, but an aqueous solution of formaldehyde is preferable because of ease of synthesis.

上記反応工程における、反応温度、反応時間については特に限定されないが、通常、有機溶剤中、室温〜120℃の範囲で数十分〜数時間反応させ、有機溶剤除去工程を行うことによりポリベンゾオキサジン樹脂を得ることができる。   The reaction temperature and reaction time in the above reaction step are not particularly limited. Usually, polybenzoxazine is reacted in an organic solvent in the range of room temperature to 120 ° C. for several tens of minutes to several hours, and the organic solvent removal step is performed. A resin can be obtained.

使用する有機溶剤についても特に限定されるものではないが、原料のヒドロキシフェニル基を二つ有するフェノール類やジアミン類および反応生成物であるポリベンゾオキサジン樹脂に対して溶解性の良好なものが好ましい。このような溶剤として、例えば、クロロホルム、ジクロロメタン等のハロゲン系溶剤、テトラヒドロフラン、ジオキサン等のエーテル系溶剤、キシレン、トルエン等の芳香族系溶剤、メチルイソブチルケトン等のケトン系溶剤等が挙げられる。   The organic solvent to be used is not particularly limited, but those having good solubility with respect to phenols and diamines having two hydroxyphenyl groups as raw materials and polybenzoxazine resin as a reaction product are preferable. . Examples of such solvents include halogen solvents such as chloroform and dichloromethane, ether solvents such as tetrahydrofuran and dioxane, aromatic solvents such as xylene and toluene, and ketone solvents such as methyl isobutyl ketone.

このようにして得られた上記式(1)のポリベンゾオキサジン樹脂は、従来のフェノール樹脂やベンゾオキサジン樹脂に比べて硬化前に線状構造を有するため、高フィラー充填にもかかわらず、その成形品は高い機械的強度を有することがわかった。
また、上記式(1)においてnは2以上であるが、機械的強度が充分に得られることから、nが5以上であることが好ましい。
The polybenzoxazine resin of the above formula (1) thus obtained has a linear structure before curing compared to conventional phenol resins and benzoxazine resins. The product was found to have high mechanical strength.
Further, in the above formula (1), n is 2 or more, but n is preferably 5 or more because sufficient mechanical strength can be obtained.

次に成形材料に含まれる、絶縁性を有する熱伝導性フィラーについて説明する。絶縁性を有する熱伝導性フィラーとしては、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、アルミナ化合物(アルミナ化合物としては、アルミナをはじめとして、カオリン、クレー、マイカ、ホウ酸アルミニウム、バーミキュライト、スメクタイト等のAl成分を含有するもの)が挙げられる。
これらの中でも本発明においてはアルミナ化合物、酸化マグネシウム、及び窒化ホウ素の3種をすべて含有することが、熱伝導率が向上するため好ましい。さらに、充填性が向上するため、アルミナ化合物が球状であることが特に好ましい。
Next, the thermally conductive filler having insulating properties contained in the molding material will be described. Examples of thermally conductive fillers having insulating properties include boron nitride, aluminum nitride, magnesium oxide, and alumina compounds (as alumina compounds, alumina, as well as kaolin, clay, mica, aluminum borate, vermiculite, smectite, and other Al 2 materials. And those containing an O 3 component).
Among these, in the present invention, it is preferable to contain all three kinds of an alumina compound, magnesium oxide, and boron nitride because the thermal conductivity is improved. Furthermore, since the filling property is improved, the alumina compound is particularly preferably spherical.

熱硬化性成形材料は、上記式(1)で表されるポリベンゾオキサジン樹脂と絶縁性を有する熱伝導性フィラーの質量比を5/95〜50/50の範囲で含有させることが好ましい。ポリベンゾオキサジン樹脂が5質量部以上であれば充分な強度が得られ、50質量部以下であれば熱伝導率を向上させることが可能である。   The thermosetting molding material preferably contains a mass ratio of the polybenzoxazine resin represented by the above formula (1) and the thermally conductive filler having insulation in a range of 5/95 to 50/50. If the polybenzoxazine resin is 5 parts by mass or more, sufficient strength can be obtained, and if it is 50 parts by mass or less, the thermal conductivity can be improved.

また、本発明の成形品を得るための成形材料には所望により従来のエポキシ樹脂組成物の成形材料において用いられている各種添加剤、例えば、ステアリン酸カルシウムやステアリン酸亜鉛のような離型剤もしくは滑剤、シランカップリング剤、およびカーボンブラック等の着色剤などを添加することができる。また炭酸カルシウム、硫酸バリウム、硫酸カルシウム、シリカ、パーライト、シラスバルーン、珪藻土、ケイ酸カルシウム、タルク、ガラス繊維、チタン酸カリウム繊維等の無機充填材を併用しても良い。   The molding material for obtaining the molded article of the present invention may be various additives used in molding materials of conventional epoxy resin compositions as desired, for example, mold release agents such as calcium stearate and zinc stearate or Lubricants, silane coupling agents, and colorants such as carbon black can be added. Further, inorganic fillers such as calcium carbonate, barium sulfate, calcium sulfate, silica, pearlite, shirasu balloon, diatomaceous earth, calcium silicate, talc, glass fiber, potassium titanate fiber and the like may be used in combination.

本発明にあってはポリベンゾオキサジン樹脂と絶縁性を有する熱伝導性フィラー、さらに目的に応じて各種添加剤等を所定量配合し、それらを加圧ニーダー、二軸押出機、ヘンシェルミキサー、ミキシング熱ロール等で加熱混練したあと、粉砕あるいはペレット化することによって本発明の成形品に使用する熱硬化性樹脂成形材料を製造することができる。
こうして得られた熱硬化性樹脂成形材料は、圧縮成形、トランスファー成形など各種の成形方法を用いて所望の成形品を製造することができる。
In the present invention, a polybenzoxazine resin and a thermally conductive filler having an insulating property, and various additives and the like according to the purpose are blended in a predetermined amount, and these are mixed with a pressure kneader, a twin screw extruder, a Henschel mixer, and mixing. After heat-kneading with a hot roll or the like, the thermosetting resin molding material used for the molded product of the present invention can be produced by pulverization or pelletization.
The thermosetting resin molding material obtained in this way can produce a desired molded product using various molding methods such as compression molding and transfer molding.

本発明で得られた成形品は、絶縁性を有しながら熱伝導率が高く、機械的強度が優れているため、LED照明、ノートPC、液晶テレビ、PDPテレビ、携帯電話、デジタルカメラ、ゲーム機、DVDプレーヤー、DVDレコーダー、ブルーレイプレーヤー、ブルーレイレコーダー、カーナビゲーションシステム、ハイブリッドカー、電気自動車等の部品に使用可能である。   The molded product obtained in the present invention has insulation, high thermal conductivity, and excellent mechanical strength. Therefore, LED lighting, notebook PC, liquid crystal television, PDP television, mobile phone, digital camera, game It can be used for parts such as a computer, a DVD player, a DVD recorder, a Blu-ray player, a Blu-ray recorder, a car navigation system, a hybrid car, and an electric vehicle.

本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。なお、得られた成形品の特性は以下に示す方法によって評価した。
(1)熱伝導率
アルバック理工製GH−1迅速熱伝導率計により測定した。
(2)曲げ強度(機械的強度)
JIS K 6911に準拠し測定した。
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, the characteristic of the obtained molded product was evaluated by the method shown below.
(1) Thermal conductivity Measured with a GH-1 rapid thermal conductivity meter manufactured by ULVAC-RIKO.
(2) Bending strength (mechanical strength)
Measured according to JIS K 6911.

[樹脂例1]
(熱硬化性樹脂(A−1)の合成)
メチルイソブチルケトン中に、ビスフェノールA 34.2g(0.15mol)、4,4’−ジアミノジフェニルメタン 29.7g(0.15mol)を投入し、80℃に昇温した。50%ホルムアルデヒド水溶液 36.0g(0.60mol)を滴下した後、30分間攪拌した。その後、さらに昇温して還流下で3時間反応させた。反応終了後、反応溶液をエバポレーターにて溶剤を揮発させ反応物を得た。その後、80℃で減圧乾燥することにより重量平均分子量が4000のポリベンゾオキサジン樹脂(A−1)を得た。
[Resin Example 1]
(Synthesis of thermosetting resin (A-1))
Bisphenol A (34.2 g, 0.15 mol) and 4,4′-diaminodiphenylmethane (29.7 g, 0.15 mol) were added to methyl isobutyl ketone, and the temperature was raised to 80 ° C. After dropwise addition of 36.0 g (0.60 mol) of a 50% aqueous formaldehyde solution, the mixture was stirred for 30 minutes. Thereafter, the temperature was further raised, and the mixture was reacted for 3 hours under reflux. After the completion of the reaction, the reaction solution was evaporated with an evaporator to obtain a reaction product. Then, the polybenzoxazine resin (A-1) whose weight average molecular weight is 4000 was obtained by drying under reduced pressure at 80 degreeC.

[樹脂例2]
(熱硬化性樹脂(A−2)の合成)
メチルイソブチルケトン中に、ビスフェノールA 34.2g(0.15mol)、1,6−ヘキサンジアミン 17.4g(0.15mol)を投入し、80℃に昇温した。50%ホルムアルデヒド水溶液 36.0g(0.60mol)を滴下した後、30分間攪拌した。その後、さらに昇温して還流下で3時間反応させた。反応終了後、反応溶液をエバポレーターにて溶剤を揮発させ反応物を得た。その後、80℃で減圧乾燥することにより重量平均分子量が10000のポリベンゾオキサジン樹脂(A−2)を得た。
[Resin Example 2]
(Synthesis of thermosetting resin (A-2))
Bisphenol A (34.2 g, 0.15 mol) and 1,6-hexanediamine (17.4 g, 0.15 mol) were added to methyl isobutyl ketone, and the temperature was raised to 80 ° C. After dropwise addition of 36.0 g (0.60 mol) of a 50% aqueous formaldehyde solution, the mixture was stirred for 30 minutes. Thereafter, the temperature was further raised, and the mixture was reacted for 3 hours under reflux. After the completion of the reaction, the reaction solution was evaporated with an evaporator to obtain a reaction product. Then, the polybenzoxazine resin (A-2) whose weight average molecular weight is 10,000 was obtained by drying under reduced pressure at 80 degreeC.

[樹脂例3]
(熱硬化性樹脂(A−3)の合成)
ジオキサン中に、4,4’−ビフェノール 22.3g(0.12mol)、ビスフェノールA 18.2g(0.08mol)、4,4’−ジアミノジフェニルメタン 39.6g(0.20mol)を投入し、60℃に昇温して溶解させた後、30℃に温度を下げたところで92%ホルムアルデヒド 26.1g(0.80mol)を投入し、90℃で攪拌した。その後、更に昇温して還流下で7時間反応させた。反応終了後、反応溶液をエバポレーターにて溶剤を揮発させ反応物を得た。その後80℃で減圧乾燥することにより重量平均分子量が4500のポリベンゾオキサジン樹脂(A−3)を得た。
[Resin Example 3]
(Synthesis of thermosetting resin (A-3))
In dioxane, 22.3 g (0.12 mol) of 4,4′-biphenol, 18.2 g (0.08 mol) of bisphenol A, and 39.6 g (0.20 mol) of 4,4′-diaminodiphenylmethane were added. After being heated to 30 ° C. and dissolved, when the temperature was lowered to 30 ° C., 26.1 g (0.80 mol) of 92% formaldehyde was added and stirred at 90 ° C. Thereafter, the temperature was further raised and the reaction was carried out under reflux for 7 hours. After the completion of the reaction, the reaction solution was evaporated with an evaporator to obtain a reaction product. Then, polybenzoxazine resin (A-3) having a weight average molecular weight of 4500 was obtained by drying under reduced pressure at 80 ° C.

[比較樹脂例1]
(熱硬化性樹脂(B−1)の合成)
メチルイソブチルケトン中に、ビスフェノールA 22.8g(0.1mol)を投入し完全に溶解させた後、アニリン 18.6g(0.2mol)、92%ホルムアルデヒド13.0g(0.4mol)を投入し85℃〜90℃で攪拌した。その後、更に昇温して還流下で2時間反応させた。反応終了後、−93.3kPa以下で真空脱溶剤脱水工程の後、取り出し、ベンゾオキサジン樹脂(B−1)を得た。
[Comparative resin example 1]
(Synthesis of thermosetting resin (B-1))
In methyl isobutyl ketone, 22.8 g (0.1 mol) of bisphenol A was added and completely dissolved, and then 18.6 g (0.2 mol) of aniline and 13.0 g (0.4 mol) of 92% formaldehyde were added. Stir at 85-90 ° C. Thereafter, the temperature was further raised and the reaction was carried out under reflux for 2 hours. After completion of the reaction, it was taken out after a vacuum desolvation dehydration step at −93.3 kPa or less to obtain a benzoxazine resin (B-1).

[比較樹脂例2]
(熱硬化性樹脂(B−2)の配合)
ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製、1001)と、硬化剤としてノボラック型フェノール樹脂(群栄化学工業製、PSM−4324)とを、ヘンシェルミキサーで常温混練し、熱硬化性樹脂(B−2)を得た。
[Comparative resin example 2]
(Formulation of thermosetting resin (B-2))
A bisphenol A type epoxy resin (Japan Epoxy Resin, 1001) and a novolak type phenol resin (PSM-4324, manufactured by Gunei Chemical Industry Co., Ltd.) as a curing agent are kneaded at room temperature with a Henschel mixer, and a thermosetting resin (B- 2) was obtained.

[実施例1]
熱硬化性樹脂(A−1)15質量部、非球状アルミナ(日本軽金属製)85質量部、をヘンシェルミキサーで常温混練し、熱硬化性樹脂成形材料を得た。
得られた熱硬化性樹脂成形材料を、トランスファー成形機にて金型温度200℃、硬化時間5分、プレス圧力70kg/cmの成形条件でトランスファー成形し、熱伝導率測定用試験片及び曲げ強度測定用試験片を作成した。測定結果を表1に示す。
[Example 1]
15 parts by mass of thermosetting resin (A-1) and 85 parts by mass of non-spherical alumina (manufactured by Nippon Light Metal Co., Ltd.) were kneaded at room temperature with a Henschel mixer to obtain a thermosetting resin molding material.
The obtained thermosetting resin molding material is transfer molded by a transfer molding machine under molding conditions of a mold temperature of 200 ° C., a curing time of 5 minutes, and a press pressure of 70 kg / cm 2 , and a test piece for thermal conductivity measurement and bending. A test piece for strength measurement was prepared. The measurement results are shown in Table 1.

[実施例2]
熱硬化性樹脂(A−1)15質量部、非球状アルミナ(日本軽金属製)60質量部、酸化マグネシウム(協和化学製)25質量部、をヘンシェルミキサーで常温混練し、熱硬化性樹脂成形材料を得た。
得られた熱硬化性樹脂成形材料を、トランスファー成形機にて金型温度200℃、硬化時間5分、プレス圧力70kg/cmの成形条件でトランスファー成形し、熱伝導率測定用試験片及び曲げ強度測定用試験片を作成した。測定結果を表1に示す。
[Example 2]
Thermosetting resin (A-1) 15 parts by mass, non-spherical alumina (manufactured by Nippon Light Metal) 60 parts by mass, magnesium oxide (manufactured by Kyowa Chemical) 25 parts by mass are kneaded at room temperature with a Henschel mixer, and thermosetting resin molding material Got.
The obtained thermosetting resin molding material is transfer molded by a transfer molding machine under molding conditions of a mold temperature of 200 ° C., a curing time of 5 minutes, and a press pressure of 70 kg / cm 2 , and a test piece for thermal conductivity measurement and bending. A test piece for strength measurement was prepared. The measurement results are shown in Table 1.

[実施例3]
熱硬化性樹脂(A−1)15質量部、球状アルミナ(電気化学製)45質量部、非球状アルミナ(日本軽金属製)15質量部、酸化マグネシウム(協和化学製)18質量部、六方晶窒化ホウ素(hBN:台湾製)7質量部をヘンシェルミキサーで常温混練し、熱硬化性樹脂成形材料を得た。
得られた熱硬化性樹脂成形材料を、トランスファー成形機にて金型温度200℃、硬化時間5分、プレス圧力70kg/cmの成形条件でトランスファー成形し、熱伝導率測定用試験片及び曲げ強度測定用試験片を作成した。測定結果を表1に示す。
[Example 3]
15 parts by mass of thermosetting resin (A-1), 45 parts by mass of spherical alumina (manufactured by Electrochemical), 15 parts by mass of non-spherical alumina (manufactured by Nippon Light Metal), 18 parts by mass of magnesium oxide (manufactured by Kyowa Chemical), hexagonal nitriding 7 parts by mass of boron (hBN: Taiwan) was kneaded at room temperature with a Henschel mixer to obtain a thermosetting resin molding material.
The obtained thermosetting resin molding material is transfer molded by a transfer molding machine under molding conditions of a mold temperature of 200 ° C., a curing time of 5 minutes, and a press pressure of 70 kg / cm 2 , and a test piece for thermal conductivity measurement and bending. A test piece for strength measurement was prepared. The measurement results are shown in Table 1.

[実施例4]
実施例3において熱硬化性樹脂(A−1)を熱硬化性樹脂(A−2)に変更した他は同様にして、熱伝導率測定用試験片及び曲げ強度測定用試験片を作成した。測定結果を表1に示す。
[Example 4]
A test piece for measuring thermal conductivity and a test piece for measuring bending strength were prepared in the same manner as in Example 3 except that the thermosetting resin (A-1) was changed to the thermosetting resin (A-2). The measurement results are shown in Table 1.

[実施例5]
実施例3において熱硬化性樹脂(A−1)を熱硬化性樹脂(A−3)に変更した他は同様にして、熱伝導率測定用試験片及び曲げ強度測定用試験片を作成した。測定結果を表1に示す。
[Example 5]
In the same manner as in Example 3 except that the thermosetting resin (A-1) was changed to the thermosetting resin (A-3), a test piece for measuring thermal conductivity and a test piece for measuring bending strength were prepared. The measurement results are shown in Table 1.

[比較例1]
実施例3において熱硬化性樹脂(A−1)を熱硬化性樹脂(B−1)に変更した他は同様にして、熱伝導率測定用試験片及び曲げ強度測定用試験片を作成した。測定結果を表1に示す。
[Comparative Example 1]
In the same manner as in Example 3 except that the thermosetting resin (A-1) was changed to the thermosetting resin (B-1), a test piece for measuring thermal conductivity and a test piece for measuring bending strength were prepared. The measurement results are shown in Table 1.

[比較例2]
熱硬化性樹脂(A−1)60質量部、球状アルミナ(電気化学製)21.2質量部、非球状アルミナ(日本軽金属製)7.0質量部、酸化マグネシウム(協和化学製)8.5質量部、六方晶窒化ホウ素(hBN:台湾製)3.3質量部をヘンシェルミキサーで常温混練し、熱硬化性樹脂成形材料を得た。
得られた熱硬化性樹脂成形材料を、トランスファー成形機にて金型温度200℃、硬化時間5分、プレス圧力70kg/cmの成形条件でトランスファー成形し、熱伝導率測定用試験片及び曲げ強度測定用試験片を作成した。測定結果を表1に示す。
[Comparative Example 2]
60 parts by mass of thermosetting resin (A-1), 21.2 parts by mass of spherical alumina (manufactured by Electrochemical), 7.0 parts by mass of non-spherical alumina (manufactured by Nippon Light Metal), 8.5 mg of magnesium oxide (manufactured by Kyowa Chemical) Part by mass and 3.3 parts by mass of hexagonal boron nitride (hBN: Taiwan) were kneaded at room temperature with a Henschel mixer to obtain a thermosetting resin molding material.
The obtained thermosetting resin molding material is transfer molded by a transfer molding machine under molding conditions of a mold temperature of 200 ° C., a curing time of 5 minutes, and a press pressure of 70 kg / cm 2 , and a test piece for thermal conductivity measurement and bending. A test piece for strength measurement was prepared. The measurement results are shown in Table 1.

[比較例3]
熱硬化性樹脂(A−1)3質量部、球状アルミナ(電気化学製)51.4質量部、非球状アルミナ(日本軽金属製)17.1質量部、酸化マグネシウム(協和化学製)20.5質量部、六方晶窒化ホウ素(hBN:台湾製)8.0質量部をヘンシェルミキサーで常温混練し、熱硬化性樹脂成形材料を得た。
得られた熱硬化性樹脂成形材料を、トランスファー成形機にて金型温度200℃、硬化時間5分、プレス圧力70kg/cmの成形条件でトランスファー成形し、熱伝導率測定用試験片及び曲げ強度測定用試験片を作成した。測定結果を表1に示す。
[Comparative Example 3]
Thermosetting resin (A-1) 3 parts by mass, spherical alumina (manufactured by Electrochemical) 51.4 parts by mass, non-spherical alumina (manufactured by Nippon Light Metal) 17.1 parts by mass, magnesium oxide (manufactured by Kyowa Chemical) 20.5 Part by mass and 8.0 parts by mass of hexagonal boron nitride (hBN: made in Taiwan) were kneaded at room temperature with a Henschel mixer to obtain a thermosetting resin molding material.
The obtained thermosetting resin molding material is transfer molded by a transfer molding machine under molding conditions of a mold temperature of 200 ° C., a curing time of 5 minutes, and a press pressure of 70 kg / cm 2 , and a test piece for thermal conductivity measurement and bending. A test piece for strength measurement was prepared. The measurement results are shown in Table 1.

[比較例4]
実施例3において熱硬化性樹脂(A−1)を熱硬化性樹脂(B−2)に変更した他は同様にして、熱伝導率測定用試験片及び曲げ強度測定用試験片を作成した。測定結果を表1に示す。
[Comparative Example 4]
In the same manner as in Example 3 except that the thermosetting resin (A-1) was changed to the thermosetting resin (B-2), a test piece for measuring thermal conductivity and a test piece for measuring bending strength were prepared. The measurement results are shown in Table 1.

Figure 2012021084
Figure 2012021084

表1より、本発明の成形品である実施例1〜5は、熱伝導率がすべて2.5W/m・Kを超えかつ、曲げ強度が80MPa以上であった。
また、実施例3、実施例4及び5において、ポリベンゾオキサジン樹脂の合成に使用されるヒドロキシフェニル基を二つ有するフェノール類の60モル%が4,4’−ビフェノールである実施例4が、熱伝導率が高く、曲げ強度が大きい。
さらに、実施例1〜3において、絶縁性を有する熱導電性フィラーとしてアルミナ化合物、酸化マグネシウム及び窒化ホウ素を含む実施例3が、熱伝導率が高く、曲げ強度が大きい。
一方、比較例1〜4において、熱伝導率、曲げ強度共に良好な結果が得られたものはなかった。
From Table 1, Examples 1-5 which are the molded articles of the present invention all had a thermal conductivity exceeding 2.5 W / m · K and a bending strength of 80 MPa or more.
Moreover, in Example 3, Example 4 and 5, Example 4 whose 60 mol% of phenols which have two hydroxyphenyl groups used for the synthesis | combination of polybenzoxazine resin is 4,4'-biphenol, High thermal conductivity and high bending strength.
Furthermore, in Examples 1 to 3, Example 3 containing an alumina compound, magnesium oxide, and boron nitride as a thermally conductive filler having insulating properties has high thermal conductivity and high bending strength.
On the other hand, in Comparative Examples 1 to 4, no good results were obtained in both thermal conductivity and bending strength.

Claims (4)

ヒドロキシフェニル基を二つ有するフェノール類と、ジアミン類と、アルデヒド類とを原料として用いて製造した、下記式(1)で示される、ベンゾオキサジン環構造を主鎖中に有するポリベンゾオキサジン樹脂(式(1)において、Arは芳香族基を示し、Rは有機基を示し、nは2以上の整数を示す。)と、絶縁性を有する熱伝導性フィラーを、質量比5/95〜50/50の範囲で含有する成形材料を加熱硬化することを特徴とする成形品。
Figure 2012021084
A polybenzoxazine resin having a benzoxazine ring structure in the main chain represented by the following formula (1), produced by using phenols having two hydroxyphenyl groups, diamines, and aldehydes as raw materials ( In Formula (1), Ar 1 represents an aromatic group, R 1 represents an organic group, and n represents an integer of 2 or more), and a thermally conductive filler having insulating properties is a mass ratio of 5/95. A molded product comprising heat-curing a molding material contained in a range of -50/50.
Figure 2012021084
上記ヒドロキシフェニル基を二つ有するフェノール類の50モル%以上が、4,4’−ビフェノールであることを特徴とする請求項1記載の成形品。   The molded article according to claim 1, wherein 50 mol% or more of the phenols having two hydroxyphenyl groups is 4,4'-biphenol. 上記絶縁性を有する熱伝導性フィラーがアルミナ化合物、酸化マグネシウム、及び窒化ホウ素を含有することを特徴とする請求項1または2記載の成形品。   The molded article according to claim 1 or 2, wherein the thermally conductive filler having an insulating property contains an alumina compound, magnesium oxide, and boron nitride. 上記アルミナ化合物が、球状であることを特徴とする請求項3記載の成形品。   4. The molded article according to claim 3, wherein the alumina compound is spherical.
JP2010160311A 2010-07-15 2010-07-15 Molded product obtained by heat curing thermosetting molding material Pending JP2012021084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010160311A JP2012021084A (en) 2010-07-15 2010-07-15 Molded product obtained by heat curing thermosetting molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010160311A JP2012021084A (en) 2010-07-15 2010-07-15 Molded product obtained by heat curing thermosetting molding material

Publications (1)

Publication Number Publication Date
JP2012021084A true JP2012021084A (en) 2012-02-02

Family

ID=45775595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010160311A Pending JP2012021084A (en) 2010-07-15 2010-07-15 Molded product obtained by heat curing thermosetting molding material

Country Status (1)

Country Link
JP (1) JP2012021084A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043950A (en) * 2011-08-25 2013-03-04 Gun Ei Chem Ind Co Ltd Thermosetting resin for low dielectric material
WO2013183679A1 (en) * 2012-06-05 2013-12-12 日産化学工業株式会社 Adhesive composition or underfill composition
JP2014080493A (en) * 2012-10-16 2014-05-08 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
CN106832922A (en) * 2017-01-19 2017-06-13 浙江理工大学 A kind of Xin types benzoxazine colophony method for toughening
CN109890862A (en) * 2016-10-26 2019-06-14 米其林集团总公司 It can be used for coating metal and by the polybenzoxazine of metal bonding to rubber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043950A (en) * 2011-08-25 2013-03-04 Gun Ei Chem Ind Co Ltd Thermosetting resin for low dielectric material
WO2013183679A1 (en) * 2012-06-05 2013-12-12 日産化学工業株式会社 Adhesive composition or underfill composition
JPWO2013183679A1 (en) * 2012-06-05 2016-02-01 日産化学工業株式会社 Adhesive composition or underfill composition
JP2014080493A (en) * 2012-10-16 2014-05-08 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
CN109890862A (en) * 2016-10-26 2019-06-14 米其林集团总公司 It can be used for coating metal and by the polybenzoxazine of metal bonding to rubber
CN106832922A (en) * 2017-01-19 2017-06-13 浙江理工大学 A kind of Xin types benzoxazine colophony method for toughening

Similar Documents

Publication Publication Date Title
CN104024337B (en) Silane-containing compositions, hardening resin composition and sealing material
US9428632B2 (en) Quaternary phosphonium salt, epoxy resin composition for encapsulating semiconductor device and including the quaternary phosphonium salt, and semiconductor device encapsulated with the epoxy resin composition
TW201144378A (en) Resin composition for electronic component encapsulation and electronic component device
TWI468483B (en) Thermal follower
JP2012021084A (en) Molded product obtained by heat curing thermosetting molding material
TWI693250B (en) Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material
TW201008968A (en) Crystalline modified epoxy resin, epoxy resin composition, and crystalline cured product
KR102216969B1 (en) Epoxy resin composition, use thereof, and filler for epoxy resin composition
JP5397578B2 (en) Heat-resistant liquid phenol novolac resin, production method thereof and cured product thereof
JP6469654B2 (en) Phenol resin, epoxy resin composition containing the phenol resin, cured product of the epoxy resin composition, and semiconductor device having the cured product
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
JP2009001638A (en) Molding resin composition, molded article and semiconductor package
TWI725558B (en) Thermosetting resin composition
US20110147646A1 (en) Modified bismaleimide resins, preparation method thereof and compositions comprising the same
TW201207004A (en) Method for manufacturing cured product of thermosetting resin composition and cured product obtained thereby
KR100699191B1 (en) Epoxy resin composition for encapsulating semiconductor device and the semiconductor device using thereof
JP4958720B2 (en) Molded products and semiconductor packages
KR101997349B1 (en) Epoxy resin composition
JP2017122166A (en) Resin composition and cured product
KR20160060468A (en) Phenol resin and method for manufacturing the phenol resin
KR100679491B1 (en) Epoxy resin composition for sealing semiconductor
JP7281246B1 (en) Maleimide resin mixture for sealing material, maleimide resin composition and cured product thereof
KR102126847B1 (en) Epoxy resin composition
JP6335374B2 (en) Epoxy resin composition and use thereof
JP2004256729A (en) Epoxy resin composition and sealed semiconductor device