JP2012019588A5 - - Google Patents

Download PDF

Info

Publication number
JP2012019588A5
JP2012019588A5 JP2010154750A JP2010154750A JP2012019588A5 JP 2012019588 A5 JP2012019588 A5 JP 2012019588A5 JP 2010154750 A JP2010154750 A JP 2010154750A JP 2010154750 A JP2010154750 A JP 2010154750A JP 2012019588 A5 JP2012019588 A5 JP 2012019588A5
Authority
JP
Japan
Prior art keywords
phase
circuit
input
protective relay
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010154750A
Other languages
Japanese (ja)
Other versions
JP5638296B2 (en
JP2012019588A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010154750A priority Critical patent/JP5638296B2/en
Priority claimed from JP2010154750A external-priority patent/JP5638296B2/en
Publication of JP2012019588A publication Critical patent/JP2012019588A/en
Publication of JP2012019588A5 publication Critical patent/JP2012019588A5/ja
Application granted granted Critical
Publication of JP5638296B2 publication Critical patent/JP5638296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

複数回線を選択的に運転、停止するために遮断器は、一般的に配電盤(金属閉鎖型スイッチギア、ガス絶縁開閉装置、気中絶縁開閉装置等を総称して「配電盤」という)等に内蔵され、この配電盤には接地開閉器や地絡過電流保護継電器51G等の保護継電器が各回線毎に設けられている。地絡過電流保護継電器51G等の保護継電器は、配電盤等内の回線単位の三相絶縁ケーブルの各々を一次導体とする各相CT(変流器)の二次出力を動作電流として入力している。 In order to selectively start and stop multiple circuits, circuit breakers are generally built in switchboards (metal switchgears, gas-insulated switchgears, air-insulated switchgears, etc. are collectively referred to as “switchboards”). The switchboard is provided with a protection relay such as a ground switch and a ground fault overcurrent protection relay 51G for each line. The protective relay such as the ground fault overcurrent protective relay 51G inputs the secondary output of each phase CT (current transformer) that uses each of the three-phase insulated cables for each line in the switchboard or the like as a primary conductor as an operating current. .

従って、UVW三相絶縁ケーブルを流れる誘導電流は、三相絶縁ケーブルの各々を一次導体とする各相CT(変流器)の二次出力にも現れるので、各相CT(変流器)の二次出力も三相不平衡電流の状態となり、各相CT(変流器)の二次出力を利用する地絡過電流保護継電器51G等の保護継電器が動作(不要動作、あるいは誤動作)する可能性がある。 Therefore, the induced current flowing through the UVW three-phase insulated cable also appears in the secondary output of each phase CT (current transformer) using each of the three-phase insulated cables as a primary conductor. The secondary output is also in a three-phase unbalanced current state, and a protective relay such as the ground fault overcurrent protection relay 51G that uses the secondary output of each phase CT (current transformer) may operate (unnecessary operation or malfunction). There is.

この発明に係る保護継電器の誤動作防止装置は、三相交流電路の各相の入力CTの出力回路の共通電路に接続された保護継電器、前記各相の入力CTのそれぞれの負荷側に設けられ対応する前記三相交流電路を選択切換により接地する各相の接地開閉器、及び前記各相の接地開閉器の接地回路の電流の合成電流が流れる共通接地線を備え、前記共通接地線が前記各相の入力CTの何れか一つの入力CTの一次導体貫通孔に当該一次導体と逆極性に貫通し、停止回線に流れる三相不平衡誘導電流に基づく前記各相の入力CTの二次出力電流が前記各相入力CTの出力回路の共通電路で相殺されるようにしたものである。 The malfunction prevention device of the protective relay according to the present invention is provided on the load side of the protective relay connected to the common circuit of the output circuit of the input CT of each phase of the three-phase AC circuit and the input CT of each phase. A grounding switch for each phase for grounding the three-phase AC circuit by selective switching, and a common grounding line through which a combined current of a grounding circuit of the grounding switch for each phase flows. The secondary output of the input CT of each phase based on the three-phase unbalanced induced current flowing through the through hole of the primary conductor of any one of the input CTs of the phase in the opposite polarity to the primary conductor and flowing in the stop line The current is canceled by the common circuit of the output circuit of the input CT of each phase.

この発明は、三相交流電路の各相の入力CTの出力回路の共通電路に接続された保護継電器、前記各相の入力CTのそれぞれの負荷側に設けられ対応する前記三相交流電路を選択切換により接地する各相の接地開閉器、及び前記各相の接地開閉器の接地回路の電流の合成電流が流れる共通接地線を備え、前記共通接地線が前記各相の入力CTの何れか一つの入力CTの一次導体貫通孔に当該一次導体と逆極性に貫通し、停止回線に流れる三相不平衡誘導電流に基づく前記各相の入力CTの二次出力電流が前記各相入力CTの出力回路の共通電路で相殺されるようにしたので、電力系統における運用回線から停止回線への三相不平衡誘導電流または対地静電容量からの三相不平衡放電電流による停止回線における保護継電器の誤動作を防止することが可能であり、電力系統における運用回線から停止回線への三相不平衡誘導電流または対地静電容量からの三相不平衡放電電流による停止回線における保護継電器の誤動作を防止することが可能な保護継電器の誤動作防止装置を容易に実現できる効果がある。 The present invention selects a protective relay connected to the common circuit of the output circuit of the input CT of each phase of the three-phase AC circuit, and the corresponding three-phase AC circuit provided on each load side of the input CT of each phase A grounding switch for each phase to be grounded by switching, and a common grounding line through which a combined current of a grounding circuit of the grounding switch for each phase flows, and the common grounding line is one of the input CTs for each phase. The secondary output current of the input CT of each phase based on the three-phase unbalanced induced current flowing through the through hole of the primary conductor of one input CT in the opposite polarity to the primary conductor and flowing through the stop line is the input CT of each phase . Because it is canceled by the common circuit of the output circuit, the protective relay in the stop line due to the three-phase unbalanced induced current from the operation line to the stop line in the power system or the three-phase unbalanced discharge current from the ground capacitance Prevents malfunction It is possible to prevent malfunction of the protective relay in the stop line due to the three-phase unbalanced induction current from the operation line to the stop line in the power system or the three-phase unbalanced discharge current from the ground capacitance. It is possible to easily realize a malfunction prevention device for a protective relay.

図1に例示のように、変電所S/Sに2回線の送電線L1,L2が接続され、当該送電線L1,L2は例えば送電用鉄塔TTにより空中回線として例えば22kVで送電する。 As illustrated in FIG. 1, two transmission lines L1 and L2 are connected to the substation S / S, and the transmission lines L1 and L2 transmit, for example, at 22 kV as an aerial line by the transmission tower TT.

つまり、図6に例示のように、受電線RL2の三相各相はICU,ICV,ICWと標記してあるが、これら三相各相の受電ケーブルICU,ICV,ICWに流れる三相不平衡誘導電流を一次電流として、例えば、U相の受電ケーブルICUを一次導体とするCT(変流器)CTUの二次出力電流iuと、V相の受電ケーブルICVを一次導体とするCT(変流器)CTVの二次出力電流ivと、W相の受電ケーブルICWを一次導体とするCT(変流器)CTWの二次出力電流iwとが、それらの大きさ、方向が同じでなくなり、例えばそれらの方向は図示矢印のように二次出力電流ivおよび二次出力電流iwと二次出力電流iuとが逆方向となり、それらの大きさはiu+iv+iw≠0とならず、iu+iv+iwの差電流が、残留回路RCC(CTUとCTVとCTWとの共通電路(図示の太線で表示の回路))に接続された地絡過電流保護継電器51Gの動作電流として流れ、当該差電流が地絡過電流保護継電器51Gの動作値を超える場合は、地絡過電流保護継電器51Gは動作する。すなわち、地絡過電流保護継電器51Gは地絡事故電流以外で動作することになるので誤動作することになる。
換言すれば、地絡過電流保護継電器51Gの各相入力CTの一次導体(受電ケーブル)ICU,ICV,ICWに対応する系統の停止回線L2に三相不平衡誘導電流が流れた場合、当該三相不平衡誘導電流の合成差電流が大きい場合には、停止回線L2に対応の地絡過電流保護継電器51Gが誤動作する。
In other words, as illustrated in FIG. 6, the three-phase phases of the receiving wire RL2 are marked as ICU, ICV, ICW, but the three-phase unbalance flowing through the power receiving cables ICU, ICV, ICW of these three-phase phases. The induced current is used as a primary current, for example, a CT (current transformer) CTU secondary output current iu with a U-phase power receiving cable ICU as a primary conductor, and a CT (current transformation) with a V-phase power receiving cable ICV as a primary conductor. The secondary output current iv of the CTV and the secondary output current iw of the CT (current transformer) CTW having the W-phase power receiving cable ICW as the primary conductor are not the same in size and direction, for example As indicated by the arrows, the secondary output current iv and the secondary output current iw and the secondary output current iu are in opposite directions, and their magnitudes do not become iu + iv + iw ≠ 0, and the difference current of iu + iv + iw is Remaining As the operating current of the ground fault overcurrent protection relay 51G connected to the circuit RCC (common circuit of the CTU, CTV and CTW (shown by the bold line in the figure)), the difference current flows and the operation of the ground fault overcurrent protection relay 51G When the value is exceeded, the ground fault overcurrent protection relay 51G operates. That is, since the ground fault overcurrent protection relay 51G operates except for the ground fault accident current, it malfunctions.
In other words, when a three-phase unbalanced induced current flows through the stop line L2 of the system corresponding to the primary conductor (power receiving cable) ICU, ICV, ICW of each phase input CT of the ground fault overcurrent protection relay 51G, the three-phase When the combined differential current of the unbalanced induced current is large, the ground fault overcurrent protection relay 51G corresponding to the stop line L2 malfunctions.

その具体的手段の事例は、図6に例示のように、地絡過電流保護継電器51Gの入力CT(変流器)CTU,CTV,CTWの各々の負荷側に接続された接地開閉器ESU,ESV,ESWの接地回路ECU,ECV,ECWに流れる三相不平衡誘導電流を例えば短絡バーSBで合成し、短絡バーSBで合成された三相不平衡誘導電流が、短絡バーSBの接地側に接続された共通接地線CECを通ってアースに流れるように構成すると共に、共通接地線CECを、地絡過電流保護継電器51Gの入力CT(変流器)CTU,CTV,CTWの何れか一つ、例えば入力CT(変流器)CTU、の一次導体貫通孔(一次導体である受電線ICUの貫通孔)(以下、「一次導体貫通孔」と略記する)に当該一次導体と逆極性となるように貫通した構成としてある。 As an example of the specific means, as illustrated in FIG. 6, the ground switches ESU, ESV connected to the load side of the input CT (current transformer) CTU, CTV, CTW of the ground fault overcurrent protection relay 51G. The three-phase unbalanced induced current flowing in the grounding circuit ECU, ECV, ECW of the ESW is synthesized by, for example, the short-circuit bar SB, and the three-phase unbalanced induced current synthesized by the short-circuit bar SB is connected to the ground side of the short-circuit bar SB The common ground line CEC is configured to flow to the ground through the common ground line CEC, and the common ground line CEC is one of the input CTs (current transformers) CTU, CTV, CTW of the ground fault overcurrent protection relay 51G, for example, input CT (current transformer) CTU, the primary conductor through hole (primary conductor at a receiving line ICU through holes) (hereinafter, abbreviated as "primary conductor through holes") in the primary conductor opposite polarity so as Penetrated As a configuration.

CB11,CB12,CB21,CB22 遮断器、
CEC 共通接地線、 Ce 対地静電容量、
CT 変流器、 CTU U相入力CT、
CTV V相入力CT、 CTW W相入力CT、
DSB 受電盤、 ECU U相接地回路、
ECV V相接地回路、 ECW W相接地回路、
ES 接地開閉器、 ESU U相接地開閉器、
ESV V相接地開閉器、 ESW W相接地開閉器、
FL1,FL2 給電線、
ICU,ICV,ICW 受電ケーブル(三相交流電路)(各相受電線)
L 負荷、 L1 3相交流送電線(運用回線)、
L2 3相交流送電線(停止回線)、
RCC 残留回路、 RL1,RL2 受電線、
SB 短絡バー、 S/S 変電所、
Tr1、Tr2 変圧器、 TT 送電用鉄塔、
u1,v2,w3,u4,v5,w6 各相送電線、
50,51 過電流保護継電器、
51G 地絡過電流保護継電器。
CB11, CB12, CB21, CB22 circuit breaker,
CEC common ground line, Ce to ground capacitance,
CT current transformer, CTU U-phase input CT,
CTV V-phase input CT, CTW W-phase input CT,
DSB power receiving panel, ECU U phase grounding circuit,
ECV V phase grounding circuit, ECW W phase grounding circuit,
ES ground switch, ESU U phase ground switch,
ESV V-phase grounding switch, ESW W-phase grounding switch,
FL1, FL2 feed line,
ICU, ICV, ICW power receiving cable (three-phase AC circuit) (each phase power cable ) ,
L load, L1 three-phase AC transmission line (operation line),
L2 3-phase AC transmission line (stop line),
RCC residual circuit, RL1, RL2 receiving wire,
SB short bar, S / S substation,
Tr1, Tr2 transformer, TT power transmission tower,
u1, v2, w3, u4, v5, w6 each phase transmission line,
50,51 Overcurrent protection relay,
51G Ground fault overcurrent protection relay.

Claims (4)

三相交流電路の各相の入力CT、前記各相の入力CTの出力回路の共通電路に接続された保護継電器、前記各相の入力CTのそれぞれの負荷側に設けられ対応する前記三相交流電路を選択切換により接地する各相の接地開閉器、及び前記各相の接地開閉器の接地回路の電流の合成電流が流れる共通接地線を備え、前記共通接地線が前記各相の入力CTの何れか一つの入力CTの一次導体貫通孔に当該一次導体と逆極性に貫通し、停止回線に流れる三相不平衡電流に基づく前記各相の入力CTの二次出力電流が前記各相入力CTの出力回路の共通電路で相殺されるようにした保護継電器の誤動作防止装置。 The input CT of each phase of the three-phase AC circuit, the protective relay connected to the common circuit of the output circuit of the input CT of each phase, and the corresponding three-phase AC provided on each load side of the input CT of each phase A grounding switch for each phase that grounds the electric circuit by selective switching, and a common grounding line through which a combined current of the grounding circuit of the grounding switch for each phase flows, and the common grounding line of the input CT of each phase through either one of the primary conductor and the opposite polarity to the through hole of the primary conductor of the input CT, the secondary output current of the input CT of the respective phases based on the three-phase unbalanced currents flowing through the stop line of the phase A device for preventing malfunction of a protective relay that is canceled by a common circuit of an output circuit of an input CT. 請求項1に記載の保護継電器の誤動作防止装置において、前記各相の接地開閉器の接地回路の電流が短絡バーにより合成されることを特徴とする保護継電器の誤動作防止装置。   2. The protective relay malfunction prevention device according to claim 1, wherein the current of the ground circuit of the ground switch of each phase is synthesized by a short-circuit bar. 請求項1又は請求項2に記載の保護継電器の誤動作防止装置において、前記三相交流電路が絶縁ケーブルからなる三相の受電線であり、当該三相の受電線と前記各相の入力CTと前記各相の接地開閉器と前記各相の接地開閉器の接地回路と前記共通接地線とが同じ配電盤に設けられていることを特徴とする保護継電器の誤動作防止装置。   In the malfunction prevention apparatus of the protective relay of Claim 1 or Claim 2, the said three-phase alternating current circuit is a three-phase receiving wire which consists of an insulated cable, The said three-phase receiving wire and input CT of each said phase, An apparatus for preventing malfunction of a protective relay, wherein the ground switch of each phase, the ground circuit of the ground switch of each phase, and the common ground line are provided on the same switchboard. 請求項3に記載の保護継電器の誤動作防止装置において、前記保護継電器が前記配電盤に設けられていることを特徴とする保護継電器の誤動作防止装置。   4. The protective relay malfunction prevention device according to claim 3, wherein the protective relay is provided in the switchboard.
JP2010154750A 2010-07-07 2010-07-07 Protection relay malfunction prevention device Active JP5638296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010154750A JP5638296B2 (en) 2010-07-07 2010-07-07 Protection relay malfunction prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010154750A JP5638296B2 (en) 2010-07-07 2010-07-07 Protection relay malfunction prevention device

Publications (3)

Publication Number Publication Date
JP2012019588A JP2012019588A (en) 2012-01-26
JP2012019588A5 true JP2012019588A5 (en) 2013-08-08
JP5638296B2 JP5638296B2 (en) 2014-12-10

Family

ID=45604413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010154750A Active JP5638296B2 (en) 2010-07-07 2010-07-07 Protection relay malfunction prevention device

Country Status (1)

Country Link
JP (1) JP5638296B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134104B1 (en) * 1970-05-27 1976-09-24
JPH09322342A (en) * 1996-05-24 1997-12-12 Nissin Electric Co Ltd Gas insulated switchgear

Similar Documents

Publication Publication Date Title
EP2193584B1 (en) Short-circuit limiting apparatus in a low-voltage installation
AU2011253735B2 (en) Configurable electrical switching apparatus including a plurality of separable contacts and a plurality of field-configurable jumpers to provide a number of poles
CA3141957C (en) Open pen detection and shut down system
US20150116886A1 (en) Multiphase circuit breaker system having a short-circuit link
KR101489939B1 (en) Gas insulated switch-gear
KR20130017612A (en) Gas insulated switch-gear
EP3329506B1 (en) Electrical assembly
CA2933979A1 (en) Motor control center including an integrated dual bus configuration
JP2012019588A5 (en)
JP5638296B2 (en) Protection relay malfunction prevention device
JP5570360B2 (en) Protection relay malfunction prevention device
KR100987156B1 (en) A distribution panel with harmonic wave resistance
Sobolewski et al. Protection verification and designing while establishing collective prosumer's low-voltage electrical installation. A case study
KR101231766B1 (en) Gas insulated switch-gear
US8395868B2 (en) Short circuit limitation device in a low voltage system
JP2000032670A (en) Spot network receiving facility
RU2016114959A (en) Overcurrent protection device
JP6707482B2 (en) Gas insulated switchgear
Love Ground fault protection for electric utility generating station 480-volt auxiliary power systems
JP2554532Y2 (en) Distribution substation equipment
Basu et al. Maintenance of Three-phase Load Voltage during Single Phase Auto Reclosing in Medium Voltage Radial Distribution Lines
Brusso et al. High resistance neutral grounding [history]
JP4966163B2 (en) Gas insulated switchgear
WO2008049958A2 (en) Arrangement in a synchronous machine and method of connecting a synchronous machine
Cranos et al. Spot Networks and Connected Building Systems