JP2012020909A - Pyroelectric ceramic material - Google Patents

Pyroelectric ceramic material Download PDF

Info

Publication number
JP2012020909A
JP2012020909A JP2010161183A JP2010161183A JP2012020909A JP 2012020909 A JP2012020909 A JP 2012020909A JP 2010161183 A JP2010161183 A JP 2010161183A JP 2010161183 A JP2010161183 A JP 2010161183A JP 2012020909 A JP2012020909 A JP 2012020909A
Authority
JP
Japan
Prior art keywords
pyroelectric
mass
amount
dielectric constant
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010161183A
Other languages
Japanese (ja)
Inventor
Tomoyuki Sugihara
智之 杉原
Osamu Ise
理 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010161183A priority Critical patent/JP2012020909A/en
Publication of JP2012020909A publication Critical patent/JP2012020909A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pyroelectric ceramic material which has a low dielectric constant εand a high Curie point Tc and achieves low-temperature sintering at 1,100°C or lower.SOLUTION: SiOof 0.1 mass% or more and 10 mass% or less is added as an accessory component to a principal component whose composition formula is represented by (Pb, Ca)(Ti, (SbNb))O(wherein, 0.08≤x≤0.24, and 0.001≤y≤0.5).

Description

本発明は、焦電磁器材料に関し、特に、表面実装対応の焦電型赤外線センサに用いて好適な焦電磁器材料に関する。   The present invention relates to a pyroelectric material, and more particularly to a pyroelectric material suitable for use in a surface-mounting pyroelectric infrared sensor.

従来、人の動きを感知することができる焦電型赤外線センサは防犯機器、家電製品等のさまざまな分野で広く応用されてきた。昨今では世界的に環境問題に対する意識が高まり、省エネの観点では焦電型赤外線センサによる人感検知は不可欠の技術となっている。   Conventionally, pyroelectric infrared sensors capable of detecting human movement have been widely applied in various fields such as crime prevention devices and home appliances. In recent years, awareness of environmental issues has increased worldwide, and human detection using pyroelectric infrared sensors has become an indispensable technology from the viewpoint of energy saving.

家電製品等の機能の一部として使用される焦電型赤外線センサは、小型化、高感度化が求められ、焦電型赤外線センサの性能を握っている焦電型赤外線センサ用の焦電磁器材料はその感度特性が非常に重要なパラメータとなる。   Pyroelectric infrared sensor used as a part of functions of home appliances, etc., is required for downsizing and high sensitivity, and the pyroelectric device for pyroelectric infrared sensor has the performance of pyroelectric infrared sensor The sensitivity characteristic of the material is a very important parameter.

焦電型赤外線センサの検出感度は、焦電磁器材料の比誘電率εが小さいほど高くなる。このため、チタン酸ジルコン酸鉛のような比誘電率εが大きい焦電磁器材料よりも、チタン酸鉛のような比誘電率εが小さい焦電磁器材料が求められている。 The detection sensitivity of the pyroelectric infrared sensor increases as the relative permittivity ε r of the pyroelectric material decreases. For this reason, a pyroelectric material having a small relative dielectric constant ε r such as lead titanate is required rather than a pyroelectric material having a large relative dielectric constant ε r such as lead zirconate titanate.

特許文献1では、焦電型赤外線検出素子として(Pb1−xCa)TiOで示される複合ペロスカイト構造のものにMnO、NiO、Nbのうちから選ばれた少なくとも1種を添加配合してなるセラミック焼結体が提案されている。このセラミックス焼結体は大きな焦電係数と、低い比誘電率を有しており、赤外線検出素子としても優れた特性を備えている。 In Patent Document 1, at least one selected from MnO, NiO, and Nb 2 O 5 is added to a composite perovskite structure represented by (Pb 1-x Ca x ) TiO 3 as a pyroelectric infrared detection element. A ceramic sintered body obtained by blending has been proposed. This ceramic sintered body has a large pyroelectric coefficient and a low relative dielectric constant, and has excellent characteristics as an infrared detecting element.

また、焦電型赤外線センサは、他の電子デバイスと組み合わせて用いられることが多いため、表面実装技術によりプリント基板上に他の電子部品と同時に実装させて使用されることが多い。したがって、焦電型赤外線センサはリフロー炉内を通って電化製品または電子デバイスの一部として使用されるため、リフロー炉の鉛ハンダ溶解温度である約300℃に加熱されてもセンサ感度が劣化しないことが求められている。   Further, since the pyroelectric infrared sensor is often used in combination with other electronic devices, it is often used by being mounted on a printed circuit board simultaneously with other electronic components by a surface mounting technique. Therefore, since the pyroelectric infrared sensor passes through the reflow furnace and is used as a part of the electrical appliance or electronic device, the sensor sensitivity does not deteriorate even when heated to about 300 ° C., which is the lead solder melting temperature of the reflow furnace. It is demanded.

さらに、近年では環境保全の観点から、鉛フリーのハンダペーストを使用するようになり、リフロー炉の温度も従来の鉛ハンダ溶解温度よりもさらに高温にする必要がある。   Furthermore, in recent years, from the viewpoint of environmental protection, lead-free solder paste has been used, and the temperature of the reflow furnace needs to be higher than the conventional lead solder melting temperature.

通常鉛フリーのハンダはリフロー炉のピーク温度を280℃程度に設定されるが、リフロー炉の熱分布によっては300℃まで達する領域もあり、小型化が要求される表面実装タイプの電子部品、電子デバイスは300℃以上、好ましくは340℃以上の耐熱性が要求されている。   Normally, lead-free solder has a reflow furnace peak temperature set at about 280 ° C, but depending on the heat distribution of the reflow furnace, there are areas that can reach up to 300 ° C. The device is required to have a heat resistance of 300 ° C. or higher, preferably 340 ° C. or higher.

特開昭60―191054号公報Japanese Unexamined Patent Publication No. 60-191054

従来の焦電型赤外線センサ用の焦電素子は、分極が消極する温度であるキュリー点Tcが200℃台であるのが一般的であり、表面実装の際にリフロー炉で熱が加えられると分極が劣化し、特性が低下するという問題がある。   Conventional pyroelectric elements for pyroelectric infrared sensors generally have a Curie point Tc, which is a temperature at which polarization is depolarized, in the range of 200 ° C. When heat is applied in a reflow furnace during surface mounting, There is a problem that the polarization deteriorates and the characteristics deteriorate.

このような背景の中、比誘電率εrが低く、340℃程度の高温でも焦電素子の分極が劣化しない材料開発が急務となっている。 In such a background, there is an urgent need to develop a material that has a low relative dielectric constant ε r and does not deteriorate the polarization of the pyroelectric element even at a high temperature of about 340 ° C.

特許文献1の焦電型赤外線検出素子において、検出感度を上げようとしてCa置換量を増やすとキュリー点Tcが下がってしまい、表面実装の際にリフロー炉の熱で分極が劣化し、特性が低下してしまうため、表面実装対応の焦電型赤外線センサには適していない。   In the pyroelectric infrared detecting element of Patent Document 1, if the Ca substitution amount is increased in order to increase the detection sensitivity, the Curie point Tc decreases, and the polarization deteriorates due to the heat of the reflow furnace during surface mounting, resulting in a decrease in characteristics. Therefore, it is not suitable for a surface mount pyroelectric infrared sensor.

また、チタン酸鉛は通常1200℃以上の温度で焼結されるが、このような温度では鉛の蒸散が著しく所望の焦電磁器組成物から組成がずれ易い。さらに、チタン酸鉛は異方性が強いため、焼結中にひび割れ、時には焼結後の放置中にも壊れやすい材料である。これらの問題と量産性とを考慮し、焼結温度の低温化、特に1100℃以下での低温焼結が望まれている。   In addition, lead titanate is usually sintered at a temperature of 1200 ° C. or higher, but at such temperatures, lead transpiration is remarkably different from the desired pyroelectric composition. Furthermore, since lead titanate has strong anisotropy, it is a material that cracks during sintering and sometimes breaks during standing after sintering. Considering these problems and mass productivity, it is desired to lower the sintering temperature, in particular, low temperature sintering at 1100 ° C. or lower.

本発明は、上述した問題を解決するためになされたもので、低い比誘電率εと高いキュリー点Tcを有し、1100℃以下での低温焼結を実現した焦電磁器材料を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a pyroelectric material that has a low relative dielectric constant ε r and a high Curie point Tc and realizes low-temperature sintering at 1100 ° C. or lower. For the purpose.

上述した課題を解決するため、本発明は、組成式が(Pb(1−x),Ca)(Ti(1−y),(Sb1/2Nb1/2)O(但し、0.08≦x≦0.24、0.001≦y≦0.5)で表される主成分に、副成分としてSiOが0.1質量%以上10質量%以下添加される焦電磁器材料であり、比誘電率εが低く、キュリー点Tcが高く、1100℃以下での低温焼結を実現した焦電磁器材料が得られる。 To solve the problems described above, the present invention provides a composition formula (Pb (1-x), Ca x) (Ti (1-y), (Sb 1/2 Nb 1/2) y) O 3 ( where , 0.08 ≦ x ≦ 0.24, 0.001 ≦ y ≦ 0.5), and a pyromagnetic component in which SiO 2 is added in an amount of 0.1% by mass to 10% by mass as a subcomponent. an equipment cost, relative permittivity epsilon r low, high Curie point Tc, the pyroelectric ceramic material is obtained that realizes low-temperature sintering at 1100 ° C. or less.

即ち、本発明によれば、組成式が(Pb(1−x),Ca)(Ti(1−y),(Sb1/2Nb1/2)O(但し、0.08≦x≦0.24、0.001≦y≦0.5)で表される主成分に、副成分としてSiOが0.1質量%以上10質量%以下添加されたことを特徴とする焦電磁器材料が得られる。 That is, according to the present invention, composition formula (Pb (1-x), Ca x) (Ti (1-y), (Sb 1/2 Nb 1/2) y) O 3 ( where 0.08 ≦ x ≦ 0.24, 0.001 ≦ y ≦ 0.5), and SiO 2 is added in an amount of 0.1% by mass to 10% by mass as a subcomponent. A ceramic material is obtained.

本発明では、低い比誘電率εと高いキュリー点Tcを有し、1100℃以下での低温焼結を実現した焦電磁器材料を提供することが可能となる。 In the present invention, it is possible to provide a pyroelectric material that has a low relative dielectric constant ε r and a high Curie point Tc and realizes low-temperature sintering at 1100 ° C. or lower.

Ca置換量xを変化させたときの比誘電率εrを示す図。The figure which shows the dielectric constant (epsilon) r when Ca substitution amount x is changed. Ca置換量xを変化させたときのキュリー点Tcを示す図。The figure which shows the Curie point Tc when changing Ca substitution amount x. 焼結温度と密度の関係を示す図。The figure which shows the relationship between sintering temperature and density.

本発明の焦電磁器材料は、組成式が(Pb(1−x),Ca)(Ti(1−y),(Sb1/2Nb1/2)O(但し、0.08≦x≦0.24、0.001≦y≦0.5)で表される主成分に、副成分としてSiOが0.1質量%以上10質量%以下添加されたことを特徴とする。xの値はPbに対するCa置換量であり、Ca置換量を増やすことにより、比誘電率を小さくすることが可能となる。yの値は、Tiに対するSb1/2Nb1/2の置換量であり、Sb1/2Nb1/2の置換量を増やすことによりキュリー点Tcを高くすることが可能となる。SiOの添加量を増やすことにより、焦電磁器材料の焼結性が向上され焼結体の密度のピークが低温側にシフトし、低温焼結が可能となる。 The pyroelectric material of the present invention has a composition formula of (Pb (1-x) , Ca x ) (Ti (1-y) , (Sb 1/2 Nb 1/2 ) y ) O 3 (where 0. The main component represented by (08 ≦ x ≦ 0.24, 0.001 ≦ y ≦ 0.5) is characterized in that 0.1% by mass or more and 10% by mass or less of SiO 2 is added as a subcomponent. . The value of x is the amount of Ca substitution for Pb. By increasing the amount of Ca substitution, the relative dielectric constant can be reduced. The value of y is the substitution amount of Sb 1/2 Nb 1/2 for Ti, and the Curie point Tc can be increased by increasing the substitution amount of Sb 1/2 Nb 1/2 . By increasing the amount of SiO 2 added, the sinterability of the pyroelectric material is improved, the density peak of the sintered body is shifted to the low temperature side, and low temperature sintering becomes possible.

主成分の原料として、PbO、TiO、CaO、Nb、Sb、SiOを目的の組成になるように秤量した。この原料粉末を、ジルコニアボールとともにナイロンポットの中に入れ、46時間湿式混合した。この混合粉末を脱水乾燥後、アルミナ匣鉢中で950℃、2時間の予焼を行った。この予焼粉末をナイロンポット中のジルコニアボールにて20時間湿式粉砕した。続いて、脱水乾燥し、得られた予焼粉砕粉末にバインダを混合して加圧し、φ20×10mmに成形した。この成形体を1000〜1250℃で焼結し、外周刃切断機で1mmの厚さに切断し円板を得た。そして、加工した円板の両面に銀ペーストを塗布し、450℃で焼き付けて電極を形成し試料とした。このようにして得られた試料に、シリコンオイル中で180℃、4kV/mm、15分で分極処理を行い、その後室温25℃の環境に戻した。 PbO, TiO 2 , CaO, Nb 2 O 5 , Sb 2 O 3 , and SiO 2 were weighed so as to have a target composition as the main component materials. This raw material powder was put into a nylon pot together with zirconia balls and wet mixed for 46 hours. This mixed powder was dehydrated and dried, and then pre-fired at 950 ° C. for 2 hours in an alumina bowl. This pre-baked powder was wet pulverized with zirconia balls in a nylon pot for 20 hours. Subsequently, it was dehydrated and dried, and a binder was mixed with the obtained pre-fired pulverized powder and pressed to form φ20 × 10 mm. This molded body was sintered at 1000 to 1250 ° C. and cut into a thickness of 1 mm with an outer peripheral blade cutter to obtain a disc. And silver paste was apply | coated to both surfaces of the processed disc, it baked at 450 degreeC, the electrode was formed, and it was set as the sample. The sample thus obtained was subjected to a polarization treatment in silicon oil at 180 ° C., 4 kV / mm for 15 minutes, and then returned to an environment at room temperature of 25 ° C.

図1はCa置換量xを変化させたときの比誘電率εrを示す図である。ここで、y=0.01、SiOの添加量を0.1質量%とし、xが0.07、0.08、0.10、0.14のときの比誘電率εrを求めた。xの値はPbに対するCa置換量でモル比であり、このCa置換量が0.14のとき、比誘電率εrが300程度まで小さくなっている。Ca置換量を0.07から0.14に増やすに従い比誘電率εrが小さくなり、焦電型赤外線センサとしては検出感度の観点で有望な材料となる。通常焦電型赤外線センサとして使用される焦電磁器材料としては、比誘電率εrは500以下が望ましいため、xは0.08以上が必要であることがわかる。 FIG. 1 is a graph showing the relative dielectric constant ε r when the Ca substitution amount x is changed. Here, the relative dielectric constant ε r was determined when y = 0.01, the amount of SiO 2 added was 0.1% by mass, and x was 0.07, 0.08, 0.10, 0.14. . The value of x is the molar ratio in terms of the amount of Ca substitution with respect to Pb. When this amount of Ca substitution is 0.14, the relative dielectric constant ε r is as small as about 300. As the Ca substitution amount is increased from 0.07 to 0.14, the relative dielectric constant ε r decreases, and it becomes a promising material from the viewpoint of detection sensitivity as a pyroelectric infrared sensor. It can be seen that as a pyroelectric material normally used as a pyroelectric infrared sensor, the relative dielectric constant ε r is preferably 500 or less, and therefore x needs to be 0.08 or more.

図2はCa置換量xを変化させたときのキュリー点Tcを示す図である。ここで、SiOの添加量を0.1質量%とし、yの値を0〜0.01に変化させ、xが0.08、0.15、0.24、0.40のときのキュリー点Tcを求めた。yの値はTiに対するSb1/2Nb1/2の置換量でモル比である。図2に示すように、Caの置換量を増やすとキュリー点Tcが低下する。表面実装に対応する焦電型赤外線センサとして利用するには、リフローの熱でも分極が劣化しないように、Tcが図2の破線で示した340℃以上であることが必要である。したがって、xは0.24以下が必要である。 FIG. 2 is a diagram showing the Curie point Tc when the Ca substitution amount x is changed. Here, the amount of SiO 2 added is 0.1 mass%, the value of y is changed from 0 to 0.01, and the curie when x is 0.08, 0.15, 0.24, 0.40. A point Tc was determined. The value of y is the molar ratio of the substitution amount of Sb 1/2 Nb 1/2 to Ti. As shown in FIG. 2, the Curie point Tc decreases as the Ca substitution amount increases. In order to use as a pyroelectric infrared sensor corresponding to surface mounting, it is necessary that Tc is 340 ° C. or higher shown by a broken line in FIG. 2 so that polarization does not deteriorate even by heat of reflow. Therefore, x needs to be 0.24 or less.

さらに、図2において、(Sb1/2 Nb1/2)の置換量であるyを増やしていくと、キュリー点Tcが高くなっているのがわかる。キュリー点Tcは340℃以上であることが必要であるため、yは0.001以上が必要である。(Sb1/2Nb1/2)の置換量は、配合し過ぎると、分極が劣化し焦電効果が無くなる傾向にある。このため、yは0.5以下が必要であり、特に、実用的な焦電型赤外線センサへの適用を考慮すると、0.01以下が好ましい。 Further, in FIG. 2, it can be seen that the Curie point Tc increases as y, which is the substitution amount of (Sb 1/2 Nb 1/2 ), is increased. Since the Curie point Tc needs to be 340 ° C. or higher, y needs to be 0.001 or higher. When the substitution amount of (Sb 1/2 Nb 1/2 ) is excessively blended, polarization tends to deteriorate and the pyroelectric effect tends to disappear. For this reason, y is required to be 0.5 or less, and is preferably 0.01 or less in consideration of application to a practical pyroelectric infrared sensor.

また、上述した焦電磁器材料はSiOを添加することにより、焦電磁器材料の焼結性が向上され、低温焼結が可能となる。図3は焼成温度と密度の関係を示す図である。ここで、主成分の組成は、x=0.14、y=0.01とした。SiOの添加量を0.1質量%、0.5質量%添加した場合と、SiOを添加していない(0質量%)場合の密度を示した。図3に示すように、SiOを添加することで密度のピークが低温側にシフトし、1100℃以下での低温焼結が可能となる。ここで、図3においてSiOを添加しない(0質量%)の場合では、1100℃で密度のピークをとっているため、量産工程において特性のばらつきも考慮し、1100℃以上の高温で焼結する必要がある。このため、1100℃での低温焼結を行うには、SiOの添加量は0.1質量%以上が必要である。また、SiOは添加し過ぎると、分極が劣化し焦電効果が無くなる傾向にある。このため、SiOの添加量は10質量%以下が必要で、特に、実用的な焦電型赤外線センサとしての適用を考慮すると、0.5質量%以下が好ましい。 Further, by adding SiO 2 to the above-described pyroelectric material, the sinterability of the pyroelectric material is improved, and low-temperature sintering becomes possible. FIG. 3 is a diagram showing the relationship between the firing temperature and the density. Here, the composition of the main component was x = 0.14 and y = 0.01. The density was shown when the addition amount of SiO 2 was 0.1 mass% and 0.5 mass% and when SiO 2 was not added (0 mass%). As shown in FIG. 3, the addition of SiO 2 shifts the density peak to the low temperature side, and enables low temperature sintering at 1100 ° C. or lower. Here, in the case where SiO 2 is not added in FIG. 3 (0% by mass), the density peak is taken at 1100 ° C., and therefore, the sintering is performed at a high temperature of 1100 ° C. or higher in consideration of variation in characteristics in the mass production process. There is a need to. For this reason, in order to perform low-temperature sintering at 1100 ° C., the addition amount of SiO 2 needs to be 0.1 mass% or more. On the other hand, if SiO 2 is added too much, the polarization tends to deteriorate and the pyroelectric effect tends to disappear. For this reason, the addition amount of SiO 2 needs to be 10% by mass or less, and preferably 0.5% by mass or less in consideration of application as a practical pyroelectric infrared sensor.

かくして、本発明によって、比誘電率εが低く、かつキュリー点Tcが高く、1100℃以下での低温焼結を実現した表面実装対応の焦電型赤外線センサに使用される優れた焦電磁器材料が得られた。 Thus, according to the present invention, an excellent pyroelectric ceramic used for a surface-mounting pyroelectric infrared sensor that has a low relative dielectric constant ε r and a high Curie point Tc and realizes low-temperature sintering at 1100 ° C. or lower. Material was obtained.

Claims (1)

組成式が(Pb(1−x),Ca)(Ti(1−y),(Sb1/2Nb1/2)O(但し、0.08≦x≦0.24、0.001≦y≦0.5)で表される主成分に、副成分としてSiOが0.1質量%以上10質量%以下添加されたことを特徴とする焦電磁器材料。 The composition formula is (Pb (1-x) , Ca x ) (Ti (1-y) , (Sb 1/2 Nb 1/2 ) y ) O 3 (where 0.08 ≦ x ≦ 0.24, 0 A pyroelectric material, wherein SiO 2 is added in an amount of 0.1% by mass or more and 10% by mass or less as a subcomponent to the main component represented by .001 ≦ y ≦ 0.5).
JP2010161183A 2010-07-16 2010-07-16 Pyroelectric ceramic material Pending JP2012020909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010161183A JP2012020909A (en) 2010-07-16 2010-07-16 Pyroelectric ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010161183A JP2012020909A (en) 2010-07-16 2010-07-16 Pyroelectric ceramic material

Publications (1)

Publication Number Publication Date
JP2012020909A true JP2012020909A (en) 2012-02-02

Family

ID=45775490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161183A Pending JP2012020909A (en) 2010-07-16 2010-07-16 Pyroelectric ceramic material

Country Status (1)

Country Link
JP (1) JP2012020909A (en)

Similar Documents

Publication Publication Date Title
Wu et al. Effects of K content on the dielectric, piezoelectric, and ferroelectric properties of 0.95 (KxNa1− x) NbO3− 0.05 LiSbO3 lead-free ceramics
WO2010140653A1 (en) Barium titanate semiconductor ceramic composition and barium titanate semiconductor ceramic element
JP4298232B2 (en) Piezoelectric ceramic composition and piezoelectric element
US20120268234A1 (en) Semiconductor ceramic composition for ntc thermistors and ntc thermistor
US20140339458A1 (en) Piezoelectric ceramic and piezoelectric device containing the same
KR20170094085A (en) Semiconductor ceramic composition and ptc thermistor
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JP5192737B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics
JP5418323B2 (en) Dielectric porcelain composition and electronic component
JP4432969B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP4826961B2 (en) Piezoelectric ceramic composition and piezoelectric component
Tsai et al. Electrical properties and temperature behavior of ZnO-doped PZT–PMnN modified piezoelectric ceramics and their applications on therapeutic transducers
JP5158516B2 (en) Piezoelectric ceramic composition and piezoelectric element
CN107001151B (en) Barium titanate-based semiconductor ceramic, barium titanate-based semiconductor ceramic composition, and positive thermistor for temperature detection
JP2012020909A (en) Pyroelectric ceramic material
JP2002226266A (en) Piezoelectric ceramic composition
JP2014072374A (en) Barium titanate-based semiconductor porcelain composition and ptc thermistor using the same
JP2003206179A (en) Piezoelectric ceramic
CN112759384A (en) Ceramic composition, ceramic sintered body and multilayer ceramic electronic component
JP2003327472A (en) Piezoelectric ceramic
JP2005082424A (en) Piezoelectric porcelain composition
KR101429034B1 (en) Dielectric ceramic composition and electronic component
KR101059857B1 (en) Pb-free PTC THERMISTOR CERAMIC COMPOSITION AND METHOD FOR PREPARIGN OF Pb-free PTC THERMISTOR CERAMIC USING THE SAME
JP2013523574A (en) Dielectric ceramic composition, method for producing dielectric ceramic composition, and electronic component
CN112334431B (en) Ceramic member and electronic component